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ABSTRACT. Let X and Y be compact Hausdorff spaces, and E, F' be Banach
lattices. Let C'(X, E) denote the Banach lattice of all continuous E-valued
functions on X equipped with the pointwise ordering and the sup norm. We
prove that if there exists a Riesz isomorphism ® : C(X,E) — C(Y, F) such
that ®f is non-vanishing on Y if and only if f is non-vanishing on X, then
X is homeomorphic to Y, and E is Riesz isomorphic to F. In this case, ®
can be written as a weighted composition operator: ®f(y) = II(y)(f(¢(y))),
where ¢ is a homeomorphism from Y onto X, and II(y) is a Riesz isomorphism
from E onto F for every y in Y. This generalizes some known results obtained
recently.

1. INTRODUCTION

Let X and Y be compact Hausdorff spaces, and C'(X), C(Y') denote the spaces
of real-valued continuous functions defined on X, Y respectively. There are three
versions of the Banach-Stone theorem. That is to say, surjective linear isometries,
ring isomorphisms and lattice isomorphisms from C'(X) onto C(Y) yield homeo-
morphisms between X and Y, respectively (cf. [T [6] [14]).

Jerison [I3] got the first vector-valued version of the Banach-Stone theorem. He
proved that if the Banach space F is strictly convex, then every surjective linear
isometry @ : C(X, E) — C(Y, E) can be written as a weighted composition operator

Df(y) = H(y)(f(e(y), VfeCOX,E),VyeY.

Here ¢ is a homeomorphism from Y onto X, and IT is a continuous map from Y
into the space (L(E, E), SOT) of bounded linear operators on E equipped with the
strong operator topology (SOT). Furthermore, II(y) is a surjective linear isometry
on E for every y in Y. After Jerison [I3], many vector-valued versions of the
Banach-Stone theorem have been obtained in different ways (see, e.g., [3, 4, [5l [7, [,
10, 12, [16]).

Let E, F be non-zero real Banach lattices, and C(X, FE) be the Banach lattice
of all continuous FE-valued functions on X equipped with the pointwise ordering
and the sup norm. Note that, in general, a Riesz isomorphism (i.e., lattice iso-
morphism ) from C(X, E) onto C(Y, F) does not necessarily induce a topological
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homeomorphism from X onto Y (cf. [16, Example 3.5]). To consider the Banach-
Stone theorems for continuous Banach lattice-valued functions, we would like to
mention the papers [5] [7, [16]. In particular, when E, F' are both Banach lattices
and Riesz algebras, Miao, Cao and Xiong [16] recently proved that if F has no zero-
divisor and there exists a Riesz algebraic isomorphism ¢ : C(X, E) — C(Y, F) such
that @f is non-vanishing on Y if f is non-vanishing on X, then X is homeomorphic
to Y, and F is Riesz algebraically isomorphic to F. By saying f in C(X, E) is non-
vanishing, we mean that 0 ¢ f(X). Indeed, under these conditions they obtained
that ®~1g is non-vanishing on X if g € C(Y, F) is non-vanishing on Y. Note that
every Riesz algebraic isomorphism must be a Riesz isomorphism.

Let E and F be Banach lattices. More recently, Ercan and Onal [7] have estab-
lished that if F' is an AM-space with unit, i.e., a C(K)-space, and there exists a
Riesz isomorphism ¢ : C(X, E) — C(Y, F') such that @f is non-vanishing on Y if
and only if f is non-vanishing on X, that is, both  and #~! are non-vanishing
preserving, then X is homeomorphic to Y and FE is Riesz isomorphic to F.

Inspired by [5, [7, [16], one can ask a natural question:

Question 1. Is X homeomorphic to Y if F, F are Banach lattices and there
exists a Riesz isomorphism @ : C(X, E) — C(Y, F) such that both ¢ and ¢! are
non-vanishing preserving?

In this paper we show the answer to the above question is affirmative. Moreover,
in this case @ can be written as a weighted composition operator:

éf(y):H(y)(f(@(y)Dv VfEC(X,E),VyGY,

where ¢ is a homeomorphism from Y onto X, and I1(y) is a Riesz isomorphism
from F onto F for every y in Y. This generalizes the results obtained by Cao,
Reilly and Xiong [5], Miao, Cao, and Xiong [16], and Ercan and Onal [7].

Our notions are standard. For the undefined notions and basic facts concerning
Banach lattices we refer the reader to the monographs [, [2] 14].

2. A BANACH-STONE THEOREM FOR RIESZ ISOMORPHISMS

In the following we always assume X and Y are compact Hausdorff spaces, F
and F' are non-zero Banach lattices, and L(FE, F') is the space of bounded linear
operators from F into F' equipped with SOT. For « in X and y in Y, let M, and
N, be defined as

M, ={feC(X,E): f(x)=0}, Ny,={g9g€C(Y,F):g(y) =0}
Clearly, M, and N, are closed (order) ideals in C(X, E) and C(Y, F'), respectively.

Lemma 2. Let ¢ : C(X,E) — C(Y,F) be a Riesz isomorphism such that ®(f) is
non-vanishing on Y if and only if f is non-vanishing on X. Then for each x in X
there exists a unique y in Y such that

OM, = N,.
In particular, this defines a bijection ¢ from'Y onto X by ¢(y) = z.
Proof. For each z in X, let
Z(@M,) ={yeY :Df(y) =0 for all f € M,}.

We first claim that Z(®M, ) is non-empty. Suppose, on the contrary, that Z(®M,)
is empty. Then for each y in Y there would exist an f,, in M, such that & f,(y) # 0,
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and thus @ f, is non-vanishing in an open neighborhood of y. Note that |f,| € M,,
and @|f,| = |Pf,| since P is a Riesz isomorphism. Therefore, we can assume further
that both f, and @f, are positive by replacing them by their absolute values if
necessary. By the compactness of Y, we can choose finitely many fi,..., f, from
M such that the positive functions @1, ..., ®f, have no common zero in Y. Hence
D(f1+ -+ + fn) is strictly positive; that is, @(f1 + -+ + fn)(y) > 0 for each y in
Y. This contradicts the fact that f; + --- + f,, vanishes at x. We thus prove that
Z(@M,) # ¢

Next, we claim that Z(PM;) is a singleton. Indeed, if y1,y2 € Z(PM,), then we
would have @M, C N,,,i = 1,2. Applying the above argument to ¢~1, we shall
have dj_lNyi C M,, for some z; in X, i = 1,2. It follows that ®M, C N,, C
OM,,,i=1,2. Then x = x; = x5 since P is bijective and X is Hausdorfl. Thus,

Y1 = Y2 and @Mw = ]\/vy1 = Ny2.
Now, we can define a bijective map ¢ : Y — X such that

My = N,, VyeY. O

The following main result answers affirmatively the question mentioned in the
introduction and solves the conjecture of Ercan and Onal in [7].

Theorem 3. Let & : C(X,E) — C(Y, F) be a Riesz isomorphism such that Of is
non-vanishing on 'Y if and only if f is non-vanishing on X. Then'Y is homeomor-
phic to X, and @ can be written as a weighted composition operator

2f(y) = (y)(f(e(y), VfeCX,E),VyeY.

Here ¢ is a homeomorphism fromY onto X, and II(y) is a Riesz isomorphism from
E onto F for every y in'Y. Moreover, IT : Y — (L(E,F),SOT) is continuous,
and ||| = sup,ey [[11(y)]]-

Proof. First, we show that the bijection ¢ given in Lemma [Pl is a homeomorphism
from Y onto X. It suffices to verify the continuity of ¢ since Y is compact and X
is Hausdorff. To this end, suppose, to the contrary, that there would exist a net
{yn} in Y converging to yo in Y, but ¢(y») converges to xg # ¢(yo) in X.

Let Uy, and Uy, be disjoint open neighborhoods of 2o and ¢(yo), respectively.
First, for any f in C(X, E) vanishing outside Uy, we claim that @ f(yo) = 0.
Indeed, since ¢(y») belongs to Uy, for A large enough and f(z) = 0 for any = in
Us,, we have that f € M(,,). It follows from Lemma [ that &f € N, ; that is,
®f(yx) = 0 when X is large enough. Thus, ?f(yy) = 0 since yx — yo and Df is
continuous.

Let x € C(X) such that x vanishes outside U,,,) and x(¢(y0)) = 1. Then, for
any h in C(X, E), we have h = xh + (1 — x)h. Since xh vanishes outside Uy, by
the above argument, we can see that ®(xh)(yo) = 0. Clearly, @((1 — x)h) vanishes
at yo since (1 — x)h € My(y,). Thus, Ph(yo) = P(xh)(yo) + ((1 — x))(yo) = 0
for any h in C(X, E). This leads to a contradiction since @ is surjective. So ¢ is
continuous and thus a homeomorphism from Y onto X satisfying &M, = N, for
each y in Y.
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Next, note that kerd,(,y = kerd, o @, where §, is the Dirac functional. Hence,
there is a linear operator II(y) : E — F such that §, o @ = II(y) o d,(,). In other
words,

2f(y) =1 y)(f(e(y), VS feCX E)VyeY.
See, e.g., 8 p. 67].

It is routine to verify the other assertions in the statement of this theorem. For
the convenience of the reader, we give a sketch of the rest of the proof. For e in
E, let 1x ® e € C(X, E) be defined by (1x ® e)(x) = e for each z in X. Let y
in Y be fixed. If e # 0, then II(y)e = II(y)(1x ® e)(p(y))) = P(1x ®@e)(y) # 0
since 1x ® e is non-vanishing. Hence, II(y) is one-to-one. On the other hand,
for v in F' we can find a function f in C(X, FE) such that &f = 1y ® u by the
surjectivity of @. Let e = f(p(y)). Then II(y)e = II(y)(f(¢(y))) = @f(y) = u.
That is, II(y) is surjective. To see that I1(y) is a Riesz isomorphism, let e1,es € E.
Then II(y)(e1 Ves) = P(1x @ (e1 Ver))(y) = P(1x ®e1)(y) VI(1x ® e2)(y) =
I (y)ey V II(y)ea, since @ is a Riesz isomorphism.

Recall that every positive operator between Banach lattices is continuous. Let
e € E. Since |[H(y)e| = [2(1x @ e)(y)ll < [|P(1x @ e)|| < [|@[]le]|, we have
HI(y)|| < ||@|| for all y in Y. On the other hand, for any f in C(X, F) and any
yin Y, we can see that @£ (5)]| = | 1(5)(f(p(u)]l < ][] Consequently,
1] < sup, ey 17(3)]]

Finally, we prove that IT : Y — (L(E, F'),SOT) is continuous. To this end, let
{y»} be a net such that yy — y in Y. Then, for any e in E, | II(yx)e — II(y)e| =
[2(1x ®e)(yn) — P(1x ®e)(y)|| — 0, since ¢(1x ® e) is continuous on Y. d

In the above results, we have to assume that both @ and ¢~! are non-vanishing
preserving. In the following example, we can see that the inverse of a non-vanishing
preserving Riesz isomorphism is not necessarily non-vanishing preserving.

Example 4. Let X = {1,2} be equipped with the discrete topology, let E = R
have its usual ordering and norm, and let Y = {0} and F = R? with the pointwise
ordering and the sup norm. Define @ : C(X, E) — C(Y, F) by 2£(0) = (f(1), f(2)).
Clearly, the Riesz isometric isomorphism @ is non-vanishing preserving, but its
inverse ! is not.

Let E, F be both Banach lattices and Riesz algebras. Miao, Cao and Xiong
[16] recently proved that if F has no zero-divisor and there exists a Riesz algebraic
isomorphism @ : C(X,E) — C(Y,F) such that @f is non-vanishing on Y if f is
non-vanishing on X, then X is homeomorphic to Y and E is Riesz algebraically
isomorphic to F'. In fact, from their proof we can see that @ f is non-vanishing on
Y if and only if f is non-vanishing on X; that is, both @ and ' are non-vanishing
preserving. Therefore, the result of Miao, Cao and Xiong can be restated as follows.

Corollary 5 ([16]). Let E, F be both Banach lattices and Riesz algebras. If F has
no zero-divisor and @ : C(X,E) — C(Y, F) is a Riesz algebraic isomorphism such
that @f is non-vanishing on Y if [ is non-vanishing on X, then @ is a weighted
composition operator

2f(y) = H(y)(f(ely), VfeC(X,E),VyeY.

Here ¢ is a homeomorphism from Y onto X, and II(y) is a Riesz algebraic iso-
morphism from E onto F for everyy inY.
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In Theorem Bl when X, Y are compact Hausdorff spaces and E = F = R, the
lattice hypothesis about @ can be dropped.

Example 6. Let X,Y be compact Hausdorfl spaces, and C(X),C(Y) be the Ba-
nach spaces of continuous real-valued functions defined on XY, respectively. As-
sume ¢ : C(X) — C(Y) is a linear map such that ¢f is non-vanishing on Y if and
only if f is non-vanishing on X.

Note that (#1x)~1® is a unital linear map preserving non-vanishing. Let \ be in
the range of f. Then f—\1x is not invertible, and thus neither is (#1x) 1@ f—A1y.
It follows that ) is in the range of (#1x) '@ f. The converse also holds. Therefore,
the range of (®#1x) '®f coincides with the range of f for each f in C(X). In
particular, (#1x) 1® is a unital linear isometry from C(X) into C(Y). By the
Holsztyniski Theorem [I1], there is a compact subset Yy of Y and a quotient map
¢ : Yy — X such that

(P1x)7'Df |y, = fop,  VfeC(X).

In case @ is surjective, the classical Banach-Stone Theorem ensures that ¢ is a
homeomorphism from Y = Y onto X. Moreover, if @1y is strictly positive on Y,
then @ is a Riesz isomorphism. However, when @ is not surjective the situation is
a bit uncontrollable. For example, consider & : C[0,1] — C([0,3] U [1, 2]) defined
by

_ [ 2y, if0<y<1/2;
20 ={ {00y + 3- 25, i1y 2d

Clearly, the thus defined @ is a non-surjective linear isometry preserving non-
vanishing in two ways, but [0, 1] is not homeomorphic to [0, 3] U [1, 2].

Finally, we borrow an example from [I5] which shows that the surjectivity cannot
be guaranteed by many other properties we usually consider.

Example 7. Let w and w; be the first infinite and the first uncountable ordinal
numbers, respectively. Let [0,w;] be the compact Hausdorff space consisting of all
ordinal numbers x not greater than w; and equipped with the topology generated
by order intervals. Note that every continuous function f in C[0,w;] is eventually
constant. More precisely, there is a non-limit ordinal x such that w < zy < w;
and f(z) = f(wq) for all z > xy.

Define ¢ : [0,w1] — [0, w1] by setting

?(0)=wy, ¢(n)=n—1foralln=1,2,..., and ¢(z)=x forall z > w.

Let @ : C[0,w1] — C[0,w1] be the non-surjective composition operator defined by
@f = fogp. It is plain that @ is an isometric unital algebraic and lattice isomorphism
from C10, w1] onto its range. In fact, one can see in [I5] Example 3.3] that the map
& is a non-surjective linear n-local automorphism of C[0,wq], where n =1,2,..., w;
i.e., the action of @ on any set S of cardinality not greater than n agrees with an
automorphism ®@g.
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