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Abstract. The eigenvalues and eigenspaces of some discrete div- and curl-related operators are
investigated. The discrete operators give some good discrete analogues of the continuous counterparts
and play an important role in developing finite volume schemes for solving div-curl equations and
electromagnetic systems. Knowledge of the eigenvalues and eigenspaces is very useful in the numerical
analysis of finite volume methods for electromagetic systems in nonhomogeneous media.

Key words. eigenvalues, eigenspaces, discrete div-operator, discrete curl-operator

AMS subject classifications. 65F15, 78-08, 65N25

PII. S0895479801382483

1. Introduction. The aim of this paper is to find the explicit formulae for the
complete eigenvalues and eigenspaces of some discrete div- and curl-related operators.
These operators play a very important role in the finite volume approximation of the
div-curl equations [7], [9] as well as of Maxwell’s equations [3], [8]. Knowledge of
the eigenvalues and eigenspaces is very useful in the numerical analysis of a newly
developed finite volume method for electromagetic systems in nonhomogeneous media
[3], [6].
We will mainly investigate three discrete operators: the discrete divergence, curl-

curl, and Laplacian operators. We will see that these three discrete operators satisfy
a relation that resembles the continuous counterpart. The main difficulty for the
spectral analysis lies in the fact that all three components of a vector-valued function
in R

3 contribute to each component of the curl-curl operator, while this is not the
case for the discrete Laplacian operator. Hence, the standard treatment for finding
the eigenvalues and eigenspaces of a Laplacian operator does not work for the curl-
curl operator. We will present a new approach for finding the complete eigenvalues
and eigenspaces of the discrete curl-curl operator. As we will see, the spectra of the
discrete curl-curl operator and the discrete Laplacian operator are similar, but their
eigenspaces are different.
The paper is organized as follows. In section 2, we give the definitions of the

discrete curl, divergence, and Laplacian operators. In section 3, we show an inter-
esting relation among the three operators and study the complete eigenvalues and
eigenspaces of the discrete operators. In section 4, we present some applications of
the discrete operators and their eigenvalues and eigenspaces.

2. Discrete differential operators. We consider a nonuniform triangulation,
called the primal mesh, of the unit cube Ω = [0, 1]3 by a set of small rectangular
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subdomains, called primal elements.1 We denote by Ni the number of primal elements
in the ith axis direction (i = 1, 2, 3). The faces, edges, and nodes of each primal
element are called the primal faces, edges, and nodes, respectively. Then, we construct
the dual mesh by connecting all the centers of primal elements; this gives another
nonuniform triangulation of the domain Ω. Each rectangular subdomain in the dual
mesh is called a dual element. Dual faces, edges, and nodes are named as in the primal
mesh. Later on, by an interior primal edge (face) we mean a primal edge (face) not
completely lying on the boundary of Ω. Moreover, we denote by σi the ith primal
edge and by σ′j the jth dual edge. Here, we always use a primed form of a primal
quantity to represent a dual quantity. For example, by κi, κ

′
j , τr, and τ

′
s we mean the

ith primal face, jth dual face, rth primal element, and sth dual element, respectively.
The above primal and dual meshes have an important internal relation: each in-

terior primal face (edge) is perpendicular to and in one-to-one correspondence with
a dual edge (face), and each interior primal node (element) is in one-to-one corre-
spondence with a dual element (node). Now we assign each edge (both primal and
dual) a direction in the way that each edge points to the positive axis direction and
assign each primal (dual) face a direction such that it has the same direction as the
corresponding dual (primal) edge.
Let E,F , and T be the numbers of interior primal edges, faces, and nodes, re-

spectively. Then by the aforementioned internal relation, we know E,F , and T are
also the numbers of dual faces, edges, and elements, respectively, and

E =
3∑

i=1

Ni(Ni+1 − 1)(Ni+2 − 1), F =

3∑
i=1

(Ni − 1)Ni+1Ni+2,

T = (N1 − 1)(N2 − 1)(N3 − 1).
Here and in the subsequent sections we will use the convention that Ni = Ni−3 for
i > 3.
For a primal edge σj ∈ ∂κi, we say it is oriented positively along ∂κi if its direction

agrees with the direction of ∂κi formed by the right-hand rule with the thumb pointing
in the direction of κi. Otherwise, we say σj is oriented negatively along ∂κi. In light
of the Stokes theorem, ∫

κi

(∇× u) · n dσ =
∫
∂κi

u · t dl,(2.1)

where u is a vector-valued function in R
3, we define a discrete curl matrix G by

(G)ij :=




1 if σj is oriented positively along ∂κi,
−1 if σj is oriented negatively along ∂κi,
0 if σj does not meet ∂κi.

Clearly G is an F × E matrix, and rank(G) = E − T (cf. [9]). One of the goals of
this paper is to find all the eigenvalues and eigenvectors of the E × E matrix GTG,
which is of rank E−T . GTG is symmetric positive semidefinite, so all its eigenvalues
are nonnegative. Since the null space of GTG has dimension T , zero is an eigenvalue
of GTG with multiplicity T . In other words, we need only to find all the remaining
E − T positive eigenvalues of GTG.

1The results and techniques of this paper are directly applicable to treating the more general
case, for instance, where the domain Ω is a union of some rectangular domains.
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For a dual face κ′j ∈ ∂τ ′i , we say it is oriented positively along ∂τ ′i if its direction
is pointing toward the outside of τ ′i . Otherwise, we say κ

′
j is oriented negatively along

∂τ ′i . Initiated by the divergence theorem,∫
τ ′
i

∇ · u dx =
∫
∂τ ′

i

u · n dσ,(2.2)

where u is a vector-valued function in R
3, we define a discrete divergence matrix B

by

(B)ij :=




1 if κ′j is oriented positively along ∂τ
′
i ,

−1 if κ′j is oriented negatively along ∂τ
′
i ,

0 if κ′j does not meet ∂τ
′
i .

Then B is a T ×E matrix. It is known [9] that the rank of B is T , and that BGT = 0,
which is a discrete analogue of ∇ · (∇× u) = 0.
Consider an interior primal edge σi. We say σk is adjacent to σi if both σi and σk

lie on the same primal face or if their intersection is a single point. Clearly, for any
interior primal edge having no intersection with ∂Ω, it must have 6 adjacent primal
edges. But for any interior primal edge having a nonempty intersection with ∂Ω, the
edge has only 5 adjacent primal edges. With these definitions in mind, we define an
E × E discrete Laplacian matrix A in the following way:

1. If σi is an interior primal edge having no intersection with ∂Ω, then

(A)ij :=




6 if j = i,
−1 if σj is adjacent to σi,
0 otherwise.

2. If σi is an interior primal edge having a nonempty intersection with ∂Ω, then

(A)ij :=




5 if j = i,
−1 if σj is adjacent to σi,
0 otherwise.

Note that this discrete Laplacian is different from the standard discrete Laplacian
resulting from the discretization of the Laplacian operator by the second order central
difference scheme. Instead, BBT is closer to the standard discrete Laplacian; see
Theorem 3.4.

3. Eigenvalues and eigenspaces. This section will be devoted to our main
results. For any f ∈ R

E , we will interpret its ith component fi as its value on the
ith interior primal edge σi, as well as its value on the ith dual face κ

′
i. We will often

write f = (uT ,vT ,wT )T , where u (v and w, respectively) is a vector in R
E
3 and each

component of u corresponds to an interior primal edge parallel to the x-axis (y-axis
and z-axis, respectively).
Now, we are ready to present our first result, which is a discrete version of the

well-known relation

∇×∇× u = ∇(∇ · u)−∇2u.(3.1)

Theorem 3.1. For the discrete curl, divergence, and Laplacian operators G,B,
and A,

GTG = −BTB +A.(3.2)
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Fig. 3.1. An interior primal edge having no intersection with ∂Ω and its adjacent edges.

Proof. It suffices to show that for any vector f = (uT ,vT ,wT )T , we have

GTGf = −BTBf +Af .

First we consider an interior primal edge σi having no intersection with ∂Ω; see Figure
3.1.
Here, ui1 denotes a component of u corresponding to σi, which, without loss

of generality, is assumed to be parallel to the x-axis. uis , s = 2, 3, . . . , 7, denote
components of u corresponding to all adjacent edges of σi. Similarly, vjr and wkr ,
r = 1, 2, 3, 4, are components of v and w, respectively, corresponding to the primal
edges parallel to the y-axis and z-axis. By the definitions of G,B, and A and direct
computations, we know the ith components of Af , BTBf , and GTGf corresponding
to σi are, respectively, given by

(Af)i = 6ui1 − ui2 − ui3 − ui4 − ui5 − ui6 − ui7 ,
(BTBf)i = (ui1 − ui6 + vj2 − vj1 + wk3

− wk4
)− (ui7 − ui1 + vj4 − vj3 + wk1

− wk2
),

(GTGf)i = (4ui1 − ui2 − ui3 − ui4 − ui5) + (vj1 − vj2 − vj3 + vj4)
+ (wk1 − wk2 − wk3 + wk4).

This implies

(GTGf)i = −(BTBf)i + (Af)i.

Now we consider an interior primal edge σi having a single-point intersection with
∂Ω. See Figure 3.2 below, where P is the single-point intersection of σi with ∂Ω.
If one of the primal edges corresponding to the component uis , s = 2, 3, 4, 5, lies

on ∂Ω, then we take uis to be zero since f does not contain any boundary component
by definition. Then, the ith components of Af , BTBf , and GTGf are, respectively,
given by

(Af)i = 5ui1 − ui2 − ui3 − ui4 − ui5 − ui6 ,
(BTBf)i = ui1 − ui6 + vj2 − vj1 + wk1

− wk2
,

(GTGf)i = (4ui1 − ui2 − ui3 − ui4 − ui5) + (vj1 − vj2) + (wk2
− wk1

).
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Fig. 3.2. An interior primal edge having a single-point intersection with ∂Ω and its adjacent
edges.

It is easy to check that

(GTGf)i = −(BTBf)i + (Af)i.

We complete the proof of Theorem 3.1 by noting that any interior primal edge has
either an empty intersection or a single-point intersection with ∂Ω.
Before studying the eigenvalues of GTG, we will first work on the eigenvalues

of A. For convenience, we will let h1 = 1/N1, h2 = 1/N2, and h3 = 1/N3. Note
that the original triangulation is nonuniform, so h1, h2, and h3 are not the actual
nonequidistant mesh sizes along the x-, y-, and z-axis. However, the definitions of
the matrices G,B, and A are independent of the mesh sizes, so we can always assume
that the meshes are uniform along each axis and h1, h2, and h3 are the mesh sizes
along the x-, y-, and z-axis, respectively. Let k,m, and l be three integers such that
1 ≤ k ≤ N1 − 1, 1 ≤ m ≤ N2 − 1, and 1 ≤ l ≤ N3 − 1. Then for any fixed k,m, and
l, we define

λ1
ml = 4 sin

2

(
mπh2

2

)
+ 4 sin2

(
lπh3

2

)
,

λ2
kl = 4 sin

2

(
kπh1

2

)
+ 4 sin2

(
lπh3

2

)
,

λ3
km = 4 sin

2

(
kπh1

2

)
+ 4 sin2

(
mπh2

2

)
,

βkml = 4 sin
2

(
kπh1

2

)
+ 4 sin2

(
mπh2

2

)
+ 4 sin2

(
lπh3

2

)
.

For any fixed k,m, and l, we define f1ml = (u
T
1 ,v

T
1 ,w

T
1 )

T ∈ R
E to be a vector with

only components corresponding to the interior primal edges parallel to the x-axis, i.e.,
v1 = w1 = 0, and the components of u1 are given by

(u1)j = sin(ymπh2) sin(zlπh3),(3.3)

where (u1)j is the component of u1 corresponding to the primal edge σj which is
parallel to the x-axis, and yh2 and zh3 are the y-coordinate and z-coordinate of the
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primal edge σj , respectively (with y and z being some positive integers). Similarly, we
define f2kl = (u

T
2 ,v

T
2 ,w

T
2 )

T ∈ R
E and f3km = (u

T
3 ,v

T
3 ,w

T
3 )

T ∈ R
E to be two vectors

with only the components corresponding to the interior primal edges parallel to the
y-axis and z-axis, respectively. Clearly, f1ml, f

2
kl, and f

3
km are linearly independent for

any fixed k,m, and l.
Furthermore, for fixed k,m, and l, we define the vector g1

kml = (ũ
T
1 , ṽ

T
1 , w̃

T
1 )

T ∈
R

E (i = 1, 2, 3) to be the same as f1ml, but replace (u1)j in (3.3) by

(ũ1)j = cos

((
x+

1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3),(3.4)

where (x + 1
2 )h1 is the x-coordinate of the midpoint of the edge σj . g

2
kml and g3

kml

are defined similarly. Clearly, gi
kml, i = 1, 2, 3, are linearly independent for any fixed

k,m, and l.
The following theorem gives the complete spectrum and eigenvectors of A.
Theorem 3.2. For k,m, and l satisfying 1 ≤ k ≤ N1 − 1, 1 ≤ m ≤ N2 − 1,

1 ≤ l ≤ N3 − 1, we have

Af1ml = λ
1
mlf

1
ml, Af2kl = λ

2
klf

2
kl, Af3km = λ

3
kmf3km; Agi

kml = βkmlg
i
kml, i = 1, 2, 3.

(3.5)

Proof. We start with the proof of the first relation in (3.5). We first consider an
interior primal edge σj having no intersection with ∂Ω. If σj is parallel to the x-axis
and has y-coordinate yh2 and z-coordinate zh3, then by the definition of A, we have

(Af1ml)j =
{
6 sin(ymπh2)− sin((y − 1)mπh2)− sin((y + 1)mπh2)

}
sin(zlπh3)

− sin(ymπh2)
{
sin((z − 1)lπh3)− sin((z + 1)lπh3)

}
− 2 sin(ymπh2) sin(zlπh3).

A direct computation yields

(Af1ml)j = 4

{
sin2

(
mπh2

2

)
+ sin2

(
lπh3

2

)}
sin(ymπh2) sin(zlπh3).

This shows (Af1ml)j = λ
1
ml(f

1
ml)j . Now, if σj is an interior primal edge having empty

intersection with ∂Ω and is parallel to the y- or z-axis, then (f1ml)j = (v1)j = 0 or
(f1ml)j = (w1)j = 0 by definition. This implies (Af

1
ml)j = 0 = λ

1
ml(f

1
ml)j .

Next we consider an interior primal edge σj having a single-point intersection
with ∂Ω. If σj is parallel to the x-axis and has y-coordinate yh2 and z-coordinate
zh3, then by the definition of A, we have

(Af1ml)j =
{
5 sin(ymπh2)− sin((y − 1)mπh2)− sin((y + 1)mπh2)

}
sin(zlπh3)

− sin(ymπh2)
{
sin((z − 1)lπh3)− sin((z + 1)lπh3)

}
− sin(ymπh2) sin(zlπh3).

A direct computation yields

(Af1ml)j = 4

{
sin2

(
mπh2

2

)
+ sin2

(
lπh3

2

)}
sin(ymπh2) sin(zlπh3).

Therefore we have (Af1ml)j = λ
1
ml(f

1
ml)j . The same argument can be applied to prove

the second and third relations in (3.5) for the case that σj is an interior primal edge
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having an empty or a nonempty intersection with ∂Ω and is parallel to either the y-
or z-axis.
We now prove the fourth relation in (3.5). First, consider an interior primal

edge σj having empty intersection with ∂Ω. If σj is parallel to the x-axis and has
y-coordinate yh2 and z-coordinate zh3, with the x-coordinate of the midpoint of σj
being (x+ 1

2 )h1 for some integer x, then by the definition of A, we have

(Ag1
kml)j = cos

((
x+

1

2

)
kπh1

){
6 sin(ymπh2) sin(zlπh3)

− sin((y − 1)mπh2) sin(zlπh3)− sin((y + 1)mπh2) sin(zlπh3)

− sin(ymπh2) sin((z − 1)lπh3)− sin(ymπh2) sin((z + 1)lπh3)
}

−
{
cos

((
x− 1

2

)
kπh1

)
+ cos

((
x+

3

2

)
kπh1

)}
sin(ymπh2) sin(zlπh3),

which, by a direct computation, can be written as

(Ag1
kml)j = βkml cos

((
x+

1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3) = βkml(g

1
kml)j .

For an interior primal edge σj having empty intersection with ∂Ω and being parallel
to the y- or z-axis, we know (g1

kml)j = (ṽ1)j = 0 or (g
1
kml)j = (w̃1)j = 0 by definition.

Therefore

(Ag1
kml)j = 0 = βkml(g

1
kml)j .

Now, for an interior primal edge σj having a single-point intersection with ∂Ω,
assume σj is parallel to the x-axis and has y-coordinate yh2 and z-coordinate zh3,
and the x-coordinate of the midpoint of σj is (x +

1
2 )h1 for x = 0 or x = N1 − 1.

Then, by the definition of A, we have

(Ag1
kml)j = cos

((
x+

1

2

)
kπh1

){
5 sin(ymπh2) sin(zlπh3)

− sin((y − 1)mπh2) sin(zlπh3)− sin((y + 1)mπh2) sin(zlπh3)

− sin(ymπh2) sin((z − 1)lπh3)− sin(ymπh2) sin((z + 1)lπh3)
}

− cos
((
x+

1

2
± 1
)
kπh1

)
sin(ymπh2) sin(zlπh3),

where ±1 is taken for x = 0 and x = N1 − 1, respectively. Using the fact that
cos((x+ 1

2 )kπh1) = cos((x− 1
2 )kπh1) for x = 0 and cos((x+

1
2 )kπh1) = cos((x+

3
2 )kπh1)

for x = N1 − 1, the above relation can be written as

(Ag1
kml)j = cos

((
x+

1

2

)
kπh1

){
6 sin(ymπh2) sin(zlπh3)

− sin((y − 1)mπh2) sin(zlπh3)− sin((y + 1)mπh2) sin(zlπh3)

− sin(ymπh2) sin((z − 1)lπh3)− sin(ymπh2) sin((z + 1)lπh3)
}

− cos
((
x− 1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3)

− cos
((
x+

3

2

)
kπh1

)
sin(ymπh2) sin(zlπh3).
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This immediately leads to

(Ag1
kml)j = βkml cos

((
x+

1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3) = βkml(g

1
kml)j .(3.6)

The same argument can be applied to prove (3.6) for the components of g1
kml corre-

sponding to the primal edges parallel to the y- or z-axis and to prove the last relation
in (3.5) with i = 2, 3.
The following theorem gives the complete spectrum and eigenvectors of the dis-

crete curl-curl operator GTG.
Theorem 3.3. For each triplet of integers {k,m, l} satisfying 1 ≤ k ≤ N1 − 1,

1 ≤ m ≤ N2 − 1, 1 ≤ l ≤ N3 − 1, we have

GTGf1ml = λ
1
mlf

1
ml, GTGf2kl = λ

2
klf

2
kl, GTGf3km = λ

3
kmf3km.(3.7)

Moreover, there exist two linearly independent vectors p1
kml and p2

kml in R
E such that

GTGpi
kml = βkmlp

i
kml, i = 1, 2.(3.8)

Proof. It is important to notice by the definitions of the matrix B and the vector
f1ml that, for each dual element τ

′
j , (Bf

1
ml)j = 0. This with (3.2) and (3.5) implies

GTGf1ml = −BTBf1ml +Af
1
ml = λ

1
mlf

1
ml.

A similar argument can be applied to show the last two relations in (3.7).
We now prove (3.8). For any fixed integers k,m, and l, we define

Vkml := span{g1
kml,g

2
kml,g

3
kml}.

Consider any g = α1g
1
kml+α2g

2
kml+α3g

3
kml ∈ Vkml, αi ∈ R, i = 1, 2, 3. We are going

to find all αi (i = 1, 2, 3) such that Bg = 0. For any dual element τ ′j , assume its two
primal edges parallel to the x-axis and having nonempty intersection with ∂τ ′j have
x-coordinate (x − 1

2 )h1 and (x +
1
2 )h1, respectively. Clearly, they have the same y-

and z-coordinates, namely, yh2 and zh3, respectively, for some suitable integers x, y,
and z. Then, by a direct computation,

(Bg1
kml)j =

{
cos

((
x+

1

2

)
kπh1

)
− cos

((
x− 1

2

)
kπh1

)}
sin(ymπh2) sin(zlπh3)

= −2 sin
(
kπh1

2

)
sin(xkπh1) sin(ymπh2) sin(zlπh3).

Applying the same argument, we have

(Bg2
kml)j = sin(xkπh1)

{
cos

((
y +

1

2

)
mπh2

)
− cos

((
y − 1

2

)
mπh2

)}
sin(zlπh3)

= −2 sin
(
mπh2

2

)
sin(xkπh1) sin(ymπh2) sin(zlπh3),

(Bg3
kml)j = sin(xkπh1) sin(ymπh2)

{
cos

((
z +

1

2

)
lπh3

)
− cos

((
z − 1

2

)
lπh3

)}

= −2 sin
(
lπh3

2

)
sin(xkπh1) sin(ymπh2) sin(zlπh3).
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Hence, (Bg)j = 0 if and only if

α1 sin

(
kπh1

2

)
+ α2 sin

(
mπh2

2

)
+ α3 sin

(
lπh3

2

)
= 0.(3.9)

Notice that (3.9) is a condition that is independent of the choice of the dual element
τ ′j . Hence, for any αi ∈ R (i = 1, 2, 3) satisfying (3.9), we have Bg = 0. Let α1 = s
and α2 = t for s, t ∈ R. We then obtain from (3.9) that

α3 = −s sin(
kπ
2N1
) + t sin( mπ

2N2
)

sin( lπ
2N3
)

.

Then, we can express g as

g = s

(
g1
kml −

sin( kπ
2N1
)

sin( lπ
2N3
)
g3
kml

)
+ t

(
g2
kml −

sin( mπ
2N2
)

sin( lπ
2N3
)
g3
kml

)
.

Define

p1
kml := g1

kml −
sin( kπ

2N1
)

sin( lπ
2N3
)
g3
kml and p2

kml := g2
kml −

sin( mπ
2N2
)

sin( lπ
2N3
)
g3
kml.

Clearly, we have Bp1
kml = Bp

2
kml = 0. Thus by (3.2) and (3.5), we have

GTGpi
kml = −BTBpi

kml +Ap
i
kml = βkmlp

i
kml, i = 1, 2.

We remark that Theorem 3.3 gives all the positive eigenvalues of GTG since the
vectors f1ml, f

2
kl, f

3
km, and pj

kml form a complete basis for R
E−T . Notice that the

smallest positive eigenvalue of GTG is 8 sin2(πh2 ) which varies as O(h
2) for sufficiently

large N . This conclusion is important in the convergence analysis of the finite volume
method proposed in [3] for Maxwell’s equations with discontinuous physical coeffi-
cients.
Recall that B is a discrete divergence matrix, and so BT represents a discrete

gradient matrix. Hence, the matrix BBT is some sort of scalar discrete Laplacian
matrix by the fact that ∇ · ∇v = ∆v for any real-valued function v. We have the
following.

Theorem 3.4. For any fixed integers k,m, and l satisfying 1 ≤ k ≤ N1 − 1,
1 ≤ m ≤ N2 − 1, 1 ≤ l ≤ N3 − 1, there exists a vector qkml ∈ R

T such that

BBTqkml = βkmlqkml.(3.10)

Proof. For any dual element τ ′i , we define

(qkml)i := sin(xkπh1) sin(ymπh2) sin(zlπh3),

where xh1, yh2, and zh3 are the x-, y-, and z-coordinates of the corresponding interior
primal node. Now, by a direct computation, we have

(BBTqkml)i

= 6 sin(xkπh1) sin(ymπh2) sin(zlπh3)

− sin((x− 1)kπh1) sin(ymπh2) sin(zlπh3)− sin((x+ 1)kπh1) sin(ymπh2) sin(zlπh3)

− sin(xkπh1) sin((y − 1)mπh2) sin(zlπh3)− sin(xkπh1) sin((y + 1)mπh2) sin(zlπh3)

− sin(xkπh1) sin(ymπh2) sin((z − 1)lπh3)− sin(xkπh1) sin(ymπh2) sin((z + 1)lπh3)

= βkml(qkml)i.
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We remark here that the vectors {qkml} in Theorem 3.4 are linearly independent,
so they form the complete eigensystem of the matrix BBT .

4. Some applications. In this section, we describe some roles of the discrete
div and curl operators and some important results directly derived using the results
on eigenvalues and eigenvectors of section 3. Detailed proofs of the results below are
given in [4]. We remark that the constant K, or K with subscripts, below is the
generic constant independent of mesh sizes, etc.
Let (·, ·) be the standard Euclidean inner product with norm ‖·‖2 . We first recall

two mesh and physical parameter dependent inner products introduced in [3], [6],

(4.1)

(u,v)W := (Su, D
′v) ∀u,v ∈ R

F ; (u,v)W ′ := (S′u, Dv) ∀u,v ∈ R
E ,

where S = diag(si), D
′ = diag(h′j), S

′ = diag(s′i), and D = diag(hj) are all diagonal
matrices. si and hj are, respectively, the area of the face κi and the length of the
edge σj , and similar definitions hold for s

′
i and h

′
j . Then we introduce two discrete

circulation matrices C and C′. Following formula (2.1), we define for each interior
primal and dual face κi and κ

′
i,

(Cu)κi :=
∑

σj∈∂κi

uj h̃j , (C′u)κ′
i
:=

∑
σ′
j∈∂κ′

i

uj h̃
′
j ,(4.2)

where h̃j is the signed length of hj [3], [6]; similar meanings hold for h̃
′
j and for s̃j

and s̃′j below.
Further, we introduce two discrete flux matrices D and D′. Following the diver-

gence theorem (2.2), we define, for each primal and dual element τi and τ
′
i ,

(Du)i :=
∑

κj∈∂τi

uj s̃j , (D′u)i :=
∑

κ′
j∈∂τ ′

i

uj s̃
′
j .(4.3)

These discrete matrices have the useful relations (cf. [3], [6], [9])

C = GD , C′ = GTD′ , D′ = BS′ .(4.4)

The relations indicate that it is the matrices D′ and C′, not the matrices B and GT ,
that directly simulate the divergence and curl operators in the general nonuniform
grids.

Discrete Sobolev inequalities. Consider two Sobolev spaces

H0(curl,div0; Ω) =
{
u ∈ H(curl; Ω); ∇ · u = 0 in Ω , u× n = 0 on ∂Ω

}
,

H0(curl0,div; Ω) =
{
u ∈ H(div; Ω); ∇× u = 0 in Ω , u× n = 0 on ∂Ω

}
.

The Sobolev inequalities

‖u‖L2(Ω) ≤ K ‖∇ × u‖L2(Ω) ∀u ∈ H0(curl; div0; Ω) ,(4.5)

‖u‖L2(Ω) ≤ K ‖∇ · u‖L2(Ω) ∀u ∈ H0(div; curl0; Ω)(4.6)

are essential to the mathematical analysis of Maxwell’s equations [5], [6]. Accordingly,
the discrete versions of these two inequalities are important in the convergence analysis
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of the numerical methods for Maxwell’s equations. Corresponding to (4.5), we have
[4]

‖u‖W ≤ K ‖u‖C′ ∀u ∈ {v ∈ R
F ; Dv = 0} ,(4.7)

‖u‖W ′ ≤ K ‖u‖C ∀u ∈ {v ∈ R
E ; D′v = 0},(4.8)

where ‖ ·‖W and ‖ ·‖W ′ are the discrete L2-norms induced from two inner products in
(4.2), while ‖ ·‖C′ and ‖ ·‖C are two different discrete H(curl; Ω)-norms, one based on
the dual circulation matrix C′ and the other based on the primal circulation matrix
C,

‖u‖2
C′ = (S′−1C′u, DC′u) , ‖u‖2

C = (S
−1Cu, D′Cu) .

Similarly, we can establish the discrete versions of (4.6),

‖u‖W ′ ≤ K ‖u‖D′ ∀u ∈ {v ∈ R
E ; C v = 0},(4.9)

‖u‖W ≤ K ‖u‖D ∀u ∈ {v ∈ R
F ; C′ v = 0},(4.10)

where ‖ · ‖D′ and ‖ · ‖D are two different discrete H(div; Ω)-norms, one based on the
dual flux matrix D′ and the other based on the primal flux matrix D,

‖u‖2
D′ = (V ′−1D′u,D′u) , ‖u‖2

D = (V
−1Du,Du),

where V ′ = diag (A′
i) and V = diag (Ai), with A

′
i and Ai being the volume of the dual

element τ ′i and the primal element τi, respectively.
Solution of the div-curl equations. Following the discussion in [9], the finite

volume discretization of the div-curl equations

divu = f , curl u = g , u× n|Γ = 0
results in the system of linear algebraic equations of the form

V ′−1D′u = f̄ , S−1C u = ḡ .(4.11)

System (4.11) is a nonsymmetric and indefinite rectangular system. One way to solve
this equation is to solve its least-squares system(

D′TV ′−2D′ + CTS−2C
)
u = D′TV ′−1

f̄ + CTS−1ḡ .(4.12)

Let A be the coefficient matrix in (4.12). Then we can derive the following estimate
for any v ∈ R

E by using the results of section 3 (see [4] for details):

K0(v,v) ≤ (Av,v) ≤ K1 h
−2 (v,v) .(4.13)

By conducting more careful analyses in the derivation, one may derive more ex-
plicit bounds of K0 and K1 in terms of the physical coefficients, etc. Clearly, (4.13)
gives an estimate of order O(h−2) of the condition number of the coefficient matrix
in (4.12). Also, this inequality provides us with estimates on the smallest and largest
eigenvalues of A, which are useful in the convergence analysis of iterative solvers for
(4.12).
As a final remark, we mention that there are other, different approaches for

numerical solutions of div-curl and Maxwell’s equations; see [1], [2], and the references
therein. The approaches are based on the so-called de Rham finite element spaces,
and the resulting discrete schemes also fulfill (3.1) and the relation ∇ · (∇× u) = 0.
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