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Abstract Staggered grid techniques have been applied successfully to many problems. A
distinctive advantage is that physical laws arising from the corresponding partial differential
equations are automatically preserved. Recently, a staggered discontinuous Galerkin (SDG)
method was developed for the convection–diffusion equation. In this paper, we are interested
in solving the steady state convection–diffusion equation with a small diffusion coefficient
ε. It is known that the exact solution may have large gradient in some regions and thus a
very fine mesh is needed. For convection dominated problems, that is, when ε is small, exact
solutions may contain sharp layers. In these cases, adaptive mesh refinement is crucial in
order to reduce the computational cost. In this paper, a new SDGmethod is proposed and the
proof of its stability is provided. In order to construct an adaptive mesh refinement strategy
for this new SDG method, we derive an a-posteriori error estimator and prove its efficiency
and reliability under a boundedness assumption on h/ε, where h is the mesh size. Moreover,
we will present some numerical results with singularities and sharp layers to show the good
performance of the proposed error estimator as well as the adaptive mesh refinement strategy.

Keywords Convection–diffusion · Staggered discontinuous Galerkin method · Error
indicator · a-posteriori error estimate · Adaptive refinement

1 Introduction

In this paper, we consider the following steady state convection–diffusion equation

− ε�u + ∇ · (bu) = f, in �, (1.1)
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where � ⊂ R
d is a polyhedral domain with d = 2, 3. For simplicity, we only consider the

homogeneous Dirichlet boundary condition

u = 0, on ∂�.

Extensions to cases with inhomogeneous Dirichlet boundary condition and other types of
boundary conditions are straight-forward. In the above equation, u is the unknown function
to be approximated, f ∈ L2(�) is the given source term, and b is the given vector field
which is sufficiently smooth with the divergence free assumption, i.e.,∇ ·b = 0. Throughout
this paper, vector fields are denoted by bold faces. Moreover, the diffusion coefficient ε is a
constant. We mainly consider the convection dominated case, that is to say, the diffusion is
small. Hence, we assume that ε � 1 throughout this paper.

There have been a number of attempts to solve the convection–diffusion equation numer-
ically. One of the most popular choices is the finite element (FE) method, which uses
continuous basis functions. For example, Galerkin/Least Squares methods [27], Continu-
ous Interior Penalty methods [6,7], and Local Projection Stabilization [1,2,4,33]. Codina’s
paper [25] also summarized and compared a few existing variants of FE method, while some
new ideas were proposed. Another class of important methods is the discontinuous Galerkin
(DG) methods [10,23,24,36,37], which uses piecewise approximations without enforcing
any continuity along cell interfaces. It has several advantages such as high order accuracy,
extremely local data structure and high parallel efficiency. There are many successful works
in this area, such as [3,9,21,29]. The staggered DG (SDG)method is a relatively new class of
DG method in literature, which uses staggered mesh. A distinctive advantage of using stag-
gered mesh is that physical laws arising from the corresponding partial differential equations
are automatically preserved. The SDGmethod can be viewed as a hybrid of the standard DG
method and the FE method in the sense that each of the numerical solutions is continuous
along some of the faces in the triangulation, but is discontinuous along other faces. The SDG
method was first developed by Chung and Enquist [17] in 2006 to solve the wave propaga-
tion problem. Since then, there have been a number of successful works on SDG, such as
[12,13,19,32]. In 2012, Chung and Lee [20] proposed an SDG scheme for the convection–
diffusion equation in which the diffusion coefficient ε is set to be 1. This SDG method is
successful in preserving a number of physical laws. We note that the SDG method is related
to the very successful HDG method [14,15].

It is well-known that the exact solution of the mathematical problem (1.1) may contain
singular points. Also, when dealing with the convection dominated case of the convection
diffusion equation, that is, when the diffusion coefficient ε is relevantly small, the exact
solution may contain sharp layers. In these cases, numerical computations require a very fine
mesh in order to capture the detailed features of the solution near those singular points or
sharp layers. Thus, a significant amount of computer memory and time are needed, and the
computation of the solution is very challenging. Inmany cases, adaptively refinement schemes
are used for quicker convergence. They refine the mesh locally at suitable locations and thus
can reduce the computational cost. Over the past few decades, there are many successful
works on adaptive FE or DG methods for solving the convection–diffusion equation, such as
[7,8,28,42]. As far as we know, there are only two works on adaptive SDGmethods, namely,
[22] for the time-harmonic Maxwell’s equation and [16] for the Stokes system, and there is
no prior work on adaptive SDG method for convection–diffusion equations.

In this paper, we devote to construct an adaptive SDG method in order to solve the steady
state convection–diffusion equation (1.1). The key ingredient is the construction of an efficient
and reliable error indicator. Note that there is an extra coefficient ε in Eq. (1.1) compared
to the equation considered in [20]. A straight forward generalization of the SDG method in
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[20] will lead to a term with coefficient 1
ε
in the proof of the reliability of the error indicator.

This term will be very large in the convection dominated case. Hence, we make a small
modification of the scheme in [20] and provide a new SDG method for solving (1.1). As the
exact solution may not be known a priori, we derive a computable error estimator without
undetermined variables and use it as an error indicator for the new SDG method. The error
indicator is composed of local residuals and jumps of the numerical solution. It can estimate
a DG-norm error of the numerical solution locally in each cell of the triangulation. We will
then prove the reliability and efficiency of this error indicator. In particular, we will show
that the DG-norm error of the numerical solution is both bounded up and bounded below by
our computable error estimator up to a data approximation term. Based on the derived error
indicator, we can refine the mesh at locations with high estimated error and hence construct
an adaptive mesh refinement strategy.

Weadmit that there is a termwith the coefficient h
ε
in our error indicator and the efficiency is

proved under the assumption that the ratio h
ε
is bounded. That is, for the convection dominated

problem, this error estimatormaybemuch larger than the exact error theoretically at the sparse
part of the mesh, and becomes efficient only when the mesh size is small enough locally.
However, numerical examples still show that our scheme performs roughly the same as the
adaptive refinement scheme using the exact solution as the error indicator. We can see that
our adaptive refinement method is much better than the regular uniform refinement method
and can reach the optimal rate of convergence. Also, our adaptive SDG method is able to
capture the correct locations of singular points and sharp layers and hence can recover the
complicated structure of the solution.

This paper is organized as follows. In Sect. 2, we make a small modification of the SDG
scheme proposed in [20] and prove the numerical stability of the new SDG method. In
Sect. 3, we propose a residual-type a-posteriori error estimator for this new SDGmethod and
prove its reliability and efficiency. An adaptive mesh refinement strategy based on this error
estimator is also given. Numerical experiments are performed in Sect. 4 to show the accuracy
and efficiency of the proposed error estimator and the adaptive SDG method. Finally, a
conclusion is given in Sect. 5.

2 Numerical Scheme

In this section, we briefly show the numerical scheme to solve the steady state convection–
diffusion equation (1.1). We follow the basic idea in [20]. However, since there is an extra
coefficient ε � 1 in the diffusion term in this paper, we need to make some modifications.
Also, we adjust the notations to make the scheme simpler. We can prove that the stability of
this new modified SDG scheme also holds, as in [20].

In the following, we first show a new mixed form of the original convection–diffusion
equation and derive the variation form satisfied by the exact solution in Sect. 2.1. Based on
the mixed form equations, we show how to construct the new SDG method in Sect. 2.2.
For simplicity, we only discuss the two-dimensional case, while its generalization to the
three-dimensional case is straight forward.

2.1 A New Mixed Form of the Convection–Diffusion Equation

The key step of the SDG method is to transform the original convection–diffusion equation
into amixed form. Let us first recall the followingmixed form used in [20] if we only consider
the steady state case:
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p = ∇u − 1

2
bu,

w = bu,

−∇ · p + 1

2
b ·

(
p + 1

2
w

)
= f. (2.1)

Notice that p + 1
2w in the last equation is in fact ∇u, deriving from the convection part of the

original convection–diffusion equation. However, ∇u in the definition of p comes from the
diffusion part. That is, we need to solve∇u in the convection part by using the diffusion part.
Now we consider Eq. (1.1) which contains an coefficient ε in the diffusion term. A straight
forward generalization of the above mixed form leads to

p = ε∇u − 1

2
bu,

w = bu,

−∇ · p + 1

2ε
b ·

(
p + 1

2
w

)
= f. (2.2)

Now we have a coefficient 1
ε
in (2.2) which will still appear in the proof of the reliability of

the error indicator. Hence, we need a new formulation to eliminate this 1
ε
term.

To derive the new formulation, we denote ∇u in the convection part as s directly and
introduce the following two variables:

p = ε∇u − 1

2
bu, s = ∇u.

Then the left hand side of Eq. (1.1) becomes

− ε�u + ∇ · (bu) = −∇ ·
(

ε∇u − 1

2
bu

)
+ 1

2
∇ · (bu) = −∇ · p + 1

2
∇ · (bu).

Since b is divergence free, we know that

∇ · (bu) = b · ∇u = b · s.

Hence, Eq. (1.1) becomes

−∇ · p + 1

2
b · s = f.

Finally, we obtain the following new mixed form of Eq. (1.1)

p = ε∇u − 1

2
bu, (2.3)

s = ∇u, (2.4)

−∇ · p + 1

2
b · s = f, (2.5)

which contains no 1
ε
term.

Before we proceed, we denote some notations. We simply use (·, ·) to denote the standard
L2 inner product on �. For any domain � ⊂ R

d and functions u and v defined on �, we
define norms as

‖v‖20;� := ‖v‖2L2(�)
, |v|21;� := ‖∇v‖2L2(�)

,

‖v‖21;� := ‖v‖20;� + |v|21;�,
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provided that these norms are well-defined.
By multiplying test functions and using integration by parts, the variational form of

Eqs. (2.3) to (2.5) is : find (p, s, u) ∈ [L2(�)]2 × [L2(�)]2 × H1
0 (�), such that

(p, q) = ε(∇u, q) − 1

2
(bu, q), (2.6)

(s, q) = (∇u, q), (2.7)

(p,∇v) + 1

2
(b · s, v) = ( f, v), (2.8)

for all test functions (q, v) ∈ [L2(�)]2 × H1
0 (�).

Now we try to eliminate the auxiliary variables p and s from the variational form and thus
derive the equation satisfied by u ∈ H1

0 (�). Note that for any test function v ∈ H1
0 (�), by

taking q = ∇v ∈ [L2(�)]2 and q = bv ∈ [L2(�)]2 in Eqs. (2.6) and (2.7), respectively, we
have

(p,∇v) = ε(∇u,∇v) − 1

2
(bu,∇v),

(s, bv) = (∇u, bv).

Substituting the above two equations into Eq. (2.8) and using the fact that v ∈ H1
0 (�) and b

is divergence free, we obtain

ε(∇u,∇v) + (∇ · (bu), v) = ( f, v). (2.9)

If we denote

Bd(u, v) = ε(∇u,∇v), Bc(u, v) = (∇ · (bu), v),

B(u, v) = Bd(u, v) + Bc(u, v),

then the exact solution u ∈ H1
0 (�) satisfies

B(u, v) = ( f, v), ∀v ∈ H1
0 (�). (2.10)

This equation will be used in Sect. 3. Since b is divergence free, we can observe that

Bc(v, v) = (∇ · (bv), v) = − (bv,∇v)

= − (b · ∇v, v) = − (∇ · (bv), v) = −Bc(v, v), ∀v ∈ H1
0 (�),

which shows the following property of Bc

Bc(v, v) = 0, ∀v ∈ H1
0 (�). (2.11)

2.2 The Modified SDG Method

Based on the mixed formulation in the last section, we are ready to construct a new modified
SDG method. Following [20], we first define the triangulation. Let T0 be a shape regular
initial triangulation of �, as illustrate by solid lines in Fig. 1. We denote the the collection
of all edges in T0 as Fu and denote the subset of all interior edges as F0

u . Next, we construct
a staggered mesh by further division of triangles. For each triangle τ ∈ T0, we subdivide it
into three small triangles by joining its center with its vertices. Hence, we can obtain a new
triangulation consists of all small triangles formed and denote it as T . As illustrated by dotted
lines in Fig. 1, we denote the collection of all new edges formed under T as Fp . Moreover,
we define the set of all interior edges of T as F0 = Fp

⋃
F0
u .
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Fig. 1 An illustration of the
staggered mesh

For each edge e of T , we define a unit normal vector ne in the following way. If e ∈ ∂�,
then we define ne as the unit normal vector pointing outside of �. For an interior edge
e = ∂τ+ ⋂

∂τ−, we use notations n+ and n− to denote the outward unit normal vectors of
e taken from τ+ and τ−, respectively, and fix ne as one of n±. We use notations v+ and v−
to denote the values of a function v on e taken from τ+ and τ−, respectively. Then the jump
notation [v] over an edge e for a scalar valued function v is defined as

[v]|e := (v+n+ + v−n−) · ne.

For a vector-valued function q, the notation [q · n] is defined as
[q · n]|e := q+ · n+ + q− · n−.

Note thatb is the given vector field, which can be any sufficiently smooth function. In order
to solve our problem numerically, we approximate b with a piecewise polynomial vector bh .
In each triangle τ ∈ T , bh |τ is the Raviart–Thomas projection of b onto the Raviart–Thomas
space RT k(τ ), which is defined as follows

(bh |τ , q)0;τ = (b, q)0;τ , ∀q ∈ [Pk−1(τ )]2, (2.12)

(bh |τ · ne, v)0;e = (b · ne, v)0;e, ∀v ∈ Pk(e), ∀e ∈ ∂τ, (2.13)

where Pk(�) denotes the space of polynomials of degree up to k on the domain� ⊂ R
d . We

all know that bh |τ ·ne ∈ Pk(e) on e ∈ ∂τ . Hence, (2.13) shows that bh |τ ·ne on e ∈ ∂τ is just
the L2 projection of b · ne onto Pk(e). Thus, bh · ne is continuous over each interior edge in
T . Another property of the Raviart–Thomas projection is that∇ ·bh |τ is the L2 projection of
∇ · b onto Pk(τ ). Since b is divergence free, we obtain ∇ · bh = 0. In the following content
of this paper, we denote eb = b − bh for simplicity. It is well known that the following error
estimate holds

‖eb‖0;τ � hk+1
τ |b|k+1;τ .

Next, we define two finite element spaces on the constructed staggered mesh:

Uh :=
{
v : v|τ ∈ Pk(τ ),∀τ ∈ T ; v is continuous on e ∈ F0

u ; v|∂� = 0
}

,

Wh :=
{

q : q|τ ∈ [Pk(τ )]2,∀τ ∈ T ; q · ne is continuous on e ∈ Fp

}
.

In the space Uh , we define the following norms

‖v‖2X :=
∫

�

v2dx +
∑
e∈F0

u

he

∫
e
v2ds,

‖v‖2Z :=
∫

�

|∇v|2dx +
∑
e∈Fp

h−1
e

∫
e
[v]2ds,
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where he is the length of e. In the space Wh , we define the following norms

‖q‖2X ′ :=
∫

�

|q|2dx +
∑
e∈Fp

he

∫
e
(q · ne)

2ds,

‖q‖2Z ′ :=
∫

�

(∇ · q)2dx +
∑
e∈F0

u

h−1
e

∫
e
[q · n]2ds.

Based on all concepts introduced above, we are ready to construct a new SDG scheme in
order to approximate the variational form (2.6)–(2.8) satisfied by the exact solution. In our
SDG method, we find the numerical solution (ph, sh, uh) ∈ Wh × Wh ×Uh , such that

(ph, q) = ε(sh, q) − 1

2
(bhuh, q), (2.14)

(sh, q) = B∗
h (uh, q), (2.15)

Bh( ph, v) + 1

2
(bh · sh, v) = ( f, v), (2.16)

for all test functions q ∈ Wh and v ∈ Uh , where

B∗
h (uh, q) = −(uh,∇ · q) +

∑
e∈F0

u

∫
e
uh[q · n]ds,

Bh(ph, v) = (ph,∇v) −
∑
e∈Fp

∫
e

ph · ne[v]ds.

We remark that the variables ph and sh in (2.16) can be eliminated easily by using (2.14)
and (2.15). Thus the scheme consists of one system involving only uh . Comparing with other
types of DG schemes, our SDG scheme has fewer degrees of freedoms due to the additional
continuity condition for uh . On the other hand, it is proved by Chung and Engquist in [18]
that

B∗
h (v, q) = Bh(q, v), ∀v ∈ Uh, ∀q ∈ Wh . (2.17)

Moreover, the following inf-sup condition holds:

K‖v‖Z � sup
q∈Wh

B∗
h (v, q)

‖q‖X ′
, (2.18)

where K is a constant independent of the mesh size.
By using the inf-sup condition of B∗

h , we can prove the following stability of the above
modified SDG method.

Theorem 2.1 Let (ph, sh, uh) ∈ Wh × Wh ×Uh be the solution of the SDG scheme (2.14)–
(2.16). Then the following stability holds:

‖uh‖Z � K

ε
‖ f ‖0;�. (2.19)

Proof The inf-sup condition (2.18) for the operator B∗
h implies that

‖sh‖0;� = sup
q∈Wh

(sh, q)

‖q‖0;� � sup
q∈Wh

B∗
h (uh, q)

‖q‖X ′
� K‖uh‖Z , (2.20)
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where we have used the scheme (2.15). Next, we try to compute ‖sh‖20;�. Taking q = sh ,
q = ph , and v = uh in Eqs. (2.14), (2.15), and (2.16), respectively, we have

(ph, sh) = ε(sh, sh) − 1

2
(bhuh, sh), (2.21)

(sh, ph) = B∗
h (uh, ph), (2.22)

Bh( ph, uh) + 1

2
(bh · sh, uh) = ( f, uh). (2.23)

Combining (2.21) and (2.22), we get

1

2
(bhuh, sh) = ε(sh, sh) − B∗

h (uh, ph). (2.24)

Substituting the above equation into (2.23) and using the property (2.17), we obtain

‖sh‖20;� = 1

ε
( f, uh). (2.25)

Combining (2.20) and (2.25), we obtain

‖uh‖2Z � K‖sh‖20;� = K

ε
( f, uh) � K

ε
‖ f ‖0;�‖uh‖Z . (2.26)

Hence, we arrive the conclusion that

‖uh‖Z � K

ε
‖ f ‖0;�. (2.27)

	

Remark It is noted that the convection term is skew-symmetric and is therefore easy to obtain
the following underlying physical law from the original convection–diffusion equation (1.1):

‖∇u‖20;� = 1

ε
( f, u).

Equation (2.25) is a result of the preservation of the skew-symmetry of the discrete convection
operator and shows that our SDG scheme preserves the above physical property in the discrete
sense. Such property can also enhance the stability when solving the incompressible Navier–
Stokes equations [11]. This is the advantage of using staggered mesh. One can prove that this
physical law is not strictly satisfied by using the local DG (LDG) method due to the usage
of numerical flux.

By using the definition of ‖uh‖Z , the stability of our scheme gives

‖∇uh‖0;� � ‖uh‖Z � K

ε
‖ f ‖0;�. (2.28)

By combining Eqs. (2.26) and (2.27), we can also derive the following bound of sh

‖sh‖0,� � K

ε
‖ f ‖0;�. (2.29)

3 An Adaptive SDG Method

In order to develop an adaptivemesh refinement strategy for the newSDGscheme constructed
in the last section, we will derive a reliable and efficient a-posteriori error estimator for this
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SDG scheme in this section. The error estimator can give a computable estimate of the
numerical error in each triangle τ ∈ T . Thus, we can use it as an error indicator and refine
the mesh adaptively at locations with larger estimated numerical error.

Let (p, s, u) ∈ [L2(�)]2 ×[L2(�)]2 × H1
0 (�) be the exact solution of (2.6)–(2.8) and let

(ph, sh, uh) ∈ Wh × Wh × Uh be the numerical solution of the SDG scheme (2.14)–(2.16).
bh is the Raviart–Thomas projection of b. Then, we denote numerical errors as

eu = u − uh, ebu = bu − bhuh,

ep = p − ph, ebs = b · s − bh · sh .

Moreover, we define the following DG norm of the numerical error

‖(eu, ebu, ep, ebs)‖2DG := ε2|eu |21;� + ‖ep + 1

2
ebu‖20;� + ‖ebs − ∇ · ebu‖20;�

+
∑
e∈Fp

h−1
e ‖[eu]‖20;e. (3.1)

In Sect. 3.1, wewill give an error indicator which gives a locally a-posteriori error estimate
of the above DG norm ‖(eu, ebu, ep, ebs)‖2DG and prove the reliability of it. The efficiency
of this error indicator will be proved in Sect. 3.2. Based on the error indicator, we will give
the adaptive refinement technique in Sect. 3.3.

3.1 Reliability of the Error Indicator

As in the following theorem, we will show that the DG norm of the numerical error defined
in (3.1) is bounded above by a computable error indicator η2, which can be computed locally
on each triangle τ in the mesh. Throughout the paper, the notation α � β means that α ≤ Cβ

for a constant C independent of the mesh size.

Theorem 3.1 Assuming (p, s, u) ∈ [L2(�)]2 ×[L2(�)]2 ×H1
0 (�) be the the exact solution

of (2.6)–(2.8) and denoting the numerical solution of the SDG scheme (2.14)–(2.16) as
(ph, sh, uh) ∈ Wh × Wh ×Uh, we can estimate the DG norm of the numerical error defined
in Eq. (3.1) as

‖(eu, ebu, ep, ebs)‖2DG � η2 =
∑
τ∈T

η2τ , (3.2)

where for each τ ∈ T ,

η2τ := h2τ‖R1‖20;τ + ‖R2‖20;τ + ‖R3‖20;τ + h2τ
ε2

‖eb‖2∞;τ

+
∑

e∈Fp∩τ

h−1
e ‖J1‖20;e +

∑
e∈F0∩τ

he‖J2‖20;e, (3.3)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R1 = f + ∇ · ph − 1
2bh · sh,

R2 = ph − ε∇uh + 1
2bhuh,

R3 = bh · (sh − ∇uh),
J1 = [uh],
J2 = [(ph + 1

2bhuh) · n].
Here, hτ denotes the diameter of the circumcircle of a triangle τ , and he is the length of an
edge e. For each e ∈ ∂τ , it is obvious that he � hτ . Through out this paper, we assume that
our mesh is regular, that is, hτ � he for each e ∈ ∂τ .

123



J Sci Comput (2018) 77:1490–1518 1499

From the definition of η2 and the fact that [u]|e = 0 on e ∈ Fp , we can easily see
that the last term of ‖(eu, ebu, ep, ebs)‖2DG in Eq. (3.1) is also one term in η2, and hence is
automatically bounded by η2. Thus we only need to find the upper estimates for the first three
terms in ‖(eu, ebu, ep, ebs)‖2DG. In the following lemma, we first deal with the second and
third terms.

Lemma 3.2 Under the assumption of Theorem 3.1, we have the following upper estimates:

‖ep + 1

2
ebu‖0;� � ε|eu |1;� +

∑
τ∈T

‖R2‖0;τ , (3.4)

‖ebs − ∇ · ebu‖0;� �
∑
τ∈T

‖R3‖0;τ . (3.5)

Proof We first prove (3.4). By the variation form (2.6), we know that for any q ∈ [L2(�)]2,
we have (

ep + 1

2
ebu, q

)
=

(
p + 1

2
bu, q

)
−

(
ph + 1

2
bhuh, q

)

= ε(∇u, q) −
(

ph + 1

2
bhuh, q

)

= ε(∇(u − uh), q) −
(

ph − ε∇uh + 1

2
bhuh, q

)

= ε(∇eu, q) − (R2, q)

�
(

ε|eu |1;� +
∑
τ∈T

‖R2‖0;τ
)

‖q‖0;�.

Taking q = ep + 1
2ebu ∈ [L2(�)]2, we obtain∥∥∥∥ep + 1

2
ebu

∥∥∥∥
0;�

� ε|eu |1;� +
∑
τ∈T

‖R2‖0;τ .

Wemove on to prove (3.5). Using the fact that b and bh are divergence free, we know that
for any v ∈ L2(�), we have

(ebs − ∇ · ebu, v) = (b · s − b · ∇u, v) − (bh · sh − bh · ∇uh, v)

= (s − ∇u, bv) − (R3, v).

From the variation form (2.7), we get

(s − ∇u, bv) = 0.

Hence, we obtain

(ebs − ∇ · ebu, v) = −(R3, v) �
∑
τ∈T

‖R3‖0;τ‖v‖0;�.

Taking v = ebs − ∇ · ebu ∈ L2(�), we have

‖ebs − ∇ · ebu‖0;� �
∑
τ∈T

‖R3‖0;τ .
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From the above lemma, we know that the remaining thing is to find an upper bound of
ε2|eu |21;�, which is also the first term of ‖(eu, ebu, ep, ebs)‖2DG. For this purpose, we need

to introduce an auxiliary variable uc ∈ H1
0

⋂
Uh as in the following lemma on polynomial

approximations.

Lemma 3.3 Let uh ∈ Uh. There exists uc ∈ H1
0 (�)

⋂
Uh, such that

|uh − uc|21;� �
∑
e∈Fp

h−1
e ‖J1‖20;e. (3.6)

Proof From Theorem 2.2 of [31], we know that there exists uc ∈ H1
0

⋂
Uh such that

|uh − uc|21;� �
∑

e∈F0
u

⋃
Fp

h−1
e ‖J1‖20;e +

∑
e∈∂�

h−1
e ‖uh‖20;e.

By the definition of Uh , we know that J1|F0
u

= 0 and uh |∂� = 0. Hence, we can obtain the
conclusion. 	


Using the triangle inequality, we know that

ε2|eu |21;� � ε2|u − uc|21;� + ε2|uh − uc|21;�,

where the second term on the right hand side is already bounded by a term in our error
indicator as shown in the above lemma. Up to this point, only the first term on the right hand
side, namely, ε2|u − uc|21;�, dose not have an upper estimate. The following lemma shows
that the upper bound of this term is just the “error” obtained by plugging uh into Eq. (2.10),
which is satisfied by the exact solution u, plus another term in our residual.

Lemma 3.4 For uc obtained in Lemma 3.3, we have

ε|u − uc|1;� � sup
v∈H1

0 (�), |v|1;�=1

{( f, v) − B(uh, v)} +
⎛
⎝ ∑

e∈Fp

h−1
e ‖J1‖20;e

⎞
⎠

1
2

, (3.7)

where we remark that the gradient operator∇ in B(uh, v)means the discrete/broken gradient
and B(uh, v) is defined element by element.

Proof By the definitions of B, Bc, Bd , and the fact that Bc(v, v) = 0 for v ∈ H1
0 (�), we

know that

ε|u − uc|21;� = Bd(u − uc, u − uc) = B(u − uc, u − uc)

= B(u − uh, u − uc) + B(uh − uc, u − uc)

= B(u − uh, u − uc) + Bc(uh − uc, u − uc) + Bd(uh − uc, u − uc)

� |u − uc|1;�B

(
u − uh,

u − uc

|u − uc|1;�
)

+ |u − uc|1;�Bc

(
uh − uc,

u − uc

|u − uc|1;�
)

+ ε|uh − uc|1;�|u − uc|1;�,
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and therefore we have

ε|u − uc|1;� � sup
v∈H1

0 (�), |v|1;�=1

{B(u − uh, v) + Bc(uh − uc, v)} + ε|uh − uc|1;�

� sup
v∈H1

0 (�), |v|1;�=1

{( f, v) − B(uh, v) + Bc(uh − uc, v)} + ε|uh − uc|1;�,

(3.8)

where we have used Eq. (2.10) . Since b is divergence free and by using the Cauchy–Schwarz
inequality, for any v ∈ H1

0 with |v|1;� = 1, we obtain

Bc(uh − uc, v) = (b · ∇(uh − uc), v)

� ‖b‖∞|uh − uc|1;�‖v‖0;�
� |uh − uc|1;�, (3.9)

where the last inequality holds because ‖v‖0;� must be bounded. Using (3.8)–(3.9) and
Lemma 3.3, our result follows. 	


Since the second term in the above lemma is already a term in our error indicator, we just
need to further find an upper estimate for supv∈H1

0 (�), |v|1;�=1{( f, v) − B(uh, v)}. Before we
proceed, let us state the following lemma, which states some error bounds of polynomial
estimations.

Lemma 3.5 Let v ∈ H1
0 (�). Then there exists vh ∈ H1

0 (�)
⋂

Uh such that

‖v − vh‖0;τ � hτ‖v‖1;τ , (3.10)

|v − vh |1;τ � ‖v‖1;τ , (3.11)

for all τ ∈ T .

Recall that our goal is to find an upper estimate for supv∈H1
0 (�), |v|1;�=1{( f, v)−B(uh, v)}.

A usual technique in finding this kind of upper estimate is to break down the test function
v into two different parts, namely vh and v − vh , where vh is conformal. This technique is
useful because we can easily use the numerical scheme to replace the term ( f, vh) if vh is
conformal, while the term v−vh usually has some nice approximation properties, as shown in
the last lemma. Next, let us first deal with the conformal part vh . We can prove the following
lemma.

Lemma 3.6 Let v ∈ H1
0 (�) with |v|1;� = 1. Choose vh ∈ H1

0 (�)
⋂

Uh as in Lemma 3.5.
Then,

( f, vh) − B(uh, vh) �
∑
τ∈T

(
‖R2‖0;τ + ‖R3‖0;τ + hτ

ε
‖eb‖∞;τ

)

+
⎛
⎝ ∑

e∈Fp

h−1
e ‖J1‖20;e

⎞
⎠

1/2

. (3.12)

Proof By using (2.16) and the fact that vh ∈ H1
0 (�), we know that

( f, vh) = Bh(ph, vh) + 1

2
(bh · sh, vh) = (ph,∇vh) + 1

2
(bh · sh, vh).
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Hence, by the definitions of B and R2, we have

( f, vh) − B(uh, vh)

= (ph − ε∇uh,∇vh) + 1

2
(bh · sh, vh) − (∇ · (buh), vh)

= (R2,∇vh) − 1

2
(bhuh,∇vh)

+ 1

2
(bh · (sh − ∇uh), vh) + 1

2
(bh · ∇uh, vh) − (∇ · (buh), vh)

= (R2,∇vh) + 1

2
(R3, vh)

− 1

2
(bhuh,∇vh) + 1

2
(bh · ∇uh, vh) − (∇ · (buh), vh) (3.13)

Using the fact that ∇ · b = 0 and integration by parts, we have

−1

2
(bhuh,∇vh) + 1

2
(bh · ∇uh, vh) − (∇ · (buh), vh)

= −1

2
(bhuh,∇vh) − 1

2
(∇ · (buh), vh) + 1

2
(bh · ∇uh, vh) − 1

2
(b · ∇uh, vh)

= 1

2
(ebuh,∇vh) − 1

2
(eb · ∇uh, vh) − 1

2

∑
e∈Fp

∫
e
vhb · ne[uh]. (3.14)

Combining (3.13) and (3.14), we obtain

( f, vh) − B(uh, vh)

= (R2,∇vh) + 1

2
(R3, vh) − 1

2

∑
e∈Fp

∫
e
vhb · ne[uh]

+1

2
(ebuh,∇vh) − 1

2
(eb · ∇uh, vh). (3.15)

Now we deal with the term 1
2 (ebuh,∇vh). By denoting the cell average value of uh on τ as

ūτ , we have

(ebuh,∇vh) =
∑
τ∈T

(eb(uh − ūτ ),∇vh)0;τ +
∑
τ∈T

ūτ (eb,∇vh)0;τ .

By using the fact that ∇vh |τ ∈ [Pk−1(τ )]2 and Eq. (2.12), we know that

(eb,∇vh)0;τ = 0,

and hence

(ebuh,∇vh) =
∑
τ∈T

(eb(uh − ūτ ),∇vh)0;τ

�
∑
τ∈T

‖eb(uh − ūτ )‖0;τ‖∇vh‖0;τ

�
∑
τ∈T

‖eb‖∞;τhτ‖∇uh‖0;τ |vh |1;τ ,
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where we have used the Poincaré inequality. By using (2.28) and the fact that f ∈ L2(�) is
the given source term, we have

(ebuh,∇vh) �
∑
τ∈T

‖eb‖∞;τ
hτ

ε
‖ f ‖0;�|vh |1;τ �

∑
τ∈T

hτ

ε
‖eb‖∞;τ |vh |1;τ . (3.16)

Similarly, for the term − 1
2 (eb · ∇uh, vh), we have

− 1

2
(eb∇uh, vh) = −1

2
(ebvh,∇uh)

= −1

2

∑
τ∈T

(eb(vh − v̄τ ),∇uh)0;τ − 1

2

∑
τ∈T

v̄τ (eb,∇uh)0;τ

� 1

2

∑
τ∈T

‖eb(vh − v̄τ )‖0;τ‖∇uh‖0;τ

�
∑
τ∈T

‖eb‖∞;τhτ |vh |1;τ‖∇uh‖0;τ

�
∑
τ∈T

hτ

ε
‖eb‖∞;τ |vh |1;τ . (3.17)

Substituting (3.16) and (3.17) into (3.15), we obtain

( f, vh) − B(uh, vh)

� (R2,∇vh) + 1

2
(R3, vh)

+
∑
τ∈T

hτ

ε
‖eb‖∞;τ |vh |1;τ − 1

2

∑
e∈Fp

∫
e
vhb · ne[uh]

�
∑
τ∈T

(
‖R2‖0;τ |vh |1;τ + ‖R3‖0;τ‖vh‖0;τ + hτ

ε
‖eb‖∞;τ |vh |1;τ

)

+
∑
e∈Fp

‖b · ne‖∞;e‖vh‖0;e‖J1‖0;e, (3.18)

where we have used the Cauchy–Schwarz inequality. Since b is the given vector field, we
can assume that ‖b · ne‖∞;e is bounded by a constant. By using Lemma 3.5, we know that

‖vh‖0;τ � ‖vh − v‖0;τ + ‖v‖0;τ � hτ‖v‖1;τ + ‖v‖0;τ � ‖v‖1;τ ,
|vh |1;τ � |vh − v|1;τ + |v|1;τ � ‖v‖1;τ .

Since |v|1,� = 1 and hence ‖v‖1,� is bounded, we know that ‖vh‖0;τ and |vh |1;τ have upper
bounds too. Hence, we obtain

( f, vh) − B(uh, vh) �
∑
τ∈T

(
‖R2‖0;τ + ‖R3‖0;τ + hτ

ε
‖eb‖∞;τ

)

+
∑
e∈Fp

‖vh‖0;e‖J1‖0;e. (3.19)

For the last term in (3.19) on edge e = ∂τ1
⋂

∂τ2, we use the standard trace inequality

‖vh‖20;e � h−1
e ‖vh‖21;τe ,
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where τe = τ1
⋃

τ2. Hence, we have

∑
e∈Fp

‖vh‖0;e‖J1‖0;e �

⎛
⎝ ∑

e∈Fp

‖vh‖20;e‖J1‖20;e
⎞
⎠

1
2

�

⎛
⎝ ∑

e∈Fp

h−1
e ‖J1‖20;e

⎞
⎠

1
2

. (3.20)

Substituting (3.20) into (3.19), we obtain

( f, vh) − B(uh, vh) �
∑
τ∈T

(
‖R2‖0;τ + ‖R3‖0;τ + hτ

ε
‖eb‖∞;τ

)
+

⎛
⎝ ∑

e∈Fp

h−1
e ‖J1‖20;e

⎞
⎠

1/2

.

	

Asmentioned before, to find an upper estimate for supv∈H1

0 (�), |v|1;�=1{( f, v)−B(uh, v)},
we still need to consider the non-conformal case as in the following lemma.

Lemma 3.7 Let v ∈ H1
0 (�) with |v|1;� = 1. Choose vh ∈ H1

0 (�)
⋂

Uh as in Lemma 3.5
and denote z = v − vh. Then,

( f, z) − B(uh, z) �
∑
τ∈T

(
hτ‖R1‖0;τ + ‖R2‖0;τ + hτ‖R3‖0;τ + hτ

ε
‖eb‖∞;τ

)

+
⎛
⎝ ∑

e∈F0

he‖J2‖20;e
⎞
⎠

1/2

. (3.21)

Proof By definitions, we have

( f, z) − B(uh, z) = ( f, z) − (ε∇uh,∇z) − (b · ∇uh, z)

= (R1, z) − (∇ · ph, z) + 1

2
(bh · sh, z)

− (ε∇uh,∇z) − (b · ∇uh, z). (3.22)

Using integration by parts, we have

− (∇ · ph, z) = (ph,∇z) −
∑
e∈F0

u

∫
e
z
[
ph · n

]
. (3.23)

Substituting (3.23) into (3.22) and using the definitions of R2 and R3, we can obtain

( f, z) − B(uh, z)

= (R1, z) + (ph,∇z) − (ε∇uh,∇z) + 1

2
(bhuh,∇z) − 1

2
(bhuh,∇z)

+ 1

2
(bh · sh, z) − 1

2
(bh · ∇uh, z) + 1

2
(bh · ∇uh, z)

− (b · ∇uh, z) −
∑
e∈F0

u

∫
e
z
[
ph · n

]

= (R1, z) + (R2,∇z) + 1

2
(R3, z) −

∑
e∈F0

u

∫
e
z
[
ph · n

]

−1

2
(bhuh,∇z) + 1

2
(bh · ∇uh, z) − (b · ∇uh, z).
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Using integration by parts and the fact that bh is divergence free, we have

−1

2
(bhuh,∇z) = 1

2
(bh · ∇uh, z) − 1

2

∑
e∈Fp

∫
e
z [bhuh · n] ,

and hence

( f, z) − B(uh, z)

= (R1, z) + (R2,∇z) + 1

2
(R3, z) − (eb · ∇uh, z) −

∑
e∈F0

∫
e
z

[
(ph + 1

2
bhuh) · n

]

�
∑
τ∈T

(‖R1‖0;τ + ‖R3‖0;τ + ‖eb‖∞;τ‖∇uh‖0;τ
) ‖z‖0;τ +

∑
τ∈T

‖R2‖0;τ |z|1;τ

+
∑
e∈F0

‖z‖0;e‖J2‖0;e.

From Lemma 3.5, we have already known that ‖z‖0;τ � hτ‖v‖1;τ and |z|1;τ � ‖v‖1;τ .
Using the fact that |v|1;� = 1 and (2.28), we obtain

( f, z) − B(uh, z) �
∑
τ∈T

(
hτ‖R1‖0;τ + ‖R2‖0;τ + hτ‖R3‖0;τ + hτ

ε
‖eb‖∞;τ

)

+
∑
e∈F0

‖z‖0;e‖J2‖0;e. (3.24)

For ‖z‖0;e on edge e = ∂τ1
⋂

∂τ2, we employ the following trace inequality [39]

‖z‖20;e � ‖z‖0;τe |z|1;τe + h−1
e ‖z‖20;τe � he‖v‖21;τe ,

where τe = τ1
⋃

τ2. Hence, we obtain

∑
e∈F0

‖z‖0;e‖J2‖0;e �

⎛
⎝ ∑

e∈F0

‖z‖20;e‖J2‖20;e
⎞
⎠

1
2

�

⎛
⎝ ∑

e∈F0

he‖J2‖20;e
⎞
⎠

1
2

.

Our lemma follows by substituting the above equation into (3.24). 	

Combining Lemmas 3.2–3.7, we can prove Theorem 3.1.

Lemma 3.8 Theorem 3.1 holds.

Proof Combining Lemmas 3.6 and 3.7, we know that

sup
v∈H1

0 (�), |v|1;�=1

{( f, v) − B(uh, v)}

� sup
v∈H1

0 (�), |v|1;�=1

{( f, vh) − B(uh, vh)} + sup
v∈H1

0 (�), |v|1;�=1

{( f, z) − B(uh, z)}

�
∑
τ∈T

(
hτ‖R1‖0;τ + ‖R2‖0;τ + ‖R3‖0;τ + hτ

ε
‖eb‖∞;τ

)

+
⎛
⎝ ∑

e∈Fp

h−1
e ‖J1‖20;e

⎞
⎠

1/2

+
⎛
⎝ ∑

e∈F0

he‖J2‖20;e
⎞
⎠

1/2

.
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Hence, by Lemma 3.4, we can get

ε2|u − uc|21;� �

⎛
⎝ sup

v∈H1
0 (�), |v|1;�=1

{( f, v) − B(uh, v)}
⎞
⎠

2

+
∑
e∈Fp

h−1
e ‖J1‖20;e

�
∑
τ∈T

(
h2τ‖R1‖20;τ + ‖R2‖20;τ + ‖R3‖20;τ + h2τ

ε2
‖eb‖2∞;τ

)

+
∑
e∈Fp

h−1
e ‖J1‖20;e +

∑
e∈F0

he‖J2‖20;e

� η2. (3.25)

Combining Lemma 3.3 and the above equation, we obtain

ε2|eu |21;� � ε2|u − uc|21;� + ε2|uh − uc|21;� � η2. (3.26)

From Lemma 3.2, we know that

‖ep + 1

2
ebu‖20;� � ε2|eu |21;� +

∑
τ∈T

‖R2‖20;τ � η2, (3.27)

‖ebs − ∇ · ebu‖20;� �
∑
τ∈T

‖R3‖20;τ � η2. (3.28)

Combining (3.26)–(3.28), our lemma follows. 	

Remark 1 Notice that in our error indicator η2, there is a term with the coefficient h2τ

ε2
. In

our computation, we just assume that the ratio hτ

ε
is bounded above by a constant which is

independent of the mesh size, which is a reasonable assumption.

Remark 2 We can easily see that the last term in ‖(eu, ebu, ep, ebs)‖2DG is in fact the J1 term
in η2. We add it in the DG norm in order to prove the efficiency of η2. It is not hard to find
that the J1 term in η2 comes from the convection part of the original convection–diffusion
equation when we trying to find an upper bound of the diffusion term ε2|eu |21;�. Hence, the
first term |eu |21;� in the DG norm has a coefficient ε2 while the last term h−1

e ‖[eu]‖20 does
not have.

3.2 Efficiency of the Error Indicator

In this section, we will prove the efficiency of the error indicator derived in the last section.
We use the standard bubble function technique, which was introduced by Verfürth [41] in
1994. Let τ ∈ T be a triangle and e ∈ F be an edge with e = τ1 ∩ τ2. We denote by βτ and
βe the standard polynomial bubble functions on τ and e, respectively, which are uniquely
defined by the following properties:

supp βτ ⊂ τ, βτ ∈ P3(τ ), βτ � 0, max
x∈τ

βτ (x) = 1,

and

supp βe ⊂ τ1 ∪ τ2, βe|τi ∈ P2(τi ), i = 1, 2, βe � 0, max
x∈τ1∪τ2

βe(x) = 1.

We first state the following lemmas by Houston et al. in [30]. To save space, we combined
the scalar case and the vector-valued case together.
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Lemma 3.9 (Lemmas 5.1 and 5.2 in [30]) Let v be a scalar/vector-valued polynomial func-
tion on τ . Then

‖βτ v‖0;τ � ‖v‖0;τ (3.29)

‖v‖0;τ �
∥∥β1/2

τ v
∥∥
0;τ (3.30)

‖∇(βτ v)‖0;τ � h−1
τ ‖v‖0;τ (3.31)

Moreover, let e be an edge shared by two triangles, say τ1 and τ2. Let q be a scalar/vector-
valued polynomial function on e. Then

‖q‖0;e �
∥∥∥β

1/2
e q

∥∥∥
0;e (3.32)

Finally, there exists an extension Qb ∈ H1
0 (τ1 ∪ τ2) (in the vector-valued case, Qb ∈

H1
0 ((τ1 ∪ τ2))

2) of βeq such that Qb|e = βeq and

‖Qb‖0;τi � h1/2e ‖q‖0;e (3.33)

‖∇Qb‖0;τi � h−1/2
e ‖q‖0;e (3.34)

for i = 1, 2.

Remark For the vector-valued polynomial case, ∇(βτ v) in (3.31) and ∇Qb in (3.34) mean
∇ · (βτ v) in (3.31) and ∇ · Qb, respectively.

Throughout our discussion, we denote the space of all piecewise polynomials of a fixed
order k0 (k0 ≥ k) on T by P(T ). For any fh ∈ P(T ), we denote e f = f − fh . Noticing
that the error indicator η2 is defined as the sum of the element-wise error indicator η2τ , we
now define the element-wise norm of the numerical error as

‖(eu, ebu, ep, ebs)‖2DG;τ := ε2|eu |21;τ + ‖ep + 1

2
ebu‖20;τ + ‖ebs − ∇ · ebu‖20;τ

+
∑

e∈Fp
⋂

τ

h−1
e ‖[eu]‖20;e.

To prove the efficiency, we consider all terms involved in η2τ one by one. It turns out that each
term can be bounded by the right-hand side of Eq. (3.42). We will first deal with the residual
terms.

Lemma 3.10 For the residual terms R1, R2 and R3, we have

h2τ‖R1‖20;τ � ‖(eu, ebu, ep, ebs)‖2DG;τ + h2τ
ε2

‖(eu, ebu, ep, ebs)‖2DG;τ

+ h2τ‖e f ‖20;τ + h2τ
ε2

‖eb‖2∞;τ ,

‖R2‖20;τ � ‖(eu, ebu, ep, ebs)‖2DG,τ ,

‖R3‖20;τ � ‖(eu, ebu, ep, ebs)‖2DG,τ ,
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Proof We define

v1 := fh + ∇ · ph − 1

2
bh · sh,

v2 := R2 = ph − ε∇uh + 1

2
bhuh,

v3 := R3 = bh · (sh − ∇uh),

which are polynomials on each τ ∈ T , and let vb1 = βτ v1, vb2 = βτ v2 and vb3 = βτ v3.
Then we have R1 = v1 + f − fh , and hence

‖R1‖20;τ � ‖v1‖20;τ + ‖e f ‖20;τ . (3.35)

Next, we find upper bounds of ‖v1‖20;τ , ‖v2‖20;τ and ‖v3‖20;τ . By using the bubble function
technique, we know that

‖v1‖20;τ � ‖β1/2
τ v1‖20;τ = (v1, vb1)0;τ =

(
fh + ∇ · ph − 1

2
bh · sh, vb1

)
0;τ

, (3.36)

‖v2‖20;τ � ‖β1/2
τ v2‖20;τ = (v2, vb2)0;τ =

(
ph − ε∇uh + 1

2
bhuh, vb2

)
0;τ

, (3.37)

‖v3‖20;τ � ‖β1/2
τ v3‖20;τ = (v3, vb3)0;τ = (bh · (sh − ∇uh), vb3)0;τ . (3.38)

Also, the variational form (2.6)–(2.8) gives

(
f + ∇ · p − 1

2
b · s, vb1

)
0;τ

= 0,

(
p − ε∇u + 1

2
bu, vb2

)
0;τ

= 0,

(s − ∇u, bvb3)0;τ = 0.

Subtracting the above equations from (3.36)–(3.38), we get

‖v1‖20;τ �
(

− e f − ∇ · ep + 1

2
ebs, vb1

)
0;τ

= − (e f , vb1)0;τ +
(

ep + 1

2
ebu,∇vb1

)
0;τ

+ 1

2
(ebs − ∇ · ebu, vb1)0;τ

+ (b · ∇eu, vb1)0;τ + (eb · ∇uh, vb1)0;τ ,

� ‖e f ‖0;τ‖vb1‖0;τ + ‖ep + 1

2
ebu‖0;τ‖∇vb1‖0;τ + ‖ebs − ∇ · ebu‖0;τ‖vb1‖0;τ

+ |eu |1;τ‖vb1‖0;τ + ‖eb‖∞;τ‖∇uh‖0;τ‖vb1‖0;τ ,
‖v2‖20;τ �

(
− ep + ε∇eu − 1

2
ebu, vb2

)
0;τ

�
(

‖ep + 1

2
ebu‖0;τ + ε|eu |1;τ

)
‖vb2‖0;τ ,

‖v3‖20;τ � (− ebs + ∇ · ebu, vb3)0;τ � ‖ebs − ∇ · ebu‖0;τ‖vb3‖0;τ .
where we have used integration by parts and the Cauchy–Schwarz inequality. By using the
bubble function technique and by deleting ‖v1‖0;τ , ‖v2‖0;τ and ‖v3‖0;τ from both sides of
the above equations respectively, we get
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‖v1‖0;τ � ‖e f ‖0;τ + h−1
τ ‖ep + 1

2
ebu‖0;τ + ‖ebs − ∇ · ebu‖0;τ

+ |eu |1;τ + ‖eb‖∞;τ‖∇uh‖0;τ ,
‖v2‖0;τ � ‖ep + 1

2
ebu‖0;τ + ε|eu |1;τ ,

‖v3‖0;τ � ‖ebs − ∇ · ebu‖0;τ ,
and hence

h2τ‖v1‖20;τ �
∥∥∥∥ep + 1

2
ebu

∥∥∥∥
2

0;τ
+ h2τ‖ebs − ∇ · ebu‖20;τ + h2τ

ε2
ε2|eu |21;τ

+ h2τ‖e f ‖20;τ + h2τ‖eb‖2∞;τ‖∇uh‖20;τ ,

� ‖(eu, ebu, ep, ebs)‖2DG,τ + h2τ
ε2

‖(eu, ebu, ep, ebs)‖2DG,τ

+ h2τ‖e f ‖20;τ + h2τ‖eb‖2∞;τ‖∇uh‖20;τ ,
‖R2‖20;τ = ‖v2‖20;τ � ‖ep + 1

2
ebu‖20;τ + ε2|eu |21;τ � ‖(eu, ebu, ep, ebs)‖2DG,τ ,

‖R3‖20;τ = ‖v3‖20;τ � ‖ebs − ∇ · ebu‖20;τ � ‖(eu, ebu, ep, ebs)‖2DG,τ .

By using Equation (2.28) and the fact that f ∈ L2(�) is the given source term, we obtain

h2τ‖v1‖20;τ � ‖(eu, ebu, ep, ebs)‖2DG,τ + h2τ
ε2

‖(eu, ebu, ep, ebs)‖2DG,τ

+ h2τ‖e f ‖20;τ + h2τ
ε2

‖eb‖2∞;τ .

Our lemma follows by combining the above formula with (3.35). 	


Now, we proceed to the jump term.

Lemma 3.11 Let e ∈ F0 with e = τ1∩τ2. Assume that the exact solution p ·ne is continuous
on e, then we have

he‖J2‖20;e �
∑
i=1,2

(
‖(eu, ebu, ep, ebs)‖2DG,τi

+ h2e
ε2

‖(eu, ebu, ep, ebs)‖2DG,τi

)

+
∑
i=1,2

(
h2e‖R1‖20,τi + h2e

ε2
‖eb‖2∞;τi

)
. (3.39)

Proof Define q := J2 = [(ph + 1
2bhuh) · n] which is a polynomial on e ∈ F0. Since

u ∈ H1
0 (�), b ∈ H(div,�) and p · ne is continuous on each e ∈ F0, we have

q =
[(

ph + 1

2
bhuh − p − 1

2
bu

)
· n

]
.

We define Qb ∈ H1
0 (τ1 ∪ τ2) be the extension of βeq on τ1 ∪ τ2 such that Qb|e = βeq .

Again, by using the standard bubble function technique, we have
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‖q‖20;e � ‖β1/2
e q‖20;e = (q, Qb)0;e = −

∫
e

[(
ep + 1

2
ebu

)
· n

]
Qbds

= −
∑
i=1,2

∫
τi

∇ ·
(

ep + 1

2
ebu

)
Qb −

∑
i=1,2

∫
τi

(
ep + 1

2
ebu

)
· ∇Qb. (3.40)

Since Qb ∈ H1
0 (τ1 ∪ τ2), the variational form (2.8) gives

∑
i=1,2

∫
τi

(
f + ∇ · p − 1

2
b · s

)
Qb = 0.

Adding the above equation with (3.40), we get

‖q‖20;e �
∑
i=1,2

∫
τi

(
f + ∇ · ph − 1

2
b · s − 1

2
∇ · ebu

)
Qb −

∑
i=1,2

∫
τi

(
ep + 1

2
ebu

)
· ∇Qb

=
∑
i=1,2

∫
τi

(
R1 − 1

2
(ebs − ∇ · ebu) − b · ∇eu − eb · ∇uh

)
Qb

−
∑
i=1,2

∫
τi

(ep + 1

2
ebu) · ∇Qb

�
∑
i=1,2

h
1
2
e

(‖R1‖0,τi + ‖ebs − ∇ · ebu‖0,τi + |eu |1,τi + ‖eb · ∇uh‖0,τi
) ‖q‖0,e,

+
∑
i=1,2

h
− 1

2
e

∥∥∥∥ep + 1

2
ebu

∥∥∥∥
0;τi

‖q‖0;e

where we have used the bubble function technique (3.33) and (3.34). Using (2.28), we know
that

‖eb · ∇uh‖0,τi � ‖∇uh‖0,τi ‖eb‖∞,τi � 1

ε
‖eb‖∞,τi .

Hence, we have

h
1
2
e ‖q‖0;e �

∑
i=1,2

(
he‖R1‖0,τi + he‖ebs − ∇ · ebu‖0,τi + he|eu |1,τi

+he
ε

‖eb‖∞,τi + ‖ep + 1

2
ebu‖0,τi

)
,

and

he‖J2‖20;e �
∑
i=1,2

(
‖(eu, ebu, ep, ebs)‖2DG;τi + h2e

ε2
‖(eu, ebu, ep, ebs)‖2DG;τi

)

+
∑
i=1,2

(
h2e‖R1‖20,τi + h2e

ε2
‖eb‖2∞;τi

)
. (3.41)

	

Combing all the lemmas above, we can get the following theorem about the efficiency.

Theorem 3.12 Let (p, s, u) ∈ [L2(�)]2 × [L2(�)]2 × H1
0 (�) be the the exact solution of

(2.6)–(2.8) and (ph, sh, uh) ∈ Wh × Wh ×Uh be the numerical solution of the SDG scheme
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(2.14)–(2.16). Suppose that the ratio hτ

ε
is bounded above by a constant which is independent

of the mesh size. For any fh ∈ P(T ), we have

η2 � ‖(eu, ebu, ep, ebs)‖2DG +
∑
τ∈T

(
h2τ‖e f ‖20;τ + ‖eb‖2∞;τ

)
. (3.42)

Proof Since we have assumed that for each cell τ ∈ T , the ratio hτ

ε
is bounded by a constant,

we can obtain the following estimation of R1 by using Lemma 3.10:

h2τ‖R1‖20;τ � ‖(eu, ebu, ep, ebs)‖2DG;τ + h2τ‖e f ‖20;τ + ‖eb‖2∞;τ . (3.43)

For each edge e ∈ F0
u with e = τ1 ∩ τ2, since

he
hτi

� 1 for both i = 1 and i = 2. By using

Lemma 3.11 and the above inequality, we know that

he‖J2‖20;e �
∑
i=1,2

(
‖(eu, ebu, ep, ebs)‖2DG,τi

+ h2τi
ε2

‖‖(eu, ebu, ep, ebs)‖2DG,τi

)

+
∑
i=1,2

(
h2τi ‖R1‖20,τi + h2τi

ε2
‖eb‖2∞;τi

)

�
∑
i=1,2

(
‖(eu, ebu, ep, ebs)‖2DG,τi

+ h2τi ‖e f ‖20;τi + ‖eb‖2∞;τi
)

. (3.44)

The remaining proof is trivial by Eqs. (3.43) and (3.44), Lemma 3.10, and the fact that the
term about J1 in η is also a term in ‖(eu, ebu, ep, ebs)‖DG. 	

3.3 The Adaptive Refinement Strategy

As proved in Sects. 3.1 and 3.2, we have already known that η2 is a reliable and efficient
local error estimator. Based on well-established ideas for adaptive algorithms [26,34,35,40],
now we can get a residual-type adaptive mesh refinement strategy for our SDG method by
using η2 to compute an error indicator.

We should notice that our error estimator η2 is defined on each element in T , which is a
staggered mesh constructed based on an initial triangulation T0. The purpose of constructing
T is to implement our scheme in a staggered way, as described in Sect. 2.2. Our adaptive
refinement is constructed based on the initial mesh T0 instead of the final mesh T . To define
an error indicator on each element ρ of the initial mesh T0, we will use the most trivial choice

ξ2ρ : =
∑

τ∈T , τ∩ρ �=∅
η2τ . (3.45)

It is obviously that

η2 =
∑
τ∈T

η2τ =
∑
ρ∈T0

ξ2ρ .

Now we present the adaptive refinement strategy. The idea is that we compute the error
indicator for each element in the initial mesh, locate elements with larger errors and only
refine those elements. After this process, we obtain a new level initial mesh, which can be
used to construct a new staggered mesh and the corresponding solution spaces to form the
new SDG system. With the j-th level initial mesh denoted as T j

0 , we implement our adaptive
refinement scheme by using the following iteration:
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1. Subdivide each triangle in T j
0 to get the staggered mesh. Use the SDG scheme (2.14)–

(2.16) to solve for a numerical solution (p j
h, s jh, u

j
h) ∈ Wh × Wh ×Uh .

2. If the total number of triangles in T j
0 is larger than a threshold N0, we stop the refinement

procedure and use (p j
h, s jh, u

j
h) as the final result. Otherwise, we evaluate ξ2ρ for each

element ρ ∈ T j
0 and thus compute their summation η2.

3. If the total estimated error η2 is less than a threshold value δ0, we stop the refinement
procedure. Otherwise, we use the following two steps to construct a refined mesh T j+1

0 .

4. We enumerate all triangles in T j
0 such that ξρ1 ≥ ξρ2 ≥ ξρ3 ≥ · · · . Choose 0 < θ < 1

and find the least possible value of m such that

θη2 ≤
m∑
i=1

ξ2ρi .

5. Get a new initial mesh T j+1
0 by refining the firstm triangles in T j

0 chosen in the last step

and any other possible triangles which keep the conformity of T j+1
0 .

4 Numerical Examples

In this section,we provide several numerical examples to show the accuracy and the efficiency
of the proposed error indicator and the corresponding adaptive refinement technique. We use
structured triangular meshes. All the numerical experiments are performed on the square
domain � = [0, 1] × [0, 1]. The initial mesh consists of two triangles only, by bisecting the
domain � through (0, 0) and (1, 1). The parameter θ in our adaptive refinement procedure
is chosen to be 0.3. In order to test the ability of our method, we compare our adaptive
refinement strategy with two other refinement schemes: (1) uniform refinement; (2) adaptive
refinement scheme with the error estimator being replaced by the exact error.

For the space Uh , the degree of freedoms in each triangle τ ∈ T are taken as function
values at (k+1)(k+2)

2 points with the requirement that each edge contains k + 1 points. Basis
functions are then just interpolation functions at these points. For each edge e = τ1∩τ2 ∈ F0

u ,
τ1 and τ2 share the same degrees of freedom on e and thus functions inUh will be continuous
over each edge in F0

u . ForWh , we use the Brezzi–Douglas–Marini (BDM) finite element [5].
The degrees of freedom include the values of the normal component at k+1 points per edge.
For k > 1, the degrees of freedom also include integration terms over the triangle. For each
edge e = τ1 ∩ τ2 ∈ Fp , τ1 and τ2 share the same degrees of freedom on e since functions in
Wh should have continuous normal component over each edge in Fp . A detailed description
of the basis functions can be found in [38]. For simplicity, we use piecewise linear elements
(k = 1) for all examples.

Example 1 For the first example, we take ε = 1 and b = (1, 1)T . We consider the exact
solution

u = sin(πx) sin(πy)
[
(x − c1)

2 + (y − c2)
2]1/6 ,

which is singular at (c1, c2), and hence can compute f . We first consider the case with
c1 = 0.5 and c2 = 0.5. In this case, the singularity is located at the mesh interface. We
compare the log-log plots of the numerical error for different refinement schemes in Fig. 2a.
We can see that our scheme performs roughly the same as the adaptive refinement scheme
using the exact error as the error indicator, which confirms the reliability and efficiency of the
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Fig. 2 Example 1 with the singular point (0.5, 0.5). a Comparison of different refinement schemes. b Mesh
level 30

proposed error indicator. Also, it is evident that the error of our adaptive refinement scheme is
less than the error of the uniform refinement schemewhen using the samenumber of elements.
More importantly, we can see that log‖(eu, ebu, ep, ebs)‖DG declines at a rate of 0.5 against
log(number of elements) for our adaptive scheme, which corresponds to order 1 convergence
in 2D domains. This shows that our scheme out-performs the uniform refinement scheme
and attains an optimal rate of convergence for piecewise linear elements. Our adaptive mesh
of level 30 is shown in Fig. 2b. We can see that the refinements are concentrated around the
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Fig. 3 Example 1 with the singular point (0.3, 0.6). a Comparison of different refinement schemes. b Mesh
level 30

point of singularity as expected. We further consider the case with c1 = 0.3 and c2 = 0.6.
In this case, the singularity is not located at the mesh interface. The numerical results are
shown in Fig. 3. We can see that the behavior is largely the same as the previous case, which
confirms the robustness of our scheme.

Example 2 For the second example, we consider the solution with a circular internal layer.
We take ε = 10−4 and b = (2, 3)T . The exact solution is taken as
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Fig. 4 Example 2, circular internal layer. a Mesh level 50. b Contour plot. c 3D plot

u = 16xy(1 − x)(1 − y)

{
1

π
arctan

[
2√
ε
(0.252 − (x − 0.5)2 − (y − 0.5)2)

]
+ 0.5

}
.

Weuse our adaptive refinement scheme to approximate the solution of this example. Figure 4a
shows the adaptive mesh of level 50. We can see that the refinements are more concentrated
around the circular internal layer as expected. The largest edge length in this mesh is 0.25
and the smallest edge length near the layer is 6.51 × 10−4. Figure 4b, c show the contour
plot and also the 3D plot of uh . We can see that the numerical solution possesses a circular
internal layer, which conforms the ability of our scheme to capture the position of the layer.

Example 3 In the third example, we take b = (
1

2
,

√
3

2
), ε = 5 × 10−5 and f = 0. By

denoting ∂�1 = {(x, y) ∈ ∂� : x = 0} ∪ {(x, y) ∈ ∂� : x ≤ 0.5, y = 0}, the boundary
condition for this example is given by

u =
{
1, on (x, y) ∈ ∂�1,

0, on (x, y) ∈ ∂�\∂�1.

For this example, the exact solution is unknown, but it should possess both an internal layer
andboundary layers. InFig. 5,we can see that all the layers are recoveredbyusingour adaptive
refinement scheme, which conforms the ability of our scheme to capture the positions of the
layers. Here we adopt the adaptive mesh level 34. The largest edge length in this mesh is
0.141 and the smallest edge length near the layer is 5.66 × 10−6.
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(a)

(b) (c)

Fig. 5 Example 3, internal and boundary layers. a Mesh level 34. b Contour plot. (c) 3D plot

5 Conclusion

In this paper, we propose a new SDG method in order to solve the steady state convection–
diffusion equation with a small diffusion coefficient ε. A residual-type a-posteriori error
estimator for the numerical solutions solved with this new SDG method is derived. The
reliability and efficiency of this error estimator are also proved.Byusing this error estimator as
the error indicator, an adaptive mesh refinement technique is proposed. Numerical examples
with point singularities and sharp layers are provided, which are computational expensive
for regular uniform refinement methods. We can see that the proposed error indicator is
close to the exact numerical error. Our adaptive mesh refinement method out-performs the
uniform refinement scheme and attains an optimal rate of convergence for piecewise linear
elements. Also, the adaptive method can capture the positions of singular points and sharp
layers accurately, thus can improve the resolution near these places bymaking the meshmore
dense.
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