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ZERO PRODUCT PRESERVERS OF C*-ALGEBRAS

NGAI-CHING WONG

Dedicated to Professor Bingren Li on the occasion of his 65th birthday (1941.10.7 – )

Abstract. Let θ : A → B be a zero-product preserving bounded linear map
between C*-algebras. Here neither A nor B is necessarily unital. In this note,
we investigate when θ gives rise to a Jordan homomorphism. In particular,
we show that A and B are isomorphic as Jordan algebras if θ is bijective
and sends zero products of self-adjoint elements to zero products. They are
isomorphic as C*-algebras if θ is bijective and preserves the full zero product
structure.

1. Introduction

Let M and N be algebras over a field F and θ : M → N a linear map. We say
that θ is a zero-product preserving map if θ(a)θ(b) = 0 in N whenever ab = 0 in
M . The canonical form of a linear zero product preserver, θ = hϕ, arises from an
element h in the center of N and an algebra homomorphism ϕ : M → N . In [6],
we see that in many interesting cases zero-product preserving linear maps arise in
this way.

We are now interested in the C∗-algebra case. There are 4 different versions
of zero products: ab = 0, ab∗ = 0, a∗b = 0 and ab∗ = a∗b = 0. Surprisingly,
the original version ab = 0 is the least, if any, geometrically meaningful, while the
others mean a, b have orthogonal initial spaces, or orthogonal range spaces, or both.
Using the orthogonality conditions, the author showed in [11] that a bounded linear
map θ : A → B between C*-algebras is a triple homomorphism if and only if θ
preserves the fourth disjointness ab∗ = a∗b = 0 and θ∗∗(1) is a partial isometry.
Here, the triple product of a C*-algebra is defined by {a, b, c} = (ab∗c + cb∗a)/2,
and θ∗∗ : A ∗∗ → B∗∗ is the bidual map of θ. See also [3] for a similar result dealing
with the case ab = ba = 0. We shall deal with the first and original case in this
note. The other cases will be dealt with in a subsequent paper.

There is a common starting point of all these 4 versions. Namely, we can consider
first the zero products ab = 0 of self-adjoint elements a, b in Asa. In [10] (see also
[9]), Wolff shows that if θ : A → B is a bounded linear map between unital
C∗-algebras preserving the involution and zero products of self-adjoint elements in
A then θ = θ(1)J for a Jordan ∗-homomorphism J from A into B∗∗. In [6], the
involution preserving assumption is successfully removed. Modifying the arguments
in [6], we will further relax the condition that the C*-algebras are unital in this
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note. In particular, we show that A and B are isomorphic as Jordan algebras if
θ is bijective and sends self-adjoint elements with zero products in A to elements
(not necessarily self-adjoint, though) with zero products in B. They are isomorphic
as C*-algebras if θ is bijective and preserves the full zero product structure.

2. Results

In the following, A ,B are always C*-algebras not necessarily with identities.
Asa denotes the (real) Jordan-Banach algebra consisting of all self-adjoint elements
of A .

Recall that a linear map J between two algebras is said to be a Jordan homo-

morphism if J(xy + yx) = J(x)J(y) + J(y)J(x) for all x, y. If the underlying field
has characteristic not 2, this condition is equivalent to that J(x2) = (Jx)2 for all
x in the domain. We also have the identity J(xyx) = J(x)J(y)J(x) for all x, y in
this case.

Lemma 2.1. Let J : Asa −→ B be a bounded Jordan homomorphism. Then J
sends zero products in Asa to zero products in B.

Proof. Let a, b be self-adjoint elements in A and ab = 0. We want to prove that
J(a)J(b) = 0. Without loss of generality, we can assume that a ≥ 0. Let a′ in

Asa satisfy that a′
2
= a. We have a′b = 0. By the identities 0 = J(a′ba′) =

J(a′)J(b)J(a′) and 0 = J(a′b + ba′) = J(a′)J(b) + J(b)J(a′), we have J(a)J(b) =

J(a′
2
)J(b) = J(a′)2J(b) = 0. �

Recall that when we consider A ∗∗ as the enveloping W*-algebra of A , the
multiplier algebra M(A ) of A is the C*-subalgebra of A ∗∗,

M(A ) = {x ∈ A
∗∗ : xA ⊆ A and A x ⊆ A }.

Elements in M(A )sa can be approximated by both monotone increasing and de-

creasing bounded nets from Ãsa = Asa ⊕ R1 (see, e.g., [5]). In case A is unital,
M(A ) = A .

Lemma 2.2. Let θ : Asa → B be a bounded linear map sending zero products in

Asa to zero products in B. Then the restriction of θ∗∗ induces a bounded linear

map, denoted again by θ, from M(A )sa into B∗∗, which sends zero products in
M(A )sa to zero products in B∗∗.

Proof. First we consider the case b ∈ Asa, and p is an open projection in A ∗∗

such that pb = 0. For any self-adjoint element c in the hereditary C*-subalgebra
h(p) = pA ∗∗p ∩ A of A , we have cb = 0 and thus θ(c)θ(b) = 0. By the weak*
continuity of θ∗∗, we have θ∗∗(pA ∗∗

sa p)θ(b) = 0. In particular, θ∗∗(p)θ(b) = 0.
Let a, b be self-adjoint elements in M(A ) with ab = 0. We want to prove that

θ(a)θ(b) = 0. Without loss of generality, we can assume both a, b are positive. Let

0 ≤ aα + λα ↑ a be a monotone increasing net from Ãsa. Since 0 ≤ b(aα + λα)b ↑
bab = 0, we have (aα+λα)b = 0 for all α. Similarly, there is a monotone increasing

net 0 ≤ bβ + sβ ↑ b from Ãsa such that (aα + λα)(bβ + sβ) = 0 for all β. We can
assume the real scalar λα 6= 0. Then sβ = 0 for all β. In particular, we see that
aα commutes with all bβ . In the abelian C*-subalgebra of M(A ) generated by aα,
bβ and 1, we see that aα + λα can be approximated in norm by finite real linear
combinations of open projections disjoint from bβ. By the first paragraph, we have
θ(aα + λα)θ(bβ) = 0.
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By the weak* continuity of θ∗∗ again, we see that θ(aα + λα)θ(b) = limβ θ(aα +
λα)θ(bβ) = 0 for each α, and then θ(a)θ(b) = limα θ(aα + λα)θ(b) = 0. �

With Lemma 2.2, results in [6] concerning zero product preservers of unital C*-
algebras can be extended easily to the non-unital case. We restate [6, Lemmas 4.4
and 4.5] below, but now here A does not necessarily have an identity.

Lemma 2.3. Let θ : A → B be a bounded linear map sending zero products in

Asa to zero products in B. For any a in M(A ), we have

(i) θ(1)θ(a) = θ(a)θ(1),
(ii) θ(1)θ(a2) = (θ(a))2.

If θ(1) is invertible then θ = θ(1)J for a bounded Jordan homomorphism J from
A into B.

Theorem 2.4. Two C*-algebras A and B are isomorphic as Jordan algebras if

and only if there is a bounded bijective linear map θ between them sending zero
products in Asa to zero products in B. If θ is just surjective, then B is isomorphic

to the C*-algebra A / ker θ as Jordan algebras.

Proof. One way follows from Lemma 2.1. Conversely, suppose θ(A ) = B. Since
θ(1)θ(a2) = θ(a)2 for all a in A and B = B2, we have θ(1)B = B. Thus, the
central element θ(1) is invertible. Lemma 2.3 applies, by noting that closed Jordan
ideals of C*-algebras are two-sided ideals [7]. �

In case θ preserves all zero products in A , we have the following non-unital
version of [6, Theorem 4.11].

Theorem 2.5. Let θ be a surjective bounded linear map from a C∗-algebra A onto

a C∗-algebra B. Suppose that θ(a)θ(b) = 0 for all a, b ∈ A with ab = 0. Then θ(1)
is a central element and invertible in M(B). Moreover, θ = θ(1)ϕ for a surjective

algebra homomorphism ϕ from A onto B.

Proof. First, we have already seen in the proof of Theorem 2.4 that θ(1) is a central
element and invertible in M(B). Second, we observe that to utilize the results
[6, Theorems 4.12 and 4.13] of Brešar [4], and [6, Lemma 4.14] of Akemann and
Pedersen [2], one does not need to assume A or B is unital. Together with our
new Theorem 2.4, which is a non-unital version of [6, Theorem 4.6], we can now
make use of the same proof of [6, Theorem 4.11] to establish the assertion. �

Motivated by the theory of Banach lattices (see, e.g., [1]), we call two C*-algebras
being d-isomorphic if there is a bounded bijective linear map between them sending
zero-products to zero-products. We end this note with the following

Corollary 2.6. Two C*-algebras are d-isomorphic if and only if they are ∗-isomorphic.

Proof. The conclusion follows from Theorem 2.5 and a result of Sakai [8, Theorem
4.1.20] stating that two algebraic isomorphic C*-algebras are indeed ∗-isomorphic.

�
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