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Abstract

Numerical simulations of waves in highly heterogenous media have important applications, but direct
computations are prohibitively expensive. In this paper, we develop a new generalized multiscale finite
element method with the aim of simulating waves at a much lower cost. Our method is based on a
mixed Galerkin type method with carefully designed basis functions that can capture various scales in
the solution. The basis functions are constructed based on some local snapshot spaces and local spectral
problems defined on them. The spectral problems give a natural ordering of the basis functions in the
snapshot space and allow systematically enrichment of basis functions. In addition, by using a staggered
coarse mesh, our method is energy conserving and has block diagonal mass matrix, which are desirable
properties for wave propagation. We will prove that our method has spectral convergence, and present
numerical results to show the performance of the method.

1 Introduction
Numerical simulations of waves are important in many practical areas. For example, in computational
seismology, accurate simulations of acoustic waves play a crucial role in determining subsurface properties
[44, 43, 40, 34, 41, 35]. Traditionally, the wave equation can be numerically solved by finite difference methods,
finite element methods, discontinuous Galerkin methods and spectral methods [17, 29, 39, 27, 36, 30, 32,
31, 37, 46, 47, 48, 6, 7]. In many applications, the media of interest are highly heterogeneous and contain
many scales. The above methods require the use of very fine meshes to fully resolve the multiscale structure
of the media. Though the numerical solutions to the wave equation have been shown to be accurate when
the computational grid is fine enough [18], the practical limitations in discretization caused by limitations in
computational power restrict this accuracy. It is therefore necessary to develop numerical approaches that
can incorporate fine-scale features into coarse-grid based methods, where the coarse grid size is independent
of the medium scales.

There are in literature some model reduction techniques aiming at solving the wave equation in media
with multiple scales. For instances, in [5, 26, 24, 38, 33, 42], some numerical homogeneization and upscaling
based techniques are developed. In these methods, the heterogeneous medium is replaced by an effective
medium which can be efficiently resolved by a coarse mesh, giving certain reduction in computational cost.
In addition, various multiscale methods are developed in [14, 25, 1, 21, 23, 2, 22, 28], which also aim at
discretizing the wave equation in a coarse grid by the use of the multiscale finite element method [20] or by
the use of the heterogeneous multiscale method [45]. While the above are very successful methods, they can
produce solutions with limited accuracy and sometimes fail to give correct solutions. Thus, there is a need
to systematically enhance the accuracy within the model reduction framework. In this paper, we will focus
on the recently developed Generalized Multiscale Finite Element Method (GMsFEM) [19]. The GMsFEM
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is a generalization of the classical multiscale finite element method (MsFEM) [20] in the sense that multiple
basis functions can be systematically added to each coarse element. The method consists of two stages: the
offline stage and the online stage. In the offline stage, a space of locally supported snapshot functions is
constructed. The snapshot space contains a large set of functions and can be used to capture essentially
all fine-scale features of the solution. A space reduction is then performed by the use of a local spectral
decomposition, and the dominant modes are taken as the multiscale basis functions. We notice that all these
computations are done before the actual simulations of the solution. In the online stage, when a given source
term or boundary condition is given, the above offline basis functions are used to obtain an approximate
solution. One can also adaptively select the basis functions in various coarse elements in order to obtain
better efficiency and accuracy [16, 15].

The purpose of this paper is to develop a new GMsFEM for the wave equation. There are previous works
on GMsFEM for the wave equation based on the second order formulation and a discontinuous Galerkin
framework [14, 25]. These methods give accurate simulations of waves in coarse meshes, but are lack of
energy conservation. To develop a scheme with energy conservation, we consider the wave equation in the
pressure-velocity formulation (called the mixed formulation). We will use some ideas from our earlier work
on mixed GMsFEM for high contrast flows [13]. However, the method in [13] cannot be used directly for the
wave equation since it is based on a piecewise constant approximation for pressure, which is not accurate for
the wave equation, and the velocity basis functions give mass matrix that is not block diagonal. To derive
a new GMsFEM with block diagonal mass matrix and energy conservation, we will use a staggered mesh
[6, 7, 10, 11, 12, 8], where it is shown that such idea can give a numerical scheme with block diagonal mass
matrix and energy conservation. In addition, this idea can give a smaller dispersion error [4, 9]. In [5, 26],
we have applied a staggered coarse mesh in the numerical upscaling framework for the wave equation, where
only one multiscale basis function is used for each coarse region. In this paper, we will develop a mixed
GMsFEM based on a staggered mesh, giving block diagonal mass matrix, energy conservation and systematic
enrichment of multiscale basis functions. In our new method, we will construct multiscale basis functions
for both the pressure and the velocity. The construction follows the general methodology of GMsFEM by
solving local spectral problems, which are carefully designed to achieve our goals. The spectral problems
give a natural ordering of the basis functions according to the magnitudes of the corresponding eigenvalues.
Dominant modes, those eigenfunctions with small eigenvalues, are taken as the basis functions and can be
added systematically due to the natural ordering. Furthermore, we prove that the method is convergent, and
the convergence rate is inversely proportional to the smallest eigenvalue of those eigenfunctions not selected
in the basis set. Another advantage of using the mixed formulation is that perfectly matched layers can be
used in conjunction with our method easily, and we will illustrate this in our numerical experiments.

The paper is organized as follows. In Section 2, we will state our problem and define some notations
as well as the staggered mesh. In Section 3 and Section 4, we will give the constructions of our multiscale
basis functions and our mixed GMsFEM. Section 5 is devoted to the convergence analysis of our method. In
Section 6, we will present some numerical results to show the performance of our method. The paper ends
with a Conclusion.

2 Problem description
Let Ω ⊂ R2 be the computational domain. We consider the following wave equation in mixed formulation

κ
∂v

∂t
+∇p = 0 in Ω (1)

ρ
∂p

∂t
+∇ · v = f in Ω (2)

with homogeneous Dirichlet boundary condition p = 0 on ∂Ω. We assume that the bulk modulus κ−1 and
the density ρ are highly oscillatory. The aim of the paper is to construct multiscale basis functions, which
provide accurate and efficient approximations of the pressure p and the velocity v on a coarse grid. The
homogeneous Dirichlet boundary condition is chosen to simplify the discussions. Our method can be easily
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applied to other types of boundary conditions as well as perfectly matched layers. Moreover, the extension
of our method to the three dimensional case is straightforward.

First, we present the triangulation of the domain Ω. Let T H0 be an initial coarse triangulation of the
domain. For each triangle in T H0 , we refine it into three triangles by connecting the centroid to the three
vertices. The resulting refinement is called T H , which is our coarse mesh. Our multiscale basis functions
are defined in this coarse mesh T H . We use Ep to denote the set of all edges in the initial triangulation and
use E0

p = Ep\∂Ω. Moreover, we use Ev to denote the set of new edges formed by the above division process.
Note that, the set of all edges EH of the coarse mesh is EH = Ep ∪ Ev, and the set of all interior edges
EH,0 of the coarse mesh is EH,0 = E0

p ∪ Ev. The fine mesh T h is obtained by refining T H in the conforming
way. We use Eh to denote the set of edges in the fine mesh T h. An illustration of the above definitions
is shown in Figure 1. In particular, the solid lines are the edges of the initial triangulation T H0 . By our
construction, these lines also represent edges in Ep. Moreover, the dash lines represent the new edges formed
by the subdivision process. Note that, the coarse mesh T H is defined as the union of all the new triangles
obtained from the subdivision process. We will discuss later the motivations and advantages of using such a
mesh.

E p

E v

Figure 1: An illustration of the subdivision process and the definition of T H .

The wave equations (1)-(2) can be discretized on the fine mesh T h by the standard Raviart-Thomas finite
element (RT0) method. Let (Vh, Qh) be the standard RT0 space for (v, p) with respect to the fine mesh T h.
Then, the RT0 method reads: find vh ∈ Vh and ph ∈ Qh such that

ˆ
Ω

κ
∂vh
∂t
· w −

ˆ
Ω

ph∇ · w = 0, ∀w ∈ Vh, (3)
ˆ

Ω

ρ
∂ph
∂t

q +

ˆ
Ω

q∇ · vh =

ˆ
Ω

fq, ∀q ∈ Qh. (4)

Notice that the RT0 scheme (3)-(4) does not have a block diagonal matrix. We will present a modified
scheme for (1)-(2) based on the above RT0 method (3)-(4). The resulting method has the advantage that
the mass matrix is block diagonal. We will use similar ideas as in [6, 7].

The main idea is to decouple the degrees of freedom for the velocity on the subset Eh ∩ E0
p of fine grid

edges, which are the fine grid edges lying in E0
p . In particular, we do not enforce the continuity of the normal

components of velocity on the fine grid edges in Eh ∩ E0
p . Moreover, we will introduce additional pressure

variables in order to penalize the normal jumps of velocity on these edges.
We let V̂h be the decoupled velocity space. That is, V̂h is defined by using Vh and by decoupling the

normal components of velocity on the fine grid edges in Eh ∩ E0
p . We will introduce an additional pressure
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K h
E

E

Figure 2: The definition of KhE . The elements of KhE are shown as shaded triangles.

space Q̃h ⊂ L2(Ω) as follows. Let Kh ⊂ T h be the set of fine mesh elements having non-empty intersection
with Ep. We also let KhE ⊂ Kh be a subset containing fine mesh elements with non-empty intersection with
E ∈ Ep. See Figure 2 for an illustration. Then we define q ∈ Q̃h by the following conditions:

• q|τ ∈ P 1(τ) and q|e ∈ P 0(e), where τ ∈ Kh and e is the edge of τ lying in Ep;

•
´
τ
q = 0 for all τ ∈ Kh;

• q is continuous on all edges e ∈ Eh ∩ E0
p .

Note that functions in Q̃h have supports in Kh. Then we define Q̂h = Qh + Q̃h. Note that we can impose
the homogeneous Dirichlet boundary condition p = 0 in the space Q̂h and we denote the resulting space by
Q̂h,0. To construct Q̂h,0, we first define a subspace Q̃h,0 ⊂ Q̃h by Q̃h,0 = {q ∈ Q̃h : q|e = 0, ∀e ∈ Ep ∩ ∂Ω}.
Then we define Q̂h,0 = Qh + Q̃h,0. We remark that the increase in the dimension by decoupling Vh to form
V̂h is the same as the increase in the dimension by enriching the space Qh to form Q̂h.

The modified numerical scheme is stated as follows. We find vh ∈ V̂h and ph ∈ Q̂h,0 such that
ˆ

Ω

κ
∂vh
∂t
· w −

ˆ
Ω

p
(I)
h ∇ · w +

∑
e∈Eh∩E0p

ˆ
e

p
(B)
h [w · n] = 0, ∀w ∈ V̂h, (5)

ˆ
Ω

ρ
∂ph
∂t

q +

ˆ
Ω

q(I)∇ · vh −
∑

e∈Eh∩E0p

ˆ
e

q(B)[vh · n] =

ˆ
Ω

fq, ∀q ∈ Q̂h,0, (6)

where q(I) and q(B) denote the components of q in the spaces Qh and Q̃h respectively, for any q ∈ Q̂h. The
solution (vh, ph) of (5)-(6) is considered as the reference solution. In the following sections, we will construct
multiscale solution (vH , pH) that gives good approximation of (vh, ph) and derive the corresponding error
bound. Since the purpose of this paper is the construction and the analysis of a new multiscale method, the
error analysis for the scheme (5)-(6) is not considered in this paper.
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3 Multiscale basis functions
In this section, we will introduce multiscale basis functions and give the constructions of the multiscale
approximation spaces VH and QH for approximating vh and ph respectively. We emphasize that the basis
functions and the corresponding multiscale method are defined with respect to the coarse mesh T H .

For a coarse element K ∈ T H , we define Vh(K) as the restriction of Vh in K and Qh(K) as the restric-
tion of Qh in K. In addition, Vh,0(K) is the subspace of Vh(K) and contains vector fields whose normal
components are zero on ∂K.

Below, we will give the definitions for the spaces QH and VH . Our generalized multiscale finite element
method reads: find (vH , pH) ∈ VH ×QH such that

ˆ
Ω

κ
∂vH
∂t
· w −

ˆ
Ω

pH∇ · w = 0, ∀w ∈ VH , (7)
ˆ

Ω

ρ
∂pH
∂t

q +

ˆ
Ω

q∇ · vH =

ˆ
Ω

fq, ∀q ∈ QH . (8)

There are totally three set of basis functions. The first set of basis functions can be considered as
a generalization of the RT0 element. The second set of basis functions gives enrichments of the normal
component of velocity across coarse grid edges. The third set of basis functions corresponds to the standing
modes within coarse elements with zero boundary conditions.

3.1 The first basis set
We use V (1)

H and Q
(1)
H to denote the first set of basis functions for the velocity v and the pressure p. The

space Q(1)
H is taken as the piecewise constant space with respect to the coarse mesh T H . We will define the

space V (1)
H as follows. For each coarse edge E ∈ EH , we define ωE as the union of all coarse elements having

the edge E. For each E ∈ EH , we define one basis function φ
(1)
E whose support is ωE . The basis φ(1)

E is
defined by finding (φ

(1)
E , p

(1)
E ) ∈ Vh(K)×Qh(K) such that
ˆ
K

κφ
(1)
E · w −

ˆ
K

p
(1)
E ∇ · w = 0, ∀w ∈ Vh,0(K), (9)

ˆ
K

q∇ · φ(1)
E =

ˆ
K

cEq, ∀q ∈ Qh(K) (10)

for each K ⊂ ωE , with the following boundary condition

φ
(1)
E · n =

{
1, on E,

0, on ∂K\E
(11)

where n denote the unit normal vectors on edges. In (10), the constant cE = |E|/|K|. The space V (1)
H is

defined by
V

(1)
H = span

{
φ

(1)
E : E ∈ EH

}
. (12)

We remark that scheme (7)-(8) with VH = V
(1)
H and QH = Q

(1)
H can be regarded as a generalization of the

classical RT0 method.

3.2 The second basis set
We use V (2)

H to denote the second set of basis functions for the velocity v. We will see below that this
corresponds to enrichments of velocity with respect to coarse grid edges. Notice that, in the second basis
set, we only enrich the approximation space for the velocity. Let E ∈ EH . Note that E ∩ Eh defines a
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partition for E by fine grid edges. We define DE be the space of piecewise constant functions on E with
respect to the partition E ∩ Eh. Let DE be the subspace of DE containing functions with zero mean. We
write DE = span{δE,i : i = 1, 2, · · · , NE}, where NE is the dimension of DE . For each E ∈ EH , we define
a set of basis functions φ(2)

E,j whose support is ωE . We first find (ψ
(2)
E,i, q

(2)
E,i) ∈ Vh(K)×Qh(K) such that

ˆ
K

κψ
(2)
E,i · w −

ˆ
K

q
(2)
E,i∇ · w = 0, ∀w ∈ Vh,0(K), (13)

ˆ
K

q∇ · ψ(2)
E,i = 0, ∀q ∈ Qh(K) (14)

for each K ⊂ ωE , with the following boundary condition

ψ
(2)
E,i · n =

{
δE,i, on E,

0, on ∂K\E.
(15)

We next define a snapshot space V (2)
E,snap on E by

V
(2)
E,snap = span

{
ψ

(2)
E,i : ∀ δE,i ∈ DE

}
. (16)

We remark that the snapshot space V (2)
E,snap is large and dimension reduction is necessary. To obtain a

reduced dimension space, we use the following spectral problem. Find φ ∈ V (2)
E,snap and λ ∈ R such that

ˆ
E

(φ · n) (w · n) = λ

ˆ
ωE

κφ · w, ∀w ∈ V (2)
E,snap. (17)

We arrange the eigenvalues in increasing order, that is, λE,1 < λE,2 < · · · < λE,NE
. For each coarse edge E,

we take the first nE eigenfunctions φ(2)
E,j . We then define

V
(2)
E,off = span

{
φ

(2)
E,j : j = 1, 2, · · · , nE

}
. (18)

Finally, the space V (2)
H is defined as

V
(2)
H =

∑
E∈EH

V
(2)
E,off. (19)

3.3 The third basis set
We use V (3)

H and Q(3)
H to denote the third set of basis functions for the velocity v and the pressure p. We will

see below that these basis functions correspond to some standing modes within coarse elements. Let K ∈ T H
be a given coarse element. We consider the following spectral problem: find ψ ∈ Vh,0(K), p ∈ Qh(K) and
µ ∈ R such that

ˆ
K

κψ · w −
ˆ
K

p∇ · w = 0, ∀w ∈ Vh,0(K), (20)
ˆ
K

q∇ · ψ = µ

ˆ
K

ρ p q, ∀q ∈ Qh(K) (21)

subject to the zero mean condition
´
K
p = 0. Notice that the spaces Vh,0(K) and Qh(K) are considered as

the snapshot spaces. We arrange the eigenvalues in increasing order, that is, µK,1 < µK,2 < · · · < µK,MK
,

where MK + 1 is the dimension of Qh(K). We will take the first mK eigenfunctions (φ
(3)
K,j , p

(3)
K,j) as basis.

We define
V

(3)
K,off = span

{
φ

(3)
K,j : j = 1, 2, · · · ,mK

}
(22)
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and
Q

(3)
K,off = span

{
p

(3)
K,j : j = 1, 2, · · · ,mK

}
. (23)

Then we define
V

(3)
H =

∑
K∈T H

V
(3)
K,off and Q

(3)
H =

∑
K∈T H

Q
(3)
K,off. (24)

Finally, we can take VH = V
(1)
H + V

(2)
H + V

(3)
H and QH = Q

(1)
H + Q

(3)
H as the approximation spaces in the

scheme (7)-(8).

4 The mixed GMsFEM
As discussed in the previous section, we can define the mixed GMsFEM for the wave equation by the system
(7)-(8) together with the choices VH = V

(1)
H +V

(2)
H +V

(3)
H and QH = Q

(1)
H +Q

(3)
H as the approximation spaces.

However, the resulting scheme does not have a block diagonal mass matrix, and is therefore slow in the time
stepping process. The reason for getting a non-diagaonal mass matrix is that the basis functions in V

(1)
H

and V (2)
H have overlapping supports on two adjacent coarse elements. In particular, the basis functions for

the velocity are coupled through the coarse grid edges EH . In the following, we will modify these spaces so
that the velocity basis functions have disjoint supports. One important feature is that we will only decouple
the basis functions on the coarse grid edges belonging to E0

p only. We do not decouple the velocity basis
functions for all coarse edges. The resulting velocity basis functions have disjoint supports on triangles of
the initial coarse mesh T H0 , see Figure 1.

Let E ∈ E0
p be a coarse edge. We recall that the basis functions in the space V (1)

H and V (2)
E,off have supports

in ωE and their normal components have common values on E. We will decouple this continuity, and call
the resulting space as V̂ (1)

H and V̂ (2)
E,off respectively. In particular, the normal component of velocity does not

necessarily have a single value on E. Globally, we define

V̂
(2)
H =

∑
E∈EH

V̂
(2)
E,off. (25)

We will introduce a new pressure space in order to penalize the normal continuity of velocity on E ∈ E0
p .

Let E ∈ Ep. This new pressure space is denoted by Q
(2)
E,off, and its dimension is nE + 1. We recall that

KhE ⊂ Kh is the subset of fine elements having non-empty intersection with E, see Figure 2. The basis
functions of Q(2)

E,off have supports on KhE . Each q ∈ Q
(2)
E,off is defined by the following conditions:

• q|τ ∈ P 1(τ) and q|e ∈ P 0(e), where τ ∈ KhE , and e is the edge of τ lying in E;

• q is continuous on E, and q = φ · n on E for some φ ∈ V (1)
H ∪ V (2)

H ;

•
´
τ
q = 0 for all τ ∈ KhE .

We write
Q

(2)
E,off = span

{
p

(1)
E

}
+ span

{
p

(2)
E,j : j = 1, 2, · · · , nE

}
where p(1)

E = 1 on E and p(2)
E,j = φ

(2)
E,j · n on E. We define

Q̂
(2)
H =

∑
E∈Ep

Q
(2)
E,off. (26)

Next, we discuss the boundary condition. We consider Dirichlet boundary condition p = 0 for pressure. We
will need to modify the space Q̂(2)

H for the boundary condition. We define Q̂(2)
H,0 by

Q̂
(2)
H,0 =

∑
E∈E0p

Q
(2)
E,off (27)
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where the sum is taken over all interior edges E ∈ E0
p . We can take VH = V̂

(1)
H + V̂

(2)
H + V

(3)
H and QH =

Q
(1)
H + Q̂

(2)
H,0 +Q

(3)
H . Since the space VH is not in H(div), we will replace the variational form (7)-(8) by the

following. We find (vH , pH) ∈ VH ×QH such thatˆ
Ω

κ
∂vH
∂t
· w −

ˆ
Ω

p
(I)
H ∇ · w +

∑
E∈E0p

ˆ
E

p
(B)
H [w · n] = 0, ∀w ∈ VH , (28)

ˆ
Ω

ρ
∂pH
∂t

q +

ˆ
Ω

q(I)∇ · vH −
∑
E∈E0p

ˆ
E

q(B)[vH · n] =

ˆ
Ω

fq, ∀q ∈ QH (29)

where we use q(B) to denote the component of q in Q̂(2)
H,0 and q(I) to denote the component of q in Q(1)

H +Q
(3)
H ,

for any q ∈ QH . Equations (28) and (29) give our mixed GMsFEM for the wave equation (1)-(2).
For the time discretization, we will apply the leap-frog scheme to (28)-(29). The velocity vH are approx-

imated at times tn = n∆t, and the pressure pH are approximated at times tn+ 1
2

= (n+ 1
2 )∆t, n = 0, 1, · · · .

We let vnH and pn+ 1
2

H be the approximate solutions at times tn and tn+ 1
2
respectively. The leap-frog scheme

reads:ˆ
Ω

κ
vn+1
H − vnH

∆t
· w −

ˆ
Ω

p
(I,n+ 1

2 )

H ∇ · w +
∑
E∈E0p

ˆ
E

p
(B,n+ 1

2 )

H [w · n] = 0, ∀w ∈ VH , (30)

ˆ
Ω

ρ
p
n+ 3

2

H − pn+ 1
2

H

∆t
q +

ˆ
Ω

q(I)∇ · vn+1
H −

∑
E∈E0p

ˆ
E

q(B)[vn+1
H · n] =

ˆ
Ω

f(tn+1, ·)q, ∀q ∈ QH (31)

where p(B,n+ 1
2 )

H denotes the component of pn+ 1
2

H in Q̂
(2)
H,0 and p

(I,n+ 1
2 )

H denotes the component of pn+ 1
2

H in

Q
(1)
H +Q

(3)
H . We remark that the stability estimate for ∆t can be obtained by standard techniques and the

inverse estimate, see for example [26].

5 Theory
In this section, we will prove the stability and convergence of the mixed GMsFEM using the basis constructed
in Section 4. We will also show that our method is energy conserving. To do these, we will first introduce
some preliminary definitions which will be used in our analysis. Then, we will prove the energy conservation,
stability and convergence for the mixed GMsFEM (28)-(29) with the use of VH = V̂

(1)
H + V̂

(2)
H + V

(3)
H and

QH = Q
(1)
H +Q̂

(2)
H,0+Q

(3)
H as the approximation spaces. We will assume zero initial values to simplify notations

and analysis. We will also assume that the wave equation is solved from the initial time t = 0 to some finite
time t = T > 0.

We define the inner product for the space V̂h by

(v, w)V =

ˆ
Ω

κ v · w

and the inner product for the space Q̂h,0 by

(p, q)Q =

ˆ
Ω

ρ p q.

Then, the corresponding norms in the spaces V̂h and Q̂h,0 are induced by the inner products and are defined
as

‖v‖2V = (v, v)V and ‖p‖2Q = (p, p)Q. (32)

Note that the above inner products and norms are also well-defined for VH and QH since VH ⊂ V̂h and
QH ⊂ Q̂h,0.
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5.1 Energy conservation and stability
In this section, we will prove that the method (28)-(29) is energy conserving and is stable with respect to
the norms (32). In particular, we will prove the following theorem.

Theorem 5.1. Let vH ∈ VH and pH ∈ QH be the solutions of (28)-(29). Then we have the following energy
conservation property

d

dt

1

2

(
‖vH‖2V + ‖pH‖2Q

)
= 0 (33)

provided f = 0. Moreover, the following stability holds

max
0≤t≤T

(
‖vH(t, ·)‖2V + ‖pH(t, ·)‖2Q

)
≤ 4
(ˆ T

0

‖ρ−1f‖Q
)2

. (34)

Proof. We take w = vH and q = pH in (28)-(29),ˆ
Ω

κ
∂vH
∂t
· vH +

ˆ
Ω

ρ
∂pH
∂t

pH =

ˆ
Ω

fpH . (35)

Thus, (33) holds when f = 0.
In addition, using (35) and the Cauchy-Schwarz inequality, we have

d

dt

1

2

(
‖vH‖2V + ‖pH‖2Q

)
≤ ‖ρ−1f‖Q ‖pH‖Q. (36)

Integrating in time from 0 to s,

‖vH(s, ·)‖2V + ‖pH(s, ·)‖2Q ≤ 2

ˆ T

0

‖ρ−1f‖Q ‖pH(t, ·)‖Q ≤ 2 max
0≤t≤T

‖pH‖Q
ˆ T

0

‖ρ−1f‖Q.

So, we have

max
0≤t≤T

(
‖vH(t, ·)‖2V + ‖pH(t, ·)‖2Q

)
≤ 2 max

0≤t≤T
‖pH(t, ·)‖Q

ˆ T

0

‖ρ−1f‖Q.

Using the Cauchy-Schwarz inequality,

max
0≤t≤T

(
‖vH(t, ·)‖2V + ‖pH(t, ·)‖2Q

)
≤ 1

2
max

0≤t≤T
‖pH(t, ·)‖2Q + 2

( ˆ T

0

‖ρ−1f‖Q
)2

.

This implies (34).

5.2 Convergence
In this section, we will prove the convergence of the mixed GMsFEM (28)-(29). Note that we can write
p

(I)
h ∈ Qh in the following way

p
(I)
h =

∑
K∈T H

(
aK,0 +

MK∑
j=1

aK,jp
(3)
K,j

)
(37)

where aK,0 is the average value of p(I)
h on K, and aK,j are determined by

aK,j = (p
(I)
h , p

(3)
K,j)Q, j = 1, 2, · · · ,MK .

We remark that the dimension of Qh(K) is MK + 1. In addition, we can write p(B)
h ∈ Q̃h,0 in the following

way

p
(B)
h =

∑
E∈E0p

(
bE,0p

(1)
E +

NE∑
j=1

bE,jp
(2)
E,j

)
(38)
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where bE,0 is the average value of p(B)
h on E, and bE,j are determined by

bE,j =

ˆ
E

p
(B)
h φ

(2)
E,j · n, j = 1, 2, · · · , NE .

On the other hand, we can write vh ∈ V̂h in the following way

vh =
∑
E∈EH

(
cE,0φ

(1)
E +

NE∑
j=1

cE,jφ
(2)
E,j

)
+
∑

K∈T H

MK∑
j=1

dK,jφ
(3)
K,j (39)

where cE,0 is the average value of vh · n on E, cE,j and dK,j are determined by

cE,j =

ˆ
E

(vh · n)(φ
(2)
E,j · n), j = 1, 2, · · · , NE

and
dE,j =

ˆ
K

κ vh · φ(3)
K,j , j = 1, 2, · · · ,MK

respectively.
Using (37)-(39), we define the following interpolants π(p

(I)
h ) ∈ QH , π(p

(B)
h ) ∈ QH and π(vh) ∈ VH by

π(p
(I)
h ) =

∑
K∈T H

(
aK,0 +

mK∑
j=1

aK,jp
(3)
K,j

)
,

π(p
(B)
h ) =

∑
E∈E0p

(
bE,0 +

nE∑
j=1

bE,jp
(2)
E,j

)
,

π(vh) =
∑
E∈EH

(
cE,0φ

(1)
E +

nE∑
j=1

cE,jφ
(2)
E,j

)
+
∑

K∈T H

mK∑
j=1

dK,jφ
(3)
K,j .

(40)

Notice that in the above definitions of interpolants, we only sum over all basis functions in the spaces QH
and VH , instead of suming over all functions as in (37)-(39).

Next, we prove the following lemma concerning some properties of the interpolants defined in (40).

Lemma 5.2. The interpolants π(p
(I)
h ) ∈ QH , π(p

(B)
h ) ∈ QH and π(vh) ∈ VH defined in (40) satisfy the

following conditions
ˆ

Ω

(p
(I)
h − π(p

(I)
h ))∇ · w = 0 (41)∑

E∈E0p

ˆ
E

(p
(B)
h − π(p

(B)
h ))[w · n] = 0 (42)

for all w ∈ VH , and
ˆ

Ω

q(I)∇ · (vh − π(vh)) = 0 (43)∑
E∈E0p

ˆ
E

q(B)[(vh − π(vh)) · n] = 0 (44)

for all q ∈ QH .
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Proof. By definition, we have

p
(I)
h − π(p

(I)
h ) =

∑
K∈T H

( MK∑
j=mK+1

aK,jp
(3)
K,j

)
.

Taking q = p
(3)
K,j in (10), we have ˆ

K

p
(3)
K,j∇ · φ

(1)
E =

ˆ
K

cE p
(3)
K,j = 0

since p(3)
K,j has zero mean on K. We see that (41) holds when w ∈ V (1)

H . Now we take q = p
(3)
K,j in (14) to get

ˆ
K

p
(3)
K,j∇ · φ

(2)
E,i = 0, ∀ i = 1, 2 · · · , nE .

This shows that (41) holds when w ∈ V (2)
H . Finally, using q = p

(3)
K,j in (21), we have

ˆ
K

p
(3)
K,j∇ · φ

(3)
E,i =

ˆ
K

ρ r p
(3)
K,j , ∀ i = 1, 2 · · · ,mK

where r = span{p(3)
K,i : i = 1, 2, · · · ,mK}. This shows that (41) holds when w ∈ V (3)

H .
By definition, we have

p
(B)
h − π(p

(B)
h ) =

∑
E∈E0p

( NE∑
j=nE+1

bE,jp
(2)
E,j

)
.

It is clear that (42) holds when w ∈ V (3)
H since w vanishes on all coarse edges. It is also clear that (42) holds

when w ∈ V (1)
H since w · n is a constant function on all coarse edges and p(2)

E,j has zero average on all coarse

edges. By the spectral problem (17), p(2)
E,j is orthogonal to w · n on E ∈ E0

p for all w ∈ V (2)
H , so equation (42)

holds when w ∈ V (2)
H .

By definition, we have

vh − π(vh) =
∑
E∈EH

( NE∑
j=nE+1

cE,jφ
(2)
E,j

)
+
∑

K∈T H

MK∑
j=mK+1

dK,jφ
(3)
K,j .

The proofs for (43) and (44) are similar to the proofs of (41) and (42) and can be obtained by the same
techniques above.

Now we prove the convergence. Substracting (28)-(29) from (5)-(6),
ˆ

Ω

κ
∂(vh − vH)

∂t
· w −

ˆ
Ω

(p
(I)
h − p

(I)
H )∇ · w +

∑
E∈E0p

ˆ
E

(p
(B)
h − p(B)

H )[w · n] = 0, (45)

ˆ
Ω

ρ
∂(ph − pH)

∂t
q +

ˆ
Ω

q(I)∇ · (vh − vH)−
∑
E∈E0p

ˆ
E

q(B)[(vh − vH) · n] = 0, (46)

for all w ∈ VH and q ∈ QH . Using Lemma 5.2,
ˆ

Ω

κ
∂(vh − vH)

∂t
· w −

ˆ
Ω

(π(p
(I)
h )− p(I)

H )∇ · w +
∑
E∈E0p

ˆ
E

(π(p
(B)
h )− p(B)

H )[w · n] = 0, (47)

ˆ
Ω

ρ
∂(ph − pH)

∂t
q +

ˆ
Ω

q(I)∇ · (π(vh)− vH)−
∑
E∈E0p

ˆ
E

q(B)[(π(vh)− vH) · n] = 0, (48)
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for all w ∈ VH and q ∈ QH . Taking w = π(vh)− vH and q = π(p
(I)
h )− p(I)

H + π(p
(B)
h )− p(B)

H , and adding the
resulting equations, we have

ˆ
Ω

κ
∂(vh − vH)

∂t
· (π(vh)− vH) +

ˆ
Ω

ρ
∂(ph − pH)

∂t
(π(p

(I)
h ) + π(p

(B)
h )− pH) = 0. (49)

Thus, we obtain

max
0≤t≤T

(
‖π(vh)− vH‖V + ‖π(p

(I)
h ) + π(p

(B)
h )− pH‖Q

)
≤
ˆ T

0

(
‖π(v̇h)− v̇h‖V + ‖π(ṗ

(I)
h ) + π(ṗ

(B)
h )− ṗh‖Q

) (50)

where the dots denote time derivatives. Hence, it suffices to estimate the interpolation errors.
In the following two theorems, we give error estimates of the interpolants. We remark that the notation

α . β means that α ≤ cβ for some constant c > 0 independent of the mesh.

Theorem 5.3. The interpolant π(vh) defined in (40) satisfies

‖vh − π(vh)‖2V .
(

max
E∈T H

λ−1
E,nE+1

) ∑
E∈EH

ˆ
E

(vh · n)2 +
(

max
K∈T H

µ−1
K,mK+1

)
‖ρ−1f − ṗh‖2Q. (51)

Proof. By definition, we have

vh − π(vh) =
∑
E∈EH

( NE∑
j=nE+1

cE,jφ
(2)
E,j

)
+
∑

K∈T H

MK∑
j=mK+1

dK,jφ
(3)
K,j := z1 + z2.

By the orthogonality of eigenfunctions of the spectral problem (17),

‖z1‖2V .
∑
E∈EH

λ−1
E,nE+1

ˆ
E

(vh · n)2.

From (6), we have ˆ
Ω

q∇ · vh =

ˆ
Ω

fq −
ˆ

Ω

ρ
∂ph
∂t

q (52)

for all q ∈ Q(3)
H . Using the fact that

´
K
q = 0 for all q ∈ Q(3)

H , we have

ˆ
Ω

q∇ · vh =
∑

K∈T H

MK∑
j=1

dK,j

ˆ
K

q∇ · φ(3)
K,j .

By the spectral problem (21),

ˆ
Ω

q∇ · vh =
∑

K∈T H

MK∑
j=1

dK,jµK,j

ˆ
K

ρ p
(3)
K,j q.

Taking q = p
(3)
K,j , and using the condition that

´
K
ρ p

(3)
K,i p

(3)
K,j = δij , we see that

dK,jµK,j =

ˆ
Ω

p
(3)
K,j∇ · vh, j = 1, 2, · · · ,MK , K ∈ T H . (53)

Thus, by the spectral problem (20)-(21), we obtain

‖z2‖2V .
∑

K∈T H

MK∑
j=mK+1

d2
K,j(φ

(3)
K,j , φ

(3)
K,j)V =

∑
K∈T H

MK∑
j=mK+1

d2
K,jµK,j .
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Using (53) and then (52),

‖z2‖2V .
∑

K∈T H

MK∑
j=mK+1

ˆ
Ω

dK,jp
(3)
K,j∇ · vh =

ˆ
Ω

(
f − ρ∂ph

∂t

) ∑
K∈T H

MK∑
j=mK+1

dK,jp
(3)
K,j .

Hence, we have
‖z2‖2V .

(
max
K∈T H

µ−1
K,mK+1

)
‖ρ−1f − ṗh‖2Q

since

‖
∑

K∈T H

MK∑
j=mK+1

dK,jp
(3)
K,j‖

2
Q ≤

(
max
K∈T H

µ−1
K,mK+1

)
‖z2‖2V

by the spectral problem (20)-(21).
This completes the proof of this theorem.

Theorem 5.4. The interpolants π(p
(I)
h ) and π(p

(B)
h ) defined in (40) satisfy

‖p(I)
h − π(p

(I)
h )‖2Q ≤

(
max
K∈T H

µ−1
K,mK+1

)
‖v̇h‖2V , (54)

‖p(B)
h − π(p

(B)
h )‖2Q . h

(
max
E∈E0p

λ−1
E,nE+1

)
‖v̇h‖2V . (55)

Proof. By the definition of π(p
(I)
h ), we have

p
(I)
h − π(p

(I)
h ) =

∑
K∈T H

( MK∑
j=mK+1

aK,jp
(3)
K,j

)
.

By the orthogonality of eigenfunctions {p(3)
K,j} and the spectral problem (21), we have

‖p(I)
h − π(p

(I)
h )‖2Q = (p

(I)
h − π(p

(I)
h ), p

(I)
h )Q =

ˆ
Ω

p
(I)
h ∇ ·

( ∑
K∈T H

MK∑
j=mK+1

aK,jµ
−1
K,jφ

(3)
K,j

)
.

We write r1 =
∑

K∈T H

MK∑
j=mK+1

aK,jµ
−1
K,jφ

(3)
K,j . Using (5), we have

ˆ
Ω

p
(I)
h ∇ · r1 =

ˆ
Ω

κ
∂vh
∂t
· r1 ≤ ‖v̇h‖V ‖r1‖V .

By the orthogonality of eigenfunctions {φ(3)
K,j},

‖r1‖2V =
∑

K∈T H

MK∑
j=mK+1

(aK,jµ
−1
K,j)

2(φ
(3)
K,j , φ

(3)
K,j)V =

∑
K∈T H

MK∑
j=mK+1

(aK,j)
2µ−1
K,j(p

(3)
K,j , p

(3)
K,j)Q

which implies
‖r1‖2V ≤

(
max
K∈T H

µ−1
K,mK+1

)
‖p(I)
h − π(p

(I)
h )‖2Q.

This proves (54).
By the definition of π(p

(B)
h ), we have

p
(B)
h − π(p

(B)
h ) =

∑
E∈E0p

( NE∑
j=nE+1

bE,jp
(2)
E,j

)
.
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Recall that the basis functions {p(2)
E,j} have supports in KhE . Thus, we have

‖p(B)
h − π(p

(B)
h )‖2Q . h‖p(B)

h − π(p
(B)
h )‖2L2(Ep)

where ‖ · ‖L2(Ep) denotes the L2-norm defined on the set of coarse edges Ep. Next, we define w ∈ V̂ (2)
snap such

that

[w · n]|E = −(p
(B)
h − π(p

(B)
h ))|E =

NE∑
j=nE+1

−bE,jp(2)
E,j (56)

for all E ∈ E0
p , where V̂

(2)
snap is the union of all V̂ (2)

E,snap, which is obtained by decoupling the continuity of

normal components of basis functions in V (2)
E,snap on the edges in E0

p . The condition (56) can be easily obtained
by defining w as

w =

NE∑
j=nE+1

−bE,jφ(2)
E,j

on one of the two coarse elements, denoted by KE , having the edge E and as zero on the other coarse
element, for every E ∈ E0

p . Using (14) and (5), we get

∑
E∈E0p

ˆ
E

p
(B)
h

NE∑
j=nE+1

bE,jp
(2)
E,j =

ˆ
Ω

κ
∂vh
∂t
· w. (57)

In addition, by the orthogonality of eigenfunctions, it is easy to see that

‖p(B)
h − π(p

(B)
h )‖2L2(Ep) =

∑
E∈E0p

b2E,j

NE∑
j=nE+1

ˆ
E

(p
(2)
E,j)

2 =
∑
E∈E0p

ˆ
E

p
(B)
h

NE∑
j=nE+1

bE,jp
(2)
E,j . (58)

On the other hand, by the Cauchy-Schwarz ineqaulity, we have
ˆ

Ω

κ
∂vh
∂t
· w . ‖∂vh

∂t
‖V ‖w‖V

and by the definition of w, we have

‖w‖2V ≤
∑
E∈E0p

NE∑
j=nE+1

b2E,j

ˆ
KE

κφ2
E,j ≤

∑
E∈E0p

NE∑
j=nE+1

b2E,j

ˆ
ωE

κφ2
E,j .

By the spectral problem (17),

ˆ
ωE

κφ2
E,j =

1

λE,j

ˆ
E

(φE,j · n)2 =
1

λE,j

ˆ
E

(p
(2)
E,j)

2. (59)

Combining (56), (57), (58) and (59), we obtain

‖p(B)
h − π(p

(B)
h )‖2L2(Ep) .

(
max
E∈E0p

λ−1
E,nE+1

)
‖∂vh
∂t
‖2V

This completes the proof.

Finally, we prove the following convergence theorem.
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Theorem 5.5. Let (vH , pH) be the solution of the mixed GMsFEM (28)-(29), and let π(vh), π(p
(I)
h ) and

π(p
(B)
h ) be the interpolants defined in (40). We have

max
0≤t≤T

(
‖π(vh)− vH‖2V + ‖π(p

(I)
h ) + π(p

(B)
h )− pH‖2Q

)
.
(

max
E∈T H

λ−1
E,nE+1

) ∑
E∈EH

ˆ T

0

ˆ
E

(v̇h · n)2 + h
(

max
E∈T H

λ−1
E,nE+1

) ∑
E∈EH

ˆ T

0

ˆ
E

(v̈h · n)2

+
(

max
K∈T H

µ−1
K,mK+1

)ˆ T

0

(
‖ρ−1ḟ − p̈h‖2Q + ‖v̈h‖2V

)
.

(60)

Proof. The required bound is the consequence of (50), Theorem 5.3 and Theorem 5.4.

We remark that upper bounds for ‖vh − vH‖V and ‖ph − pH‖Q follow easily from the above theorem.

6 Numerical Results
In this section, we present some numerical results to show the performance of our method. In our simulations,
the computational domain Ω = [0, 1]2, ρ = 1 and the source term f is chosen as the Ricker wavelet

f(x, t) = g(x)(t− 2/f0)e−π
2f2

0 (t−2/f0)2 , g(x) = δ−2e((x−0.5)2+(y−0.5)2)/δ2

where f0 is the central frequency and δ = 2h measures the size of the support of the source. We assume
that the initial conditions are zero. In the first two examples, we will consider the performance of our mixed
GMsFEM for the propagation of the above point source with two types of heterogeneities and with the
homogeneous Dirichlet boundary condition. In our third example, we will apply the perfectly matched layer
(PML) [3] to simulate wave propagation in an unbounded domain containing a heterogeneous medium.

6.1 A layered stochastic coefficient
In our first example, we consider κ−1 as a layered stochastic medium shown in Figure 3. We will first
construct the initial mesh T H0 for the domain Ω = [0, 1]× [0, 1]. To do so, we first define a uniform triangular
coarse mesh on Ω with mesh size H = 1/8. This triangular mesh is obtained by first dividing the domain
into uniform squares and then dividing each square into two triangles using the diagonal. This process gives
the initial mesh T H0 . The required coarse mesh T H is then obtained by the process described in Section 2.
Next, to construct the fine mesh T h, each coarse triangular element in T H is sub-divided into a union of
uniform triangular fine mesh blocks with mesh size h = 1/64 in the standard way. Notice that, each coarse
triangular element in T H is divided into 64 fine triangles. We choose the source frequency f0 = 20, and
compute the solution at the time T = 0.2. The reference solution at time T = 0.2 is shown in Figure 4. We
apply our mixed GMsFEM (28)-(29) for this problem with various choices of number of basis functions. We
will call the basis functions resulting from the first and the second basis sets the boundary basis and the basis
functions resulting from the third basis set the interior basis. In Table 1, we present the relative errors of
the pressure p in terms of the Q norm for various choices of number of basis functions. In particular, we use
3 to 6 basis functions per coarse edge for boundary basis and use 4 to 16 basis functions per coarse element
for interior basis. We observe excellent performance of our method. For reference, the fine grid solver has
24576 unknowns for the pressure p and 28928 unknowns for the velocity v. From Table 1, we see that a
very small dimensional approximation space can give an error below 5%. For instance, with the use of 4
boundary basis functions per coarse edge and the use of 12 interior basis functions per coarse element, the
dimensions of the spaces VH and QH are 7680 and 5312 respectively. We remark that we observe a similar
accuracy behavior for the velocity, and we therefore skip those results in the paper.
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Figure 3: A stochastic coefficient for the first example.
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Figure 4: The reference solution for the first example.

# boundary basis\# interior basis 4 8 12 16
3 13.22% 8.75% 7.84% 7.63%
4 12.76% 5.76% 3.65% 2.95%
5 12.97% 5.64% 3.31% 2.47%
6 13.01% 5.65% 3.31% 2.46%

Table 1: Convergence history for various choices of number of basis functions for the first example.

6.2 The Marmousi model
In our second example, we consider κ−1 as a part of the Marmousi model shown in Figure 5. We assume
that the domain Ω = [0, 1] × [0, 1] is partitioned as the first example with coarse mesh size H = 1/16 and
the fine mesh size h = 1/256. We take the source frequency f0 = 20, and compute the solution at the time
T = 0.2. The reference solution and the multiscale solution using 6 boundary basis functions per coarse edge
and 12 interior basis functions per coarse element at the time T = 0.2 are shown in Figure 6, and we observe
very good agreement. In Table 2, we present the relative errors of the pressure p in terms of the Q norm
for various choices of number of basis functions. In particular, we use 3 to 6 basis functions per coarse edge
for boundary basis and use 4 to 12 basis functions per coarse element for interior basis. We again observe
excellent performance of our method. For reference, the fine grid solver has 98304 unknowns for the pressure
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p and 135296 unknowns for the velocity v. From Table 1, we see that with the use of 6 boundary basis
functions per coarse edge and the use of 12 interior basis functions per coarse element, the relative error for
the pressure is 8.59%, and the dimensions of the spaces VH and QH are 36864 and 22848 respectively.

Figure 5: The Marmousi model for the second example.

Figure 6: Left: The reference solution for the second example with f0 = 20. Right: The corresponding
multiscale solution for the second example using 6 boundary basis functions per coarse edge and 12 interior
basis functions per coarse element.

# boundary basis\#interior basis 4 8 12
3 46.66% 45.64% 46.02%
4 38.11% 23.83% 23.39%
5 40.35% 13.66% 10.84%
6 41.58% 12.91% 8.59%

Table 2: Convergence history for various choices of number of basis functions for the second example with
f0 = 20.

To further test the performance of our method, we take a higher frequency source term with f0 = 50 and
compute the solution at T = 0.16. The reference solution and the corresponding multiscale solution with
8 boundary basis functions per coarse edge and 20 interior basis functions per coarse element are shown in
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Figure 7, and we observe very good agreement. In addition, the relative errors of the pressure p in terms of
the Q norm for various choices of number of basis functions are presented in Table 3. In particular, we use
2 to 8 basis functions per coarse edge for boundary basis and use 4 to 20 basis functions per coarse element
for interior basis. From this table, we observe excellent performance of our method.

Figure 7: Left: The reference solution for the second example with f0 = 50. Right: The corresponding
multiscale solution for the second example using 8 boundary basis functions per coarse edge and 20 interior
basis functions per coarse element.

# boundary basis\#interior basis 4 8 12 16 20
2 125.75% 128.19% 129.09% 129.29% 129.37%
4 91.55% 58.00% 61.29% 62.87% 63.48%
6 100.46% 36.11% 18.65% 16.95% 17.04%
8 101.04% 40.67% 16.95% 9.41% 6.92%

Table 3: Convergence history for various choices of number of basis functions for the second example with
f0 = 50.

6.3 The Marmousi model with PML
In the third example, we present an application of our method with the use of PML. We assume that the
computational domain Ω = [0, 1]2 and the medium is the part of the Marmousi model shown in Figure 5.
We take the source with f0 = 20. The coarse and fine mesh sizes for the computational domain Ω are
H = 1/8 and h = 1/64 respectively. To absorb the outgoing waves, we use a PML with a width of 10 fine
grid blocks. We apply our mixed GMsFEM within the computational domain Ω and the standard fine-grid
method (3)-(4) within the artificial layer. In Figure 8, we present the multiscale scale solutions at different
times T . We see that the PML is able to absorb the outgoing waves without much artificial reflection.

7 Conclusion
We develop and analyze a mixed GMsFEM for wave propagation in highly heterogeneous media. The method
is based on a mixed Galerkin global solver, and some local multiscale basis functions for both the pressure and
the velocity. The multiscale basis functions are obtained by solving local spectral problems defined in some
snapshot spaces. The spectral problems give a natural ordering of the basis functions, which can be added
to the approximation space to give a spectral convergence. By using a staggered coarse mesh and a carefully
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Figure 8: The multiscale solution at different times T for the third example. Top-Left: T = 0.24, Top-Right:
T = 0.28, Bottom-Left: T = 0.32, Bottom-Right: T = 0.36.

designed pair of multiscale basis spaces with staggered continuity, our method is energy conserving and has
block diagonal mass matrix. Numerical results show excellent performance for our proposed approach.
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