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Abstract

In this paper, we construct an adaptive multiscale method for solving H(curl)-elliptic prob-
lems in highly heterogeneous media. Our method is based on the generalized multiscale finite
element method. We will first construct a suitable snapshot space, and a dimensional reduc-
tion procedure to identify important modes of the solution. We next develop and analyze an a
posteriori error indicator, and the corresponding adaptive algorithm. In addition, we will con-
struct a coupled offline-online adaptive algorithm, which provides an adaptive strategy to the
selection of offline and online basis functions. Our theory shows that the convergence is robust
with respect to the heterogeneities and contrast of the media. We present several numerical
results to illustrate the performance of our method.

1 Introduction

Many practical problems are modeled by partial differential equations with highly heterogeneous
coefficients. Classical numerical methods for solving these problems typically require very fine
computational meshes, and are therefore very expensive to use. In order to solve these problems
efficiently, one needs some types of model reduction, which is typically based on upscaling techniques
or multiscale methods. In upscaling methods, the heterogeneous coefficient is carefully replaced by
an effective medium [14, 29, 20, 23] so that the system can be solved on a much coarser grid. In
multiscale methods, such as those in [2, 3, 19, 16, 17, 18, 22, 8, 4, 13, 21, 1, 26], one attempts to
represent the solution by some multiscale basis functions. These basis functions are constructed
carefully and are usually based on some local cell problems. The purpose is to capture the fine scale
properties of the true solution by using a few multiscale basis functions, with the aim of reducing
computational costs.

In this paper, we consider the H(curl)-elliptic problem with highly heterogeneous coefficients.
Our aim is to construct a multiscale method for solving this problem. We will consider the gen-
eralized multiscale finite element method (GMsFEM) [15, 5]. GMsFEM is a generalization of the
classical multiscale finite element method [25] in the way that multiple basis functions are used for
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each coarse region. We will consider three important components of the GMsFEM in this paper.
The first one is basis functions construction. This is a process in the offline stage. To find the basis
functions, we will construct a set of snapshot functions for each local coarse region. The snapshot
functions are solutions of local cell problems with some suitable boundary conditions. To obtain
the offline basis functions, we perform a dimension reduction procedure by using a suitable spectral
problem, designed carefully based on analysis. These basis functions are then used in a coarse
scale conforming finite element formulation to solve the problem. The second component is offline
adaptivity [12]. In order to determine the number of offline basis functions to be used for each
coarse region, we will develop a local error indicator based on an a posteriori error analysis. Using
the proposed error indicator, we are able to determine the number of basis functions in an adaptive
way. In addition, we prove the convergence of this approach, and show that the convergence rate is
independent of the heterogeneities of the coefficients. The last component is online adaptivity [10].
The goal of online basis functions is to capture some components, such as global feature, of the
solution that are not representable by offline basis functions. To compute online basis functions,
we solve local cell problems by using local residual of the solution. Moreover, we can do this in an
adaptive way, so that online basis functions are only added in regions with larger errors. We prove
the convergence of the online adaptive method and show that the convergence rate is independent
of the coefficients. We also show that a sufficient number of offline basis functions is needed in
order to obtain a rapid convergence rate of the online adaptive method. We remark that there are
also related methods developed for the discontinuous Galerkin formulation in [7] and [9]. We also
remark that a method based on HMM is developed in [24].

To illustrate the performance of our GMsFEM, we present some numerical results focusing on
the convergence properties of the method. We will first show that the method is robust with
respect to the contrast and heterogeneities of the coefficients. Next, we illustrate the advantage of
using offline adaptivity by comparing the convergence behaviour with uniform basis enrichment,
and show that the offline adaptive method is able to capture the solution more effectively. Finally,
we construct a coupled offline-online adaptive method. It is known that the first few offline basis
functions correspond to the dominant components of the solution, and the rest of the offline basis
functions contribute the solution is a less crucial way. So, one needs to switch to the use of online
basis functions once sufficient number of offline basis functions are used. Our offline-online adaptive
method allows this to be done automatically. By using a suitable error indicator and a suitable
tolerance parameter, we show that the offline-online adaptive method performs very well and give
a practical solver for realistic applications.

The rest of the paper is organized as follows. In the next section, we briefly introduce the basic
idea of the GMsFEM. In Section 3, we will present both the offline and the online adaptive methods,
and in Section 4, we will analyze these methods. In Section 5, numerical results are presented to
illustrate the performance of the adaptive methods. Finally, the paper ends with a conclusion.

2 The GMsFEM

In this section, we will give the construction of our GMsFEM for H(curl)-elliptic problem. First,
we present some basic notations and the coarse grid formulation in Section 2.1. Then, we present
the constructions of the multiscale snapshot functions, basis functions and the multiscale scheme
in Section 2.2. We will mainly present our ideas in the two-dimensional settings. The extension to
the three-dimensional case is straightforward.
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2.1 Preliminaries

Let D be a bounded domain in R2 with a Lipschitz boundary ∂D with unit tangential vector t. In
this paper, we consider the following high-contrast H(curl)-elliptic problem

∇× (a∇× u) + b u = f in D,

u · t = 0 on ∂D,
(1)

where a ≥ 1 is a heterogeneous field with high contrast, b > 0 is a bounded heterogeneous field and
f is a given divergence-free source.

To describe the general solution framework for the model problem (1), we first introduce the
notion of fine and coarse grids. Let T h be a partition of the domain D into fine finite elements. Here
h > 0 is the fine mesh size. The coarse partition, T H of the domain D, is formed such that each
element in T H is a connected union of fine-grid blocks. More precisely, ∀Kj ∈ T H , Kj = ∪F∈IjF
for some Ij ⊂ T h. The quantity H > 0 is the coarse mesh size. We will consider rectangular coarse
elements and the methodology can be used with general coarse elements. An illustration of the
mesh notations is shown in Figure 1(Left).

Figure 1: Left: an illustration of fine and coarse grids. Right: an illustration of a coarse neighbor-
hood and a coarse element.

Next, we define the finite element space Vh as the set of the lowest order curl conforming
elements of Nédélec with respect to the fine mesh T h, and define V 0

h = {v ∈ Vh | v · t = 0 on ∂D}.
The fine-scale solution uh ∈ Vh is obtained by solving the following variational problem∫

D

(
a (∇× uh) (∇× v) + b uh · v

)
=

∫
D

f · v ∀v ∈ V 0
h . (2)

The solution uh is our reference solution. The convergence property of this method is well-known
(see for example [28]).

Finally, for any subdomain Ω ⊂ D, and v ∈ Vh, we define the norms ‖v‖L2(b;Ω) and ‖v‖H(curl)(a,b;Ω)

as

‖v‖2L2(b;Ω) =

∫
Ω

b |v|2

3



and

‖v‖2H(curl)(a,b;Ω) =

∫
Ω

a |∇ × v|2 + b |v|2.

2.2 Construction of multiscale basis functions

In this section, we will give the constructions of our GMsFEM. In Section 2.2.1, we will present
the construction of the snapshot space. To do so, we will locally solve the H(curl)-elliptic problem
on coarse neighborhoods with suitable boundary conditions. This process will provide a set of
functions which are able to span the fine-scale solution with high accuracy. Next, in Section 2.2.3,
we will present the construction of our multiscale basis functions. The construction is based on
the design of a suitable local spectral problem which can identify important modes in the snapshot
space. Finally, we present our multiscale method.

2.2.1 Snapshot Space

We denote the set of all edges of the coarse grid as EH , and let Ne be the total number of interior
edges of the coarse grid. We define the coarse grid neighborhood ωi of an edge Ei ∈ EH as

ωi =
⋃{

K ∈ T H : Ei ∈ ∂K
}

which is the union of all coarse grid blocks having the edge Ei. This concept is illustrated in
Figure 1 (Right).

In each ωi corresponding to an interior coarse edge Ei, we will solve the following local problem

∇× (a∇× ψ(i)
j ) + b ψ

(i)
j = 0, in each element K ⊂ ωi,

ψ
(i)
j · t = 0, on ∂ωi,

ψ
(i)
j · t = δ

(i)
j , on ∂Ei.

(3)

In the above problem, we write Ei =
⋃Ji
j=1 ej , where ej ’s are the fine grid edges contained in Ei,

and we define

δ
(i)
j =

{
1, on ej ,
0, on Ei\ej .

The set of solutions to problem (3) is the local snapshot basis β
(i)
snap. The local snapshot space

V
(i)
snap corresponding to the coarse neighborhood ωi is defined as the span of all the above functions,

that is, V
(i)
snap = span(β

(i)
snap). The global snapshot space, or simply the snapshot space, is defined

as Vsnap =
⊕Ne

i=1 V
(i)
snap. After we construct Vsnap, we can solve snapshot solution usnap ∈ Vsnap by

solving ∫
D

(
a (∇× usnap)(∇× v) + b usnap · v

)
=

∫
D

f · v, ∀v ∈ Vsnap. (4)

2.2.2 Snapshot error

In this section, we will show that the difference between the fine scale solution uh and the snapshot
solution usnap is O(H).
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Theorem 1. Let uh ∈ Vh be the solution of (2) and let usnap ∈ Vsnap be the solution of (4). Then
we have

‖uh − usnap‖H(curl)(a,b;D) ≤ CH ‖f‖L2(D) ,

where C is independent of a and b.

Proof. We choose ûsnap ∈ Vsnap such that ûsnap · t = uh · t on EH . In particular, in each coarse block
K, the following equations hold

∇×
(
a∇×

(
uh − ûsnap

))
+ b

(
uh − ûsnap

)
=f, in K,(

uh − ûsnap

)
· t =0, on ∂K.

The corresponding variational problem is∫
K

a
(
∇×

(
uh − ûsnap

))
(∇× v) + b

(
uh − ûsnap

)
· v =

∫
K

f · v ∀v ∈ V 0
h (K), (5)

where V 0
h (K) = {v is Nédélec elements in K | v · t = 0 on ∂K} . Taking v = uh− ûsnap ∈ V 0

h (K) in
the above equation, we have∥∥uh − ûsnap

∥∥2

H(curl)(a,b;K)
=

∫
K

f
(
uh − ûsnap

)
≤‖f‖L2(K)

∥∥uh − ûsnap

∥∥
L2(K)

.
(6)

Moreover, for any p ∈ Q0
h(K), where Q0

h represents the space of piecewise bilinear functions in fine
grid with zero boundary condition, we take v = ∇p ∈ V 0

h (K) in (5). Since f is divergence-free, we
have ∫

K

b
(
uh − ûsnap

)
· ∇p = 0.

Therefore uh − ûsnap is discrete divergence-free.
By Lemma 7.20 in [27], we have∥∥uh − ûsnap

∥∥2

L2(b;K)
≤ c

∣∣uh − ûsnap

∣∣2
H(curl)(K)

≤ c
∣∣uh − ûsnap

∣∣2
H(curl)(a;K)

,

where the semi-norm |v|H(curl)(a;K) is defined as

|v|2H(curl)(a;K) =

∫
K

a |∇ × v|2.

Note that c is independent of a.
By rescaling, we have∥∥uh − ûsnap

∥∥2

L2(b;K)
≤ c′H2

∣∣uh − ûsnap

∣∣2
H(curl)(a;K)

.

Therefore, ∥∥uh − ûsnap

∥∥2

L2(b;K)
≤ c′H2

1 + c′H2

∥∥uh − ûsnap

∥∥2

H(curl)(a,b;K)

≤ c′H2
∥∥uh − ûsnap

∥∥2

H(curl)(a,b;K)
.
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Combining with (6), we have∥∥uh − ûsnap

∥∥2

H(curl)(a,b;K)
≤ c′H2 ‖f‖2L2(K) .

By Cea’s inequality, we have

‖uh − usnap‖2H(curl)(a,b;K) = inf
v∈∈Vsnap

‖uh − v‖2H(curl)(a,b;K)

≤
∥∥uh − ûsnap

∥∥2

H(curl)(a,b;K)

≤c′H2 ‖f‖2L2(K)

Therefore,

‖uh − usnap‖2H(curl)(a,b;D) =
∑
K

‖uh − usnap‖2H(curl)(a,b;K)

≤
∑
K

c′H2 ‖f‖2L2(K)

=c′H2 ‖f‖2L2(D) .

2.2.3 Offline Space

After we obtain the snapshot spaces Vsnap, we perform a dimension reduction to get a smaller space.
Such reduced space is called the offline space. The reduction is achieved by solving a local spectral
problem on each coarse grid neighborhood ωi. The dominant eigenfunctions will be used to form

the local basis β
(i)
ms. The local spectral problem, in each ωi, is to find real number λ and v ∈ V (i)

snap

such that
ai(v, w) = λ si(v, w), ∀w ∈ V (i)

snap, (7)

where

ai(v, w) =

∫
Ei

b(v · t)(w · t),

si(v, w) =
1

H

∫
ωi

a (∇× v)(∇× w) + b v · w.

The term 1/H is added so that ai and si have the same scale. Note that this does not alter the

eigenfunctions. After solving the spectral problem in each ωi, we arrange the eigenfunctions φ
(i)
j ’s

in ascending order of the corresponding eigenvalues λ
(i)
1 ≤ λ

(i)
2 ≤ ... ≤ λ

(i)
Ji

. We then let β
(i)
ms be

the set of the first li eigenfunctions, where li be the number of offline basis functions. And define

local offline space as V
(i)
ms = span(β

(i)
ms) and global offline space as Vms =

⊕Ne

i=1 V
(i)
ms . Finally, the

GMsFEM is defined as follows. We find ums ∈ Vms by solving∫
D

(
a (∇× ums)(∇× v) + b ums · v

)
=

∫
D

f · v, ∀v ∈ Vms. (8)
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3 Adaptive selection of basis functions

In our GMsFEM (9), one needs to choose the number of basis functions for each coarse neighbor-
hood. An attractive and practical strategy is to do this adaptively. In particular, the number of
basis functions is determined by some local residuals, which measure the accuracy of the solution.
There are two related concepts, namely offline and online adaptivity. In Section 3.1, we will present
the offline adaptivity and in Section 3.2, we will present the online adaptivity.

3.1 Offline adaptive Method

In this section, we will introduce an error indicator on each coarse grid neighborhood. Based on
this estimator, we develop an offline adaptive enrichment method to solve equation (1) iteratively
by adding offline basis functions supported on some coarse grid neighborhoods in each iteration.
We emphasize that all selected basis functions come from the spectral problem (7).

Notice that the offline adaptive method is an iterative process. We use the notation umms to
denote the multiscale solution at the m-th iteration. For each ωi, we define the local residual

operator Rmi as a linear functional on V
(i)
snap by

Rmi (v) =

∫
ωi

a (∇× umms)(∇× v) + b umms · v − f · v, ∀v ∈ V (i)
snap.

We take (ηmi )2 = ‖Rmi ‖
2

(λ
(i)
lmi +1)−1, ηmi ≥ 0 as our error indicator, where

‖Rmi ‖ = sup
v∈V (i)

snap

|Rmi (v)|
‖v‖H(curl)(a,b;ωi)

.

Offline adaptive method: Fix the number θ and δ0 with 0 ≤ θ, δ0 < 1.
We start with iteration number m = 0. Fix initial number of offline basis functions l0i for each ωi
to form the offline space V 0

ms. Then, we go to step 1 below

Step 1: Find the multiscale solution. We solve multiscale solution umms ∈ V mms satisfying∫
D

a (∇× umms)(∇× v) + b umms · v =

∫
D

f · v ∀v ∈ V mms. (9)

Step 2: Compute the error indicators. For each coarse grid neighborhood ωi, we compute the local
error indicator ηmi and rearrange the local error indicators in decreasing order ηm1 ≥ ηm2 ≥
... ≥ ηmNe.

Step 3: Select the coarse grid neighborhoods where basis enrichment is needed. We take the smallest
k, such that

θ

Ne∑
i=1

(ηmi )2 ≤
k∑
i=1

(ηmi )2.

We will enrich the offline space by adding basis functions which are supported in ω1, ω2, ..., ωk.
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Step 4: Add basis functions to the space. For those ωi’s selected from Step 3, we will take the

smallest si such that
λ

(i)

lm
i

+1

λ
(i)

lm
i

+si+1

≤ δ0. We then set lm+1
i = lmi + si. And for other ωi’s, we

set lm+1
i = lmi .

After Step 4, we repeat from Step 1 until the global error indicator
∑Ne
i=1(ηmi )2 is small enough

or the total number of basis functions reaches certain level. The calculations of all the local error
indicators can be costly. However, since the error indicators are independent of each other, the
computation can be done in a parallel approach in order to enhance the efficiency.

3.2 Online adaptive Method

Next, we will present another enrichment algorithm which requires the formation of new basis
functions based on the solution of the previous enrichment level. We call these functions online
basis functions as these basis functions are computed in the online stage of computations. With the
addition of the online basis functions, we can get a much faster convergence rate than the offline
adaptive method. We emphasize that the basis functions are solved using local residuals, and they
are not from the spectral problem (7).

We first define a linear functional which generalizes the residual operator in the offline adaptive

method. Given a region Ω ⊂ D which is a union of some ωi’s, we define VΩ =
⊕

ωi⊂Ω V
(i)
snap. And

define the linear operator RmΩ on VΩ , and the norm ‖RmΩ ‖ by

RmΩ (v) =

∫
Ω

a (∇× umms)(∇× v) + b umms · v − f · v, ∀v ∈ VΩ,

‖RmΩ ‖ = sup
v∈VΩ

|RmΩ (v)|
‖v‖H(curl)(a,b;Ω)

.

Online adaptive method: We start with iteration number m = 0. Fix initial number of offline
basis functions li for each ωi to form the offline space V 0

ms. Then

Step 1: Find the multiscale solution. We solve multiscale solution umms ∈ V mms satisfying (9) in
Offline Adaptive Method.

Step 2: Select non-overlapping regions. We pick non-overlapping region Ωm1 , Ωm2 , ..., ΩmJm ⊂ D
such that each Ωj is a union of some ωi’s.

Step 3: Solve for online basis functions. For each Ωmj , we solve φmj ∈ VΩm
j

such that

RmΩm
j

(v) =

∫
Ωm

j

a (∇× φmj )(∇× v) + b φmj · v, ∀v ∈ VΩ.

Then we set V m+1
ms = V mms

⊕
{φm1 , φm2 , ..., φmJm} .

Note that: By Riesz Representation Theorem,
∥∥φmj ∥∥H(curl)(a,b;Ω)

=
∥∥∥RmΩm

j

∥∥∥ .
After Step 3, we repeat from Step 1 until the global error indicator is small or we have used a

certain number of basis functions.
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4 Convergence Analysis

In this section, we will present the proofs for the convergence of both the offline and the online
adaptive methods. We begin with the following a posteriori error bound for the offline adaptive
method.

Theorem 2. Let usnap ∈ Vsnap be the solution of (4) and let ums ∈ Vms be the solution of (9).
Then we have

‖usnap − ums‖2H(curl)(a,b;D) ≤ Cerr
Ne∑
i=1

‖Ri‖2 (λ
(i)
li+1)−1

where Cerr = CVH
h . The value of CV depends on the polynomial order of the fine grid basis functions

in Vsnap. Here we omit superscript m for brevity of notation.

Proof. We define the global residual operator R as a linear functional on Vsnap by

R(v) =

∫
D

a (∇× ums)(∇× v) + b ums · v − f · v, ∀v ∈ Vsnap.

Thus we have

−R(usnap − ums) =

∫
D

a (∇× ums)(∇× (usnap − ums)) + b ums · (usnap − ums)

− f · (usnap − ums).

(10)

Taking v = usnap − ums in (4), we have

0 =

∫
D

a (∇× usnap)(∇× (usnap − ums)) + b usnap · (usnap − ums)− f · (usnap − ums). (11)

Adding (10) and (11), we have

−R(usnap − ums) =

∫
D

a |∇ × (usnap − ums)|2 + b |usnap − ums|2

= ‖usnap − ums‖2H(curl)(a,b;D) .

Next, we decompose usnap − ums as the sum of functions from V
(i)
snap’s, that is, we write usnap −

ums =
∑Ne

i=1 v
(i) where v(i) ∈ V (i)

snap. And each v(i) is a sum of two functions which are from V
(i)
ms

and V
(i)
snap\V (i)

ms , respectively. We denote the function from V
(i)
snap\V (i)

ms by v
(i)
r .

By the definition of Ri and (9), we know Ri(v) = 0 for all v ∈ V
(i)
ms ⊂ Vms. Therefore,

Ri(v
(i)) = Ri(v

(i)
r ). So, we have

R(usnap − ums) =

Ne∑
i=1

R(v(i)) =

Ne∑
i=1

Ri(v
(i)) =

Ne∑
i=1

Ri(v
(i)
r ).

Using the definition of the spectral problems, we get

|−R(usnap − ums)| =

∣∣∣∣∣
Ne∑
i=1

Ri(v
(i)
r )

∣∣∣∣∣ ≤
Ne∑
i=1

∣∣∣Ri(v(i))
∣∣∣ ≤ Ne∑

i=1

‖Ri‖
(
si(v

(i)
r , v(i)

r )
)1/2

,
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and

si(v
(i)
r , v(i)

r ) ≤H(λ
(i)
li+1)−1ai(v

(i)
r , v(i)

r ) ≤ H(λ
(i)
li+1)−1ai(v

(i), v(i))

=H(λ
(i)
li+1)−1

∫
Ei

b |v(i) · t|2 = H(λ
(i)
li+1)−1

∫
Ei

b |(usnap − ums) · t|2.

Hence,

‖usnap − ums‖2H(curl)(a,b;D) =−R(usnap − ums)

≤
√
H

Ne∑
i=1

‖Ri‖ (λ
(i)
li+1)−1/2

(∫
Ei

b |(usnap − ums) · t|2
)1/2

≤
√
H

(
Ne∑
i=1

‖Ri‖2 (λ
(i)
li+1)−1

)1/2(Ne∑
i=1

∫
Ei

b |(usnap − ums) · t|2
)1/2

≤
√
CVH

h

(
Ne∑
i=1

‖Ri‖2 (λ
(i)
li+1)−1

)1/2

‖usnap − ums‖L2(b;D)

≤
√
CVH

h

(
Ne∑
i=1

‖Ri‖2 (λ
(i)
li+1)−1

)1/2

‖usnap − ums‖H(curl)(a,b;D) .

Therefore,

‖usnap − ums‖2H(curl)(a,b;D) ≤
CVH

h

Ne∑
i=1

‖Ri‖2 (λ
(i)
li+1)−1.

From the proof of Theorem 2, the error between the multiscale solution and the snapshot solution
is bounded above by the norm of the global residual operator R, which in turn can be estimated

by the sum of the error indicator ‖Ri‖2 (λ
(i)
li+1)−1.

Before we move on to the proof of the convergence of the offline adaptive method, we will prove
the following lemma for the error indicator ηi.

Lemma 1. For any α > 0, we have

(ηm+1
i )2 ≤ (1 + α)

λ
(i)
lmi +1

λ
(i)

lm+1
i +1

(ηmi )2 + (1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)
.

Proof. For any v ∈ V (i)
snap, we have

Rmi (v) =

∫
ωi

a (∇× umms)(∇× v) + b umms · v − f · v,

and Rm+1
i (v) =

∫
ωi

a (∇× um+1
ms )(∇× v) + b um+1

ms · v − f · v.

10



Therefore

Rm+1
i (v) =Rmi (v) +

∫
ωi

a (∇× (um+1
ms − umms))(∇× v) + b (um+1

ms − umms) · v

≤Rmi (v) +
∥∥um+1

ms − umms

∥∥
H(curl)(a,b;ωi)

‖v‖H(curl)(a,b;ωi)
.

Taking supremum with respect to v, we get

ηm+1
i ≤

 λ
(i)
lmi +1

λ
(i)

lm+1
i +1

1/2

ηmi +
(
λ

(i)

lm+1
i +1

)−1/2 ∥∥um+1
ms − umms

∥∥
H(curl)(a,b;ωi)

.

Using the Young’s inequality, we obtain the required result.

Using this lemma, we prove the following result for the convergence of the offline adaptive
method.

Theorem 3. There exists ρ > 0 and a non-increasing sequence of positive number {Lj} such that

∥∥usnap − um+1
ms

∥∥
H(curl)(a,b;D)

+
1

Lj

Ne∑
i=1

(
ηm+1
i

)2 ≤ εj (‖usnap − umms‖H(curl)(a,b;D) +
1

Lj

Ne∑
i=1

(ηmi )
2

)

for any j ≤ m, where ρ satisfies 1− (1− δ0)θ < ρ < 1, and εj =
CerrLj+ρ
CerrLj+1 .

Proof. Let I be the set of indices i such that ωi is chosen for basis enrichment. Using Lemma 1,
we have

Ne∑
i=1

(
ηm+1
i

)2 ≤ Ne∑
i=1

(1 + α)
λ

(i)
lmi +1

λ
(i)

lm+1
i +1

(ηmi )
2

+ (1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)

 .

Writing the above sum as a sum over I and a sum over the complement of I, we have

Ne∑
i=1

(
ηm+1
i

)2
=
∑
i∈I

(1 + α)
λ

(i)
lmi +1

λ
(i)

lm+1
i +1

(ηmi )
2

+
∑
i/∈I

(1 + α) (ηmi )
2

+

Ne∑
i=1

(1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)

Using the criterion in the Step 4 in the offline adaptive algorithm, we have

Ne∑
i=1

(
ηm+1
i

)2 ≤∑
i∈I

(1 + α)δ0 (ηmi )
2

+
∑
i/∈I

(1 + α) (ηmi )
2

+

Ne∑
i=1

(1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)
.

11



Next, using the criterion in the Step 3 in the offline adaptive algorithm, we have

Ne∑
i=1

(
ηm+1
i

)2
=(1 + α)

Ne∑
i=1

(ηmi )
2 − (1 + α)(1− δ0)

∑
i∈I

(ηmi )
2

+

Ne∑
i=1

(1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)

=(1 + α)

Ne∑
i=1

(ηmi )
2 − (1 + α)(1− δ0)θ

Ne∑
i=1

(ηmi )
2

+

Ne∑
i=1

(1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)

=(1 + α)(1− (1− δ0)θ)

Ne∑
i=1

(ηmi )
2

+

Ne∑
i=1

(1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)
.

Since all ωi’s will overlap for no more than 4 times, we have following estimate

Ne∑
i=1

(1 + α−1)
(
λ

(i)

lm+1
i +1

)−1 ∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;ωi)
≤ Lm

∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;D)
,

where

Lm =4(1 + α−1)

(
max

1≤i≤Ne

(
λ

(i)

lm+1
i +1

)−1
)

= 4(1 + α−1)/Λm∗ ,

Λm∗ = min
1≤i≤Ne

λ
(i)

lm+1
i +1

.

Note that Lm is non-increasing. Let ρ = (1 +α)(1− (1− δ0)θ), and take α small enough such that
0 < ρ < 1, we have the estimate

Ne∑
i=1

(
ηm+1
i

)2 ≤ρ Ne∑
i=1

(
ηm+1
i

)2
+ Lm

∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;D)

≤ρ
Ne∑
i=1

(
ηm+1
i

)2
+ Lj

∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;D)
.

(12)

On the other hand, combining (4) and (9), we have∫
D

a (∇× (usnap − um+1
ms )) · (∇× v) + b (usnap − um+1

ms ) · v = 0 ∀v ∈ V m+1
ms .

Taking v = um+1
ms − umms ∈ V m+1

ms , we have∫
D

a (∇× (usnap − um+1
ms )) · (∇× (um+1

ms − umms)) + b (usnap − um+1
ms ) · (um+1

ms − umms) = 0.

12



Therefore,

‖usnap − umms‖
2
H(curl)(a,b;D) =

∥∥usnap − um+1
ms

∥∥2

H(curl)(a,b;D)
+
∥∥um+1

ms − umms

∥∥2

H(curl)(a,b;D)
,

and consequently,∥∥um+1
ms − umms

∥∥2

H(curl)(a,b;D)
= ‖usnap − umms‖

2
H(curl)(a,b;D) −

∥∥usnap − um+1
ms

∥∥2

H(curl)(a,b;D)
.

Combining the above with (12), we obtain

∥∥usnap − um+1
ms

∥∥2

H(curl)(a,b;D)
+

1

Lj

Ne∑
i=1

(ηm+1
i )2 ≤ ‖usnap − umms‖

2
H(curl)(a,b;D) +

ρ

Lj

Ne∑
i=1

(ηmi )2. (13)

By Theorem 2, and for any β > 0, we have

β ‖usnap − umms‖
2
H(curl)(a,b;D) ≤ βCerr

Ne∑
i=1

(ηmi )2. (14)

Adding (13) and (14), we get

∥∥usnap − um+1
ms

∥∥2

H(curl)(a,b;D)
+

1

Lj

Ne∑
i=1

(ηm+1
i )2 ≤ (1−β) ‖usnap − umms‖

2
H(curl)(a,b;D)+(βCerr+

ρ

Lj
)

Ne∑
i=1

(ηmi )2.

Setting β = 1−ρ
1+CerrLj

, we have

∥∥usnap − um+1
ms

∥∥2

H(curl)(a,b;D)
+

1

Lj

Ne∑
i=1

(ηm+1
i )2 ≤ (1−β) ‖usnap − umms‖

2
H(curl)(a,b;D)+

1− β
Lj

Ne∑
i=1

(ηmi )2.

Finally, let εj = 1− β =
CerrLj+ρ
CerrLj+1 . Then we have completed the proof.

From Theorem 3, to have a fast convergence, we need εj to be small which requires a small ρ.
Since ρ = (1 + α)(1− (1− δ0)θ), we can take α small enough such that ρ ≈ (1− (1− δ0)θ). So we
need a small δ0 and a large θ, which means that we need to select more ωi’s to add basis; and for
each selected ωi, we add more eigenfunctions to offline basis. And this conclusion is coincide with
our intuition.

Finally, we state and prove the convergence of the online adaptive method.

Theorem 4. Let umms be the solution of the online adaptive method at the m-th iteration. Then we
have ∥∥usnap − um+1

ms

∥∥2

H(curl)(a,b;D)
≤ ‖usnap − umms‖

2
H(curl)(a,b;D) −

Jm∑
j=1

∥∥∥RmΩm
j

∥∥∥2

.

In addition, assume that the initial space contains li offline basis functions for the region ωi. Then
we have ∥∥usnap − um+1

ms

∥∥2

H(curl)(a,b;D)
≤ (1− E) ‖usnap − umms‖

2
H(curl)(a,b;D)

where

E =

Jm∑
j=1

∥∥∥RmΩm
j

∥∥∥2 (
Cerr

Ne∑
i=1

‖Ri‖2 (λ
(i)
li+1)−1

)−1

.

13



Proof. For any v ∈ V m+1
ms ,∥∥usnap − um+1

ms + v
∥∥2

H(curl)(a,b;D)

=
∥∥usnap − um+1

ms

∥∥2

H(curl)(a,b;D)
+ ‖v‖2H(curl)(a,b;D)

+ 2

∫
D

a (∇× (usnap − um+1
ms )) · (∇× v) + b (usnap − um+1

ms ) · v

=
∥∥usnap − um+1

ms

∥∥2

H(curl)(a,b;D)
+ ‖v‖2H(curl)(a,b;D)

≥
∥∥usnap − um+1

ms

∥∥2

H(curl)(a,b;D)
.

Let v = um+1
ms − umms + φm1 + ...+ φmJm ∈ V m+1

ms . Then we have∥∥usnap − um+1
ms

∥∥2

H(curl)(a,b;D)

≤‖usnap − umms + φm1 + ...+ φmJm‖2H(curl)(a,b;D)

= ‖usnap − umms‖
2
H(curl)(a,b;D) + ‖φm1 + ...+ φmJm‖2H(curl)(a,b;D)

+ 2

∫
D

a (∇× (usnap − umms)) · (∇× (φm1 + ...+ φmJm)) + b (usnap − umms) · (φm1 + ...+ φmJm)

= ‖usnap − umms‖
2
H(curl)(a,b;D) + ‖φm1 + ...+ φmJm‖2H(curl)(a,b;D)

− 2

∫
D

a (∇× umms) · (∇× (φm1 + ...+ φmJm)) + b umms · (φm1 + ...+ φmJm)− f · (φm1 + ...+ φmJm).

Using the definition of the residual RmΩm
j

, we have∥∥usnap − um+1
ms + v

∥∥2

H(curl)(a,b;D)

= ‖usnap − umms‖
2
H(curl)(a,b;D) +

Jm∑
j=1

∥∥φmj ∥∥2

H(curl)(a,b;D)
− 2

Jm∑
j=1

RmΩm
j

(φmj )

= ‖usnap − umms‖
2
H(curl)(a,b;D) +

Jm∑
j=1

∥∥φmj ∥∥2

H(curl)(a,b;D)
− 2

Jm∑
j=1

∥∥φmj ∥∥2

H(curl)(a,b;D)

= ‖usnap − umms‖
2
H(curl)(a,b;D) −

Jm∑
j=1

∥∥φmj ∥∥2

H(curl)(a,b;D)

= ‖usnap − umms‖
2
H(curl)(a,b;D) −

Jm∑
j=1

∥∥∥RmΩm
j

∥∥∥2

.

This completes the proof of the first part. The proof for the second part is a direct consequence of
Theorem 2.

We remark that, at each iteration, we need to choose proper Ωj ’s in order to obtain large

value for the term
∑Jm

j=1

∥∥∥RmΩm
j

∥∥∥2

. Moreover, the convergence rate of the online adaptive method is

1 − E. We remark that one obtains faster convergence if the initial space contains eigenfunctions
corresponding to small eigenvalues.
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5 Numerical Results

In this section, we will present two numerical examples with two different source fields f = (f1, f2),
shown in Figure 2, defined as follows:

Example 1: f1 =

 100, 0.1 < y < 0.2,
10000, 0.4 < y < 0.45,

1, otherwise;
f2 =

−200, 0.2 < x < 0.25,
1500, 0.65 < x < 0.75,

5, otherwise.

Example 2: f1 =


10, x− y ≤ −0.6,
−2, x− y ≥ 0.6,
200, x+ y ≤ 0.4,
100, x+ y ≥ 1.6,
0, otherwise;

f2 =


10, x− y ≤ −0.6,
−2, x− y ≥ 0.6,
−200, x+ y ≤ 0.4,
−100, x+ y ≥ 1.6,

0, otherwise.

Figure 2: Top: f1, f2 in Example 1. Bottom: f1, f2 in Example 2.
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In our simulations, we set b = 1. The space domain D is taken as the unit square [0, 1]× [0, 1]
and is divided into 200× 200 fine elements consisting of uniform squares. To measure the accuracy,
we will use the following error quantities:

ẽ1 =
‖uh − usnap‖H(curl)(a,b;D)

‖uh‖H(curl)(a,b;D)

,

e1 =
‖usnap − ums‖H(curl)(a,b;D)

‖usnap‖H(curl)(a,b;D)

, e2 =
‖usnap − ums‖L2(D)

‖usnap‖L2(D)

.

First of all, we consider the error of usnap. We test different contrast values of a, i.e. a =
κ2, κ4, κ6, respectively, where κ is shown in Figure 3 with red denotes the value 10 and blue
denotes the value 1. We also test different sizes of coarse blocks, i.e. H = 0.1, 0.05, 0.025. From
Table 4, we can see that contrast values do not affect the error, and error converges in first order
with respect to H. This verifies the conclusion in Theorem 1.

Figure 3: κ

H \ Contrast 1e+2 1e+4 1e+6
0.1 22.02% 22.02% 22.02%
0.05 11.74% 11.71% 11.71%
0.025 5.73% 5.70% 5.70%

H \ Contrast 1e+2 1e+4 1e+6
0.1 23.93% 23.92% 23.92%
0.05 11.90% 11.89% 11.89%
0.025 5.94% 5.94% 5.94%

Figure 4: ẽ1 comparison of different coarse size and different contrast values. Left: Example 1.
Right: Example 2.

Next, we consider the error of ums using offline and online adaptive methods. We first compare
offline adaptive method with uniform enrichment. Uniform enrichment means in each enrichment
level we uniformly add one eigenfunction to multiscale space from each coarse neighborhood. We
fix the contrast values to be 1e+4, and coarse block size H = 0.1. And we will keep the same setting
for the future numerical analysis. For Example 1, we choose initial number = 1, θ=0.2, δ0=0.7.
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The error graph is shown in Figure 5. And for Example 2, we choose initial number = 2, θ=0.2,
δ0=0.5. The error graph is shown in Figure 6. We can see the error decays faster while using offline
adaptive method than using uniform enrichment.

Figure 5: Error comparison for Example 1. Along x-axis: Dimensions of Vms (DOF). Along y-axis:
Relative errors. Left: e1. Right: e2.

Figure 6: Error comparison for Example 2. Along x-axis: Dimensions of Vms (DOF). Along y-axis:
Relative errors. Left: e1. Right: e2.

Next, we introduce a new algorithm which combines offline adaptive method and online adaptive
method. The idea is that we first use offline adaptive method, and want to switch to online adaptive
method when error decay becomes low. To achieve this, we use a user-defined criterion and the full
algorithm is shown in Algorithm 1.

For both examples, we keep the same setting of initial number, θ and δ0 as before. And we
choose δ = 0.5, total online iterations = 4 and percentage = 25%. Then the error graphs are
shown in Figures 7 and 8. We can see the point very clear when we switch to online adaptive
method, and the error decay becomes much faster after that.

We give a final note regarding the implementation. In the part of online adaptive method,
we will select non-overlapping regions. Here we introduce one option used in the numerical test
above. We define a term ”square coarse region”, which represents a region consisting of 2×2 coarse
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Algorithm 1 Offline-online adaptive method

Choose total online iterations, initial number, 0 < θ, δ0, percentage < 1.
Set flag = 0, m = 0, J = ∅.
while flag = 0 do . During the While loop, we use offline method.

if m = 0 then
In each ωi, set li = initial number and take first li eigenfunctions as multiscale basis.

else
For each ωi, we compute the local error indicators ηi. And we find the smallest k, such

that: if we define a subset I of {ωi}Ne
1 and the members in I are just corresponding to the k

largest ηi, the following condition holds

∑
ωi∈I

η2
i ≥ θ

Ne∑
i=1

η2
i .

for all ωi ∈ I do
Take the smallest si such that

λ
(i)
li+1

λ
(i)
li+si+1

≤ δ0.

Add si more eigenfunctions to multiscale basis.

if
λ

(i)
li+si

λ
(i)
li+si+1

≥ δ then

Add ωi to J . . J collects the coarse neighborhoods that reach the bound.
end if
if |J|
|{ωi}Ne

1 |
≥ percentage then . | · | represents the cardinality of a set.

flag = 1. . There are enough coarse neighborhoods reaching the bound.
end if

end for
li ← li + si.

end if
Compute multiscale solution.
m← m+ 1.

end while
m = 1.
while m ≤ total online iterations do . During the While loop, we use online method.

Select non-overlapping regions, and add online basis function to multiscale basis.
Compute multiscale solution.
m← m+ 1.

end while
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Figure 7: Error comparison for Example 1. Along x-axis: Dimensions of Vms (DOF). Along y-axis:
Relative errors. Left: e1. Right: e2.

Figure 8: Error comparison for Example 2. Along x-axis: Dimensions of Vms (DOF). Along y-axis:
Relative errors. Left: e1. Right: e2.

elements. Square coarse regions are denoted by ωi,j , where i = 1, ..., Nx− 2 and j = 1, ..., Ny − 2
and Nx and Ny are the number of coarse nodes in the x and y directions respectively. We will
divide all ωi,j into four group I1, I2, I3, and I4 depending on the party of (i, j). Then each group
is a set of non-overlapping regions. At each level, in order to determine which group we choose,

we need to compare
∑
ωi,j∈I1

∥∥∥Rmωi,j

∥∥∥2

,
∑
ωi,j∈I2

∥∥∥Rmωi,j

∥∥∥2

,
∑
ωi,j∈I3

∥∥∥Rmωi,j

∥∥∥2

and
∑
ωi,j∈I4

∥∥∥Rmωi,j

∥∥∥2

,

and choose the largest one.

6 Conclusion

In this paper, we present an adaptive multiscale method for H(curl)-elliptic problems with het-
erogeneous coefficients. We develop an adaptive basis enrichment procedure for the selection of
basis functions. We also propose an offline-online approach, so that one can automatically use both
offline and online basis functions. In addition, the convergence of both the offline and the online
adaptive methods are shown, and our results indicate that the convergence is independent of the
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heterogeneities and the contrast of the coefficients. Finally, some numerical results are presented
to validate the scheme. In the future, we plan to develop multiscale method using the constraint
energy minimization approach [11, 6], as well as a unified approach based on the idea in this paper
and the constraint energy minimization approach.
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