PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 11, November 2008, Pages 3869–3874 S 0002-9939(08)09582-8 Article electronically published on June 24, 2008

A BANACH-STONE THEOREM FOR RIESZ ISOMORPHISMS OF BANACH LATTICES

JIN XI CHEN, ZI LI CHEN, AND NGAI-CHING WONG

(Communicated by N. Tomczak-Jaegermann)

ABSTRACT. Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let C(X, E) denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism $\Phi : C(X, E) \to C(Y, F)$ such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y, and E is Riesz isomorphic to F. In this case, Φ can be written as a weighted composition operator: $\Phi f(y) = \Pi(y)(f(\varphi(y)))$, where φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz isomorphism from E onto F for every y in Y. This generalizes some known results obtained recently.

1. INTRODUCTION

Let X and Y be compact Hausdorff spaces, and C(X), C(Y) denote the spaces of real-valued continuous functions defined on X, Y respectively. There are three versions of the Banach-Stone theorem. That is to say, surjective linear isometries, ring isomorphisms and lattice isomorphisms from C(X) onto C(Y) yield homeomorphisms between X and Y, respectively (cf. [1, 6, 14]).

Jerison [13] got the first vector-valued version of the Banach-Stone theorem. He proved that if the Banach space E is strictly convex, then every surjective linear isometry $\Phi : C(X, E) \to C(Y, E)$ can be written as a weighted composition operator

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \qquad \forall f \in C(X, E), \forall y \in Y.$$

Here φ is a homeomorphism from Y onto X, and Π is a continuous map from Y into the space ($\mathcal{L}(E, E), SOT$) of bounded linear operators on E equipped with the strong operator topology (SOT). Furthermore, $\Pi(y)$ is a surjective linear isometry on E for every y in Y. After Jerison [13], many vector-valued versions of the Banach-Stone theorem have been obtained in different ways (see, e.g., [3, 4, 5, 7, 9, 10, 12, 16]).

Let E, F be non-zero real Banach lattices, and C(X, E) be the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. Note that, in general, a Riesz isomorphism (i.e., lattice isomorphism) from C(X, E) onto C(Y, F) does not necessarily induce a topological

 $\textcircled{\sc c}2008$ American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors June 1, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46E40; Secondary 46B42, 47B65.

 $Key\ words\ and\ phrases.$ Banach lattice, Banach-Stone theorem, Riesz isomorphism, weighted composition operator.

homeomorphism from X onto Y (cf. [16, Example 3.5]). To consider the Banach-Stone theorems for continuous Banach lattice-valued functions, we would like to mention the papers [5, 7, 16]. In particular, when E, F are both Banach lattices and Riesz algebras, Miao, Cao and Xiong [16] recently proved that if F has no zerodivisor and there exists a Riesz algebraic isomorphism $\Phi : C(X, E) \to C(Y, F)$ such that Φf is non-vanishing on Y if f is non-vanishing on X, then X is homeomorphic to Y, and E is Riesz algebraically isomorphic to F. By saying f in C(X, E) is nonvanishing, we mean that $0 \notin f(X)$. Indeed, under these conditions they obtained that $\Phi^{-1}g$ is non-vanishing on X if $g \in C(Y, F)$ is non-vanishing on Y. Note that every Riesz algebraic isomorphism must be a Riesz isomorphism.

Let E and F be Banach lattices. More recently, Ercan and Önal [7] have established that if F is an AM-space with unit, i.e., a C(K)-space, and there exists a Riesz isomorphism $\Phi : C(X, E) \to C(Y, F)$ such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, that is, both Φ and Φ^{-1} are non-vanishing preserving, then X is homeomorphic to Y and E is Riesz isomorphic to F.

Inspired by [5, 7, 16], one can ask a natural question:

Question 1. Is X homeomorphic to Y if E, F are Banach lattices and there exists a Riesz isomorphism $\Phi : C(X, E) \to C(Y, F)$ such that both Φ and Φ^{-1} are non-vanishing preserving?

In this paper we show the answer to the above question is affirmative. Moreover, in this case Φ can be written as a weighted composition operator:

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \qquad \forall f \in C(X, E), \, \forall y \in Y$$

where φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz isomorphism from E onto F for every y in Y. This generalizes the results obtained by Cao, Reilly and Xiong [5], Miao, Cao, and Xiong [16], and Ercan and Önal [7].

Our notions are standard. For the undefined notions and basic facts concerning Banach lattices we refer the reader to the monographs [1, 2, 14].

2. A BANACH-STONE THEOREM FOR RIESZ ISOMORPHISMS

In the following we always assume X and Y are compact Hausdorff spaces, E and F are non-zero Banach lattices, and $\mathcal{L}(E, F)$ is the space of bounded linear operators from E into F equipped with SOT. For x in X and y in Y, let M_x and N_y be defined as

$$M_x = \{ f \in C(X, E) : f(x) = 0 \}, \quad N_y = \{ g \in C(Y, F) : g(y) = 0 \}.$$

Clearly, M_x and N_y are closed (order) ideals in C(X, E) and C(Y, F), respectively.

Lemma 2. Let $\Phi : C(X, E) \to C(Y, F)$ be a Riesz isomorphism such that $\Phi(f)$ is non-vanishing on Y if and only if f is non-vanishing on X. Then for each x in X there exists a unique y in Y such that

$$\Phi M_x = N_y$$

In particular, this defines a bijection φ from Y onto X by $\varphi(y) = x$.

Proof. For each x in X, let

$$\mathcal{Z}(\Phi M_x) = \{ y \in Y : \Phi f(y) = 0 \text{ for all } f \in M_x \}.$$

We first claim that $\mathcal{Z}(\Phi M_x)$ is non-empty. Suppose, on the contrary, that $\mathcal{Z}(\Phi M_x)$ is empty. Then for each y in Y there would exist an f_y in M_x such that $\Phi f_y(y) \neq 0$,

and thus Φf_y is non-vanishing in an open neighborhood of y. Note that $|f_y| \in M_x$, and $\Phi |f_y| = |\Phi f_y|$ since Φ is a Riesz isomorphism. Therefore, we can assume further that both f_y and Φf_y are positive by replacing them by their absolute values if necessary. By the compactness of Y, we can choose finitely many f_1, \ldots, f_n from M_x^+ such that the positive functions $\Phi f_1, \ldots, \Phi f_n$ have no common zero in Y. Hence $\Phi(f_1 + \cdots + f_n)$ is strictly positive; that is, $\Phi(f_1 + \cdots + f_n)(y) > 0$ for each y in Y. This contradicts the fact that $f_1 + \cdots + f_n$ vanishes at x. We thus prove that $\mathcal{Z}(\Phi M_x) \neq \phi$.

Next, we claim that $\mathcal{Z}(\Phi M_x)$ is a singleton. Indeed, if $y_1, y_2 \in \mathcal{Z}(\Phi M_x)$, then we would have $\Phi M_x \subseteq N_{y_i}, i = 1, 2$. Applying the above argument to Φ^{-1} , we shall have $\Phi^{-1}N_{y_i} \subseteq M_{x_i}$ for some x_i in X, i = 1, 2. It follows that $\Phi M_x \subseteq N_{y_i} \subseteq \Phi M_{x_i}, i = 1, 2$. Then $x = x_1 = x_2$ since Φ is bijective and X is Hausdorff. Thus,

$$y_1 = y_2$$
 and $\Phi M_x = N_{y_1} = N_{y_2}$

Now, we can define a bijective map $\varphi: Y \to X$ such that

$$\Phi M_{\omega(y)} = N_y, \quad \forall y \in Y.$$

The following main result answers affirmatively the question mentioned in the introduction and solves the conjecture of Ercan and Önal in [7].

Theorem 3. Let $\Phi : C(X, E) \to C(Y, F)$ be a Riesz isomorphism such that Φf is non-vanishing on Y if and only if f is non-vanishing on X. Then Y is homeomorphic to X, and Φ can be written as a weighted composition operator

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \qquad \forall f \in C(X, E), \, \forall y \in Y$$

Here φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz isomorphism from E onto F for every y in Y. Moreover, $\Pi: Y \to (\mathcal{L}(E,F), SOT)$ is continuous, and $\|\Phi\| = \sup_{y \in Y} \|\Pi(y)\|$.

Proof. First, we show that the bijection φ given in Lemma 2 is a homeomorphism from Y onto X. It suffices to verify the continuity of φ since Y is compact and X is Hausdorff. To this end, suppose, to the contrary, that there would exist a net $\{y_{\lambda}\}$ in Y converging to y_0 in Y, but $\varphi(y_{\lambda})$ converges to $x_0 \neq \varphi(y_0)$ in X.

Let U_{x_0} and $U_{\varphi(y_0)}$ be disjoint open neighborhoods of x_0 and $\varphi(y_0)$, respectively. First, for any f in C(X, E) vanishing outside $U_{\varphi(y_0)}$ we claim that $\Phi f(y_0) = 0$. Indeed, since $\varphi(y_\lambda)$ belongs to U_{x_0} for λ large enough and f(x) = 0 for any x in U_{x_0} , we have that $f \in M_{\varphi(y_\lambda)}$. It follows from Lemma 2 that $\Phi f \in N_{y_\lambda}$; that is, $\Phi f(y_\lambda) = 0$ when λ is large enough. Thus, $\Phi f(y_0) = 0$ since $y_\lambda \to y_0$ and Φf is continuous.

Let $\chi \in C(X)$ such that χ vanishes outside $U_{\varphi(y_0)}$ and $\chi(\varphi(y_0)) = 1$. Then, for any h in C(X, E), we have $h = \chi h + (1 - \chi)h$. Since χh vanishes outside $U_{\varphi(y_0)}$, by the above argument, we can see that $\Phi(\chi h)(y_0) = 0$. Clearly, $\Phi((1 - \chi)h)$ vanishes at y_0 since $(1 - \chi)h \in M_{\varphi(y_0)}$. Thus, $\Phi h(y_0) = \Phi(\chi h)(y_0) + \Phi((1 - \chi)h)(y_0) = 0$ for any h in C(X, E). This leads to a contradiction since Φ is surjective. So φ is continuous and thus a homeomorphism from Y onto X satisfying $\Phi M_{\varphi(y)} = N_y$ for each y in Y. Next, note that ker $\delta_{\varphi(y)} = \ker \delta_y \circ \Phi$, where δ_y is the Dirac functional. Hence, there is a linear operator $\Pi(y) : E \to F$ such that $\delta_y \circ \Phi = \Pi(y) \circ \delta_{\varphi(y)}$. In other words,

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \qquad \forall f \in C(X, E), \, \forall y \in Y.$$

See, e.g., [8, p. 67].

It is routine to verify the other assertions in the statement of this theorem. For the convenience of the reader, we give a sketch of the rest of the proof. For e in E, let $\mathbf{1}_X \otimes e \in C(X, E)$ be defined by $(\mathbf{1}_X \otimes e)(x) = e$ for each x in X. Let yin Y be fixed. If $e \neq 0$, then $\Pi(y)e = \Pi(y)((\mathbf{1}_X \otimes e)(\varphi(y))) = \Phi(\mathbf{1}_X \otimes e)(y) \neq 0$ since $\mathbf{1}_X \otimes e$ is non-vanishing. Hence, $\Pi(y)$ is one-to-one. On the other hand, for u in F we can find a function f in C(X, E) such that $\Phi f = \mathbf{1}_Y \otimes u$ by the surjectivity of Φ . Let $e = f(\varphi(y))$. Then $\Pi(y)e = \Pi(y)(f(\varphi(y))) = \Phi f(y) = u$. That is, $\Pi(y)$ is surjective. To see that $\Pi(y)$ is a Riesz isomorphism, let $e_1, e_2 \in E$. Then $\Pi(y)(e_1 \vee e_2) = \Phi(\mathbf{1}_X \otimes (e_1 \vee e_2))(y) = \Phi(\mathbf{1}_X \otimes e_1)(y) \vee \Phi(\mathbf{1}_X \otimes e_2)(y) =$ $\Pi(y)e_1 \vee \Pi(y)e_2$, since Φ is a Riesz isomorphism.

Recall that every positive operator between Banach lattices is continuous. Let $e \in E$. Since $\|\Pi(y)e\| = \|\Phi(\mathbf{1}_X \otimes e)(y)\| \le \|\Phi(\mathbf{1}_X \otimes e)\| \le \|\Phi\|\|e\|$, we have $\|\Pi(y)\| \le \|\Phi\|$ for all y in Y. On the other hand, for any f in C(X, E) and any y in Y, we can see that $\|\Phi f(y)\| = \|\Pi(y)(f(\varphi(y)))\| \le \|\Pi(y)\|\|f\|$. Consequently, $\|\Phi\| \le \sup_{y \in Y} \|\Pi(y)\|$.

Finally, we prove that $\Pi: Y \to (\mathcal{L}(E, F), SOT)$ is continuous. To this end, let $\{y_{\lambda}\}$ be a net such that $y_{\lambda} \to y$ in Y. Then, for any e in E, $\|\Pi(y_{\lambda})e - \Pi(y)e\| = \|\varPhi(\mathbf{1}_X \otimes e)(y_{\lambda}) - \varPhi(\mathbf{1}_X \otimes e)(y)\| \to 0$, since $\varPhi(\mathbf{1}_X \otimes e)$ is continuous on Y. \Box

In the above results, we have to assume that both Φ and Φ^{-1} are non-vanishing preserving. In the following example, we can see that the inverse of a non-vanishing preserving Riesz isomorphism is not necessarily non-vanishing preserving.

Example 4. Let $X = \{1, 2\}$ be equipped with the discrete topology, let $E = \mathbb{R}$ have its usual ordering and norm, and let $Y = \{0\}$ and $F = \mathbb{R}^2$ with the pointwise ordering and the sup norm. Define $\Phi : C(X, E) \to C(Y, F)$ by $\Phi f(0) = (f(1), f(2))$. Clearly, the Riesz isometric isomorphism Φ is non-vanishing preserving, but its inverse Φ^{-1} is not.

Let E, F be both Banach lattices and Riesz algebras. Miao, Cao and Xiong [16] recently proved that if F has no zero-divisor and there exists a Riesz algebraic isomorphism $\Phi: C(X, E) \to C(Y, F)$ such that Φf is non-vanishing on Y if f is non-vanishing on X, then X is homeomorphic to Y and E is Riesz algebraically isomorphic to F. In fact, from their proof we can see that Φf is non-vanishing on Y if and only if f is non-vanishing on X; that is, both Φ and Φ^{-1} are non-vanishing preserving. Therefore, the result of Miao, Cao and Xiong can be restated as follows.

Corollary 5 ([16]). Let E, F be both Banach lattices and Riesz algebras. If F has no zero-divisor and $\Phi: C(X, E) \to C(Y, F)$ is a Riesz algebraic isomorphism such that Φf is non-vanishing on Y if f is non-vanishing on X, then Φ is a weighted composition operator

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \qquad \forall f \in C(X, E), \, \forall y \in Y.$$

Here φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz algebraic isomorphism from E onto F for every y in Y.

3872

In Theorem 3, when X, Y are compact Hausdorff spaces and $E = F = \mathbb{R}$, the lattice hypothesis about Φ can be dropped.

Example 6. Let X, Y be compact Hausdorff spaces, and C(X), C(Y) be the Banach spaces of continuous real-valued functions defined on X, Y, respectively. Assume $\Phi : C(X) \to C(Y)$ is a linear map such that Φf is non-vanishing on Y if and only if f is non-vanishing on X.

Note that $(\Phi \mathbf{1}_X)^{-1} \Phi$ is a unital linear map preserving non-vanishing. Let λ be in the range of f. Then $f - \lambda \mathbf{1}_X$ is not invertible, and thus neither is $(\Phi \mathbf{1}_X)^{-1} \Phi f - \lambda \mathbf{1}_Y$. It follows that λ is in the range of $(\Phi \mathbf{1}_X)^{-1} \Phi f$. The converse also holds. Therefore, the range of $(\Phi \mathbf{1}_X)^{-1} \Phi f$ coincides with the range of f for each f in C(X). In particular, $(\Phi \mathbf{1}_X)^{-1} \Phi$ is a unital linear isometry from C(X) into C(Y). By the Holsztyński Theorem [11], there is a compact subset Y_0 of Y and a quotient map $\varphi: Y_0 \to X$ such that

$$(\Phi \mathbf{1}_X)^{-1} \Phi f \mid_{Y_0} = f \circ \varphi, \qquad \forall f \in C(X).$$

In case Φ is surjective, the classical Banach-Stone Theorem ensures that φ is a homeomorphism from $Y = Y_0$ onto X. Moreover, if $\Phi \mathbf{1}_X$ is strictly positive on Y, then Φ is a Riesz isomorphism. However, when Φ is not surjective the situation is a bit uncontrollable. For example, consider $\Phi : C[0,1] \to C([0,\frac{1}{2}] \cup [1,\frac{3}{2}])$ defined by

$$\Phi f(y) = \begin{cases}
f(2y), & \text{if } 0 \le y \le 1/2; \\
(2y-2)f(0) + (3-2y)f(1), & \text{if } 1 \le y \le \frac{3}{2}.
\end{cases}$$

Clearly, the thus defined Φ is a non-surjective linear isometry preserving non-vanishing in two ways, but [0, 1] is not homeomorphic to $[0, \frac{1}{2}] \cup [1, \frac{3}{2}]$.

Finally, we borrow an example from [15] which shows that the surjectivity cannot be guaranteed by many other properties we usually consider.

Example 7. Let ω and ω_1 be the first infinite and the first uncountable ordinal numbers, respectively. Let $[0, \omega_1]$ be the compact Hausdorff space consisting of all ordinal numbers x not greater than ω_1 and equipped with the topology generated by order intervals. Note that every continuous function f in $C[0, \omega_1]$ is eventually constant. More precisely, there is a non-limit ordinal x_f such that $\omega < x_f < \omega_1$ and $f(x) = f(\omega_1)$ for all $x \ge x_f$.

Define $\phi: [0, \omega_1] \to [0, \omega_1]$ by setting

$$\phi(0) = \omega_1, \quad \phi(n) = n - 1 \text{ for all } n = 1, 2, \dots, \text{ and } \phi(x) = x \text{ for all } x \ge \omega.$$

Let $\Phi: C[0, \omega_1] \to C[0, \omega_1]$ be the *non-surjective* composition operator defined by $\Phi f = f \circ \phi$. It is plain that Φ is an isometric unital algebraic and lattice isomorphism from $C[0, \omega_1]$ onto its range. In fact, one can see in [15, Example 3.3] that the map Φ is a non-surjective linear *n*-local automorphism of $C[0, \omega_1]$, where $n = 1, 2, \ldots, \omega$; i.e., the action of Φ on any set *S* of cardinality not greater than *n* agrees with an automorphism Φ_S .

Acknowledgment

The authors would like to thank the referee for comments which have improved this paper.

References

- Y.A. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, American Mathematical Society, Providence, RI, 2002. MR2003h:47072
- [2] C.D. Aliprantis and O. Burkinshaw, *Positive Operators*, Pure and Applied Mathematics 119, Academic Press, New York, 1985. MR87h:47086
- [3] E. Behrends, How to obtain vector-valued Banach-Stone theorems by using M-structure methods, Math. Ann. 261 (1982), 387–398. MR84c:46012
- [4] E. Behrends and M. Cambern, An isomorphic Banach-Stone theorem, Studia Math. 90 (1988), 15–26. MR89h:46020
- [5] J. Cao, I. Reilly and H. Xiong, A lattice-valued Banach-Stone theorem, Acta Math. Hungar. 98 (2003), 103–110. MR2003m:46028
- [6] J.B. Conway, A Course in Functional Analysis, Second edition, Graduate Texts in Mathematics 96, Springer, New York, 1990. MR91e:46001
- [7] Z. Ercan and S. Önal, Banach-Stone theorem for Banach lattice valued continuous functions, Proc. Amer. Math. Soc. 135 (2007), 2827-2829. MR2008a:46038
- [8] M. Fabian et al., Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics 8, Springer, New York, 2001. MR2002f:46001
- [9] H.-L. Gau, J.-S. Jeang and N.-C. Wong, Biseparating linear maps between continuous vectorvalued function spaces, J. Aust. Math. Soc. 74 (2003), 101–109. MR2003j:47041
- [10] S. Hernandez, E. Beckenstein and L. Narici, Banach-Stone theorems and separating maps, Manuscr. Math. 86 (1995), 409–416. MR95m:46054
- W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous function, Studia Math. 26 (1966), 133–136. MR33:1711
- [12] J.-S. Jeang and N.-C. Wong, On the Banach-Stone problem, Studia Math. 155 (2003), 95– 105. MR2004a:46039
- [13] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math.(2) 52 (1950), 309–327. MR12:188c
- [14] E. de Jonge and A. van Rooij, Introduction to Riesz Spaces, Mathematical Centre Tracts 78, Amsterdam, 1977. MR57:13439
- [15] J.-H. Liu and N.-C. Wong, Local automorphisms of operator algebras, *Taiwanese J. Math.* 11 (2007), 611-619. MR2340153
- [16] X. Miao, J. Cao and H. Xiong, Banach-Stone theorems and Riesz algebras, J. Math. Anal. Appl. 313 (2006), 177–183. MR2006m:46030

Department of Mathematics, Southwest Jiaotong University, Chengdu 610031, People's Republic of China

E-mail address: jinxichen@home.swjtu.edu.cn

DEPARTMENT OF MATHEMATICS, SOUTHWEST JIAOTONG UNIVERSITY, CHENGDU 610031, PEOPLE'S REPUBLIC OF CHINA

E-mail address: zlchen@home.swjtu.edu.cn

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KAOHSIUNG 80424, TAIWAN

E-mail address: wong@math.nsysu.edu.tw