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Abstract
We develop a new phase space method for reconstructing the index of refraction
of a medium from travel time measurements. The method is based on the
so-called Stefanov–Uhlmann identity which links two Riemannian metrics
with their travel time information. We design a numerical algorithm to
solve the resulting inverse problem. The new algorithm is a hybrid approach
that combines both Lagrangian and Eulerian formulations. In particular the
Lagrangian formulation in phase space can take into account multiple arrival
times naturally, while the Eulerian formulation for the index of refraction allows
us to compute the solution in physical space. Numerical examples including
isotropic metrics and the Marmousi synthetic model are shown to validate the
new method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We address in this paper the inverse problem of determining the index of refraction of a
medium from travel time information. The anisotropic index of refraction of the medium
is modelled as a positive definite symmetric matrix, i.e. a Riemannian metric, in a bounded
domain of Euclidean space. The problem of determining the Riemannian metric from first
arrivals is known in differential geometry as the boundary rigidity problem. The travel time
information is encoded in the boundary distance function, which measures the distance, with
respect to the Riemannian metric, between boundary points. The problem of determining
the index of refraction from multiple arrival times is called in differential geometry the lens
rigidity problem. The information is encoded in the scattering relation which gives the exit
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point and direction of a geodesic if we know the incoming point and direction plus also the
travel time.

Recent progress on the boundary rigidity problem and the lens rigidity problem, and the
associated linearized problem, a problem in integral geometry, has motivated us to transfer
those theoretical advances into developing numerical algorithms to determine the anisotropic
index of refraction, i.e. the Riemannian metric, from travel time information.

The boundary rigidity problem consists in determining a compact Riemannian manifold
with boundary up to an action of a diffeomorphism which is the identity at the boundary by
knowing the geodesic distance function between boundary points (see [29, 30] and references
therein). One needs an a priori hypothesis to do so since it is easy to find counterexamples if the
index of refraction is too large in certain regions. An a priori condition that has been proposed
is simplicity of the metric [20]. A manifold is simple if the boundary is strictly convex with
respect to the Riemannian metric and there are no conjugate points along any geodesic. The
linearized inverse problem of the boundary rigidity problem is the integral geometry problem of
determining a symmetric tensor field from its integrals along geodesics for a symmetric tensor
of order two [27]. By proving stability estimates for this problem, Stefanov and Uhlmann [29]
have been able to establish a local generic uniqueness result and a conditional stability estimate
of Hölder type for the nonlinear boundary rigidity problem for simple manifolds. However,
when the simplicity condition is not fulfilled, Stefanov and Uhlmann [32] have proved an
injectivity up to a potential field and stability for non-simple Riemannian manifolds under
some topological assumptions and under the condition of existence of a subset of geodesics
without conjugate points in the sense that their co-normal bundle covers the cotangent space
of the manifold; see also Dairbekov [5] for results on integral geometry for non-trapping
Riemannian manifolds. A similar result for the nonlinear problem has been proved recently
(see [31]). So far it seems to be difficult to handle the case with conjugate points since they
are related to the so-called caustics in geometrical optics. Therefore, we are interested in
numerically recovering a Riemannian metric even when caustics are present. We remark that
for simple manifolds knowing the scattering relation is the same as knowing the boundary
distance function. It is only for non-simple manifolds that the scattering relation gives more
information including multiple arrival times. We also expect that our work will shed light on
theoretical investigations of the boundary rigidity problem, the lens rigidity problem and the
inverse kinematic problem in the presence of caustics.

Our work is inspired by Stefanov and Uhlmann [28]. In that article, assuming that a three-
dimensional domain with a Riemannian metric is not trapping (i.e. every geodesic has finite
length), they established an identity in phase space to link, roughly speaking, the difference
of two Riemannian metrics with the difference of the scattering relation. They used this to
prove that a Riemannian metric close to the isotropic metric can be recovered up to an action
of isometry in a bounded smooth, strictly convex domain in R

3 by knowing the length of
the geodesics joining points on the boundary; see also Wang [35] for related stability results
using the same general method. In terms of stability estimates for multidimensional inverse
problems, see the review article by Isakov [11]; see also Isakov and Sun [13] for stability
estimates by reducing hyperbolic inverse problems to integral geometry problems. For a
general account of inverse problems for PDEs, see [12]. In this work we build on the identity
derived in [28] to design a numerical inversion algorithm and show numerical examples to
demonstrate the effectiveness of the new algorithm in reconstructing an isotropic index of
refraction.

Although the Stefanov–Uhlmann identity is posed in phase space, they need to prove
that a certain integral transform is invertible which they can only accomplish under some
assumptions, including simplicity of the Riemannian manifold with respect to a given metric.
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In [28] the metric is recovered by using only the shortest path since, as was mentioned earlier,
in this case the scattering relation is the same as the boundary distance function. However,
the identity is valid for non-trapping manifolds, including anisotropic media and allowing for
caustics, assuming that one knows the metric outside the domain. Thus, we decided to use
the identity directly in phase space. As a consequence we have to find a way to pick the
data that are in phase space which are not measurable directly. To do that we recall that in
kinematic inverse problems, the data used frequently are travel time data, which means that
travel times can be parametrized by source locations and ray parameters; in turn ray parameters
can be derived from the eikonal equation and the travel time data as illustrated in [10, 14, 19,
33]. Therefore without any hesitation we use the identity as our foundation to carry out the
inversion process.

The Stefanov–Uhlmann identity is also related to the so-called Liouville equation, but
the current formulation is different from that used in [14]. In that work [14] Leung and Qian
formulated the inverse problem for isotropic metrics in a Eulerian framework and used an
adjoint state method to minimize a mismatching functional. The current new formulation is
based on a novel identity to cross-correlate the information from two metrics so that the two
metrics can pass information to each other at every moment, and the Jacobian matrix is the
bridge.

The advantages of phase space formulation are multi-fold. As a first advantage
multipathing can be taken into account systematically, as evidenced in [6, 14] and in numerical
examples shown later. As demonstrated in [9, 16], multipathing is essential for high resolution
seismic imaging. As a second advantage, our phase space formulation has the potential to
recover generic (anisotropic) Riemannian metrics. These advantages distinguish our new
method from other traditional methods in inverse kinematic problems [2, 3, 15, 24–26, 36] in
that those traditional methods only recover isotropic metrics by using first-arrivals. Moreover,
our numerical algorithm is based on a hybrid approach. A Lagrangian formulation (ray
tracing) is used in phase space for the linearized Stefanov–Uhlmann identity. This allows us
to deal with multipathing naturally. On the other hand, a Eulerian formulation is used for the
index of refraction of the medium. As a consequence our computational domain is in physical
space rather than in phase space. In this paper, we will focus on the numerical algorithm for
isotropic metrics. For anisotropic cases the underlying Riemannian metric is unique up to
an action of a diffeomorphism which is the identity at the boundary even with knowledge of
scattering relations, e.g., the lens rigidity problem. This gives additional intriguing subtleties
in developing numerical algorithms. The study will be reported in future work.

The paper is organized as follows. In section 2, we state the inverse problem, linearize
the Stefanov–Uhlmann identity and propose a nonlinear functional as the foundation for
solving the inverse problem in phase space. Section 3 is devoted to discretizing the nonlinear
functional. In section 4, we show extensive examples to demonstrate the effectiveness of the
new phase space method. Section 5 concludes the paper.

2. Statement of the problem and linearization

We are interested in reconstructing a Riemannian metric in a bounded domain by a set of
boundary measurements.

2.1. Basic setup

Let � ⊂ R
n be a bounded domain with smooth boundary � = ∂�. Let g(x) = (gij (x)) be

a Riemannian metric in �. Let dg(x, y) denote the geodesic distance between x and y.



312 E Chung et al

The inverse problem is whether we can determine the Riemannian metric g up to the
natural obstruction of a diffeomorphism by knowing dg(x, y) for any x ∈ � and y ∈ �.
While theoretically there are a lot of works addressing this question (see [1, 4, 20–23,
27] and references therein), we explore the possibility of recovering the Riemannian metric
numerically. We use phase space formulation so that multipathing in physical space is allowed.
Rather than the boundary distance function we look at the scattering relation which measures
the point and direction of exit of a geodesic plus the travel time if we know the point and
direction of entrance of the geodesic. Such data are available in practice (see section 3.3).
Below we formulate the problem more precisely.

Assume that we have two Ck metrics g1 and g2 with k � 2 satisfying g1 = g2 in R
n − �.

The Hamiltonian Hg related to g is

Hg(x, ξ) = 1
2

(
�n

i,j=1g
ij (x)ξiξj − 1

)
, (2.1)

where g is either g1 or g2, and g−1 = (gij ).
Let X := (x, ξ). We denote by Xgj

(s,X(0)) = (xgj
(s,X(0)), ξgj

(s, X(0))), j = 1, 2, the
solution to the Hamiltonian system defined by Hgj

(x, ξ) = 0,

dx

ds
= ∂Hgj

∂ξ
,

dξ

ds
= −∂Hgj

∂x
, (2.2)

with the initial condition X(0) = (x0, ξ 0), where x0 ∈ R
n and ξ 0 ∈ Sn−1

g (x0). Here we define
the unit sphere in the cotangent space T ∗

x (Rn):

Sn−1
g (x) := {

ξ ∈ T ∗
x (Rn) : Hg(x, ξ) = 1

2

(
�n

i,j=1g
ij (x)ξiξj − 1

) = 0
}
. (2.3)

The continuous dependence on the initial data of the solution of the Hamiltonian system
is characterized by the Jacobian,

Jgj
(s) = Jgj

(s,X(0)) := ∂Xgj

∂X(0)
(s, X(0)). (2.4)

It can be shown easily from the definition of J and the corresponding Hamiltonian system
(2.2) [7] that Jgj

, j = 1, 2, satisfies

dJ

ds
= MJ, J (0) = I, (2.5)

where, in terms of H = Hgj
(j = 1, 2), the matrix M is defined by

M =
(

Hξ,x, Hξ,ξ

−Hx,x, −Hx,ξ

)
(2.6)

Since Hgj
∈ Ck(T ∗(Rn)) (j = 1, 2), where T ∗(Rn) denotes the cotangent bundle on �,

according to the standard theory Xgj
∈ Ck−1 jointly in s ∈ R and X(0) ∈ {(x0, ξ 0) : x0 ∈ R

n,

ξ 0 ∈ Sn−1
g (x0)} ([34], p 30).

2.2. Linearizing the Stefanov–Uhlmann identity

Given boundary measurements for g1, we are interested in recovering the metric g1.
Take X(0) = (x0, ξ 0), where x0 ∈ � and ξ 0 ∈ Sn−1

g (x0), such that the inflow condition
holds,

ν(x0) · g−1ξ 0 < 0, (2.7)

where ν(x0) is the outer normal to � = ∂� at x0, and g is either g1 or g2. In general, we let
S− and S+ be subsets of R

2n defined by

S− = {
(x, ξ)

∣∣ x ∈ �, ξ ∈ Sn−1
g (x), g−1ξ · ν(x) < 0

}
,

S+ = {
(x, ξ)

∣∣ x ∈ �, ξ ∈ Sn−1
g (x), g−1ξ · ν(x) > 0

}
,
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where ν(x) is the outward normal vector at x ∈ �; they correspond to the inflow and outflow
conditions in phase space.

We link two metrics by introducing the function

F(s) := Xg2

(
t − s,Xg1(s,X

(0))
)
,

where t = max
(
tg1 , tg2

)
and tg = tg(X

(0)) is the length of the geodesic issued from X(0) with
the endpoint on �. Consequently we have∫ t

0
F ′(s) ds = Xg1

(
t, X(0)) − Xg2(t, X

(0)
)
. (2.8)

The time integral on the left-hand side is equal to the following [28],∫ t

0
F ′(s) ds =

∫ t

0

∂Xg2

∂X(0)

(
t − s,Xg1(s,X

(0))
) × (

Vg1 − Vg2

)(
Xg1(s,X

(0))
)

ds, (2.9)

where

Vgj
:=

(
∂Hgj

∂ξ
,−∂Hgj

∂x

)
=

(
g−1ξ,−1

2
∇x(g

−1ξ) · ξ

)
. (2.10)

This is the so-called Stefanov–Uhlmann identity.
We linearize the above identity about g2 by following a full underlying path in g2,∫ t

0
F ′(s) ds ≈

∫ t

0

∂Xg2

∂X(0)

(
t − s,Xg2(s,X

(0))
) × ∂g2Vg2(g1 − g2)

(
Xg2(s,X

(0))
)

ds, (2.11)

where ∂gVg(λ) is the derivative of Vg with respect to g at λ.
Using (2.8), we have the following formula,

Xg1(t, X
(0)) − Xg2(t, X

(0)) ≈
∫ t

0

∂Xg2

∂X(0)

(
t − s,Xg2(s,X

(0))
)

× ∂g2Vg2(g1 − g2)
(
Xg2(s,X

(0))
)

ds, (2.12)

or

Xg1(t, X
(0)) − Xg2(t, X

(0)) =
∫ t

0
Jg2

(
t − s,Xg2(s,X

(0))
)

× ∂g2Vg2(g1 − g2)
(
Xg2(s,X

(0))
)

ds, (2.13)

which is the foundation for our numerical procedure.
By the group property of Hamiltonian flows the Jacobian matrix is equal to

∂Xg2

∂X(0)

(
t − s,Xg2(s,X

(0))
) = ∂Xg2

∂X(0)
(t, X(0)) ×

(
∂Xg2

∂X(0)
(s, X(0))

)−1

, (2.14)

or

Jg2

(
t − s,Xg2(s,X

(0))
) = Jg2(t, X

(0)) × Jg2(s,X
(0))−1. (2.15)

In the case of the isotropic metric, we have

(gk)ij = 1

c2
k

δij . (2.16)

Then

Vgk
= (

c2
kξ,−(∇ck)ck|ξ |2). (2.17)

Hence the derivative of V with respect to g, ∂gVg(λ) in equation (2.8) is given by

∂gVg(λ) = (2cλξ,−(∇c · λ + ∇λ · c)|ξ |2), (2.18)

since the phase space variable ξ is fixed along the given path Xg2(s,X
(0)). A more involved

formula can be derived for anisotropic media in the same way.
We note that one may also derive formula (2.12) by using the so-called ray perturbation

theory (see [8], for example).
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2.3. Continuous Tikhonov regularization

Given boundary measurements Xg1(t, X
(0)) ∈ S+, where X(0) ∈ S−, we recover g1 by

Newton’s method via the linearization (2.13). During each iteration, we solve the first-kind
integral equation (2.13) by a regularization method.

For a given metric g2 we define a linear operator, the X-ray transform via the Hamiltonian
flow Xg2 , to map a function g̃ ∈ Ck

0 (Rn) into the set of its line integrals:

K : g̃ ∈ Ck
0 (Rn) → Kg̃ ∈ Ck(S−),

Kg̃ =
∫ tg2 (·)

0
Jg2

(
tg2(·) − s,Xg2(s, ·)

) × ∂g2Vg2(g̃)
(
Xg2(s, ·)

)
ds,

(2.19)

Kg̃(X(0)) =
∫ tg2 (X(0))

0
Jg2

(
tg2(X

(0)) − s,Xg2(s,X
(0))

) × ∂g2Vg2(g̃)
(
Xg2(s,X

(0))
)

ds,

for X(0) ∈ S−.

We define the data element as

d̃ = Xg1(t, ·) − Xg2(t, ·), (2.20)

where d̃ ∈ Ck(S−). Hence we have a first-kind operator equation by equation (2.13),

Kg̃ = d̃. (2.21)

By the method of regularization we introduce a nonzero parameter β and a functional,

Gβ(g̃) = 1
2‖Kg̃ − d̃‖2

L2(S−) + 1
2β‖∇g̃‖2

L2(�), (2.22)

which is defined on the domain of the gradient operator ∇. Then we seek an element g̃β

solving the minimizing problem,

Gβ(g̃β) = inf
g̃∈D(∇)

Gβ(g̃), (2.23)

where D(∇) is the domain of ∇. Under appropriate conditions we may show that the g̃β

converges to a least-squares solution g̃0 of equation (2.21) [17, 18].

2.4. A continuation method

In general Newton’s method for the nonlinear equation (2.9) based on solving the linearized
problem (2.12) iteratively may not converge for an arbitrary initial guess. However, since
stability and uniqueness are proved for a metric close to the isotropic metric [28, 35], this
enables us to develop a continuation (homotopy) method. A series of intermediate metrics is
created continuously from an appropriately known metric, such as an isotropic metric, to the
unknown metric by interpolation of the data.

Let g0 be an appropriately chosen isotropic metric, and let t̃j and X̃j = Xg0

(
t̃j , X

(0)
j

)
be

the data in the given medium corresponding to those measurements with initial states X
(0)
j for

j = 1, 2, . . . , m. That is, t̃j is the travel time such that X̃j = Xg0

(
t̃j , X

(0)
j

) ∈ S+ by solving
the forward problem in the given metric. Now we take a continuation from the given metric
to the unknown metric by introducing an intermediate metric, gα , corresponding to the linear
interpolation of the measurements parametrized by α ∈ [0, 1],

tαj = αtj + (1 − α)t̃j , Xα
j = αXĝ

(
tj , X

(0)
j

)
+ (1 − α)X̃j .

Numerically this procedure introduces an inner loop. First we choose an increment dα = 1/N .
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Start with α1 = dα and use the interpolated data, t
α1
j and X

α1
j , to find the first intermediate

metric gα1 . This process is continued as follows: after we get gαk
, we use it as an initial guess

to compute gαk+1 .
In addition a restarting step could be helpful. The restarting step is to use the metric

computed from previous computations as a new initial state to start a new continuation process.
For example, if the previous stage becomes divergent at αn, 1 � n < N , then gαn

and the
corresponding measurements, tαn

j and X
αn

j , are used as the new initial metric and measurements
for the next continuation process. In general we still may not be able to complete the whole
continuation, but we can obtain a certain approximation of the unknown metric.

3. Numerical methods

3.1. Discretization

We use a hybrid approach to solve this problem numerically. The metric g is defined on
an Eulerian grid. The linearized integral equation (2.12) is treated in phase space using a
Lagrangian formulation. Hence multipathing can be dealt with easily. The main task in the
numerical computation is the discretization of the linearized integral equation (2.12). Since
the integral is defined along the ray in a given metric, we first solve the ray equation (2.2)
in phase space starting from a particular X

(0)
j . At the same time we compute the Jacobian

matrix along the ray according to (2.5) and (2.15). Standard ODE solvers are used to solve
these ODEs. On the ray, values of g are computed by interpolation from the neighbouring
grid point values. Hence each integral equation along a particular ray yields a linear equation
for grid values of g near the ray path in the physical domain. We form a whole system of
linear equations using all rays corresponding to the given measurements. This system may be
under or over determined and may not have a unique solution. We regularize the system as
in the continuous case discussed in section 2.3. A few remarks are in order on our numerical
algorithm:

(i) Although our formulation is in phase space, the phase variables are auxiliary dependent
variables. Physical space is where we solve the problem.

(ii) The main cost is in solving the ray equations corresponding to the measurements and
forming the linear system.

We assume that the metric ĝ to be reconstructed is known on the boundary �. Let
X

(0)
i ∈ S−, for i = 1, 2, . . . , m, be a set of given points which are the initial conditions

producing the measurements. Here m is the number of data points in phase space. In
principle, the measurements, Xĝ

(
ti , X

(0)
i

)
, are obtained by performing external measurements.

To test our numerical algorithm, which will be discussed in section 4, we will generate the
measurements by solving the forward problem (2.2) with the initial data X

(0)
i ∈ S− until a

time ti such that Xĝ

(
ti , X

(0)
i

) ∈ S+.
Let τ be a rectangular grid on � with mesh size h > 0. We denote by Q1(τ ) the

space of bilinear functions on τ . We define W = {g | g|τ ∈ Q1(τ ), g|� = ĝ|�} and
W0 = {g | g|τ ∈ Q1(τ ), g|� = 0}. The following is the numerical scheme.

Suppose the initial guess g0 ∈ W is given. If gn ∈ W is known, then we find gn+1 ∈ W ,
where gn+1 solves the following minimization problem,

min
g∈W

B(g) = 1

2

m∑
i=1

‖Fi(g
n)g − ri(g

n)‖2 +
β

2
‖∇g‖2. (3.1)
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Here, for 1 � i � m,

Fi(g
n)g =

∫ ti

0

∂Xgn

∂X(0)

(
ti − s,Xgn

(
s,X

(0)
i

)) × ∂gnV (g)
(
Xgn

(
s,X

(0)
i

))
ds (3.2)

and

ri(g
n) = Xĝ

(
ti , X

(0)
i

) − Xgn

(
ti , X

(0)
i

)
+ Fi(g

n)gn. (3.3)

In (3.1), β > 0 is a regularization parameter. The minimizer g of (3.1) satisfies the following
variational problem,

m∑
i=1

〈Fi(g
n)g, Fi(g

n)φ〉 + β〈∇g,∇φ〉 =
m∑

i=1

〈ri(g
n), Fi(g

n)φ〉, ∀φ ∈ W. (3.4)

The existence and uniqueness of a solution for (3.4) can be proved by standard techniques.
Note that (3.4) is a linear system and can be solved directly.

Now, we consider the right-hand side of (3.2). We discretize the time interval (0, t) into
smaller subintervals. On the j th subinterval, we have∫ (j+1)
t

j
t

∂Xgn

∂X(0)
(t − s,Xgn(s,X(0))) × ∂gnV (g)(Xgn(s,X(0))) ds. (3.5)

Using a trapezoidal rule, for instance, we have


t

2

{
∂Xgn

∂X(0)
(t − tj , Xgn(tj , X

(0))) × ∂gnV (g)(Xgn(tj , X
(0)))

+
∂Xgn

∂X(0)
(t − tj+1, Xgn(tj+1, X

(0))) × ∂gnV (g)(Xgn(tj+1, X
(0)))

}
(3.6)

where tj = j
t .
In addition, we need to calculate the Jacobian matrix along the ray

∂Xgn

∂X(0)
(t − tj , Xgn(tj , X

(0))) = ∂Xgn

∂X(0)
(t, X(0)) ×

(
∂Xgn

∂X(0)
(tj , X

(0))

)−1

, (3.7)

which, in turn, can be computed by solving equation (2.5) with the matrix M defined by (2.6).
In the case of an isotropic medium with the metric defined as in (2.16),

M =
(

2cnξ(∇cn)T , (cn)2I

−(∇2cn)cn|ξ |2 − (∇cn)(∇cn)T |ξ |2, −2cn(∇cn)ξT

)
. (3.8)

3.2. Computational cost

We estimate the computational cost of the numerical method. For each iteration, we have
to solve the ray equation (that is, the ODE) for each initial datum (that is, each initial ray
direction and source location). Suppose we use NT time steps for the ODE solver. Then the
computational cost for solving the ray equation for each iteration is O(mNT ), where m is the
number of measurements.

We will store the numerical solution at each time step when solving the ray equation by
an ODE solver. The advantage of this is that we do not need to compute the value Xgn again
when we need to evaluate the integral (3.5)–(3.6) and find the Jacobian matrix (2.5).

Regarding the linear system, we use a direct solver. So, for each integration, the cost of
computation is O(N3). Note that the linear system is dense. However, the use of a direct
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solver is not compulsory. One can apply other algebraic solvers for better efficiency. We will
not pursue this issue any further in the current paper.

3.3. Data collection

In isotropic media travel times and ray parameters can be picked from so-called common-shot
(source) and common-geophone gathers, where the ray parameter is defined as the change in
travel time as the position of the shot, the receiver, or both, varies [33]. There are several
possible approaches, such as the method of controlled directional reception [33] and the method
of double slant stacking [10]. In turn, the ray parameter can be used for determining take-off
angles at the shot position and the arrival angles at the geophone position [33]. See [19] for
another related method. Therefore, it is possible to apply our mathematical formulation to
practice.

4. Numerical examples

In this section, we present a series of experiments to test the new numerical method.
The numerical solution is uniquely determined by its value at each interior node. The

measurement is generated by solving the forward problem with the exact metric. The initial
data are chosen in the following way. Note that each initial datum point X(0) contains two
components x(0) and ξ (0) which are the initial physical location and the initial phase state; in
turn, the initial phase state determines the ray direction.

We assume that the domain � = [0, 1]2. For each of the examples below, except otherwise
noted, we will use a 11×11 rectangular grid, which contains 112 nodes including those on the
boundary. We will use 9 initial physical locations x(0) on each edge of the domain �, which
are the interior nodal points on that edge; therefore we have 9 × 4 initial physical locations
in total, and they are the nodes on the boundary except those at the corners of �. At each
initial physical location, we use ten initial directions. These ten directions are specified by unit
vectors pointing inwards and they are chosen to be uniformly distributed among all possible
inward unit vectors. Hence, the total number of measurements is 360. For given initial data,
the forward problem is solved and the measurement is obtained when the bi-characteristic
reaches the boundary with an outward pointing direction.

We will show numerical examples for isotropic metrics and the so-called Marmousi
synthetic model.

4.1. Isotropic metrics

4.1.1. Example 1: a constant model. In this example, we assume that the exact speed is a
constant function which is equal to 10. The regularization parameter β is 10−12. We consider
two different initial guesses: the first one is a constant function which is equal to 8 and the
second one is also a constant function which is equal to 5.

For the case with the constant 8 as the initial guess, the algorithm stops after four iterations
and recovers the solution exactly. The value of the successive error at the fourth iteration is
3.2742 × 10−6.

For the case with the constant 5 as the initial guess, the algorithm stops after five iterations
and recovers the solution exactly. The value of the successive error at the fifth iteration is
2.0438 × 10−4.

In figure 1, we show the behaviour of the successive error against iterations. We see that
our numerical algorithm converges very fast even for the initial guess far away from the exact
solution.
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Figure 1. Successive error versus iteration for example 1. Left: the initial guess is 8. Right: the
initial guess is 5.
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Figure 2. Value of successive error versus iteration for example 3. Left: using 8 as the initial
guess. Right: using 5 as the initial guess.

4.1.2. Example 2: an additive sinusoidal model. We present a numerical experiment with
the exact speed given by

c(x, y) = 10 + sin(3πx) + sin(3πy).

The regularization parameter is β = 10−6. As in the previous two examples, we consider
two different cases with the initial guess being a constant function which is equal to 8 and 5,
respectively. In figure 2, the values of the successive error against iteration for both cases up
to the first 20 iterations are shown. From the figure, we see that the algorithm converges after
a few iterations.
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Figure 3. Numerical and exact solutions at x = 0.5 for example 3. Left: using 8 as the initial
guess. Right: using 5 as the initial guess. The solid line represents the numerical solution and the
squares represent the values of the exact solution at the nodal points.
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Figure 4. Contour plots for numerical solution using 5 as the initial guess and the exact solution for
example 3. Left: numerical. Right: exact.

In figure 3, the numerical and exact solutions at x = 0.5 are shown. The case with 8 as the
initial guess is shown on the left of figure 3 while the case with 5 as the initial guess is shown
on the right of figure 3. From the figures, we see that our numerical algorithm recovers the
speed quite well. However, the numerical solution is less accurate in the middle of the domain.
The L2-norms of the difference between the numerical solution and the exact solution on the
whole domain for the case with 8 as the initial guess and the case with 5 as the initial guess
are 0.016 182 and 0.016 437, respectively.

In figure 4, the contour plots of the numerical solution with the initial guess 5 and the
exact solution are presented.

In figure 5, we present the difference between the exact solution and the numerical solution
with the initial guess 5 for the first, second, third and 20th iteration. From these four figures,
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Figure 5. Contour plots for the difference between numerical using 5 as the initial guess and the
exact solution for example 3. Top-left: first iteration. Top-right: second iteration. Bottom-left:
third iteration. Bottom-right: 20th iteration.

we see that the error is comparatively smaller in regions closer to the boundary, and the error
is comparatively larger in regions farther away from the boundary.

Now, we add 5% uniformly distributed random noise to the measured travel time. In
figure 6, the numerical and exact solutions at x = 0.5 are shown. The case with 8 as the initial
guess is shown in the left of figure 6, while the case with 5 as the initial guess is shown in
the right of figure 6. The L2-norms of the difference between the numerical solutions and the
exact solution on the whole domain are 0.148 17 and 0.152 96 for the two cases, respectively.

In figure 7, the value of the successive error against iteration for the first 10 iterations is
shown. We see that the algorithm converges after a few iterations.

In figure 8, we present the contour plots of the numerical solutions. The case with 8 as
the initial guess is shown in the left of figure 8, while the case with 5 as the initial guess is
shown in the right of figure 8.

In figure 9, we show the three rays crossing at a certain point for this model. The
initial physical location is (0.5, 0). The three initial directions are (cos(θ), sin(θ)) with



A new phase space method for recovering index of refraction from travel times 321

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0  0.2  0.4  0.6  0.8  1

nu
m

er
ic

al
 a

nd
 e

xa
ct

 s
ol

ut
io

n

y

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0  0.2  0.4  0.6  0.8  1

nu
m

er
ic

al
 a

nd
 e

xa
ct

 s
ol

ut
io

n

y

Figure 6. Numerical and exact solutions at x = 0.5 for example 3 with 5% noise. Left: using
8 as the initial guess. Right: using 5 as the initial guess. The solid line represents the numerical
solution and the square represents the values of the exact solution at the nodal points.
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Figure 7. Value of successive error versus iteration for example 3 with 5% noise. Left: using 8 as
the initial guess. Right: using 5 as the initial guess.

θ = π/2 − 0.05, π/2 and π/2 + 0.1. This demonstrates that the proposed method can take
into account multiple paths with ease, implying that caustics are allowed.

4.1.3. Example 3: a multiplicative sinusoidal model. We present a numerical experiment
with the exact speed given by

c(x, y) = 1 + 0.2 sin(3πx) sin(πy).

The regularization parameter is β = 10−10. We will use a 21×21 grid and the initial condition
is the constant function 1. At each grid point on the boundary, we use 10 directions.
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Figure 8. Contour plots of numerical solutions for example 3 with 5% noise. Left: using 8 as the
initial guess. Right: using 5 as the initial guess.
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Figure 9. Ray crossing. Multipathing appears in the model.

In figure 10, the contour plots of the numerical solution and the exact solution are
presented.

In figure 11, the numerical and exact solutions at y = 0.5 and x = 0.5 are shown
respectively.

Figure 12 shows that the rays are crossing, implying that caustics are allowed in our new
phase space method. Here, we set the initial location to be (0.5, 0) and (0.7, 0), respectively,
and we use 10 initial directions which are uniformly distributed.

4.1.4. Example 4: the additive sinusoidal model, partially illuminated. To test the robustness
of the algorithm, we may use different sets of data to study the convergence behaviour of the
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Figure 10. Contour plots for the numerical solution and the exact solution for example 4. Left:
numerical. Right: exact.
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Figure 11. Slices of numerical and exact solutions. Left: y = 0.5. Right: x = 0.5. The solid line
represents the numerical solution and the dashed line represents the values of the exact solution at
the nodal points.

algorithm. We use the following velocity,

c(x, y) = 10 + sin(3πx) + sin(3πy).

The regularization parameter is β = 10−4. The noise level is 5%. The initial datum is a
constant function which is 5. In this example, we will only use source locations on the edge
with y = 0. That is, there are only 9 initial physical locations. We will demonstrate the
effect of the number of measurements by using different numbers of initial directions. More
precisely, we consider two cases. The first one is that we will use 100 initial directions for
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Figure 12. The rays are crossing for example 4. Ten rays emanate from the source location at
(0.5, 0) and (0.7, 0), respectively.
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Figure 13. Contour plots of numerical solutions for example 4 with 5% noise. Left: with 100
directions. Right: with 500 directions.

each of the 9 initial physical locations. The second one is that we will use 500 initial directions
for each of the 9 initial physical locations. In figure 13, we show the contour plots of the
numerical solutions for both cases. From these results, we see that the numerical solutions
are more accurate in regions closer to the y = 0 boundary. Moreover, the numerical solution
with 500 initial directions is more accurate than that with 100 initial directions. The L2-norm
errors for the two cases are 3.8326 and 0.818 48, respectively.

In figure 14, we plot the slices of the numerical solution and the exact solution at
y = 0, y = 0.1, y = 0.2 and y = 0.3. From the figure, we again see that the numerical
solution with 500 initial directions is more accurate than that with 100 initial directions.
Moreover, we see that the numerical solution is more accurate in regions closer to the boundary
where the measurement is made.
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Figure 14. Numerical solution with 100 directions (solid line), numerical solution with 500
directions (solid line with cross), and exact solutions (square) for example 4 with 5% noise.
Top-left: at y = 0.1. Top-right: at y = 0.2. Bottom-left: at y = 0.3. Bottom-right: at y = 0.4.

Next, we will test the algorithm by using only one initial direction at each source location.
The initial direction is chosen such that it is orthogonal to the boundary of the domain.
We will study the performance of the algorithm by using 116, 236, 596 and 1196 physical
source locations, respectively. These physical source locations are uniformly distributed on
the boundary of the domain ∂�. In figure 15, the contour plots of the numerical solutions
are shown. The L2-errors are 1.5429, 0.980 72, 0.638 92 and 0.532 05, respectively. We see
that the numerical solution is more accurate when more initial physical locations are used.
Also, with only one initial direction at each source point, the numerical method can recover
the unknown speed by using a large number of initial physical source locations such that the
computational domain is well illuminated.

On the other hand, we remark that the results under partial illumination are not as accurate
as those under complete illumination due to the fact that the linearized problem cannot recover
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Figure 15. Contour plots of numerical solutions using different numbers of physical source
locations and using one initial direction. Top-left: with 116 locations. Top-right: with 236
locations. Bottom-left: with 596 locations. Bottom-right: with 1196 locations.

the wave front set of the coefficient at all directions. This is similar to the well-known
phenomenon in x-ray tomography with limited angles of observation.

4.2. The Marmousi synthetic model

We test our continuation method on the Marmousi model. The original Marmousi model is
defined on a 384 × 122 grid. We will take a 122 × 122 subset of the original model such that
the grid points in the x-direction are taken between the 189th grid point and 310th grid point.
As a result, the exact solution is defined on a 122×122 grid, which is shown in the upper-right
graph of figure 16. The measurement is generated by this 122 × 122 true speed. We will try
to recover the speed on a 21 × 21 artificial computational grid.

The initial guess is the constant function 2000, which is denoted by g0. The numerical
solution is defined on a 21 × 21 grid and the regularization parameter β = 10−4. For
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Figure 16. Marmousi example. Top-left: exact. Top-right: with α = 0.7. Bottom-left: with
α = 0.8. Bottom-right: with α = 0.9.

j = 1, 2, . . . , m, we let t̃j and X̃j = Xg0

(
t̃j , X

(0)
j

)
be the solution of the forward problem by

using the initial guess as the speed. That is, t̃j is the travel time when the speed is equal to
2000 while X̃j is the solution of the forward problem at time t̃j . For each α = 0.1, 0.2, . . . , 1,
we will solve the inverse problem for 5 iterations by using the travel time measurement as
αtj + (1 −α)t̃j and the phase measurement as αXĝ

(
tj , X

(0)
j

)
+ (1 −α)X̃j . For each α, we will

use the 5th iteration from the previous α, that is, α − 0.1, as the initial guess. In figure 16, we
present the numerical solutions for α = 0.7, 0.8, 0.9.

As we can see from the figures, the continuation method is able to recover the macro
structure of the model reasonably well.

5. Conclusion

We have developed a new phase space method for reconstructing the index of refraction of
a medium from travel time measurements. The method is based on the so-called Stefanov–
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Uhlmann identity which links two Riemannian metrics in a novel way. Linearizing this identity
yields an efficient numerical method for solving the reconstruction problem. In particular,
this phase space formulation can deal with multiple arrival times as well as anisotropic
media naturally. We have designed numerical algorithms to solve the resulting inverse
problem. Numerical examples including isotropic metrics and the Marmousi synthetic model
demonstrate the effectiveness of the new method. In a subsequent work we are going to study
anisotropic metrics.
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