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Abstract

In this paper, we develop an adaptive Generalized Multiscale Discontinuous Galerkin Method (GMs-
DGM) for a class of high-contrast flow problems, and derive a-priori and a-posteriori error estimates for
the method. Based on the a-posteriori error estimator, we develop an adaptive enrichment algorithm for
our GMsDGM and prove its convergence. The adaptive enrichment algorithm gives an automatic way
to enrich the approximation space in regions where the solution requires more basis functions, which
are shown to perform well compared with a uniform enrichment. We also discuss an approach that
adaptively selects multiscale basis functions by correlating the residual to multiscale basis functions (cf.
[4]). The proposed error indicators are L2-based and can be inexpensively computed which makes our
approach efficient. Numerical results are presented that demonstrate the robustness of the proposed
error indicators.

1 Introduction

Model reduction techniques are often required for solving challenging multiscale problems that have multiple
scales and high contrast. Many of these model reduction techniques perform the discretization of the problem
on a coarse grid where coarse grid size is much larger than the fine-grid discretization. The latter requires
constructing reduced order models for the solution space on a coarse grid. Some of these techniques involve
upscaled models (e.g., [13, 28]) or multiscale methods (e.g., [2, 5, 14, 18, 19, 20, 21, 6, 10, 7, 8]).

In this paper, we develop an adaptive Generalized Multiscale Discontinuous Galerkin Method (GMsDGM)
for a class of high-contrast flow problems, and derive a-priori and a-posteriori error estimates for the method.
We propose an adaptive enrichment algorithm for our GMsDGM based on the a-posteriori error estimator
and prove its convergence. The enrichment is done using inexpensive L2-based error indicators which allows
adding more basis functions in an automatic way.

The Generalized Multiscale Finite Element Method (GMsFEM), introduced in [15], is a generalization of
the classical multiscale finite element method ([22]) by systematically enriching the coarse spaces and taking
into account small scale information and complex input spaces. While GMsFEM uses continuous Galerkin
methods as coarse grid solvers, the GMsDGM considered in this paper is based on the interior penalty
discontinuous Galerkin method as the coarse grid solver. The discontinuous Galerkin formulation has several
key advantages in multiscale finite element methods (see [16]). The basis functions for the GMsDGM are
totally decoupled across coarse element boundaries. In addition, the GMsDGM is constructed following
the general framework on GMsFEM [15]. In particular, given a coarse grid partition of the computational
domain, a snapshot space is defined for each coarse element. The snapshot space for a specific coarse element
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contains all functions defined in the underlying fine grid. A space reduction is then performed to obtain
a much smaller space by means of spectral decomposition. Our analysis shows that we need two spectral
problems for the space reduction. More precisely, the snapshot space is decomposed into two components,
which consists of harmonic extensions and functions that are vanishing on coarse element boundaries. Two
separate spectral problems are used to compute reduced spaces. A-priori error estimate is derived showing
that the error is inverse proportional to the first eigenvalue corresponding to the first eigenfunction that is
not used in the construction of the reduced space. We remark that similar results are obtained for GMsFEM
[18, 17].

It is evident that different coarse elements need different number of basis functions in order to obtain
accurate representation of the solution. For example, in less heterogeneous regions, one needs fewer basis
functions compared to the regions with more heterogeneities and high contrast. It is therefore another
objective of the paper to consider adaptive enrichment of basis functions. We derive a-posteriori error
estimate for the GMsDGM. By using the error indicator, we construct an adaptive enrichment algorithm
and prove its convergence. One important feature of our adaptive enrichment algorithm is the ability to
adaptively select basis functions in the space of harmonic extensions and the space of functions vanishing on
coarse element boundaries. In addition, the error indicators are L2-based, which can be computed efficiently.
This is an advantage over the H−1-based adaptive enrichment algorithm developed for GMsFEM [9]. We
also present a procedure for removing basis functions. Our analysis is based on the idea in [3, 24, 9], and
do not consider the error due to the fine-grid discretization of local problems and only study the errors due
to the enrichment. In this regard, we assume that the error is largely due to coarse-grid discretization. The
fine-grid discretization error can be considered in general (e.g., as in [1, 12]) and this will give an additional
error estimator. We remark that there are many related activities in designing a-posteriori error estimates
[11, 12, 1, 23, 25, 27] for global reduced models. The main difference is that our error estimators are based on
special local eigenvalue problem and use the eigenstructure of the offline space. We also discuss an approach
that adaptively selects multiscale basis functions from the offline space by selecting a basis with the most
correlation to the local residual (cf. [4]).

The rest of the paper is organized in the following way. In the next section, we present the basic idea
of GMsDGM. The method is then detailed and analyzed in Section 3. Then in Section 4, we elaborate the
adaptive algorithm and state the main convergence results related to this algorithm. In Section 5, numerical
results are illustrated to test the performance of this adaptive algorithm. The proofs of the main results are
presented in Section 6.

2 Preliminaries

We will start this section with the problem settings and some notations. Let D be the computational domain
consisting of a medium modeled by the function κ(x). The high-contrast flow problem concerned in this
paper is

− div
(
κ(x)∇u

)
= f in D, (1)

subject to the homogeneous Dirichlet boundary condition u = g on ∂D. The main difficulty in numerically
solving the above problem is that κ(x) is highly heterogeneous with many scales and high contrast. We
assume that κ ≥ 1. In order to efficiently obtain an approximate solution to (1), we will need the notion of
fine and coarse grids.

Consider a given triangulation T H of the domain D with mesh size H > 0. We call T H the coarse grid
and H the coarse mesh size. Elements of T H are called coarse grid blocks and we use N to denote the
number of coarse grid blocks. The set of all coarse grid edges is denoted by EH . We also introduce a finer
triangulation T h of the computational domain D, obtained by a conforming refinement of the coarse grid
T H . We call T h the fine grid and h > 0 the fine mesh size. We remark that the use of the conforming
refinement is only to simplify the discussion of the methodology and is not a restriction of the method.

Now we present the framework of GMsDGM. The methodology consists of two main ingredients, namely,
the construction of local basis functions and the global coarse grid level coupling. For the local basis functions,
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a snapshot space V i,snap is first constructed for each coarse grid block Ki ∈ T H . The snapshot space contains
a large library of basis functions, which can be used to obtain a fine scale approximate solution to (1). A
spectral problem is then solved in the snapshot space V i,snap and eigenfunctions corresponding to dominant
modes are used as the final basis functions. The resulting space is called the local offline space V i,off for the
i-th coarse grid block Ki. The global offline space V off is then defined as the linear span of all these V i,off, for
i = 1, 2, · · · , N . This global offline space V off will be used as the approximation space of our discontinuous
Galerkin method, which can be formulated as: find uDG

H ∈ V off such that

aDG(u
DG
H , v) = (f, v), ∀v ∈ V off, (2)

where the bilinear form aDG is defined as

aDG(u, v) = aH(u, v)−
∑

E∈EH

∫

E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
+
∑

E∈EH

γ

h

∫

E

κ[[u]][[v]] (3)

with

aH(u, v) =
∑

K∈TH

aKH(u, v), aKH(u, v) =

∫

K

κ∇u · ∇v, (4)

where γ > 0 is a penalty parameter, nE is a fixed unit normal vector defined on the coarse edge E ∈ EH .
Note that, in (3), the average and the jump operators are defined in the classical way. Specifically, consider
an interior coarse edge E ∈ EH and let K+ and K− be the two coarse grid blocks sharing the edge E. For
a piecewise smooth function G, we define

{{G}} =
1

2
(G+ +G−), [[G]] = G+ −G−, on E,

where G+ = G|K+ and G− = G|K− and we assume that the normal vector nE is pointing from K+ to K−.
Moreover, on the edge E, we define κ = (κK+ + κK−)/2 where κK± is the maximum value of κ over K±.
For a coarse edge E lying on the boundary ∂D, we define

{{G}} = [[G]] = G, and κ = κK on E,

where we always assume that nE is pointing outside of D. We note that the DG coupling (2) is the
classical interior penalty discontinuous Galerkin (IPDG) method [26] with our multiscale basis functions as
the approximation space.

3 GMsDGM for high-contrast flow problems

In this section, we will give a detailed description of the method. We will first give the construction of the
snapshot space, and then give the definitions of the local spectral problems for the construction of the offline
space. Furthermore, a priori estimate of the method will be derived.

Let Ki ∈ T H be a given coarse grid block. We will define two types of snapshot spaces. The first type
of local snapshot space V i,snap

1 for the coarse grid block Ki is defined as the linear span of all harmonic

extensions. Specifically, given a function δk defined on ∂Ki, we find ψi,snap
k ∈ Vh(Ki) by

∫

Ki

κ∇ψi,snap
k · ∇v = 0, ∀ v ∈ V 0

h (Ki),

ψi,snap
k = δk, on ∂Ki,

(5)

where Vh(Ki) is the standard conforming piecewise linear finite element space with respect to the fine grid
defined on Ki, V

0
h (Ki) is the subspace of Vh(Ki) containing functions vanishing on ∂Ki and δk is piecewise

linear on ∂Ki with respect to the fine grid such that δk has the value one at the k-th fine grid node and
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value zero at all the remaining fine grid nodes. The linear span of the above harmonic extensions is the local
snapshot space V i,snap

1 , namely

V i,snap
1 = span{ψi,snap

k , k = 1, 2, · · · ,M i,snap},

where M i,snap is the number of basis functions in V i,snap
1 , which is also equal to the number of fine grid

nodes on ∂Ki. The second type of local snapshot space V i,snap
2 for the coarse grid block Ki is defined as

V i,snap
2 = V 0

h (Ki). It is easy to see that Vh(Ki) = V i,snap
1 + V i,snap

2 , namely the space Vh(Ki) is decomposed
as the sum of harmonic extensions and functions vanishing on the boundary ∂Ki. Moreover, the global
snapshot space V snap

1 is defined so that any v ∈ V snap
1 if v|Ki

∈ V i,snap
1 . The space V snap

2 is defined similarly.
We will perform dimension reductions on the above snapshot spaces by the use of some carefully selected

spectral problems. Based on our analysis to be presented in this section, we define the spectral problem for

V i,snap
1 as finding eigenpairs (φ

(i)
k , λ

(i)
1,k), k = 1, 2, · · · ,M i,snap, such that

∫

Ki

κ∇φ
(i)
k · ∇v =

λ
(i)
1,k

H

∫

∂Ki

κ̃φ
(i)
k v, ∀v ∈ V i,snap

1 , (6)

where κ̃ is the maximum of κ over all coarse edges E ∈ ∂Ki. Moreover, we assume that

λ
(i)
1,1 < λ

(i)
1,2 < · · · < λ

(i)
1,Mi,snap .

For the space V i,snap
2 , we define the spectral problem as finding eigenpairs (ξ

(i)
k , λ

(i)
2,k), k = 1, 2, · · · , such that

∫

Ki

κ∇ξ
(i)
k · ∇v =

λ
(i)
2,k

H2

∫

Ki

κξ
(i)
k v, ∀v ∈ V i,snap

2 , (7)

where we also assume that
λ
(i)
2,1 < λ

(i)
2,2 < · · ·

In the spectral problems (6) and (7), we will take respectively the first l1,i and l2,i eigenfunctions to form
the offline space for the coarse grid block Ki. The local offline spaces are then defined as

V i,off
1 = span{φ

(i)
l , l = 1, 2, · · · , l1,i},

V i,off
2 = span{ξ

(i)
l , l = 1, 2, · · · , l2,i}.

We define V i,off = V i,off
1 +V i,off

2 . The global offline space V off
1 is defined so that the restriction of any function

v ∈ V off
1 on the coarse grid block Ki belongs to V

i,off
1 . The definition for V off

2 is defined similarly. In addition,
we define V off = V off

1 + V off
2 . This space is used as the approximation space in (2).

Now we will analyze the method defined in (2). For any piecewise smooth function u, we define the
DG-norm by

‖u‖2DG = aH(u, u) +
∑

E∈EH

γ

h

∫

E

κ[[u]]2 ds.

Let K be a coarse grid block and let n∂K be the unit outward normal vector on ∂K. We denote Vh(∂K)
by the restriction of the conforming space Vh(K) on ∂K. The normal flux κ∇u · n∂K is understood as an
element in Vh(∂K) and is defined by

∫

∂K

(κ∇u · n∂K) · v =

∫

K

κ∇u · ∇v̂, v ∈ V h(∂K), (8)

where v̂ ∈ Vh(K) is the harmonic extension of v in K. By the Cauchy-Schwarz inequality,
∫

∂K

(κ∇u · n∂K) · v ≤ aKH(u, u)
1
2 aKH(v̂, v̂)

1
2 .

4



By an inverse inequality and the fact that v̂ is the harmonic extension of v

aKH(v̂, v̂) ≤ κKC
2
invh

−1

∫

∂K

|v|2, (9)

where we recall that κK is the maximum of κ over K and Cinv > 0 is the constant from inverse inequality.
Thus, ∫

∂K

(κ∇u · n∂K) · v ≤ κ
1
2

KCinvh
− 1

2 ‖v‖L2(∂K) a
K
H(u, u)

1
2 .

This shows that ∫

∂K

|κ∇u · n∂K |2 ≤ κKC
2
invh

−1aKH(u, u). (10)

Our first step in the development of an a priori estimate is to establish the continuity and the coercivity
of the bilinear form (3) with respect to the DG-norm.

Lemma 3.1. Assume that the penalty parameter γ is chosen so that γ > C2
inv. The bilinear form aDG

defined in (3) is continuous and coercive, that is,

aDG(u, v) ≤ a1‖u‖DG ‖v‖DG, (11)

aDG(u, u) ≥ a0‖u‖
2
DG, (12)

for all u, v, where a0 = 1− Cinvγ
− 1

2 > 0 and a1 = 1 + Cinvγ
− 1

2 .

Proof. By the definition of aDG, we have

aDG(u, v) = aH(u, v)−
∑

E∈EH

∫

E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
+
∑

E∈EH

γ

h

∫

E

κ[[u]][[v]].

Notice that

aH(u, v) +
∑

E∈EH

γ

h

∫

E

κ[[u]] · [[v]] ≤ ‖u‖DG ‖v‖DG.

For an interior coarse edge E ∈ EH , we let K+,K− ∈ T H be the two coarse grid blocks having the edge E.
By the Cauchy-Schwarz inequality, we have

∫

E

{{κ∇u · nE}} · [[v]] ≤
(
h

∫

E

{{κ∇u · nE}}
2(κ)−1

) 1
2
( 1
h

∫

E

κ[[v]]2
) 1

2

. (13)

Notice that

h

∫

E

{{κ∇u · nE}}
2(κ)−1 ≤ h

(∫

E

(κ+∇u+ · nE)
2(κK+)−1 +

∫

E

(κ−∇u− · nE)
2(κK−)−1

)

where u± = u|K± , κ± = κ|K± . So, summing the above over all E and by (10), we have

h
∑

E∈EH

∫

E

{{κ∇u · nE}}
2(κ)−1 ≤ h

∑

K∈TH

∫

∂K

(κ∇u · n∂K)2(κK)−1 ≤ C2
invaH(u, u).

Thus we have ∑

E∈EH

∫

E

{{κ∇u · nE}}[[v]] ≤ CinvaH(u, u)
1
2

( ∑

E∈EH

1

h

∫

E

κ[[v]]2 ds
) 1

2

. (14)

Similarly, we have

∑

E∈EH

∫

E

{{κ∇v · nE}}[[u]] ≤ CinvaH(v, v)
1
2

( ∑

E∈EH

1

h

∫

E

κ[[u]]2 ds
) 1

2

.

5



Summing the above two inequalities, we have

∑

E∈EH

∫

E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
≤ Cinvγ

− 1
2 ‖u‖DG ‖v‖DG. (15)

This proves the continuity (11).
For the coercivity (12), we have

aDG(u, u) = ‖u‖2DG −
∑

E∈EH

∫

E

(
{{κ∇u · nE}} · [[u]] + {{κ∇u · nE}} · [[u]]

)
.

By (15), we have

aDG(u, u) ≥ (1− Cinvγ
− 1

2 )‖u‖2DG,

which gives the desired result.

�

In the following, we will prove an a priori estimate of the method (2). First, we let

V h
DG = {v ∈ L2(D) : v|K ∈ V h(K)}.

Let uh ∈ V h
DG be the fine grid solution which satisfies

aDG(uh, v) = (f, v), ∀v ∈ V h
DG. (16)

It is well-known that uh converges to the exact solution u in the DG-norm as the fine mesh size h → 0.
Next, we define a projection u1 ∈ V snap

1 of uh in the snapshot space by the following construction. For each
coarse grid block Ki, the restriction of u1 on Ki is defined as the harmonic extension of uh, that is,

∫

Ki

κ∇u1 · ∇v = 0, ∀ v ∈ V 0
h (Ki)

u1 = uh, on ∂Ki.

(17)

The following theorem gives an a priori estimate for the GMsDGM (2).

Theorem 3.2. Let uh ∈ V h
DG be the fine grid solution defined in (16) and uH be the GMsDGM solution

defined in (2). Then we have

‖uh − uH‖2DG ≤ C
( N∑

i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫

∂Ki

(κ∇u1 · n∂K)2 +
∑

K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2L2(K)

+ C2
inv

∑

E∈EH

1

h

∫

E

κ[[uh]]
2
)
,

where u1 is defined in (17).

Proof. First, we write uh = u1 + u2 where u2 = u − u1. Notice that, on each coarse grid block Ki, the
functions u1 and u2 can be represented by

u1 =

Mi∑

l=1

clφ
(i)
l and u2 =

∑

l≥1

dlξ
(i)
l (18)

where Mi =M i,snap and we assume that the functions φ
(i)
l and ξ

(i)
l are normalized so that

∫

∂Ki

κ(φ
(i)
l )2 = 1 and

∫

Ki

κ(ξ
(i)
l )2 = 1.

6



Notice that, the functions u1 and u2 belong to the snapshot spaces V snap
1 and V snap

2 respectively. We will
need two functions û1 and û2, which belong to the offline spaces V off

1 and V off
2 respectively. These functions

are defined by

û1 =

l1.i∑

l=1

clφ
(i)
l and û2 =

l2.i∑

l=1

dlξ
(i)
l on Ki.

We remark that û1 and û2 are the truncation of u1 and u2 up to the eigenfunctions selected to form the
offline space.

Next, we will find an estimate of ‖u1 − û1‖DG. Let Ki ∈ T H be a given coarse grid block. Recall that

the spectral problem to form V i,off
1 is

∫

Ki

κ∇φ
(i)
k · ∇v =

λ
(i)
1,k

H

∫

∂Ki

κ̃φ
(i)
k v, ∀v ∈ V i,snap

1 .

By the definition of the flux defined in (8), the above spectral problem can be represented as

∫

∂Ki

(κ∇φ
(i)
k · n∂Ki

)v ds =
λ
(i)
1,k

H

∫

∂Ki

κ̃φ
(i)
k v.

By the definition of the DG-norm, the error ‖u1 − û1‖DG can be estimated by

‖û1 − u1‖
2
DG ≤

N∑

i=1

( ∫

Ki

κ|∇(û1 − u1)|
2 +

γ

h

∫

∂Ki

κ̃(û1 − u1)
2
)
.

Note that, by (18), we have

∫

Ki

κ|∇(û1 − u1)|
2 =

Mi∑

l=l1,i+1

λ
(i)
1,l

H
c2l ≤

H

λ
(i)
1,l1,i+1

Mi∑

l=l1,i+1

(
λ
(i)
1,l

H
)2c2l

and

1

h

∫

∂Ki

κ̃(û1 − u1))
2 =

1

h

Mi∑

l=l1,i+1

c2l ≤
H2

h(λ
(i)
1,l1,i+1)

2

Mi∑

l=l1,i+1

(
λ
(i)
1,l

H
)2c2l .

Furthermore,
Mi∑

l=l1,i+1

(
λ
(i)
1,l

H
)2c2l ≤

Mi∑

l=1

(
λ
(i)
1,l

H
)2c2l = (κ̃)−1

∫

∂Ki

(κ∇u1 · n∂Ki
)2.

Consequently, we obtain the following bound

‖u1 − û1‖
2
DG ≤

N∑

i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫

∂Ki

(κ∇u1 · n∂K)2.

Next, we will find an estimate of ‖u2 − û2‖DG. By definition of the bilinear form aDG,

aDG(u2, v) = −aDG(u1, v) + (f, v) =
∑

E∈EH

∫

E

(
{{κ∇v · nE}}[[u1]]

)
+ (f, v)

which holds for any v ∈ V snap
2 . In addition, by the fact that any function in V snap

2 is zero on boundaries of
coarse grid blocks, we have

‖u2 − û2‖
2
DG = aDG(u2 − û2, u2 − û2) = aDG(u2, u2 − û2),

7



where the last equality follows from the fact that the eigenfunctions of (7) are κ-orthogonal on every coarse
grid block. Therefore we have

‖u2 − û2‖
2
DG =

∑

E∈EH

∫

E

(
{{κ∇(u2 − û2) · nE}}[[u1]]

)
+ (f, u2 − û2). (19)

The second term on the right hand side of (19) can be estimated as

(f, u2 − û2) ≤
∑

K∈T H

‖f‖L2(K)‖κ
1
2 (u2 − û2)‖L2(K).

By (7), for every Ki ∈ T H , we have

∫

Ki

κ|(u2 − û2)|
2 =

∑

l≥l2.i+1

d2l ≤
( H2

λ
(i)
2,l2,i+1

) ∑

l=l2.i+1

λ
(i)
2,l

H2
d2l =

H2

λ
(i)
2,l2,i+1

∫

Ki

κ|∇(u2 − û2)|
2.

For the first term on the right hand side of (19), we use inequality (14) to conclude that

∑

E∈EH

∫

E

(
{{κ∇(u2 − û2) · nE}}[[u1]]

)
≤ Cinvγ

− 1
2 ‖u2 − û2‖DG

( ∑

E∈EH

γ

h

∫

E

κ[[u1]]
2
) 1

2

.

Consequently, from (19) and the fact that [[u1]] = [[uh]] for all coarse edges, we obtain the following bound

‖u2 − û2‖
2
DG ≤ C

(
C2

inv

∑

E∈EH

1

h

∫

E

κ[[uh]]
2 +

∑

K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2L2(K)

)
.

Finally, we will prove the required error bound. By coercivity,

a0‖û1 + û2 − uH‖2DG ≤ aDG(û1 + û2 − uH , û1 + û2 − uH)

= aDG(û1 + û2 − uH , û1 + û2 − uh) + aDG(û1 + û2 − uH , uh − uH).

Note that aDG(û1 + û2 − uH , uh − uH) = 0 since û1 + û2 − uH ∈ V off. Using the above results,

‖û1 + û2 − uH‖2DG

≤ C
( N∑

i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫

∂Ki

(κ∇u1 · n∂K)2 +
∑

K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2L2(K) + C2
inv

∑

E∈EH

1

h

∫

E

κ[[uh]]
2
)
.

The desired bound is then obtained by the triangle inequality

‖uh − uH‖DG ≤ ‖uh − û‖DG + ‖û− uH‖DG,

where û = û1 + û2. This completes the proof.

�

We remark that, the term

N∑

i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
γH

hλ
(i)
1,l1,i+1

)

∫

∂Ki

(κ∇u1 · n∂K)2 (20)

corresponds to the error for the space V off
1 and the term

∑

K∈TH

H2

λ
(i)
2,l2,i+1

‖f‖2L2(K)

8



corresponds to the error for the space V off
2 . Moreover, the term

C2
inv

∑

E∈EH

1

h

∫

E

κ[[uh]]
2

is the error in the fine grid solution uh. This is the irreducible error, and an estimate of this can be derived
following standard DG frameworks.

h Λsnap
K

1/48 1.0021e+03
1/96 1.0193e+03
1/192 1.3094e+03

h Λsnap
K

1/48 7.7650e+05
1/96 1.6569e+06
1/192 3.3254e+06

Table 1: Left: oversampling basis, Right: no-oversampling basis

Remark 3.3. It is important to note that one can also replace (9) by

aKH(v̂, v̂) ≤ Λsnap
K κ̃

∫

∂K

|v|2, (21)

where Λsnap
K is the largest eigenvalue for the spectral problem (6). Therefore, (10) can be replaced by

∫

∂K

|κ∇u · n∂K |2 ≤ Λsnap
K κ̃ aKH(u, u).

By following the above steps, we see that one can choose γ in (20) so that

γ > Cκh max
K⊂T H

Λsnap
K

where the constant Cκ is defined as

Cκ = max
K⊂T H

maxE⊂∂K κ

minE⊂∂K κ
.

We remark that this constant Cκ is order one if we assume that every coarse element has a high contrast
region.

One can take smaller values of γ if oversampling is used (oversampling method is discussed in Section
5). The main idea of the oversampling is to choose larger regions for computing snapshot vectors. For every
coarse block Ki, we choose an enlarged region K+

i , and find oversampling snapshot functions ψi,over
k by solving

(32). We have performed numerical experiments and computed Λsnap
K with and without oversampling. Denote

Λsnap

K+ to be the largest eigenvalue corresponding to the oversampled problem. In our numerical results (see
Table 1), we have removed linearly dependent snapshot vectors with respect to the inner product corresponding
to
∫
∂K |v|2 before computing the largest eigenvalue. Our numerical results show that one can have about three

orders of magnitude smaller value for Λsnap

K+ compared to Λsnap
K . Moreover, our numerical results show a weak

h-dependence for Λsnap

K+ as we decrease h, while Λsnap
K behaves as h−1 (when no-oversampling is used).

Our error analysis holds when oversampling snapshot space is used. The term in (20) will become

N∑

i=1

H

κ̃λ
(i)
1,l1,i+1

(1 +
αCκ maxK⊂T H Λsnap

K+ H

λ
(i)
1,l1,i+1

)

∫

∂Ki

(κ∇u1 · n∂K)2 (22)

when γ = αCκhmaxK⊂T H Λsnap

K+ . If Λsnap

K+ is a weak function of h, e.g., if it is bounded with respect to h,
then the terms involving Λsnap

K+ doesnt influence the error and the error is dominated by the first term. We
emphasize that our discussions in this Remark are based on our numerical studies and their analytical studies
are difficult because it requires interior estimates for solutions. We plan to study them in future.
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4 A-posteriori error estimate and adaptive enrichment

In this section, we will derive an a-posteriori error indicator for the error uh − uH in energy norm. We will
then use the error indicator to develop an adaptive enrichment algorithm. The a-posteriori error indicator
gives an estimate of the local error on the coarse grid blocks Ki, and we can then add basis functions to
improve the solution. Our indicator consists of two components, which correspond to the errors made in
the spaces V snap

1 and V snap
2 . By using the indicator, one can determine adaptively which space has to be

enriched. This section is devoted to the description of the a-posteriori error indicator and the corresponding
adaptive enrichment algorithm. The convergence analysis of the method will be given in the Section 6.

Recall that V h
DG is the fine scale DG finite element space, and the fine scale solution uh satisfies

aDG(uh, v) = (f, v) for all v ∈ V h
DG. (23)

Moreover, the GMsDGM solution uH satisfies

aDG(uH , v) = (f, v) for all v ∈ V off. (24)

We remark that V off ⊂ V h
DG. Next we will give the definitions of the residuals.

Definitions of residuals:
Let Ki be a given coarse grid block. We will define two residuals corresponding to the two types of

snapshot spaces. First, on the space V i,snap
1 , we define the following linear functional

R1,i(v) =

∫

Ki

fv − aDG(uH , v), v ∈ V i,snap
1 . (25)

Similarly, on the space V i,snap
2 , we define the following linear functional

R2,i(v) =

∫

Ki

fv − aDG(uH , v), v ∈ V i,snap
2 . (26)

These residuals measure how well the solution uH satisfies the fine-scale equation (23). Furthermore, on the
snapshot spaces V i,snap

1 and V i,snap
2 , we define the following norms

‖v‖2V1(Ki)
= H−1

∫

∂Ki

κ̃v2 and ‖v‖2V2(Ki)
= H−2

∫

Ki

κv2 (27)

respectively. The norms of the linear functionals R1,i and R2,i are defined in the standard way, namely

‖R1,i‖ = sup
v∈V i,snap

1

|R1,i(v)|

‖v‖V1(Ki)
and ‖R2,i‖ = sup

v∈V i,snap

2

|R2,i(v)|

‖v‖V2(Ki)
. (28)

The norms ‖R1,i‖ and ‖R2,i‖ give estimates on the sizes of fine-scale residual errors with respect to the

spaces V i,snap
1 and V i,snap

2 .
We recall that, for each coarse grid block Ki, the eigenfunctions of the spectral problem (6) corresponding

to the eigenvalues λ
(i)
1,1, · · · , λ

(i)
1,l1,i

and the eigenfunctions of the spectral problem (7) corresponding to the

eigenvalues λ
(i)
2,1, · · · , λ

(i)
2,l2,i

are used in the construction of V off. In addition, the energy error in this section

and Section 6 is measured by ‖u‖2a = aDG(u, u), which is equivalent to the DG norm.
In Section 6, we will prove the following theorem, and we see that the norms ‖Rj,i‖ give indications on

the size of the energy norm error ‖uh − uH‖a.

Theorem 4.1. Let uh and uH be the solutions of (23) and (24) respectively. Then

‖uh − uH‖2a ≤ Cerr

N∑

i=1

2∑

j=1

‖Rj,i‖
2(λ

(i)
j,lj,i+1)

−1. (29)

where Cerr is a uniform constant.

10



We will now present the adaptive enrichment algorithm. We use m ≥ 1 to represent the enrichment
level, V off(m) to represent the solution space at level m and umH to represent the GMsDGM solution at the
enrichment level m. For each coarse grid block Ki, we use lmj,i to represent the number of eigenfunctions in

V i,off
j used at the enrichment level m for the coarse region Ki. Assume that the initial offline space V off(0)

is given.
Adaptive enrichment algorithm: Choose 0 < θ < 1. For each m = 0, 1, · · · ,

1. Step 1: Find the solution in the current space. That is, find umH ∈ V off(m) such that

aDG(u
m
H , v) = (f, v) for all v ∈ V off(m). (30)

2. Step 2: Compute the local residuals. For each coarse grid block Ki, we compute

η2j,i = ‖Rj,i‖
2(λ

(i)
j,lm

j,i
+1)

−1, j = 1, 2.

Then we re-enumerate the above 2N residuals in the decreasing order, that is, η21 ≥ η22 ≥ · · · ≥ η22N ,
where we adopted single index notations.

3. Step 3: Find the coarse grid blocks and spaces where enrichment is needed. We choose the smallest
integer k such that

θ

2N∑

J=1

η2J ≤

k∑

J=1

η2J . (31)

4. Step 4: Enrich the space. For each J = 1, 2, · · · , k, we add basis function in V i,off
j according to the

following rule. Let s be the smallest positive integer such that λ
(i)
j,lm

j,i
+s+1 is large enough (see the proof

of Theorem 4.2) compared with λ
(i)
j,lmj,i+1. Then we include the eigenfunctions in the construction of

the basis functions. The resulting space is denoted as V off(m+ 1).

We remark that the choice of s above will ensure the convergence of the enrichment algorithm, and in
practice, the value of s is easy to obtain. Moreover, contrary to classical adaptive refinement methods, the
total number of basis functions that we can add is bounded by the dimension of the snapshot space. Thus,
the condition (31) can be modified as follows. We choose the smallest integer k such that

θ

2N∑

J=1

η2J ≤
∑

J∈I

η2J ,

where the index set I is a subset of {1, 2, · · · , k}.
Finally, we state the convergence theorem.

Theorem 4.2. There are positive constants δ, ρ and Lm such that the following contracting property holds

‖u− um+1
H ‖2a +

1

δLm+1

2N∑

J=1

(Sm+1
J )2 ≤ ε

(
‖u− umH‖2a +

1

δLm

N∑

J=1

(Sm
J )2

)
.

Note that 0 < ε < 1 and

ε = 1−
θ2(1 − ρLm/Lm+1)

θ2 + CerrδLm
.

We remark that the precise definitions of Sm
J as well as the constants δ, ρ and Lm are given in Section 6.
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5 Numerical Results

In this section, we will present some numerical examples to demonstrate the performance of the adaptive
enrichment algorithm. The domain Ω is taken as the unit square [0, 1]2 and is divided into 16 × 16 coarse
blocks consisting of uniform squares. Each coarse block is then divided into 32 × 32 fine blocks consisting
of uniform squares. Consequently, the whole domain is partitioned by a 512× 512 fine grid blocks. We will
use the following error quantities to compare the accuracy of our algorithm

e2 =
‖uH − uh‖L2(Ω)

‖uh‖L2(Ω)
, ea =

√
aDG(uH − uh, uH − uh)√

aDG(uh, uh)

esnap2 =
‖uH − usnap‖L2(Ω)

‖usnap‖L2(Ω)
, esnapa =

√
aDG(uH − usnap, uH − usnap)√

aDG(usnap, usnap)

where uH and uh are the GMsDGM and the fine grid solutions respectively. Moreover, usnap is the snapshot
solution obtained by using all snapshot functions generated by an oversampling strategy, see below.

We consider the permeability field κ which is shown in Figure 1. The boundary condition is set to be
bi-linear, g = x1x2. We will consider two examples with two different source functions f . We will compare
the result of V1 enrichment, V1−V2 enrichment, oversampling basis enrichment, uniform enrichment and the
exact indicator enrichment. The following gives the details of these enrichments.

• V1 enrichment: We use the error indicator, η21,i to perform the adaptive algorithm by enriching the
basis functions in V1 space only, that is, basis functions obtained by the first spectral problem (6). We
use 4 basis functions from (6) and zero basis function from (7) in the initial step.

• V1 − V2 enrichment: We use both the error indicators, η21,i, η
2
2,i to perform the adaptive algorithm

by enriching the basis functions in both V1 and V2 spaces, that is, basis functions from both spectral
problems (6) and (7). We use 4 basis functions from (6) and zero basis function from (7) in the initial
step.

• Oversampling enrichment: For every coarse block Ki, we choose an enlarged region K+
i (in the

examples presented below, we enlarge the coarse block in each direction by a length H , that is K+
i is

a 3×3 coarse blocks with Ki at the center). Then we find oversampling snapshot functions ψi,over
k ∈

Vh(K
+
i ) by solving

∫

Ki

κ∇ψi,over
k · ∇v = 0, ∀ v ∈ V 0

h (K
+
i ),

ψi,over
k = δk, on ∂K+

i .

(32)

The linear span of these snapshot functions is called V i,over. Then we choose 40 dominant oversampling
basis functions by POD method. Specifically, we solve the following eigenvalue problem

∫

Ki

ψi,over
k v = λik

∫

∂K+

i

ψi,over
k v, ∀v ∈ V i,over.

and choose the first 40 eigenfunctions with largest eigenvalues. Then we use these 40 functions as
boundary conditions in (5) and repeat the remaining construction of the offline space.

• Uniform enrichment: We enrich the basis functions in V1 space uniformly with 4 basis functions
from the V1 space in the initial step.

• The exact indicator enrichment: We use the exact error as the error indicator to perform the
adaptive algorithm by enriching the basis functions in V1 space only with 4 basis functions in the space
V1 in the initial step. Here, the exact error is defined as ‖u− uH‖a.
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Figure 1: Left: Permeability field κ. Right: Fine grid solution with f = 1.

Example 1

In our first example, we take the source function f = 1. The fine grid solution is shown in Figure 1. In
Table 2 and Table 3, we present the convergence history of our algorithm for enriching in V1 space only,
enriching in both V1 and V2 spaces and enriching by the oversampling basis functions. We remark that, in
the presentation of our results, DOF means the total number of basis functions used in the whole domain.
We see from Table 2 that the behaviour of enriching in V1 space only and enriching in both V1 and V2 spaces
are similar. The is due to the fact that the source function f is a constant function, and the space V2 will
not help to improve the solution. This is in consistent with classical theory that basis functions obtained by
harmonic extensions are good enough to approximate the solution. In Table 3, the convergence behaviour
is shown for the oversampling case, and we see again that a clear convergence is obtained. For this case, we
use 40 snapshot basis functions per coarse grid block giving a total DOF of 10240, and the corresponding
snapshot errors (that is, the difference between the solution obtained by these 10240 basis functions and the
solution uh) of 4.5195 × 10−4 and 9.8935 × 10−4 in relative L2 norm and relative a-norm respectively. In
addition, we observe that the oversampling basis provides more efficient representation of the solution than
the non-oversampling basis. To further demonstrate the efficiency of our algorithm, we compare our result
with the uniform enrichment scheme. The convergence history for using uniform enrichment is shown in
Table 3, and we see that our adaptive enrichment algorithm performs much better than uniform enrichment.
Finally, a comparison among all the above cases and the enrichment by exact error is shown in Figure 2, in
which the energy error is plotted against DOF. From the figure, we clearly see that our enrichment algorithm
performs much better than uniform enrichment. Moreover, our enrichment algorithm performs equally well
compared with enrichment by the exact error. This shows that our indicator is both reliable and efficient.

DOF e2 ea
1024 0.1082 0.0479
1769 0.0456 0.0178
2403 0.0156 0.0105
3135 0.0070 0.0067
5607 0.0016 0.0031

DOF e2 ea
1024 0.1082 0.0479
1639 0.0802 0.0239
2584 0.0194 0.0114
3822 0.0061 0.0063
5660 0.0021 0.0037

Table 2: Convergence history with θ=0.4. Left: Enrich in V1 space only. Right: Enrich in both V1 and V2
spaces.

Example 2

In our second example, we will take the source f to be the function shown in the left plot of Figure 3
and the corresponding fine grid solution shown in the right plot of Figure 3. In Table 4 and Table 5, we
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DOF e2 ea esnap2 esnapa

1024 0.0940 0.0469 0.0939 0.0469
1975 0.0204 0.0121 0.0202 0.0121
2648 0.0087 0.0077 0.0084 0.0077
3422 0.0046 0.0056 0.0043 0.0056
6748 0.0009 0.0022 0.0006 0.0020

DOF e2 ea
1024 0.1082 0.0479
2048 0.0671 0.0199
3328 0.0423 0.0150
5888 0.0161 0.0059
8448 0.0128 0.0044

Table 3: Left: Convergence history for oversampling basis with θ = 0.4 and enrichment in V1 space only.
Right: Convergence history for uniform enrichment in V1 space only.
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Figure 2: A comparison of different ways of enrichment.

present the convergence history of our algorithm for enriching in V1 space only, enriching in both V1 and V2
spaces and enriching by oversampling basis. We see from Table 4 that enrichment in both V1 and V2 spaces
provides much more efficient methods than enrichment in V1 space only. In particular, for an error level of
approximately 1%, we see that enrichment in both V1 and V2 spaces requires 3144 DOF while enrichment in
V1 space only requires 3483 DOF. In Table 5, the convergence behaviour is shown for the oversampling case,
and we see again that a clear convergence is obtained. For this case, we use 40 snapshot basis functions per
coarse grid block giving a total DOF of 10240, and the corresponding snapshot errors (that is, the difference
between the solution obtained by these 10240 basis functions and the solution uh) of 0.0078 and 0.0093
in relative L2 norm and relative a-norm respectively. In addition, we observe again that the oversampling
basis provides more efficient representation of the solution than the non-oversampling basis. To further
demonstrate the efficiency of our algorithm, we compare our results with the uniform enrichment scheme.
The result for using uniform enrichment is shown in Table 5 and we clearly observe that our adaptive method
is more efficient. Moreover, a comparison of the performance of various strategies is shown in Figure 4, where
the errors against DOF are plotted. From the figure, we see that our method is much better than uniform
enrichment. Furthermore, enrichment in both V1 and V2 spaces has the best performance, which suggests
that both V1 and V2 spaces are important for more complicated source functions.

5.1 Adaptive enrichment algorithm

5.1.1 Adaptive enrichment algorithm with basis removal

In our adaptive enrichment algorithm, we can add basis functions to the offline space by using the error
indicators. However, the addition of the basis functions must follow the ordering of the eigenfunctions.
There may be cases that some of the intermediate eigenfunctions are not required in the representation of
the solution. Therefore, we propose a numerical strategy to remove basis functions that do not contribute or
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Figure 3: Left: The source function f for the second example. Right: The fine grid solution.

DOF e2 ea
1024 0.2052 0.0554
2028 0.0362 0.0191
2717 0.0152 0.0140
3483 0.0111 0.0118
5116 0.0084 0.0102

DOF e2 ea
1024 0.2052 0.0554
2023 0.0486 0.0206
3144 0.0113 0.0105
4456 0.0050 0.0066
7407 0.0013 0.0034

Table 4: Convergence history with θ=0.4. Left: Enrich in V1 space only. Right: Enrich in both V1 and V2
spaces.

DOF e2 ea esnap2 esnapa

1024 0.1882 0.0540 0.1865 0.0532
1926 0.0296 0.0182 0.0269 0.0156
2626 0.0137 0.0135 0.0098 0.0098
3368 0.0105 0.0116 0.0057 0.0070
6677 0.0080 0.0097 0.0007 0.0025

DOF e2 ea
1024 0.2052 0.0554
2048 0.0923 0.0282
3328 0.0659 0.0215
5888 0.0278 0.0135
8448 0.0226 0.0121

Table 5: Left: Convergence history for oversampling basis with θ = 0.4 and enrichment in V1 space only.
Right: Convergence history for uniform enrichment in V1 space only.

contribute less to the representation of the solution. In the following, we will present this numerical strategy.
Adaptive enrichment algorithm with basis removal: Choose 0 < θ < 1. For each m = 0, 1, · · · ,

1. Step 1: Find the solution in the current space. That is, find umH ∈ V off(m) such that

aDG(u
m
H , v) = (f, v) for all v ∈ V off(m). (33)

2. Step 2: Compute the local residuals. For each coarse grid block Ki, we compute

η2j,i = ‖Rj,i‖
2(λ

(i)
j,lm

j,i
+1)

−1, j = 1, 2.

Then we re-enumerate the 2N residuals in the decreasing order, that is, η21 ≥ η22 ≥ · · · ≥ η22N , where
we adopted single index notations.

3. Step 3: Find the coarse grid blocks where enrichment is needed. We choose the smallest integer k such
that

θ
2N∑

J=1

η2J ≤
k∑

J=1

η2J . (34)
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Figure 4: A comparison of different ways of enrichment.

4. Step 4: Enrich the space. For each J = 1, 2, · · · , k, we add basis function in V i,off
j according to the

following rule. Let s be the smallest positive integer such that λ
(i)
j,lm

j,i
+s+1 is large enough (see the proof

of Theorem 4.2) compared with λ
(i)
j,lm

j,i
+1. Then we include the eigenfunctions in the construction of

the basis functions. The resulting space is denoted as V̂ off(m + 1). Note that this is the offline space
without basis removal.

5. Step 5: Remove basis. For each coarse grid block Ki, we can write the restriction of the current solution
umH on Ki as

lm1,i∑

l=1

α1,lφ
(i)
l +

lm2,i∑

l=1

α2,lξ
(i)
l .

Fixed a tolerance ε > 0. Then the basis function φ
(i)
l or ξ

(i)
l is removed if

α2
1,l < ε

( lm1,i∑

l=1

α2
1,l +

lm2,i∑

l=1

α2
2,l

)
or α2

2,l < ε
( lm1,i∑

l=1

α2
1,l +

lm2,i∑

l=1

α2
2,l

)

is satisfied. The resulting space is called V off(m+ 1).

To test this strategy, we consider our second example with the source function f defined in Figure 3. We
will consider three choices of ε, with values 10−12, 10−13 and 10−14. The convergence history of these cases
are shown in Table 6. We can see that our basis removal strategy gives more efficient representation of the
solution. For example, comparing the errors with DOF of around 2000 with basis removal (Table 6) and
without basis removal (Table 4), we see that the method with basis removal gives a solution with smaller
errors in both L2 norm and a-norm. On the other hand, we see that the choice of ε = 10−14 performs better
than ε = 10−12. In particular, for DOF of around 2200, the error with ε = 10−14 is around 2% while the
error with ε = 10−12 is around 4%. However, one expects that smaller choices of ε are not as economical as
larger choices of ε.

5.1.2 Adaptive enrichment using local basis pursuit

In this section, we discuss an algorithm that follows basis pursuit ideas [4] and identify the basis functions
which need to be added based on the residual. The main idea is to find multiscale basis functions that
correlate to the residual the most and add those basis functions. More precisely, we identify basis functions
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DOF L2-error a-error
1024 0.2052 0.0554
951 0.1824 0.0502
1074 0.1158 0.0415
1742 0.0461 0.0174
2218 0.0404 0.0153

DOF L2-error a-error
1024 0.2052 0.0554
996 0.1767 0.0501
1107 0.1236 0.0431
2006 0.0266 0.0154
2824 0.0192 0.0123

DOF L2-error a-error
1024 0.2052 0.0554
1048 0.1774 0.0500
1185 0.1280 0.0434
2235 0.0223 0.0150
3275 0.0147 0.0117

Table 6: Enrichment with θ = 0.4 and basis removal as well as enrichment in V1 space only. Left: ε = 10−12.
Middle: ε = 10−13. Right: ε = 10−14

that has the largest correlation coefficient with respect to the residual and add those basis functions. In the
following, we will present the details of the numerical algorithm.

Adaptive enrichment algorithm using local basis pursuit: Choose 0 < θ < 1. For each m =
0, 1, · · · ,

1. Step 1: Find the solution in the current space. That is, find umH ∈ V off(m) such that

aDG(u
m
H , v) = (f, v) for all v ∈ V off(m). (35)

2. Step 2: Compute the local residuals. For each coarse grid block Ki, we compute

ζ2j,i,l =
|Rj,i(vl)|

2

‖vl‖2Vj(Ki)

, j = 1, 2, ∀vl ∈ Vj(Ki).

Then we re-enumerate these residuals in the decreasing order, that is, ζ21 ≥ ζ22 ≥ · · · , where we adopted
single index notations. Note that |Rj,i(vl)| is the inner-product that identifies the basis functions that
have the largest correlation to the residual. More precisely,

|Rj,i(vl)| = |

∫

Ki

fvl − aDG(u
m
H , vl)|

which is just the local inner-product of the residual vector and basis function vl.

3. Step 3: Find the coarse grid blocks where enrichment is needed. We choose the smallest integer k such
that

ηk ≥ θη1. (36)

4. Step 4: Enrich the space. For each J = 1, 2, · · · , k, we add the basis function vl ∈ Vj(Ki) corresponding

to ζJ . The resulting space is denoted as V̂ off(m+ 1). Note that this is the offline space without basis
removal.

5. Step 5: Remove basis. For each coarse grid block Ki, we can write the restriction of the current solution
umH on Ki as

lm1,i∑

l=1

α1,lφ
(i)
l +

lm2,i∑

l=1

α2,lξ
(i)
l .

Fixed a tolerance ε > 0. Then the basis function φ
(i)
l or ξ

(i)
l is removed if

α2
1,l < ε

( lm1,i∑

l=1

α2
1,l +

lm2,i∑

l=1

α2
2,l

)
or α2

2,l < ε
( lm1,i∑

l=1

α2
1,l +

lm2,i∑

l=1

α2
2,l

)

is satisfied. The resulting space is called V off(m+ 1).
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To demonstrate the performance of this strategy, we will consider two examples. In the first example,
the source function f is defined as in Figure 3 and the rest of the parameters as in the Example 2. In the
second example, we will take the solution (see Figure 5) which only contain the component of the 1st, 17th
and 30th eigen-basis. The boundary conditions are as in Example 2 and the source term is calculated based
on this sparse solution. The convergence history for the first example is shown in Table 7. Comparing these
results to Table 6, we can see that the adaptive enrichment provides a better convergence. The convergence
history is substantially improved if we consider the sparse solution as in our second example. The numerical
results are shown in Table 8.

DOF e2 ea
1024 0.2052 0.0554
1036 0.1474 0.0405
1259 0.0585 0.0230
2096 0.0129 0.0125
2643 0.0099 0.0111

Table 7: Enrichment using basis pursuit with θ = 0.8 and basis removal as well as enrichment in V1 space
only.
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Figure 5: Solution with sparse coefficient

DOF e2 ea
1024 0.0150 0.0424
941 0.0069 0.0286
934 0.0032 0.0135
688 0.0001 0.0010
744 1.20e-06 2.13e-05

DOF e2 ea
1024 0.0150 0.0424
997 0.0150 0.0424
1327 0.0108 0.0412
2447 0.0023 0.0154
889 0.0003 0.0022

Table 8: Enrichment with θ=0.8 . Left: basis pursuit. Right: standard enrichment

6 Convergence analysis

In this section, we will provide the proofs for the a-posteriori error estimates (Theorem 4.1) and the conver-
gence of the adaptive enrichment algorithm (Theorem 4.2).

For each coarse grid block Ki, i = 1, 2, · · · , N , we define two projection operators Pj,i : V
i,snap
j → V i,off

j ,

18



j = 1, 2, from the local snapshot spaces to the corresponding local offline spaces by

∫

∂Ki

κ̃P1,i(v)w =

∫

∂Ki

κ̃vw ∀w ∈ V i,off
1 ,

∫

Ki

κP2,i(v)w =

∫

Ki

κvw ∀w ∈ V i,off
2 .

For any v ∈ V i,snap
1 , we can write v =

∑Mi

l=1 c1,lφ
(i)
l . By orthogonality of eigenfunctions, we have P1,i(v) =∑l1,i

l=1 c1,lφ
(i)
l . Therefore, by the equivalence of ‖ · ‖a and ‖ · ‖DG, we have

‖P1,i(v)‖
2
a ≤ a1

(∫

Ki

κ|∇P1,i(v)|
2 +

γ

h

∫

∂Ki

κ̃P1,i(v)
2

)
.

By the spectral problem (6) and the fact that the eigenvalues are ordered increasingly, we have

‖P1,i(v)‖
2
a ≤ a1




l1,i∑

l=1

λ
(i)
1,l

H
c21,l +

γ

h

∫

∂Ki

κ̃P1,i(v)
2




≤ a1


λ

(i)
1,l1,i

H
+
γ

h




l1,i∑

l=1

c21,l = a1

(
λ
(i)
1,l1,i

+
γH

h

)
‖v‖2V1(Ki)

.

Similarly, for v =
∑

l≥1 c2,lξ
(i)
l , we have P2,i(v) =

∑l2,i
l=1 c2,lξ

(i)
l . Therefore, by the equivalence of ‖ · ‖a and

‖ · ‖DG, we have

‖P2,i(v)‖
2
a ≤ a1

(∫

Ki

κ|∇P2,i(v)|
2

)
.

By the spectral problem (7) and the fact that the eigenvalues are ordered increasingly, we have

‖P2,i(v)‖
2
a ≤ a1




l2,i∑

l=1

λ
(i)
2,l

H2
c22,l


 ≤ a1


λ

(i)
2,l2,i

H2




l2,i∑

l=1

c22,l = a1λ
(i)
2,l2,i

‖v‖2V2(Ki)
.

Thus the projections Pj,i satisfy the following stability bound

||Pj,i(v)||a ≤ a
1
2

1

(
λ
(i)
j,lj,i

+
γH

h

) 1
2

‖v‖Vj(Ki), j = 1, 2, i = 1, 2, · · · , N. (37)

Next, we will establish some approximation properties for the projection operators Pj,i. Indeed, by the

definitions of the operators Pj,i, for any v ∈ V i,snap
j ,

‖v − Pj,i(v)‖
2
Vj(Ki)

= H−j
∑

l≥lj,i+1

c2j,l ≤ (λ
(i)
lj,i+1)

−1
∑

l≥lj,i+1

λ
(i)
j,l

Hj
c2j,l = (λ

(i)
j,lj,i+1)

−1

∫

Ki

κ|∇v|2,

and therefore the following convergence result holds

‖v − Pj,i(v)‖Vj(Ki) ≤
(
λ
(i)
j,lj,i+1

)− 1
2
(∫

Ki

κ|∇v|2
) 1

2

. (38)

For the analysis presented below, we define the projection Π : V snap → V off by Πv =
∑N

i=1

∑2
j=1 Pj,i(v).

19



6.1 Proof of Theorem 4.1

Let v ∈ V h
DG be an arbitrary function in the space V h

DG. Using (23), we have

aDG(uh − uH , v) = aDG(uh, v)− aDG(uH , v) = (f, v)− aDG(uH , v).

Therefore,

aDG(uh − uH , v) = (f, v)− aDG(uH , v) = (f, v −Πv) + (f,Πv)− aDG(uH ,Πv)− aDG(uH , v −Πv).

Thus, using (24), we have

aDG(uh − uH , v) = (f, v −Πv)− aDG(uH , v −Πv). (39)

Since the space V h
DG is the same as V snap, we can write v =

∑N
i=1

∑2
j=1 v

(i)
j with v

(i)
j ∈ V i,snap

j . Hence, (39)
becomes

aDG(uh − uH , v) =

N∑

i=1

2∑

j=1

(∫

Ki

f(v
(i)
j − Pj,iv

(i)
j )− aDG(uH , v

(i)
j − Pj,iv

(i)
j )
)
. (40)

We remark that, in the computation of the term aDG(uH , v
(i)
j −Pj,iv

(i)
j ) in (40), we assume that the second

argument is zero outside the coarse grid block Ki.
Using the definition of Rj,i, we see that (40) can be written as

aDG(uh − uH , v) =

N∑

i=1

2∑

j=1

Rj,i(v
(i)
j − Pj,iv

(i)
j ).

Thus, we have

aDG(uh − uH , v) ≤
N∑

i=1

2∑

j=1

‖Rj,i‖‖(v
(i)
j − Pj,iv

(i)
j )‖Vj(Ki).

Using (38),

aDG(uh − uH , v) ≤

N∑

i=1

2∑

j=1

‖Rj,i‖
(
λ
(i)
j,lj,i+1

)− 1
2
(∫

Ki

κ|∇v
(i)
j |2

) 1
2

.

The inequality (29) is then followed by taking v = uh−uH and
∑N

i=1

∑2
j=1

∫
Ki
κ|∇v

(i)
j |2 ≤ ‖v‖2DG ≤ a0‖v‖

2
a.

6.2 An auxiliary lemma

In this section, we will derive an auxiliary lemma which will be used for the proof of the convergence of the
adaptive enrichment algorithm stated in Theorem 4.2. We use the notation Pm

j,i to denote the projection
operator Pj,i at the enrichment level m.

In Theorem 4.1, we see that ‖Rj,i‖ gives an upper bound of the energy error ‖uh − uH‖a. We will first
show that, ‖Rj,i‖ is also a lower bound up to a correction term (see Lemma 6.1). To state this precisely, we
define

Sm
j,i = (λ

(i)
j,lm

j,i
+1)

− 1
2 sup
v∈V i,snap

j

|Rj,i(v − Pm
j,i(v))|

‖v‖Vj(Ki)
. (41)

Notice that the residual Rj,i is computed using the solution umH obtained at enrichment level m. We omit
the index m in Rj,i to simplify notations. Next, we will obtain

(Sm
j,i)

2 = ‖Rj,i‖
2(λ

(i)
j,lm

j,i
+1)

−1. (42)
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Indeed, by the fact that Pm
j,i(v) ∈ V i,off

j ,

Rj,i(P
m
j,i(v)) =

∫

Ki

fPm
j,i(v) − aDG(u

m
H , P

m
j,i(v)) = 0.

Thus,

Sm
j,i = (λ

(i)
j,lmj,i+1)

− 1
2 sup
v∈V i,snap

j

|Rj,i(v − Pm
j,i(v))|

‖v‖Vj(Ki)
= (λ

(i)
j,lmj,i+1)

− 1
2 sup
v∈V i,snap

j

|Rj,i(v)|

‖v‖Vj(Ki)
= (λ

(i)
j,lmj,i+1)

− 1
2 ‖Rj,i‖.

This implies (42).
To prove Theorem 4.2, we will need the following recursive properties for Sm

j,i (see Lemma 6.1). Notice
that, the notation ‖u‖a,Ki

is defined as

‖u‖2a,Ki
= aDG(u, u) =

∫

Ki

κ|∇u|2 −
∑

E∈∂Ki

2

∫

E

{{κ∇u · nE}}[[u]] +
∑

E∈∂Ki

γ

h

∫

E

κ[[u]]2.

Lemma 6.1. For any α > 0, we have

(Sm+1
j,i )2 ≤ (1 + α)

λ
(i)
j,lm

j,i
+1

λ
(i)

j,lm+1

j,i
+1

(Sm
j,i)

2 + (1 + α−1)a1D‖um+1
H − umH‖2a,Ki

(43)

where the enrichment level dependent constant D is defined by by

D =


 Λj,i

λ
(i)

j,lm+1

j,i
+1

+
γH

hλ
(i)

j,lm+1

j,i
+1




with Λj,i = maxl λ
(i)
j,l .

Proof. By direct calculations, we have

∫

Ki

f(v − Pm+1
j,i (v)) − aDG(u

m+1
H , v − Pm+1

j,i (v))

=

∫

Ki

fv − aDG(u
m+1
H , v)

=

∫

Ki

fv − aDG(u
m
H , v) + aDG(u

m
H − um+1

H , v)

=

∫

Ki

f(v − Pm
j,i(v)) − aDG(u

m
H , v − Pm

j,i(v)) + aDG(u
m
H − um+1

H , v).

(44)

By definition of Sm
j,i, we have

Sm
j,i = (λ

(i)
j,lm

j,i
+1)

− 1
2 sup
v∈V i,snap

j

|
∫
Ki
f(v − Pm

j,i(v))− aDG(u
m
H , v − Pm

j,i(v))|

‖v‖Vj(Ki)
. (45)

Multiplying (44) by (λ
(i)
j,lm

j,i
+1)

− 1
2 ‖v‖−1

Vj(Ki)
and taking supremum with respect to v, we have

Sm+1
j,i ≤

( λ
(i)
j,lm

j,i
+1

λ
(i)

j,lm+1

j,i
+1

) 1
2

Sm
j,i + I, (46)
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where

I = (λ
(i)
j,lm

j,i
+1)

− 1
2 sup
v∈V i,snap

j

|aDG(u
m
H − um+1

H , v)|

‖v‖Vj(Ki)
.

To estimate I, we note that

aDG(u
m
H , P

m
j,i(v)) =

∫

Ki

fPm
j,i(v) = aDG(u

m+1
H , Pm

j,i(v)).

Therefore, we have

aDG(u
m
H − um+1

H , v) = aDG(u
m
H − um+1

H , v − Pm
j,i(v)) ≤ ‖umH − um+1

H ‖a,Ki
‖v − Pm

j,i(v)‖a,Ki
,

where we remark that v has value zero outside Ki. By the stability bound (37),

‖v − Pm
j,i(v)‖a ≤ a

1
2

1

(
Λj,i +

γH

h

) 1
2

‖v − Pm
j,i(v)‖Vj(Ki) ≤ a

1
2

1

(
Λj,i +

γH

h

) 1
2

‖v‖Vj(Ki).

Thus we have

I ≤ a
1
2

1 (λ
(i)
j,lm

j,i
+1)

− 1
2

(
Λj,i +

γH

h

) 1
2

‖um+1
H − umH‖a,Ki

.

Using (46), we get

Sm+1
j,i ≤

( λ
(i)
j,lm

j,i
+1

λ
(i)

j,lm+1

j,i
+1

) 1
2

Sm
j,i + a

1
2

1


 Λj,i

λ
(i)

j,lm+1

j,i
+1

+
γH

hλ
(i)

j,lm+1

j,i
+1




1
2

‖um+1
ms − umms‖a,Ki

.

Hence, (43) is proved.

6.3 Proof of Theorem 4.2

In this section, we prove the convergence of the adaptive enrichment algorithm. First of all, we recall that

η2j,i = ‖Rj,i‖
2(λ

(i)
j,lm

j,i
+1)

−1 = (Sm
j,i)

2. (47)

We will use the single index notation ηJ and Sm
J for ηj,i and S

m
j,i respectively.

Let 0 < θ < 1. We choose an index set I so that

θ2
2N∑

J=1

η2J ≤
∑

J∈I

η2J . (48)

We will then add basis function from V i,snap
j with J ∈ I. Then, using Theorem 4.1 and (48), we have

θ2‖uh − umH‖2a ≤ θ2Cerr

2N∑

J=1

η2J ≤ Cerr

∑

J∈I

η2J .

By (47), we also have

‖uh − umH‖2a ≤
Cerr

θ2

∑

J∈I

(Sm
J )2. (49)
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On the other hand,
N∑

J=1

(Sm+1
J )2 =

∑

J∈I

(Sm+1
J )2 +

∑

J /∈I

(Sm+1
J )2.

By lemma 6.1, we have

N∑

J=1

(Sm+1
J )2 ≤

∑

J∈I

(
(1 + α)

λ
(i)
j,lm

j,i
+1

λ
(i)

j,lm+1

j,i
+1

(Sm
J )2 + (1 + α−1)a1D‖um+1

H − umH‖2a,Ki

)

+
∑

J /∈I

(
(1 + α)(Sm

J )2 + (1 + α−1)a1D‖um+1
H − umH‖2a,Ki

)
.

We assume the enrichment is obtained so that

δ := max
J∈I

λ
(i)
j,lmj,i+1

λ
(i)

j,lm+1

j,i
+1

≤ δ0 < 1,

where δ0 is independent of m. We then have

2N∑

J=1

(Sm+1
J )2 ≤ (1 + α)

2N∑

J=1

(Sm
J )2 − (1 + α)(1 − δ0)

∑

J∈I

(Sm
J )2 + δL‖um+1

H − umH‖2a,

where
Lm+1 = NE(1 + α−1)a1

(
max

1≤i≤N
max
1≤j≤2

D
)
, (50)

where NE is the maximum number of edges of coarse grid blocks, and we also emphasise that Lm+1 depends
on m. By (48),

2N∑

J=1

(Sm+1
J )2 ≤ (1 + α)

2N∑

J=1

(Sm
J )2 − (1 + α)(1 − δ0)θ

2
2N∑

J=1

(Sm
J )2 + δLm+1‖u

m+1
H − umH‖2a.

Let ρ = (1+α)(1− (1− δ0)θ
2). We choose α > 0 small enough so that 0 < ρ < 1. The above is then written

as
2N∑

J=1

(Sm+1
J )2 ≤ ρ

2N∑

J=1

(Sm
J )2 + δLm+1‖u

m+1
H − umH‖2a. (51)

Note that, by Galerkin orthogonality, we have

‖um+1
H − umH‖2a = ‖uh − umH‖2a − ‖uh − um+1

H ‖2a.

So, we have
2N∑

J=1

(Sm+1
J )2 ≤ ρ

2N∑

J=1

(Sm
J )2 + δLm+1(‖uh − umH‖2a − ‖uh − um+1

H ‖2a) (52)

which implies

‖uh − um+1
H ‖2a +

1

δLm+1

2N∑

J=1

(Sm+1
J )2 ≤ ‖uh − umH‖2a +

ρ

δLm+1

2N∑

J=1

(Sm
J )2. (53)

Finally, using (49),

‖uh − um+1
H ‖2a +

1

δLm+1

2N∑

J=1

(Sm
J )2 ≤ (1− β)‖uh − umH‖2a + (

βCerr

θ2
+

ρ

δLm+1
)

2N∑

J=1

(Sm
J )2.
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Let β =
θ2(1 − ρLm/Lm+1)

θ2 + CerrδLm
and combining the above with (53), we obtain

‖u− um+1
h ‖2a +

1

δLm+1

2N∑

J=1

(Sm+1
J )2 ≤ (1− β)‖u− umh ‖2a +

(1− β)

δLm

2N∑

J=1

(Sm
J )2. (54)

Hence, Theorem 4.2 is proved.
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