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Abstract

We consider a strongly heterogeneous medium saturated by an incompressible
viscous fluid as it appears in geomechanical modeling. This poroelasticity prob-
lem suffers from rapidly oscillating material parameters, which calls for a thorough
numerical treatment. In this paper, we propose a method based on the local orthog-
onal decomposition technique and motivated by a similar approach used for linear
thermoelasticity. Therein, local corrector problems are constructed in line with the
static equations, whereas we propose to consider the full system. This allows to
benefit from the given saddle point structure and results in two decoupled corrector
problems for the displacement and the pressure. We prove the optimal first-order
convergence of this method and verify the result by numerical experiments.

1 Introduction

Modeling the deformation of porous media saturated by an incompressible viscous fluid
is of great importance for many physical applications such as reservoir engineering in the
field of geomechanics [26] or the modeling of the human anatomy for medical applications
[22, 6]. To obtain a reasonable model, it is important to couple the flow of the fluid
with the behavior of the surrounding solid. Biot proposed a model that couples a Darcy
flow with linear elastic behavior of the porous medium [1]. The corresponding analysis
was given in [25]. For this so-called poroelastic behavior, pressure and displacement are
averaged across (infinitesimal) cubic elements such that pressure and displacement can be
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treated as variables on the entire domain of interest. Furthermore, the model is assumed
to be quasi-static, i.e., an internal equilibrium is preserved at any time. In the poroelastic
setting, this means that volumetric changes occur slowly enough for the pressure to remain
basically constant throughout an infinitesimal element.

If the given material is homogeneous, the poroelastic behavior can be simulated using
standard numerical methods such as the finite element method, see for instance [13].
However, if the medium is strongly heterogeneous, the material parameters may oscillate
on a fine scale. In such a scenario, the classical finite element method only yields accept-
able results if the fine scale is resolved by the spatial discretization, which is unfeasible
in practical applications. To overcome this issue, homogenization techniques may be ap-
plied, such as the general multiscale finite element method (GMsFEM) [11], used in [4, 5],
or the localized orthogonal decomposition technique (LOD) [21] as used in [19] for the
similar problem of linear thermoelasticity. The general idea of these methods is to con-
struct low-dimensional finite element spaces which incorporate spatial fine scale features
using adapted basis functions. This involves additional computations in the offline stage
with the benefit of having much smaller linear systems to solve in every time step due to
the much lower amount of degrees of freedom.

In the present paper, a multiscale finite element method is proposed based on the LOD
method and adopting the ideas presented in [19]. In contrast to the method of [19], we
are able to exploit the saddle point structure of the problem in order to obtain fully
symmetric and decoupled corrector problems without the need for additional corrections.
Furthermore, this implies that the correctors are independent of the Biot-Willis fluid-solid
coupling coefficient, although it may vary rapidly as well.

The work is structured as follows. In Section 2 we present the model problem and intro-
duce the necessary notation. Section 3 is devoted to the discretization of the problem.
This includes the classical finite element method on a fine mesh as well as the formu-
lation introduced in [19] translated to poroelasticity. We then introduce the decoupled
corrector problems and the resulting new multiscale scheme for which we prove conver-
gence. Finally, numerical results, which illustrate the theoretical findings, are presented
in Section 4.

Throughout the paper C denotes a generic constant, independent of spatial discretization
parameters and the time step size. Further, a . b will be used equivalently to a ≤ Cb.

2 Linear Poroelasticity

2.1 Model problem

We consider the linear poroelasticity problem in a bounded and polyhedral Lipschitz do-
mainD ⊂ R

d (d = 2, 3) as discussed in [25]. For the sake of simplicity, we restrict ourselves
to homogeneous Dirichlet boundary conditions. The extension to Neumann boundary con-
ditions is straightforward. This means that we seek the pressure p : [0, T ]×D → R and
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the displacement field u : [0, T ]×D → R
d within a given time T > 0 such that

−∇ ·
(
σ(u)

)
+∇(αp) = 0 in (0, T ]×D, (1a)

∂t

(

α∇ · u+
1

M
p
)

−∇ ·
(κ

ν
∇p

)

= f in (0, T ]×D (1b)

with boundary and initial conditions

u = 0 on (0, T ]× ∂D, (1c)

p = 0 on (0, T ]× ∂D, (1d)

p(·, 0) = p0 in D. (1e)

In the given model, the primary sources of the heterogeneities in the physical properties
arise from the stress tensor σ, the permeability κ, and the Biot-Willis fluid-solid coupling
coefficient α. Further, we denote by M the Biot modulus and by ν the fluid viscosity.
The source term f represents an injection or production process. In the case of a linear
elastic stress-strain constitutive relation, we have that the stress tensor and symmetric
strain gradient may be expressed as

σ(u) = 2µε(u) + λ(∇ · u)I, ε(u) =
1

2

(
∇u+ (∇u)T

)
,

where µ and λ are the Lamé coefficients and I is the identity tensor. In the case where
the media is heterogeneous the coefficients µ, λ, κ, and α may be highly oscillatory.

2.2 Function spaces

In this subsection we clarify the notation used throughout the paper. We write (·, ·) to
denote the inner product in L2(D) and ‖ · ‖ for the corresponding norm. Let H1(D) be
the classical Sobolev space with norm ‖v‖21 := ‖v‖2H1(D) = ‖v‖2 + ‖∇v‖2 and let H1

0 (D)
be the subspace with functions having a vanishing trace. The corresponding dual space
is denoted by H−1(D). Moreover, we write Lp(0, T ;X) for the Bochner space with the
norm

‖v‖Lp(0,T ;X) =

(∫ T

0

‖v‖pX dt

)1/p

, 1 ≤ p < ∞,

‖v‖L∞(0,T ;X) = sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with the norm ‖ · ‖X . The notation v ∈ H1(0, T ;X)
is used to denote that both v and ∂tv are elements of the space L2(0, T ;X). To shorten
notation we define the spaces for the displacement and the pressure by

V :=
[
H1

0 (D)
]d
, Q := H1

0 (D).

2.3 Variational formulation

In this subsection we give the corresponding variational formulation of the poroelasticity
system (1). To obtain a variational form we multiply the equations (1a) and (1b) with
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test functions from V and Q, respectively, and use Green’s formula together with the
boundary conditions (1c) and (1d). This leads to the following problem: find u(·, t) ∈ V
and p(·, t) ∈ Q such that

a(u, v)− d(v, p) = 0, (2a)

d(∂tu, q) + c(∂tp, q) + b(p, q) = (f, q), (2b)

for all v ∈ V , q ∈ Q and

p(·, 0) = p0. (2c)

The bilinear forms a : V × V → R, b, c : Q × Q → R, and d : V × Q → R are defined
through

a(u, v) :=

∫

D

σ(u) : ε(v) dx, b(p, q) :=

∫

D

κ

ν
∇p · ∇q dx,

c(p, q) :=

∫

D

1

M
pq dx, d(u, q) :=

∫

D

α (∇ · u)q dx.

Note that (2a) can be used to define a consistent initial value u0 := u(·, 0). Using Korn’s
inequality [10], we have the bounds

cσ‖v‖21 ≤ a(v, v) ≤ Cσ‖v‖21 (3)

for all v ∈ V , where cσ and Cσ are positive constants. Similarly, there are positive
constants cκ and Cκ such that

cκ‖q‖21 ≤ b(q, q) ≤ Cκ‖q‖21 (4)

for all q ∈ Q. We write ‖ · ‖a for the energy norm induced by the bilinear form a(·, ·) and
similarly ‖ · ‖b for the norm induced by b. The existence and uniqueness of solutions u
and p to (2) have been discussed and proved in [25].

3 Numerical Approximation

In this section, we present different finite element schemes for the discretization of system
(2). The classical method is only meaningful if oscillations are resolved by the underlying
mesh and this approach will solely serve as a reference. The main goal of this section is to
approximate the solution on a mesh of some feasible coarse scale of resolution independent
of microscopic oscillations. Our construction is based on the concept of localized orthogonal
decomposition (LOD) [21, 3, 23, 14] and adapts ideas from thermoelasticity [19] and the
heat equation [20].

3.1 Fine-scale discretization using classical FEM

We define appropriate finite element spaces for the poroelasticity system. Let {Th}h>0

be a shape regular family of meshes [9] for the computational domain D with mesh size
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hK := diam(K) for K ∈ Th. We define the maximal diameter by h := maxK∈Th hK . Based
on the mesh, we define the piecewise affine finite element spaces

Vh := {v ∈ V : v|K is a polynomial of degree ≤ 1 for all K ∈ Th},

Qh := {q ∈ Q : q|K is a polynomial of degree ≤ 1 for all K ∈ Th}.
For the discretization in time, we consider a uniform time step τ such that tn = nτ for
n ∈ {0, 1, · · · , N} and T = Nτ .

Using the notation introduced above, we discretize system (2) with a backward Euler
scheme in time and by finite elements in space, i.e., for n ∈ {1, · · · , N} we aim to find
un
h ∈ Vh and pnh ∈ Qh such that

a(un
h, v)− d(v, pnh) = 0, (5a)

d(Dτu
n
h, q) + c(Dτp

n
h, q) + b(pnh, q) = (fn, q) (5b)

for all v ∈ Vh and q ∈ Qh. Within the equations, Dτ denotes the discrete time derivative,
i.e., Dτu

n
h := (un

h − un−1
h )/τ , and fn := f(tn). As initial value we choose p0h ∈ Qh to

be a suitable approximation of p0. Similarly as before, u0
h is uniquely determined by the

variational problem
a(u0

h, v) = d(v, p0h)

for all v ∈ Vh.

Lemma 3.1. Given initial data u0
h ∈ Vh and p0h ∈ Qh, system (5) is well-posed, i.e., there

exists a unique solution, which is bounded in terms of the initial values and the source

term f .

Proof. Observe that for the bilinear form a it holds that

2 a(un
h, u

n
h − un−1

h ) = a(un
h, u

n
h) + a(un

h − un−1
h , un

h − un−1
h )− a(un−1

h , un−1
h )

≥ ‖un
h‖2a − ‖un−1

h ‖2a. (6)

A similar result can be shown for the bilinear form c. Choosing v = un
h − un−1

h ∈ Vh as
test function in (5a) and q = τpnh ∈ Qh in (5b) and adding both equations, we obtain

a(un
h, u

n
h − un−1

h ) + c(pnh − pn−1
h , pnh) + τ b(pnh, p

n
h) = τ (fn, pnh). (7)

Inequality (6), an application of Young’s inequality, and (4) then imply

‖un
h‖2a + ‖pnh‖2c + τ‖pnh‖2b ≤

τ

cκ
‖fn‖2 + ‖un−1

h ‖2a + ‖pn−1
h ‖2c .

A summation over all n finally leads to the stability estimate

‖un
h‖2a + ‖pnh‖2c + τ

n∑

j=1

‖pjh‖2b ≤
τ

cκ

n∑

j=1

‖f j‖2 + ‖u0
h‖2a + ‖p0h‖2c .

This implies the uniqueness of the solutions un
h and pnh. Existence follows from the fact

that system (5) is equivalent to a square system of linear equations and, hence, uniqueness
implies existence.
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For the presented fine scale discretization in (5), one can show the following stability result,
which will be important for the convergence proof of the LOD method in Section 3.3.

Theorem 3.2 ([19, Th. 3.3]). Assume f ∈ L∞(0, T ;L2(D)) ∩ H1(0, T ;H−1(D)). Then,

the fully discrete solution (un
h, p

n
h) of (5) satisfies for all n = 1, . . . , N the stability bound

(

τ

n∑

j=1

‖Dτu
j
h‖21

)1/2

+
(

τ

n∑

j=1

‖Dτp
j
h‖2

)1/2

+ ‖pnh‖1 . ‖p0h‖1 + ‖f‖L2(0,tn;L2(D)).

Further, in the case p0h = 0 we have

‖Dτu
n
h‖1 + ‖Dτp

n
h‖+

(

τ

n∑

j=1

‖Dτp
j
h‖21

)1/2

. ‖f‖L∞(0,tn;L2(D)) + ‖ḟ‖L2(0,tn;H−1(D))

and for f = 0 it holds that

‖Dτu
n
h‖1 + ‖Dτp

n
h‖+ t1/2n ‖Dτp

n
h‖1 . t−1/2

n ‖p0h‖1.

The following theorem states the expected convergence order of h + τ . However, the
involved constant for the spatial discretization scales with ǫ−1, which makes this approach
unfeasible in oscillatory media with period ǫ.

Theorem 3.3 (cf. [13, Th. 3.1]). Assume that the coefficients satisfy µ, λ, κ, α ∈ W 1,∞(D).
Further, let the exact solution (u, p) of (1) be sufficiently smooth and (un

h, p
n
h) the fully

discrete solution obtained by (5) for n = 1, . . . , N . Then, the error is bounded by

‖u(tn)− un
h‖1 + ‖p(tn)− pnh‖+

(

τ
n∑

j=1

‖p(tj)− pjh‖21
)1/2

≤ Cǫh + Cτ,

where the constant Cǫ scales with max{‖µ‖W 1,∞(D), ‖λ‖W 1,∞(D), ‖κ‖W 1,∞(D), ‖α‖W 1,∞(D)}.

3.2 A multiscale method for poroelasticity

Within this subsection, we derive the framework of a generalized finite element method
for poroelasticity. First, we introduce VH and QH analogously to Vh and Qh with a
larger mesh size H > h. Second, we assume that the family {TH}H>0 is quasi-uniform
and that Th is a refinement of TH such that VH ⊆ Vh and QH ⊆ Qh. The goal is to
construct a new function space with the same dimension as VH × QH but with better
approximation properties. For this, we follow the methodology of LOD [21, 23] and, in
particular, translate the results from thermoelasticity presented in [19] to the present
setting.

3.2.1 Multiscale spaces and projections

Consider a quasi-interpolation IH : Vh → VH with I2H = IH , which satisfies the stability
estimate that for v ∈ Vh we have

H−1
K ‖v − IHv‖L2(K) + ‖∇IHv‖L2(K) . ‖∇v‖L2(ωK)
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for all K ∈ TH of size HK and the element patch

ωK := int
⋃

K̂∈TH , K̂∩K 6=∅

K̂.

Similarly, we have a corresponding quasi-interpolation operator on Qh, which we also
denote by IH . Since the mesh is assumed to be shape regular, the stability estimate
above is also global, i.e.,

H−1‖v − IHv‖+ ‖∇IHv‖ . ‖∇v‖, (8)

where the involved constant depends only on the shape regularity of the mesh. One typical
example of such a quasi-interpolation that satisfies the above assumptions is IH = EH◦ΠH .
Here, ΠH denotes the piecewise L2-projection onto P1(TH) (or P1(TH)

d respectively), the
space of functions that are affine on each triangle K ∈ TH . Moreover, EH is an averaging
operator mapping P1(TH) into QH (or P1(TH)

d into VH) by

(
EH(v)

)
(z) :=

1

card{K ∈ TH : z ∈ K}
∑

K∈TH , z∈K

v|K(z),

where z is a free node in QH . For further details and other available options for IH we
refer to [23].

Next, we define the kernel of IH in Vh and Qh, respectively, by

Vfs := {v ∈ Vh : IHv = 0}, Qfs := {q ∈ Qh : IHq = 0}.

These kernels are fine scale spaces in the sense that they contain all features that are not
captured by the coarse spaces VH and QH . The interpolation operator IH leads to the
decompositions Vh = VH ⊕ Vfs and Qh = QH ⊕ Qfs, meaning that any function v ∈ Vh

can be uniquely decomposed into v = vH + vfs with vH ∈ VH and vfs ∈ Vfs and similarly
for q ∈ Qh. In the following, we consider two projections on the fine scale spaces, the
so-called correctors C1

fs : Vh → Vfs and C2
fs : Qh → Qfs based on the elliptic bilinear forms a

and b. They are defined by

a(C1
fsu, v) = a(u, v), b(C2

fsp, q) = b(p, q)

for all v ∈ Vfs and q ∈ Qfs. With these correctors we define the new finite element spaces

Vms := {vH − C1
fsvH : vH ∈ VH}, Qms := {qH − C2

fsqH : qH ∈ QH},

which have the same dimensions as VH and QH , respectively. Note that this gives the
a-orthogonal decomposition Vh = Vms ⊕ Vfs as well as the b-orthogonal decomposition
Qh = Qms ⊕Qfs.

3.2.2 Multiscale method and convergence

With all tools in hand, we are now able to present the method proposed in [19] for ther-
moelasticity. Since the considered system involves time derivatives, the corrector problem
needs to be solved in each time step. This is, however, too expensive for a computational
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approach. Therefore, we restrict the computations of the multiscale correctors to the
stationary system. This then leads to the definition of R̃ms = (R̃1

ms, R̃
2
ms) : Vh × Qh →

Vms × Qms, which we use to construct the space of trial functions. For given u ∈ Vh and
p ∈ Qh we define R̃1

ms(u, p) ∈ Vms and R̃2
ms(p) ∈ Qms by

a(R̃1
ms(u, p), v)− d(v, R̃2

msp) = a(u, v)− d(v, p), (9a)

b(R̃2
msp, q) = b(p, q) (9b)

for all v ∈ Vms and q ∈ Qms. Note that the projections R̃
1
ms and R̃2

ms are coupled and that
we have the relation R̃2

ms = 1− C2
fs. Since R̃1

ms depends on the bilinear form d, we need a
second projection R̃fs : Qh → Vfs defined by

a(R̃fs p, v) = −d(v, R̃2
msp) (10)

for all v ∈ Vfs. We emphasize that this is a fine scale correction.

The resulting multiscale discretization (combined with a backward Euler scheme in time)
then has the following form. For all n = 1, . . . , N find ũn

ms = un
ms + un

fs with un
ms ∈ Vms,

un
fs ∈ Vfs and p̃nms ∈ Qms such that

a(ũn
ms, v)− d(v, p̃nms) = 0, (11a)

d(Dτ ũ
n
ms, q) + c(Dτ p̃

n
ms, q) + b(p̃nms, q) = (fn, q), (11b)

a(un
fs, w) + d(w, p̃nms) = 0 (11c)

for all test functions v ∈ Vms, q ∈ Qms, and w ∈ Vfs. The initial value is given by
p̃0ms = R̃2

msp
0
h. Moreover, we define ũ0

ms = u0
ms + u0

fs with u0
fs ∈ Vfs given by (11c) and

u0
ms ∈ Vms defined through the variational problem

a(u0
ms, v) = a(ũ0

ms, v) = d(v, p̃0ms)

with test functions v ∈ Vms. System (11) is well-posed and the errors ‖un
h − ũn

ms‖1 and
‖pnh−p̃nms‖1 are bounded by an ǫ-independent constant times H , see [19, Th. 5.2]. Together
with Theorem 3.3 this implies that the multiscale solution (ũn

ms, p̃
n
ms) approximates the

exact solution (u, p) with order H in space and order τ in time. Moreover, one may
manipulate system (11) in such a way that, in practice, one does not need to compute a
fine scale correction in each step.

3.3 An alternative multiscale method

We have seen that the method proposed in the previous subsection needs an additional
correction on the fine mesh. As explained in [19], the additional fine scale correction
only needs to be computed in the offline stage by using a set of basis functions. This
keeps the coarse structure of the system in each time step at the expense of slightly more
complicated systems. We now propose a simpler method, which exploits the symmetry of
the system equations, namely the saddle point structure. This symmetry becomes more
evident if we discretize system (2) in time first, i.e., if we consider

a(un, v)− d(v, pn) = 0, (12a)

d(Dτu
n, q) + c(Dτp

n, q) + b(pn, q) = (fn, q) (12b)

for all test functions v ∈ V and q ∈ Q. We show that system (12) is again well-posed.

8



Lemma 3.4. Given un−1 ∈ V and pn−1 ∈ Q, system (12) is well-posed for all τ > 0 and

n = 1, . . . , N .

Proof. We introduce the bilinear form

a([u, p], [v, q]) := a(u, v)− d(v, p) + d(u, q) + c(p, q) + τ b(p, q).

Note that a is coercive, since a([u, p], [u, p]) = ‖u‖2a + ‖p‖2c + τ ‖p‖2b . Furthermore, system
(12) is equivalent to

a([un, pn], [v, q]) = τ(fn, q) + d(un−1, q) + c(pn−1, q).

Thus, the existence of a unique solution follows from the Lax-Milgram theorem.

The property that the d-terms in system (12) cancel for corresponding test functions and
summation was not used in the previous approach. We will exploit this property, which
then leads to a pair of decoupled multiscale correctors.

3.3.1 Projections

In this part, we define the two projections R1
ms and R2

ms, on which the new multiscale
method is based. The idea is to use the same projections as for the definition of the spaces
Vms and Qms in Section 3.2.1. In contrast to the previous approach, they are independent
of the bilinear form d such that we do not need an additional fine scale correction. A
significant consequence is that the projections are independent of the parameter α despite
possible oscillations. Furthermore, the two projections are uncoupled, which provides a
significant simplification in practical computations.

We define R1
ms : Vh → Vms and R2

ms : Qh → Qms by

a(u− R1
msu, v) = 0, b(p− R2

msp, q) = 0

for all v ∈ Vms and q ∈ Qms. Note that we have R1
ms = 1 − C1

fs and R2
ms = 1 − C2

fs such
that Vms = R1

msVH and Qms = R2
msQH . The bilinear forms a and b can also be written in

terms of operators. On the fine scale, we define A : Vh → Vh and B : Qh → Qh by

(Au, v)L2 := a(u, v), (Bp, q)L2 := b(p, q)

for all v ∈ Vh and q ∈ Qh. Note that these operators are only well-defined on the discrete
spaces Vh. In the following two lemmata we provide bounds for the introduced projections.

Lemma 3.5. The projections R1
ms

and R2
ms

satisfy the bounds

‖(1−R1
ms
)v‖ . H ‖(1− R1

ms
)v‖1 . H ‖v‖1,

‖(1−R2
ms
)q‖ . H ‖(1− R2

ms
)q‖1 . H ‖q‖1

for all v ∈ Vh and q ∈ Qh.
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Proof. The proof is based on the fact that the bilinear forms a and b are elliptic and the
Aubin-Nitsche duality argument. We only show the first estimate here. For v ∈ Vh we
consider the variational problem

a(z, w) = (v −R1
msv, w)

with test functions w ∈ Vh. It was shown in [21] that the ellipticity of a implies

‖z − R1
msz‖1 . H ‖v −R1

msv‖.

With this, we conclude

‖v −R1
msv‖2 = a(z, v − R1

msv) . ‖z − R1
msz‖1‖v − R1

msv‖1 . H ‖v −R1
msv‖‖v −R1

msv‖1.

The final step follows from the stability of the projection.

Lemma 3.6. The projections R1
ms

and R2
ms

are bounded in terms of A and B by

‖(1− R1
ms
)v‖1 . H ‖Av‖, ‖(1−R2

ms
)q‖1 . H ‖Bq‖.

for all v ∈ Vh and q ∈ Qh.

Proof. For v ∈ Vh we get

‖v −R1
msv‖21 . a(v, v −R1

msv) = (Av, v − R1
msv) ≤ ‖Av‖ ‖v − R1

msv‖.

The claim then follows directly from the previous Lemma 3.5. The proof of the result
involving B follows the same lines.

With the projections R1
ms and R2

ms, we are now able to formulate the new multiscale
method. For this we discretize system (12) in space and consider the problem: for each
n = 1, . . . , N find un

ms ∈ Vms = R1
msVH and pnms ∈ Qms = R2

msQH such that

a(un
ms, v)− d(v, pnms) = 0, (13a)

d(Dτu
n
ms, q) + c(Dτp

n
ms, q) + b(pnms, q) = (fn, q) (13b)

for all v ∈ Vms and q ∈ Qms. Note that this system is again well-posed, cf. Lemma 3.4.
Given p0ms, we define the initial value u0

ms as before through

a(u0
ms, v) = d(v, p0ms)

for all v ∈ Vms.

3.3.2 Convergence

The aim of this subsection is to prove that the solution provided by (13) approximates
the fine scale solution (un

h, p
n
h) up to order H . In combination with Theorem 3.3 this

then shows that the multiscale solution converges to the exact solution. More precisely,
we obtain (assuming h sufficiently small) an error estimate which states that the error
is bounded by a constant (independent of ǫ) times H + τ . Note that we assume here
that the corrector problems are solved exactly. Comments on the localization in practical
implementations are given in Section 3.3.3. The main result of this paper reads as follows.

10



Theorem 3.7. Assume f ∈ L∞(0, T ;L2(D)) ∩ H1(0, T ;H−1(D)) and consistent initial

data u0
h ∈ Vh, p

0
h ∈ Qh as well as u0

ms
∈ V

ms
and p0

ms
:= R2

ms
p0h ∈ Q

ms
. Then, the error of

the multiscale solution compared to the fine scale solution satisfies

‖un
h − un

ms
‖1 + ‖pnh − pn

ms
‖1 . H datan +t−1/2

n H ‖p0h‖1,

where datan is defined by

datan := ‖p0h‖1 + ‖f‖L2(0,tn;L2(D)) + ‖f‖L∞(0,tn;L2(D)) + ‖ḟ‖L2(0,tn;H−1(D)).

Proof. As in the proof of the convergence of the multiscale method in [19], we split the
errors in the displacement and pressure into two parts each, namely

ρnu := un
h −R1

msu
n
h, ηnu := R1

msu
n
h − un

ms,

ρnp := pnh − R2
msp

n
h, ηnp := R2

msp
n
h − pnms.

Thus, ρn∗ contains the error of the projections and ηn∗ the difference of the projection and
the multiscale solution.

Step 1 (estimates of ρn∗ ): In a first step we bound the projection error due to R1
ms. For

this, we apply Lemma 3.6 and use (5a),

‖ρnu‖1 = ‖(1−R1
ms)u

n
h‖1 . H ‖Aun

h‖ = H sup
vh∈Vh

|a(un
h, vh)|

‖vh‖

= H sup
vh∈Vh

|d(vh, pnh)|
‖vh‖

. H ‖pnh‖1.

Note that we have used integration by parts in the last line. Theorem 3.2 then implies
that ‖ρnu‖1 is bounded by

‖ρnu‖1 . H
(
‖p0h‖1 + ‖f‖L2(0,tn;L2(D))

)
≤ H datan .

Similarly, the projection error due to R2
ms can be bounded using (5b) by

‖ρnp‖1 = ‖(1−R2
ms)p

n
h‖1 . H ‖Bpnh‖

= H sup
qh∈Qh

|b(pnh, qh)|
‖qh‖

= H sup
qh∈Qh

1

‖qh‖
|(fn, qh)− d(Dτu

n
h, qh)− c(Dτp

n
h, qh)|

. H
(
‖fn‖+ ‖Dτu

n
h‖1 + ‖Dτp

n
h‖
)
.

Using Theorem 3.2, we obtain the bounds ‖ρnp‖1 . H datan if p0h = 0 and ‖ρnp‖1 .

t
−1/2
n H ‖p0h‖1 in the case f = 0.

Step 2: In order to bound the remaining errors, we consider specific test functions within
the systems (5) and (13). Using the definition of R1

ms, we have for all v ∈ Vms ⊆ Vh that

a(ηnu , v)− d(v, ηnp ) = a(R1
msu

n
h, v)− d(v, R2

msp
n
h) = a(un

h, v)− d(v, R2
msp

n
h) = d(v, ρnp).

(14)

11



Similarly, we have, using the definiton of R2
ms, for all q ∈ Qms that

d(Dτη
n
u , q) + c(Dτη

n
p , q) + b(ηnp , q) = d(DτR

1
msu

n
h, q) + c(DτR

2
msp

n
h, q) + b(pnh, q)− (fn, q)

= −d(Dτρ
n
u, q)− c(Dτρ

n
p , q). (15)

Combining equation (14) at times n and (n− 1), we obtain

a(Dτη
n
u , v)− d(v,Dτη

n
p ) = d(v,Dτρ

n
p ) (16)

for any v ∈ Vms. Note that these equations are also valid for n = 1 beause of the assumed
construction of u0

h and u0
ms. In order to obtain bounds for ηn∗ , we consider the two cases

where either p0h = 0 or f = 0. An application of the triangle inequality then gives the
stated result.

Step 3 (estimates of ηn∗ if p0h = 0): Note that p0h = 0 also implies u0
h = 0. We now insert the

test function v = Dτη
n
u in (16) and add this to equation (15) with q = Dτη

n
p . Together,

this yields

a(Dτη
n
u , Dτη

n
u) + c(Dτη

n
p ,Dτη

n
p ) + b(ηnp , Dτη

n
p )

= d(Dτη
n
u , Dτρ

n
p )− d(Dτρ

n
u, Dτη

n
p )− c(Dτρ

n
p , Dτη

n
p )

and thus,

‖Dτη
n
u‖2a + ‖Dτη

n
p ‖2c + b(ηnp , Dτη

n
p )

≤ Cα‖Dτη
n
u‖1‖Dτρ

n
p‖+ Cα‖Dτρ

n
u‖1‖Dτη

n
p ‖+ CM‖Dτρ

n
p‖ ‖Dτη

n
p ‖

≤ 1

2
‖Dτη

n
u‖2a +

1

2
‖Dτη

n
p ‖2c + C‖Dτρ

n
p‖2 + C ′‖Dτρ

n
u‖21.

We can eliminate ‖Dτη
n
u‖a and ‖Dτη

n
p ‖c on the right-hand side and multiply the estimate

by 2τ . Then, the summation over n yields

τ

n∑

j=1

‖Dτη
j
u‖21 + τ

n∑

j=1

‖Dτη
j
p‖2 + ‖ηnp ‖21 . 2τ

n∑

j=1

‖Dτρ
j
p‖2 + 2τ

n∑

j=1

‖Dτρ
j
u‖21.

Note that we have used η0p = 0. The sum including Dτρ
j
u can be bounded using once more

Lemma 3.6,

‖Dτρ
j
u‖1 = ‖(1− R1

ms)Dτu
j
h‖1 . H sup

vh∈Vh

|a(Dτu
j
h, vh)|

‖vh‖

= H sup
vh∈Vh

∣
∣d(vh, Dτp

j
h)
∣
∣

‖vh‖
. H ‖Dτp

j
h‖1. (17)

Together with Theorem 3.2 this then leads to

τ

n∑

j=1

‖Dτρ
j
u‖21 . τ H2

n∑

j=1

‖Dτp
j
h‖21 . (H datan)2.

On the other hand, the sum including Dτρ
j
p can be bounded with the help of the estimate

‖Dτρ
j
p‖ = ‖(1− R2

ms)Dτp
j
h‖ . H ‖Dτp

j
h‖1,

12



which follows from Lemma 3.5 and results in

τ

n∑

j=1

‖Dτρ
j
p‖2 ≤ τ

n∑

j=1

H2 ‖Dτp
j
h‖21 . (H datan)2.

This does not only provide the bound ‖ηnp‖1 . H datan but also, using (14),

‖ηnu‖1 . ‖ρnp‖+ ‖ηnp‖ . H datan .

Step 4 (estimates of ηn∗ if f = 0): We emphasize that also in this case we have η0p = 0 by
assumption. Together with (14) this yields for η0u the estimate

‖η0u‖21 . a(η0u, η
0
u) = d(η0u, η

0
p) + d(η0u, ρ

0
p) . ‖η0u‖1‖ρ0p‖

and thus ‖η0u‖1 . ‖ρ0p‖ . H ‖p0h‖1. Note that it is sufficient to bound ‖ηnp ‖1 in terms of
H datan, since we have ‖ηnu‖1 . ‖ρnp‖ + ‖ηnp‖ by (14). As in step 3 we consider the sum
of equation (16) with v = Dτη

n
u and equation (15) with q = Dτη

n
p . Multiplying the result

by 2τ , we get

2τ‖Dτη
n
u‖2a + 2τ‖Dτη

n
p‖2c + ‖ηnp‖2b − ‖ηn−1

p ‖2b . 2τ‖Dτρ
n
p‖2 + 2τ‖Dτρ

n
u‖21.

Another multiplication by t2n and the estimate t2n − t2n−1 ≤ 3τtn−1 then lead to

2τt2n‖Dτη
n
u‖2a + 2τt2n‖Dτη

n
p‖2c + t2n‖ηnp‖2b − t2n−1‖ηn−1

p ‖2b
. 2τt2n‖Dτρ

n
p‖2 + 2τt2n‖Dτρ

n
u‖21 + 3τtn−1‖ηn−1

p ‖21.

Taking the sum, we obtain

τ
n∑

j=1

t2j‖Dτη
j
u‖21 + t2n‖ηnp ‖21 . τ

n∑

j=1

t2j‖Dτη
j
u‖2a +

n∑

j=1

(

t2j‖ηjp‖2b − t2j−1‖ηj−1
p ‖2b

)

. τ
n∑

j=1

t2j‖Dτρ
j
p‖2 + τ

n∑

j=1

t2j‖Dτρ
j
u‖21 + τ

n−1∑

j=1

tj‖ηjp‖21. (18)

To bound the first sum, we apply first Lemma 3.5 and then Theorem 3.2,

τ

n∑

j=1

t2j‖Dτρ
j
p‖2 . τ

n∑

j=1

t2jH
2‖Dτp

j
h‖21 . τ

n∑

j=1

H2‖p0h‖2 = tnH
2‖p0h‖21.

For the second sum we use the estimate ‖Dτρ
j
u‖1 . H ‖Dτp

j
h‖1 from (17), which is also

valid for non-zero initial values. With Theorem 3.2 this then leads to

τ
n∑

j=1

t2j‖Dτρ
j
u‖21 . τ

n∑

j=1

t2jH
2‖Dτp

j
h‖21 . tnH

2‖p0h‖21.

Step 5 (estimate of the last sum in (18)): In order to bound the third sum on the right-
hand side of (18), we consider once more the sum of equations (14) and (15). For test

13



functions v = Dτη
n
u and q = ηnp we get after multiplication with 2τtn and application of

Youngs inequality

tn
(
‖ηnu‖2a − ‖ηn−1

u ‖2a
)
+ tn

(
‖ηnp‖2c − ‖ηn−1

p ‖2c
)
+ 2τtn‖ηnp ‖2b

. λτt2n‖Dτη
n
u‖21 + λ−1τ‖ρnp‖2 + τt2n‖Dτρ

n
u‖2 + τt2n‖Dτρ

n
p‖2 + τ‖ηnp ‖2

for any λ > 0. We add τ‖ηn−1
u ‖2a + τ‖ηn−1

p ‖2c on both sides and take the sum over n such
that we obtain

tn‖ηnu‖21 + tn‖ηnp‖2 +
n∑

j=1

τtj‖ηjp‖21 . λ τ
n∑

j=1

t2j‖Dτη
j
u‖21

︸ ︷︷ ︸
a©

+
1

λ
τ

n∑

j=1

‖ρjp‖2

︸ ︷︷ ︸
b©

+ τ

n∑

j=1

t2j
(
‖Dτρ

j
u‖2 + ‖Dτρ

j
p‖2

)

︸ ︷︷ ︸
c©

+ τ

n∑

j=1

(
‖ηjp‖2 + ‖ηj−1

u ‖21
)

︸ ︷︷ ︸
d©

.

Note that the sum on the left-hand side is the term we aim to bound. For a sufficiently
small λ (depending only on the generic constant of the estimates) we can eliminate a©
with the left-hand side in (18). For the remaining three parts on the right-hand side we
estimate

b© = τ

n∑

j=1

‖ρjp‖2 . τ

n∑

j=1

H2‖pjh‖21 . τ

n∑

j=1

H2‖p0h‖21 = tnH
2‖p0h‖21

and, with Lemma 3.5 and Theorem 3.2,

c© . τ

n∑

j=1

H2 t2j

(

‖Dτu
j
h‖21 + ‖Dτp

j
h‖21

)

. τ (tn + 1)

n∑

j=1

H2 ‖p0h‖21 = (t2n + tn)H
2 ‖p0h‖21.

Finally, with the equations (14) and (15) and test functions v = ηnu and q = ηnp one can
show as in [19] that also d© . tnH

2‖p0h‖21. In summary, this yields

‖ηnp ‖1 . (1 + t−1/2
n )H ‖p0h‖1.

This theorem shows together with Theorem 3.3 that the multiscale method proposed in
(13) converges linearly as H + τ . For this we consider the L∞(0, T ;V ) norm for u and
the L∞(0, T ;L2(D)) ∩ L2(0, T ;Q) norm for p. We emphasize that the involved constants
are independent of derivatives of the coefficients µ, λ, κ, and α.

3.3.3 Localization

The convergence result in Theorem 3.7 assumes that the basis functions of the space Vms

and Qms are given. In practical simulations, however, they need to be approximated them-
selves. These basis functions have global support in the domain D but, as shown in [21],
decay exponentially, see also [18, 17] for an alternative constructive proof. This property
allows to consider a truncation of the basis functions. More precisely, the basis functions

14



in Vms and Qms are computed by solving local problems. Given the basis function λz ∈ VH

to an inner node z, the corresponding multiscale basis function R1
msλz is computed as in

Section 3.2.1 but with the computational domain restricted to a subdomain of ℓ additional
coarse element layers surrounding the support of λz. The so-called localization parameter

ℓ defines a new discretization parameter. More details on the practical computation can
be found in [16].

Note that the convergence result in Theorem 3.7 remains valid if the localization parameter
ℓ is chosen sufficiently large, i.e., ℓ ≈ logH .

4 Numerical Examples

In order to assess the method numerically, we consider numerical examples in two and
three space dimensions. We measure the error in the discrete time-dependent norm

‖(v, q)‖2D,N :=
N∑

i=1

τ
(

‖∇vi‖2 + ‖∇qi‖2
)

with N = T/τ the number of time steps and v = {vi}Ni=1, q = {qi}Ni=1. The corresponding
relative error between the multiscale solution and the fine scale solution is then defined
by

‖(ums, pms)− (uh, ph)‖rel =
‖(ums, pms)− (uh, ph)‖D,N

‖(uh, ph)‖D,N
.

Further, we set D := (0, 1)d as the domain and T := 1 as final time with time step size
τ = 0.01 (and thus N = 100) for the examples with d = 2 and τ = 0.05 (and thus N = 20)
for the example with d = 3.

The reference solution (uh, ph) is computed on a regular uniform mesh Th consisting of
elements with given mesh size h. The local corrector problems are also solved on patches
with mesh size h. The parameters are chosen to be piecewise constant on elements of Tǫ

and the value is obtained as a uniformly distributed random number between two given
bounds, i.e., for any K ∈ Tǫ we have

κ|K ∼ U [0.1, 0.12], µ|K ∼ U [32.2, 62.2], λ|K ∼ U [40.98, 60.98], α|K ∼ U [0.5, 1] (19)

and M = ν = 1, where Tǫ is a mesh with mesh size ǫ > h to guarantee that the reference
solution is reasonable. Note that we take representative global samples for the above
parameters. In all numerical tests, the localization parameter from Section 3.3.3 is set
to ℓ = 2 which showed to be sufficient. It should be mentioned that the choice of the
localization parameter generally needs to be increased for smaller values of H and may be
decreased for larger H , see [16] for details. The computations are done using an adaption
of the code from [15]. For a detailed description about the implementation of the LOD
method, we further refer to [12].

4.1 Two-dimensional examples

In all two-dimensional experiments, the fine mesh size is set to h =
√
2 · 2−8 and ǫ =√

2 · 2−6.
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Figure 1: Errors of the multiscale method in two (left) and three space dimensions (right).

For the first example we set f = 1 and p0(x) = (1 − x1) x1 (1 − x2) x2. We prescribe
homogeneous Dirichlet boundary conditions for p on ∂D, homogeneous Dirichlet boundary
conditions for u on {x ∈ ∂D : x2 = 0 or x2 = 1} and homogeneous Neumann boundary
conditions on {x ∈ ∂D : x1 = 0 or x1 = 1}. The results for different values of H are
shown in Figure 1 (left, ). The plot indicates a convergence rate even slightly better
than 1 with respect to the coarse mesh size H and becomes steeper for smaller values
of H , since the ǫ-scale is almost resolved.

In the second example we consider p0(x) =
√
1− x2, f = 0, and u and p fulfill homoge-

neous Dirichlet boundary conditions on {x ∈ ∂D : x2 = 1} and homogeneous Neumann
boundary conditions on the remaining parts of ∂D. Here, the same behavior as in the
last example may be observed, cf. Figure 1 (left, ).

Figure 1 (left, ) shows the results of the third example, where f is chosen as random
fine scale finite element function with values between 0 and 1, p0(x) = (1 − x2) x2, and
with the same boundary conditions as in the previous experiment. The plot shows the
predicted linear convergence. In this example, the error curve does not become steeper in
the regime H ≤ ǫ, which may be related to the fact that f is a function on the fine scale.

4.2 Three-dimensional example

For the three-dimensional setting, we restrict ourselves to h =
√
2/3·2−3 and ǫ =

√
2/3·2−2

due to the high computational complexity. We choose the coefficients as in (19), set f = 0,
p0(x) = (1− x1) x1 (1− x2) x2 (1− x3) x3, homogeneous Dirichlet boundary conditions on
{x ∈ ∂D : x3 = 1} and homogeneous Neumann boundary conditions on the remaining
parts of ∂D, and ℓ = 2 as before. The errors for this example are plotted in Figure 1
(right, ) and are mainly to indicate that the three-dimensional setting can be handled
if appropriate computing capacities are available.
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5 Conclusions

Within this paper, we have considered a poroelastic model problem with rapidly oscil-
lating material parameters. The proposed multiscale finite element method is based on
the LOD method and exploits the saddle point structure of the system. In contrast to
the classical approach based on the static equations, which leads to coupled corrector
problems, this method enables decoupled corrections for displacement and pressure such
that no additional fine scale corrections are necessary. Although the correctors are inde-
pendent of the coefficient α, we are able to prove first-order convergence of the method,
which is also illustrated by numerical experiments.

Future research aims to study further enrichment via local eigenvalue computations to
control the reliability of the approach in the case when the coefficients model high contrast
inclusions and channels, as well as fractured regions [7, 8, 24, 2].
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[19] A. Målqvist and A. Persson. A generalized finite element method for linear thermoe-
lasticity. ESAIM Math. Model. Numer. Anal., 51(4):1145–1171, 2017.
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