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LOCAL AUTOMORPHISMS OF OPERATOR ALGEBRAS

Jung-Hui Liu and Ngai-Ching Wong

Abstract. A not necessarily continuous, linear or multiplicative function
θ from an algebra A into itself is called a local automorphism if θ agrees
with an automorphism of A at each point in A. In this paper, we study the
question when a local automorphism of a C*-algebra, or a W*-algebra, is an
automorphism.

1. INTRODUCTION

Let A be an algebra and θ be a function from A into A. We call θ an automor-
phism if θ is bijective, linear, and multiplicative. We call θ a local automorphism
if θ agrees at each point a in A with an automorphism θa of A, i.e., θ(a) = θa(a).
Note that θa may depend on a. This notion obviously relates to the properties of
preserving invertibility, commutativity, idempotents, square zero elements, and more
important, spectra (see, e.g., [13, 7, 27, 31, 9-11,29]). The potential applications in
mathematical physics is also clear (see, e.g., [25]). In this paper, we will investigate
when a local automorphism of an operator algebra is an automorphism.

A local automorphism sends 0 to 0, and 1 to 1 in case A is unital, but else it can
be arbitrary. For example, let H be a complex Hilbert space and B(H) the algebra
of all bounded linear operators on H . Define an equivalence relation on B(H) by
saying that A and B are equivalent if there is a unitary operator U on H such that
A = UBU∗. Assign to each member in an equivalence class [A] the same unitary
U[A], and then define θ : B(H) → B(H) by

θ(A) = U[A]AU∗
[A], for all A in B(H).

It is easy to see that θ is a bijective local automorphism of B(H) preserving norm.
Unless all U[A] are equal, however, θ does not observe any algebraic structure of
B(H).
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To get a meaningful theory it seems to be necessary to assume linearity, sur-
jectivity and/or continuity of a local automorphism. Note that injectivity is free
whenever linearity presents. On the other hand, local automorphisms are spectrum
preserving. It then follows from a result of Aupetit that a surjective linear local
automorphism of a semisimple Banach algebra is automatically bounded (see, e.g.,
[2]). But such linear (and thus continuous and injective) automorphisms can be not
surjective (see Example 3.3 below, and see also [24, Example 2.8]).

The notion of local automorphisms is introduced by Larson and Sourour [23].
They showed that every invertible linear local automorphism of a matrix algebra is
either an automorphism or an anti-automorphism, and that of B(H) is an automor-
phism whenever H is an infinite dimensional Hilbert space (see also Brešar and
Šemrl [8].)

In this paper, we will see that a surjective linear local automorphism θ of a von
Neumann algebra N is a Jordan isomorphism. In case N is properly infinite, θ is
an automorphism. On the other hand, linear local automorphisms of abelian C*-
algebras are always algebra homomorphisms. They are not necessarily surjective,
however. A sufficient condition ensuring surjectivity is that the pure state space is
first countable, and a counter example is provided when this does not hold.

We do not know too much about linear local automorphisms of non-abelian
C*-algebras, except for those with real rank zero. In comparison, there is a similar
concept called local derivations. In [21], Kadison showed that every bounded linear
local derivation of a von Neumann algebra is a derivation, and in [30], Shul’man
extended this to the case of C*-algebras. See also similar results of Brešar [6] and
Johnson [20].

We are grateful to Matej Brešar, Martin Mathieu and Peter Šemrl for many
helpful comments. Special thanks are due to Lajos Molnár for reading through a
preliminary version of this paper and providing useful advice.

2. LOCAL AUTOMORPHISMS OF W*-ALGEBRAS

We first state some properties of a local automorphism without proof.

Lemma 2.1. Let θ be a local automorphism of an algebra A.

(1) θ preserves k-potents for k = 2, 3, . . .; more precisely, ak = a if and only if
θ(a)k = θ(a).

(2) θ preserves k-power zero elements; more precisely, ak = 0 if and only if
θ(a)k = 0.

(3) θ preserves central elements.
(4) θ preserves left (resp. right, two-sided) zero divisors.



Local Automorphisms of Operator Algebras 613

(5) θ preserves zeros of polynomials, and thus algebraic elements.
(6) If A is unital, then θ preserves left (resp. right, two-sided) invertibility.
(7) If A is unital, then θ preserves left (resp. right, two-sided) spectra.
(8) If θ is linear, then we can extend θ uniquely to a local automorphism of the

unitalization of A by setting θ(1) = 1.

In [23], Larson and Sourour show that every linear local automorphism of the
matrix algebra Mn(C) is either of the form A �→ TAT−1 or of the form A �→
TAtT−1 for some nonsingular matrix T . Indeed, a matrix A and its transpose At

have the same Jordan form, and thus A and At are similar to each other. Therefore,
the map A �→ At is a surjective linear local automorphism, but not an automorphism
for n > 1.

Recall that a Jordan homomorphism of an algebra is a linear map preserving
the Jordan product a ◦ b = ab+ ba. The following result was proved by Brešar and
Šemrl [11]. See also [6, 7]. We sketch the proof here for completeness.

Theorem 2.2. [Brešar and Šemrl] Every bounded linear local automorphism θ
of a W*-algebra N is a Jordan homomorphism.

Proof. By Lemma 2.1, θ sends idempotent elements to idempotent elements.
It follows that θ sends orthogonal idempotents to orthogonal idempotents. By the
spectral theory, every self-adjoint element a in N can be approximated in norm by
linear sums of orthogonal projections. More precisely,

a = lim
n

∑

k

λnkPnk,

for some families of finitely many orthogonal projections Pnk . By the boundedness
of θ, we have

θ(a) = lim
n

∑

k

λnkθ(Pnk).

The above observation implies that

θ(a)2 = lim
n

∑

k

λ2
nkθ(Pnk) = θ(a2).

Now for all self-adjoint a, b in N , the equality θ((a + b)2) = (θ(a + b))2 gives
θ(ab + ba) = θ(a)θ(b) + θ(b)θ(a). We see that θ is a Jordan homomorphism by
observing the equality (θ(a + ib))2 = (θ(a) + iθ(b))2 = θ((a + ib)2).

We provide a refinement of Theorem 2.2 below.

Theorem 2.3. Suppose the range of a linear local automorphism θ of a W*-
algebra N is a W*-algebra. Then θ is automatically bounded, and thus a Jordan
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homomorphism. If, in addition, N is properly infinite, then θ is an algebra homo-
morphism.

Proof. The first assertion was proved in [15]. Indeed, surjective spectrum pre-
serving linear maps between semisimple Banach algebras are automatically bounded
(see, e.g., [2]. By Theorem 2.2, we see that θ is a Jordan homomorphism.

From now on, suppose N is properly infinite. That is, every nonzero central
projection in N is infinite. By a result of Brešar [5] (see also [1]), there are σ-
weakly closed ideals I, J of N and ideals I ′, J ′ of θ(N ) such that N = I ⊕ J ,
θ(N ) = I ′ ⊕ J ′, and θ induces an algebra isomorphism from I onto I′ and an
anti-isomorphism from J onto J′. In particular, θ(ab) = θ(b)θ(a) for all a, b in J .

Suppose J is not zero, for else we are done. Let 1I , 1J be the orthogonal central
projections in N such that I = 1IN and J = 1JN . Since 1J is not finite, there is
a partial isometry p in J such that p∗p = 1J but pp∗ < 1J . Observe

(p∗ + 1I)(p + 1I) = p∗p + 1I = 1,

(p + 1I)(p∗ + 1I) = pp∗ + 1I < 1.

Hence, p + 1I is not right invertible. It follows from Lemma 2.1 that θ(p + 1I) is
not right invertible, either. On the other hand,

1 = θ(1) = θ((p∗ + 1I)(p + 1I))

= θ(p∗p) + θ(1I) = θ(p)θ(p∗) + θ(1I)

= (θ(p) + θ(1I))(θ(p∗) + θ(1I)).

This says θ(p + 1I) is right invertible, a contradiction.

A linear local automorphism θ of a von Neumann algebra N sends central
projections to central idempotents, indeed projections, as θ also preserves spectra.
Let I = Np be a σ-weakly closed two-sided ideal of N with p a central projection
in N . By Theorem 2.2, θ preserves Jordan products, and thus

θ(ap) = (θ(a)θ(p) + θ(p)θ(a))/2 = θ(a)θ(p), ∀a ∈ N .

Hence, θ(I) = θ(N )θ(p) is also a σ-weakly closed two-sided ideal of N if θ is
surjective. By a result of Sakai [28, Corollary 4.1.23], every algebra isomorphism
between two W*-algebras are of the form a �→ π(uau−1) where π is a σ-weakly bi-
continuous ∗-isomorphism and u is an invertible element in the domain. A similar
result also holds for algebra anti-isomorphisms. Thus, θ preserves types of ideals,
too. In view of Theorem 2.3 and results of Larson and Sourour [23], and Brešar
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and Šemrl [8], there is just only one case not completely clear to us at this moment,
and we make it as a

Problem 2.4 Can a surjective linear local automorphism of a von Neumann
algebra of type II1 be an anti-automorphism?

3. LOCAL AUTOMORPHISMS OF C*-ALGEBRAS

Some of above arguments also apply to linear local automorphisms of C*-
algebras of real rank zero. However, another result of Brešar [4] about the structure
of Jordan homomorphisms between C*-algebras might be used instead of that in [5]
(see also [12]). Note that every self-adjoint element in such an algebra can also be
approximated in norm by linear sums of orthogonal idempotents. Recall also that a
C*-algebra is purely infinite if every hereditary C*-subalgebra is infinite.

Theorem 3.1. Let θ be a linear local automorphism of a C*-algebra A of
real rank zero. Suppose the range of θ is a C*-algebra. Then θ is a Jordan
homomorphism. If, in addition, A is purely infinite, then θ is an automorphism.

Due to the lack of projections, we do not know whether the above theorem
holds or not if the C*-algebra is not of real rank zero. However, the abelian case is
completely done. The following result is due to Molnár and Zalar [26]. We sketch
a proof here for completeness.

Theorem 3.2. ([26]). Every complex linear local automorphism θ of an abelian
C*-algebra A = C0(X) is an isometric algebra homomorphism. In case X is first
countable, θ is an automorphism.

Proof. Note that every isometric algebra homomorphism (resp. automorphism)
of C0(X) arises from a composition f �→ f ◦ φ with a quotient map (resp. homeo-
morphism) φ from X onto X (see, e.g., [16]).

Let X∞ = X ∪{∞} be the one-point compactification of X . Setting θ(1) = 1,
we can also consider that θ is a linear local automorphism of C(X∞). For an f in
C(X∞), the spectrum of f coincides with its range σ(f) = f(X∞). In particular,
the norm of f equals its spectral radius, and f is invertible exactly when f is non-
vanishing on X∞. By Lemma 2.1, θ preserves both norm and invertibility (i.e. being
non-vanishing). By the Gleason-Kahane-Zelazko Theorem [17, 22] (see also [18]),
θ is multiplicative, and thus an isometric algebra homomorphism of C(X∞). More
precisely, θ(f) = f ◦ φ, where the map φ : X∞ → X∞ is continuous, open and
onto. Clearly, φ sends exactly ∞ to∞. Hence, we can also think of φ as a quotient
map from X onto X , and θ as an isometric algebra homomorphism of C0(X).



616 Jung-Hui Liu and Ngai-Ching Wong

Assume now that X is first countable. We show that φ is one-to-one. Suppose
φ(x) = φ(y) = z. Let f be a continuous function in C0(X) peak at z; namely,
0 ≤ f ≤ 1 and f assumes value 1 exactly at the point z. Since θ(f) = f ◦ φf

for some homeomorphism φf of X , the function θ(f) = f ◦ φ peaks at exactly
one point. This forces x = y. Therefore, φ is a homeomorphism and θ is an
automorphism.

In the following example, we see that a linear local automorphism of C(X)
needs not be surjective if X contains a non-Gδ point.

Example 3.3. Let ω and β be the first infinite and the first uncountable ordinal
number, respectively. Let [0, β] be the compact Hausdorff space consisting of all
ordinal numbers x not greater than β and equipped with the topology generated
by order intervals. Note that every continuous function f in C[0, β] is eventually
constant. More precisely, there is a non-limit ordinal xf such that ω < xf < β and
f(x) = f(β) for all x ≥ xf .

Define φ : [0, β] → [0, β] by setting

φ(0) = β, φ(n) = n − 1 for all n = 1, 2, . . ., and φ(x) = x for all x ≥ ω.

Let θ : C[0, β] → C[0, β] be the non-surjective composition operator defined by
θ(f) = f ◦φ. We shall see that θ is an isometric linear local automorphism. Indeed,
θ is clearly isometric and linear. For each f in C[0, β], let φf be the homeomorphism
of [0, β] defined by

φf (0) = xf , φf (n) = n − 1 for all n = 1, 2, . . ., φf (x) = x for all ω ≤ x < xf ,

φf (x) = x + 1 for all xf ≤ x < xf + ω, and φf (x) = x for all x ≥ xf + ω.

It is plain that θ(f) = f ◦ φ = f ◦ φf for all f in C[0, β].
Note that to utilize the Gleason-Kahane-Zelazko Theorem [17, 22] in the proof

of Theorem 3.2, the underlying field is assumed to be the complex. We are expecting
a new proof for the real case. Here is a partial solution.

Proposition 3.4. Suppose the underlying field is the real, R. Let X be a locally
compact subset of R. Then every linear local automorphism θ of C 0(X) is an
automorphism.

Proof. It follows from the local property that θ is a linear isometry. By an
extension of the Hol/sztynski Theorem [19], there is a locally compact subset Y of
X and a surjective continuous open map φ from Y onto X such that

(3.1) θ(f)|Y = f ◦ φ.
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It follows from a similar argument as in the proof of Theorem 3.2 that φ is one-to-
one, and thus a homeomorphism.

We shall construct a strictly positive function f in C0(X) with the property that
each level set f−1(λ) = {x ∈ X : f(x) = λ} is finite for all λ > 0. Note that X
is the union of all level sets of f . Suppose we have such an f for this moment. By
the local property, θ(f) = f ◦ φf is also a function of such kind. For each λ > 0,
suppose f−1(λ) consists of distinct points x1, x2, . . . , xn in X . Since φ is bijective,
there are distinct points y1, y2, . . . , yn in Y with φ(yi) = xi for i = 1, 2, . . . , n. It
follows from (3.1) that f(φf(yi)) = f(φ(yi)) = λ for i = 1, 2, . . . , n. By counting
elements, we see that the points y1, y2, . . . , yn enumerates all of the λ-level set of
f ◦ φf . In particular, all the level sets of f ◦ φf are contained in Y . Consequently,
X = Y , and thus θ is an automorphism of C0(X).

Now, we construct such an f in C0(X). For each x in X , by the local com-
pactness, there are a < b such that X ∩ [a, b] is a compact neighborhood of x in
X . Let α be the infimum of all such a and β be the supremum of all such b in
R. Here, we allow α = −∞ and β = +∞. Using this idea, we can write X as
a countable disjoint union X = ∪nXn, where each Xn = X ∩ [αn, βn] for some
αn < βn has the property that X ∩ [a, b] is compact in X for all αn < a < b < βn.

Choose an fn in C0(X) vanishing outside (αn, βn). The behavior of fn on
Xn depends on whether X contains the endpoints αn, βn. If Xn does not contain
either of αn, βn, we assume fn agrees on Xn with a continuous function which
joins the points (αn, 0), (αn+βn

2 , 1/n) and (βn, 0) in the plane firstly by a strictly
increasing curve and then by a strictly decreasing one. In case Xn contains αn but
not βn, we assume fn agrees on Xn with a strictly decreasing curve passing through
the points (αn, 1/n) and (βn, 0). A similar construction is applied to the situation
that Xn contains βn but not αn. If Xn contains both αn, βn, our fn arises from a
strictly decreasing curve passing through the points (αn, 1/n) and (βn, 1/2n). Let
f =

∑
n fn. The sum converges uniformly on X to a strictly positive function in

C0(X). For each λ > 1/n >0, we see that the level set f−1(λ) consists of at
most 2n points in X . This is the required function we need in the first half of the
proof.

To end this paper, we would like to raise another problem.

Problem 3.5. Is every surjective linear local automorphism of a C*-algebra,
or more generally, a semisimple Banach algebra, a Jordan isomorphism?

Remark that Crist [14] has an example of a bijective linear local automorphism
of a three dimensional abelian radial subalgebra of the algebra M3 of 3×3 matrices,
which is not a Jordan homomorphism.
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9. M. Brešar and P. Šemrl, Linear preservers on B(X), in Linear Operators, Banach
Center Publications 38, 49-57, Polish Academy of Sciences, Warszawa, 1997.

10. M. Brešar and P. Šemrl, Invertibility preserving maps preserve idempotents, Michigan
Math. J., 45 (1998), 483-488.
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