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1. Introduction

Throughout this paper, we denote by N the set of positive integers and by R
the set of real numbers. LetH be a real Hilbert space and let C be a nonempty
subset of H. For a mapping T of C into itself, we denote by F (T ) the set of
fixed points of T and by A(T ) the set of attractive points [27] of T , i.e.,

F (T ) = {z ∈ C : Tz = z}; (1.1)

A(T ) = {z ∈ H : ∥Tx− z∥ ≤ ∥x− z∥ ∀x ∈ C}. (1.2)

A mapping T : C → C is called generalized hybrid [16] if there exist α, β ∈ R
such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2
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for all x, y ∈ C; see also [1]. We call such a mapping an (α, β)-generalized
hybrid mapping. A (1, 0)-generalized hybrid mapping is nonexpansive; i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥ ∀x, y ∈ C.

A (2, 1)-generalized hybrid mapping is nonspreading [19]; i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2 ∀x, y ∈ C.

A ( 32 ,
1
2 )-generalized hybrid mapping is also hybrid [26]; i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2 ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see, for
instance, [13]. Recently, Takahashi and Takeuchi [27] proved the following at-
tractive point and mean convergence theorem without convexity in a Hilbert
space; see also [20].

Theorem 1.1 (See [27]). Let H be a real Hilbert space and let C be a nonempty
subset of H. Let T be a generalized hybrid mapping from C into itself. Let
{vn} and {bn} be sequences defined by

v1 ∈ C, vn+1 = Tvn, bn =
1

n

n∑
k=1

vk

for all n ∈ N. If {vn} is bounded, then the following hold:

(i) A(T ) is nonempty, closed and convex;
(ii) {bn} converges weakly to u0 ∈ A(T ), where u0 = limn→∞ PA(T )vn and

PA(T ) is the metric projection of H onto A(T ).

Atsushiba and Takakashi [2] also proved such a theorem for commuta-
tive semigroups of nonexpansive mappings in a Hilbert space. Motivated by
[2, 27],the authors established in [28] attractive point and mean convergence
theorems for semigroups of mappings without continuity in a Hilbert space
which unifies the results of [27] and [2]. On the other hand, we know that the
class of generalized hybrid mappings in a Hilbert space was extended to the
class of generalized nonspreading mappings in a Banach space in the sense of
Kocourek, Takahashi and Yao [17]. It is natural to extend the authors’ the-
orems in [28] to Banach spaces.

In this paper, we first introduce a broad semigroup of mappings with-
out continuity in a Banach space which contains discrete semigroups gener-
ated by generalized nonspreading mappings and semigroups of nonexpansive
mappings. Then we prove an attractive point and fixed point theorem for
the semigroups of mappings without continuity. Furthermore, we establish
a mean convergence theorem of Baillon’s type [3] for the semigroups. Using
these results, we obtain well-known and new theorems which are connected
with attractive point, fixed point and mean convergence results in Banach
spaces.
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2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. For a
sequence {xn} of E and a point x ∈ E, the weak convergence of {xn} to x
and the strong convergence of {xn} to x are denoted by xn ⇀ x and xn → x,
respectively. The duality mapping J from E into E∗ is defined by

Jx =
{
x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2

}
∀x ∈ E,

where ⟨x, x∗⟩ is the value of x∗ ∈ E∗ at x ∈ E. Let S(E) be the unit sphere
centered at the origin of E. The norm of E is said to be Gâteaux differentiable
if for each x, y ∈ S(E), the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

exists. In this case, E is called smooth. The norm of E is said to be Fréchet
differentiable if for each x ∈ S(E), the limit (2.1) is attained uniformly for
y ∈ S(E). A Banach space E is said to be strictly convex if ∥x+y

2 ∥ < 1
whenever x, y ∈ S(E) and x ̸= y. It is said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that ∥x+y

2 ∥ < 1 − δ whenever x, y ∈ S(E)
and ∥x− y∥ ≥ ε. It is known that if E is uniformly convex, then E is strictly
convex and reflexive. Furthermore, we know from [25] that

(i) if E is smooth, then J is single valued;
(ii) if E is reflexive, then J is onto;
(iii) if E is strictly convex, then J is one-to-one;
(iv) if E is strictly convex, then J is strictly monotone;
(v) if E has a Fréchet differentiable norm, then J is continuous.

Let E be a smooth Banach space and let J be the duality mapping
on E. Throughout this paper, define a function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 ∀x, y ∈ E.

Observe that, in a Hilbert space H,

ϕ(x, y) = ∥x− y∥2 ∀x, y ∈ H.

Furthermore, we know that for each x, y, z, w ∈ E,

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2; (2.2)

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩; (2.3)

2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w). (2.4)

If E is additionally assumed to be strictly convex, then

ϕ(x, y) = 0 if and only if x = y. (2.5)

If E is a smooth, strictly convex and reflexive Banach space, then for any
x, y ∈ E and λ ∈ R with 0 ≤ λ ≤ 1,

ϕ
(
x, J−1

(
λJy + (1− λ)Jz

))
≤ λϕ(x, y) + (1− λ)ϕ(x, z). (2.6)

Let ϕ∗ : E∗ × E∗ → R be a function defined by

ϕ∗(x
∗, y∗) := ∥x∗∥2 − 2

⟨
J−1y∗, x∗⟩+ ∥y∗∥2 ∀x∗, y∗ ∈ E∗.
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We have that

ϕ(x, y) = ϕ∗(Jy, Jx) ∀x, y ∈ E. (2.7)

The following lemmas were proved by Xu [30] and by Kamimura and Taka-
hashi [15].

Lemma 2.1 (See [30]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r] → [0,∞) such that g(0) = 0 and

∥ax+ (1− a)y∥2 ≤ a∥x∥2 + (1− a)∥y∥2 − a(1− a) g(∥x− y∥)

for all x, y ∈ Br and a ∈ [0, 1], where Br = {z ∈ E : ∥z∥ ≤ r}.

Lemma 2.2 (See [15]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r] → [0,∞) such that g(0) = 0 and

g(∥x− y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a smooth Banach space and let C be a nonempty subset of E.
A mapping T : C → E is called generalized nonexpansive [10] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y)

for all x ∈ C and y ∈ F (T ). LetD be a nonempty subset of a Banach space E.
A mapping R : E → D is said to be sunny if

R
(
Rx+ t(x−Rx)

)
= Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction
or a projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth
Banach space E is said to be a generalized nonexpansive retract (resp., sunny
generalized nonexpansive retract) of E if there exists a generalized nonexpan-
sive retraction (resp., sunny generalized nonexpansive retraction) R from E
onto D; see [9, 10, 11] for more details. The following results are in [10].

Lemma 2.3 (See [10]). Let C be a nonempty closed sunny generalized non-
expansive retract of a smooth and strictly convex Banach space E. Then the
sunny generalized nonexpansive retraction from E onto C is uniquely deter-
mined.

Lemma 2.4 (See [10]). Let C be a nonempty closed subset of a smooth and
strictly convex Banach space E such that there exists a sunny generalized
nonexpansive retraction R from E onto C and let (x, z) ∈ E × C. Then the
following hold:

(i) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [18] proved the following results.
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Lemma 2.5 (See [18]). Let E be a smooth, strictly convex and reflexive Banach
space and let C be a nonempty closed subset of E. Then the following are
equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.6 (See [18]). Let E be a smooth, strictly convex and reflexive Banach
space and let C be a nonempty closed sunny generalized nonexpansive retract
of E. Let R be the sunny generalized nonexpansive retraction from E onto C
and let (x, z) ∈ E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈C ϕ(x, y).

Inthakon, Dhompongsa and Takahashi [14] obtained the following result
concerning the set of fixed points of a generalized nonexpansive mapping in
a Banach space; see also Ibaraki and Takahashi [12].

Lemma 2.7 (See [14]). Let E be a smooth, strictly convex and reflexive Banach
space and let C be a closed subset of E such that J(C) is closed and convex.
Let T be a generalized nonexpansive mapping from C into itself. Then, F (T )
is closed and JF (T ) is closed and convex.

The following is a direct consequence of Lemmas 2.5 and 2.7.

Lemma 2.8 (See [14]). Let E be a smooth, strictly convex and reflexive Banach
space and let C be a closed subset of E such that J(C) is closed and convex.
Let T be a generalized nonexpansive mapping from C into itself. Then, F (T )
is a sunny generalized nonexpansive retract of E.

Let l∞ be the Banach space of bounded sequences with supremum norm.
Let µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f)
the value of µ at

f = (x1, x2, x3, . . . ) ∈ l∞.

Sometimes, we denote by µn(xn) the value µ(f). A linear functional µ on l∞

is called a mean if
µ(e) = ∥µ∥ = 1,

where e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if

µn(xn+1) = µn(xn).

We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞,
then for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have

µ(f) = µn(xn) = a.

See [25] for the proof of existence of a Banach limit and its other elementary
properties.



208 W. Takahashi, N.-C. Wong and J.-C. Yao JFPTA6 W. Takahashi, N.-C. Wong and J.-C. Yao

3. Semitopological semigroups and invariant means

Let S be a semitopological semigroup; i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s �→ a ·s and s �→ s ·a from S
to S are continuous. In the case when S is commutative, we denote st by s+t.
Let B(S) be the Banach space of all bounded real-valued functions on S with
supremum norm and let C(S) be the subspace of B(S) of all bounded real-
valued continuous functions on S. Let µ be an element of C(S)∗ (the dual
space of C(S)). We denote by µ(f) the value of µ at f ∈ C(S). Sometimes,
we denote by µt(f(t)) or µtf(t) the value µ(f). For each s ∈ S and f ∈ C(S),
we define two functions lsf and rsf as follows:

(lsf)(t) = f(st) and (rsf)(t) = f(ts)

for all t ∈ S. An element µ of C(S)∗ is called a mean on C(S) if

µ(e) = ∥µ∥ = 1,

where e(s) = 1 for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if
and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s) ∀f ∈ C(S).

Amean µ on C(S) is called left invariant if µ(lsf) = µ(f) for all f ∈ C(S) and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f)
for all f ∈ C(S) and s ∈ S. A left and right invariant mean on C(S) is called
an invariant mean on C(S). If S = N, an invariant mean on C(S) = B(S) is
a Banach limit on l∞. The following theorem is Theorem 1.4.5 in [25].

Theorem 3.1 (See [25]). Let S be a commutative semitopological semigroup.
Then there exists an invariant mean on C(S); i.e., there exists an element
µ ∈ C(S)∗ such that µ(e) = ∥µ∥ = 1 and µ(rsf) = µ(f) for all f ∈ C(S) and
s ∈ S.

Let S be a semitopological semigroup. For any f ∈ C(S) and c ∈ R, we
write

f(s) → c as s → ∞R

if for each ε > 0 there exists an ω ∈ S such that

|f(tw)− c| < ε ∀t ∈ S.

We denote f(s) → c, as s → ∞R, by

lim
s→∞R

f(s) = c or lim
s

f(s) = c.

When S is commutative, we also denote s → ∞R by s → ∞.

Theorem 3.2 (See [25]). Let f ∈ C(S) and c ∈ R. If

f(s) → c as s → ∞R,

then µ(f) = c for all right invariant mean µ on C(S).
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Theorem 3.3 (See [25]). If f ∈ C(S) fulfills

f(ts) ≤ f(s) ∀t, s ∈ S,

then
f(t) → inf

w∈S
f(w) as t → ∞R.

Let E be a Banach space and let C be a nonempty subset of E. Let S be
a semitopological semigroup and let S = {Ts : s ∈ S} be a family of mappings
of C into itself. Then S = {Ts : s ∈ S} is called a continuous representation
of S as mappings on C if Tst = TsTt for all s, t ∈ S and s �→ Tsx is continuous
for each x ∈ C. We denote by F (S) the set of common fixed points of Ts,
s ∈ S; i.e.,

F (S) = ∩{F (Ts) : s ∈ S}.
The following definition [23] is crucial in the nonlinear ergodic theory of ab-
stract semigroups; see also [6]. Let E be a reflexive Banach space and let E∗

be the dual space of E. Let u : S → E be a continuous function such that
{u(s) : s ∈ S} is bounded and let µ be a mean on C(S). Then there exists a
unique point z0 ∈ co {u(s) : s ∈ S} such that

µs⟨u(s), y∗⟩ = ⟨z0, y∗⟩ ∀y∗ ∈ E∗. (3.1)

In fact, since {u(s) : s ∈ S} is bounded and µ is a mean on C(S), we can define
a real-valued function g as follows:

g(y∗) = µs⟨u(s), y∗⟩ ∀y∗ ∈ E∗.

We have that for any y∗, z∗ ∈ E∗ and α, β ∈ R,
g(αy∗ + βz∗) = µs⟨u(s), αy∗ + βz∗⟩

= αµs⟨u(s), y∗⟩+ βµs⟨u(s), z∗⟩
= αg(y∗) + βg(z∗).

Then g is a linear functional of E∗ into R. Furthermore, we have that for any
y∗ ∈ E∗,

|g(y∗)| = |µs⟨u(s), y∗⟩|

≤ ∥µs∥ sup
s

|⟨u(s), y∗⟩|

≤ ∥µs∥ sup
s

∥u(s)∥ ∥y∗∥

=
(
sup
s

∥u(s)∥
)
∥y∗∥.

Put K = sups ∥u(s)∥. We have

|g(y∗)| ≤ K∥y∗∥ ∀y∗ ∈ E∗.

Then g is bounded. By the Riesz theorem, there exists z0 ∈ E such that

g(y∗) = ⟨z0, y∗⟩ ∀y∗ ∈ E∗. (3.2)

It is obvious that such z0 ∈ E is unique. Furthermore, we have

z0 ∈ co {u(s) : s ∈ S}.
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In fact, if z0 /∈ co {u(s) : s ∈ S}, then there exists y∗0 ∈ E∗ from the separation
theorem such that

⟨z0, y∗0⟩ < inf
{
⟨z, y∗0⟩ : z ∈ co {u(s) : s ∈ S}

}
.

Using the property of a mean, we have

⟨z0, y∗0⟩ < inf
{
⟨z, y∗0⟩ : z ∈ co {u(s) : s ∈ S}

}

≤ inf{⟨u(s), y∗0⟩ : s ∈ S}
≤ µs⟨u(s), y∗0⟩
= ⟨z0, y∗0⟩.

This is a contradiction. Thus we have z0 ∈ co {u(s) : s ∈ S}. We call such z0
the mean vector of u for µ. In particular, let S = {Ts : s ∈ S} be a continuous
representation of S as mappings on C such that {Tsx : s ∈ S} is bounded
for some x ∈ C. Putting u(s) = Tsx for all s ∈ S, we have that there exists
z0 ∈ E such tat

µs⟨Tsx, y
∗⟩ = ⟨z0, y∗⟩ ∀y∗ ∈ E∗.

We denote such z0 by Tµx. A net {µα} of means on C(S) is said to be asymp-
totically invariant if for each f ∈ C(S) and s ∈ S,

µα(f)− µα(lsf) → 0 and µα(f)− µα(rsf) → 0.

See [4, 25] for more details.

4. Attractive point theorems

Let E be a smooth Banach space and let C be a nonempty subset of E. For a
mapping T from C into C, we denote by A(T ) the set of attractive points [21]
of T ; that is,

A(T ) =
{
u ∈ E : ϕ(u, Tx) ≤ ϕ(u, x) ∀x ∈ C

}
.

Let S be a commutative semitopological semigroup with identity. For a con-
tinuous representation S = {Ts : s ∈ S} of S as mappings of C into itself, we
denote the set A(S) of common attractive points of S = {Ts : s ∈ S} by

A(S) = ∩{A(Tt) : t ∈ S}.

We know the following lemma from Lin and Takahashi [21]

Lemma 4.1 (See [21]). Let E be a smooth Banach space and let C be a
nonempty subset of E. Let T be a mapping from C into E. Then, A(T )
is a closed and convex subset of E.

We have from Lemma 4.1 that A(S) is closed and convex. Using the tech-
nique developed by Takahashi [23], we can prove the following attractive point
theorem for a family of mappings in a Banach space.

Theorem 4.2. Let E be a smooth and reflexive Banach space with the duality
mapping J and let C be a nonempty subset of E. Let S be a commutative
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semitopological semigroup with identity. Let S = {Ts : s ∈ S} be a continuous
representation of S as mappings of C into itself such that {Tsx : s ∈ S} is
bounded for some x ∈ C. Let µ be a mean on C(S). Suppose that

µsϕ(Tsx, Tty) ≤ µsϕ(Tsx, y)

for all y ∈ C and t ∈ S. Then,

A(S) = ∩{A(Tt) : t ∈ S}
is nonempty. In particular, if E is strictly convex and C is closed and convex,
then

F (S) = ∩{F (Tt) : t ∈ S}
is nonempty.

Proof. Using a mean µ and a bounded set {Tsx : s ∈ S}, we define a function
g : E∗ → R as follows:

g(x∗) = µs⟨Tsx, x
∗⟩ ∀x∗ ∈ E∗.

Since E is reflexive, as in Section 3, there exists a unique element z of E such
that

g(x∗) = µs⟨Tsx, x
∗⟩ = ⟨z, x∗⟩ ∀x∗ ∈ E∗.

Such an element z is in D = co {Tsx : s ∈ S}, where coA is the closure of the
convex hull of A. Take t ∈ S. We have from (2.3) that for y ∈ C and s ∈ S,

ϕ(Tsx, y) = ϕ(Tsx, Tty) + ϕ(Tty, y) + 2⟨Tsx− Tty, JTty − Jy⟩.
Then we have that for any y ∈ C,

µsϕ(Tsx, y) = µsϕ(Tsx, Tty) + µsϕ(Tty, y) + 2µs⟨Tsx− Tty, JTty − Jy⟩
= µsϕ(Tsx, Tty) + ϕ(Tty, y) + 2⟨z − Tty, JTty − Jy⟩.

Since µsϕ(Tsx, Tty) ≤ µsϕ(Tsx, y) by assumption, we have

µsϕ(Tsx, y) ≤ µsϕ(Tsx, y) + ϕ(Tty, y) + 2⟨z − Tty, JTty − Jy⟩.
This implies that

0 ≤ ϕ(Tty, y) + 2⟨z − Tty, JTty − Jy⟩ ∀y ∈ C. (4.1)

Then we have from (4.1) and (2.4) that

0 ≤ ϕ(Tty, y) + ϕ(z, y) + ϕ(Tty, Tty)− ϕ(z, Tty)− ϕ(Tty, y) (4.2)

= ϕ(z, y)− ϕ(z, Tty).

This implies that ϕ(z, Tty) ≤ ϕ(z, y) for all y ∈ C and hence z ∈ A(Tt). There-
fore z ∈ A(S) = ∩{A(Tt) : t ∈ S}.

In particular, if E is strictly convex and C is closed and convex, then
we have from D = co {Tsx : s ∈ S} ⊂ C that z is an element of C. Putting
y = z in (4.2), we have

ϕ(z, Ttz) ≤ ϕ(z, z).

Thus we have ϕ(z, Ttz) ≤ 0 and hence ϕ(z, Ttz) = 0. Since E is strictly
convex, we have Ttz = z. Therefore z ∈ F (S) = ∩{F (Tt) : t ∈ S}. This com-
pletes the proof. �
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Let E be a smooth Banach space, let C be a nonempty subset of E and
let J be the duality mapping from E into E∗. A mapping T : C → C is called
generalized nonspreading [17] if there exist α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1− α)ϕ(x, Ty) + γ
{
ϕ(Ty, Tx)− ϕ(Ty, x)

}

≤ βϕ(Tx, y) + (1− β)ϕ(x, y) + δ
{
ϕ(y, Tx)− ϕ(y, x)

} (4.3)

for all x, y ∈ C. Putting α = β = γ = 1 and δ = 0 in (4.3), we obtain

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x) ∀x, y ∈ C.

Such a mapping T is nonspreading in the sense of Kohsaka and Takahashi [19].
In the case of α = 1 and β = γ = δ = 0 in (4.3), we obtain

ϕ(Tx, Ty) ≤ ϕ(x, y) ∀x, y ∈ C.

We call such T a ϕ-nonexpansive mapping. If E is a Hilbert space, then we
have ϕ(x, y) = ∥x − y∥2 for all x, y ∈ E. Thus from (4.3), we obtain the
following:

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 + γ
(
∥Ty − Tx∥2 − ∥Ty − x∥2

)

≤ β∥Tx− y∥2 + (1− β)∥x− y∥2 + δ
(
∥y − Tx∥2 − ∥y − x∥2

)

for all x, y ∈ C. This implies that

(α+ γ)∥Tx− Ty∥2 + [1− (α+ γ)] ∥x− Ty∥2

≤ (β + δ)∥Tx− y∥2 + [1− (β + δ)] ∥x− y∥2

for all x, y ∈ C. That is, T is a generalized hybrid mapping in the sense
of [16]. Using Theorem 4.2, we have the following attractive point theorem
for generalized nonspreading mappings in a Banach space which was proved
by Lin and Takahashi [21].

Theorem 4.3 (See [21]). Let E be a smooth and reflexive Banach space and let
C be a nonempty subset of E. Let T be a generalized nonspreading mapping
of C into itself. Then the following are equivalent:

(1) A(T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Additionally, if E is strictly convex and C is closed and convex, then the fol-
lowing are equivalent:

(1) F (T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Proof. If A(T ) ̸= ∅, then ϕ(u, Tx)≤ϕ(u, x) for all u ∈ A(T ) and x ∈ C. So,
ϕ(u, Tnx) ≤ ϕ(u, x) for all n ∈ N and x ∈ C and hence {Tnx : n ∈ N} is
bounded. We show the reverse. Since T : C → C is a generalized nonspread-
ing, there exist α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1− α)ϕ(x, Ty) + γ
(
ϕ(Ty, Tx)− ϕ(Ty, x)

)

≤ βϕ(Tx, y) + (1− β)ϕ(x, y) + δ
(
ϕ(y, Tx)− ϕ(y, x)

) (4.4)
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for all x, y ∈ C. Replacing x by Tnv0 in inequality (4.4), we get

αϕ
(
Tn+1v0, T y

)
+ (1− α)ϕ(Tnv0, T y) + γ

(
ϕ(Ty, Tn+1v0)− ϕ(Ty, Tnv0)

)

≤ βϕ
(
Tn+1v0, y

)
+ (1− β)ϕ(Tnv0, y) + δ

(
ϕ(y, Tn+1v0)− ϕ(y, Tnv0)

)
.

Since {Tnv0} is bounded, we can apply a Banach limit µ to both sides of the
inequality. We have

µnϕ(T
nv0, T y) ≤ µnϕ(T

nv0, y)

for all y ∈ C. Therefore we have Theorem 4.3 from Theorem 4.2. �

Let E be a smooth Banach space and let C be a nonempty subset of E.
Let S be a semitopological semigroup. A continuous representation

S = {Ts : s ∈ S}

of S as mappings on C is a ϕ-nonexpansive semigroup on C if each Ts, s ∈ S,
is ϕ-nonexpansive; i.e.,

ϕ(Tsx, Tsy) ≤ ϕ(x, y) ∀x, y ∈ C.

In the case when E is a Hilbert space, a ϕ-nonexpansive semigroup on C
is called a nonexpansive semigroup on C; see Atsushiba and Takakashi [2].
Using Theorem 4.2, we can also prove an attractive point theorem for ϕ-
nonexpansive semigroups in a Banach space.

Theorem 4.4. Let E be a smooth and reflexive Banach space with the duality
mapping J and let C be a nonempty subset of E. Let S be a commutative semi-
topological semigroup with identity. Let S = {Ts : s ∈ S} be a ϕ-nonexpansive
semigroup on C such that {Tsz : s ∈ S} is bounded for some z ∈ C. Then,
A(S) = ∩{A(Tt) : t ∈ S} is nonempty. In particular, if E is strictly convex
and C is closed and convex, then F (S) = ∩{F (Tt) : t ∈ S} is nonempty.

Proof. Since S = {Ts : s ∈ S} is a ϕ-nonexpansive semigroup on C, we have

ϕ(Tt+sx, Tty) ≤ ϕ(Tsx, y)

for all x, y ∈ C and s, t ∈ S. Since {Tsz} is bounded for some z ∈ C, we can
apply an invariant mean µ to both sides of the inequality. Then, we have that
for any y ∈ C and t ∈ S,

µsϕ(Tt+sz, Tty) ≤ µsϕ(Tsz, y)

and hence

µsϕ(Tsz, Tty) ≤ µsϕ(Tsz, y).

We have from Theorem 4.2 thatA(S) is nonempty. Additionally, ifE is strictly
convex and C is closed and convex, then we have from Theorem 4.2 that F (S)
is nonempty. This completes the proof. �

As a direct consequence of Theorem 4.4, we obtain the following theorem
which was proved by Atsushiba and Takakashi [2].
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Theorem 4.5 (See [2]). Let H be a Hilbert space and let C be a nonempty
subset of H. Let S be a commutative semitopological semigroup with identity.
Let S = {Ts : s ∈ S} be a nonexpansive semigroup on C such that {Tsz : s ∈
S} is bounded for some z ∈ C. Then A(S) is nonempty. Additionally, if C
is closed and convex, then F (S) is nonempty.

5. Skew-attractive point theorems

Let E be a smooth Banach space and let C be a nonempty subset of E. Let T
be a mapping from C into E. We denote by B(T ) the set of skew-attractive
points [21] of T ; i.e.,

B(T ) = {z ∈ E : ϕ(Tx, z) ≤ ϕ(x, z) ∀x ∈ C}.
The following lemma was proved by Lin and Takahashi [21].

Lemma 5.1 (See [21]). Let E be a smooth Banach space and let C be a non-
empty subset of H. Let T be a mapping from C into E. Then, B(T ) is closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C
be a nonempty subset of E. Let T be a mapping from C into E. Define a
mapping T ∗ as follows:

T ∗x∗ = JTJ−1x∗ ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗.
The mapping T ∗ is called the duality mapping of T ; see [29] and [7]. If T is a
mapping of C into itself, then T ∗ is a mapping of JC into JC. The following
lemma was also proved by Lin and Takahashi [21] and Takahashi and Yao [29].

Lemma 5.2 (See [21, 29]). Let E be a smooth, strictly convex and reflexive
Banach space and let C be a nonempty subset of E. Let T be a mapping from
C into E and let T ∗ be the duality mapping of T . Then the following hold:

(1) JF (T ) = F (T ∗);
(2) JB(T ) = A(T ∗);
(3) JA(T ) = B(T ∗).

In particular, JB(T ) is closed and convex.

Let E be a smooth Banach space and let C be a nonempty subset of E.
We denote by B(S) the set of all common skew-attractive points of a family
S = {Ts : s ∈ S} of mappings of C into itself; i.e.,

B(S) = ∩{B(Ts) : s ∈ S}.
We obtain the following skew-attractive point theorem for semigroups of map-
pings without continuity in a Banach space.

Theorem 5.3. Let E be a strictly convex and reflexive Banach space with a
Fréchet differentiable norm and let C be a nonempty subset of E. Let S be a
commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself such that
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{Tsx : s ∈ S} is bounded for some x ∈ C. Let µ be a mean on C(S). Suppose
that

µsϕ(Tty, Tsx) ≤ µsϕ(y, Tsx)

for all y ∈ C and t ∈ S. Then, B(S) = ∩{B(Tt) : t ∈ S} is nonempty. In
particular, if C is closed and JC is closed and convex, then

F (S) = ∩{F (Tt) : t ∈ S}

is nonempty.

Proof. Assume that {Tsx : s ∈ S} is a bounded subset of C for some x ∈ C.
Put x∗ = Jx and y∗ = Jy, where y ∈ C and define

T ∗
s = JTsJ

−1 ∀s ∈ S.

Then, we have

T ∗
s T

∗
t = JTsJ

−1JTtJ
−1 = JTsTtJ

−1 = JTs+tJ
−1 = T ∗

s+t ∀s, t ∈ S.

On the other hand, if s → t, then we have from the continuity of J that for
any y∗ ∈ JC,

∥T ∗
s y

∗ − T ∗
t y

∗∥ = ∥JTsJ
−1Jy − JTtJ

−1Jy∥ = ∥JTsy − JTty∥ → 0.

Therefore, S∗ = {T ∗
s : s ∈ S} is a continuous representation of S as mappings

of JC into itself. Furthermore, since {Tsx : s ∈ S} is bounded and

µsϕ(Tty, Tsx) ≤ µsϕ(y, Tsx)

for all y ∈ C and t ∈ S, we have

µsϕ∗(T
∗
s x

∗, T ∗
t y

∗) = µsϕ∗(JTsJ
−1Jx, JTtJ

−1Jy)

= µsϕ(TtJ
−1Jy, TsJ

−1Jx)

= µsϕ(Tty, Tsx)

≤ µsϕ(y, Tsx)

= µsϕ∗(JTsx, Jy)

= µsϕ∗(JTsJ
−1Jx, Jy)

= µsϕ∗(T
∗
s x

∗, y∗)

for all y∗ ∈ JC and t ∈ S. Therefore, we have from Theorem 4.2 that

A(S∗) = ∩{A(T ∗
t ) : t ∈ S}

is nonempty. Since J : E → E∗ is a one-to-one and onto mapping, we have
from Lemma 5.2 that

B(S) = ∩{B(Tt) : t ∈ S}
= ∩{J−1A(T ∗

t ) : t ∈ S}
= J−1

(
∩ {A(T ∗

t ) : t ∈ S}
)

= J−1A(S∗).
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Since A(S∗) is nonempty, we have that B(S) is nonempty. In particular, if C
is closed and JC is closed and convex, then we have from Theorem 4.2 that

F (S∗) = ∩{F (T ∗
t ) : t ∈ S}

is nonempty. We also have from Lemma 5.2 that

F (S) = ∩{F (Tt) : t ∈ S}
= ∩{J−1F (T ∗

t ) : t ∈ S}
= J−1

(
∩ {F (T ∗

t ) : t ∈ S}
)

= J−1F (S∗).

Therefore,
F (S) = ∩{F (Tt) : t ∈ S}

is nonempty. This completes the proof. �
Let E be a smooth Banach space and let J be the duality mapping from

E into E∗. Let C be a nonempty subset of E. A mapping T : C → E is called
skew-generalized nonspreading [8] if there exist α, β, γ, δ ∈ R such that

αϕ(Ty, Tx) + (1− α)ϕ(Ty, x) + γ
(
ϕ(Tx, Ty)− ϕ(x, Ty)

)

≤ βϕ(y, Tx) + (1− β)ϕ(y, x) + δ
(
ϕ(Tx, y)− ϕ(x, y)

) (5.1)

for all x, y ∈ C. Using Theorem 5.3, we have the following attractive point the-
orem for skew-generalized nonspreading mappings in a Banach space which
was proved by Lin and Takahashi [21].

Theorem 5.4 (See [21]). Let E be a smooth, strictly convex and reflexive Ba-
nach space and let C be a nonempty subset of E. Let T be a skew-generalized
nonspreading mapping of C into itself. Then the following are equivalent:

(1) B(T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Additionally, if C is closed and JC is closed and convex, then the following
are equivalent:

(1) F (T ) ̸= ∅;
(2) {Tnv0} is bounded for some v0 ∈ C.

Proof. If B(T ) ̸= ∅, then ϕ(Ty, u) ≤ ϕ(y, u) for all u ∈ B(T ) and y ∈ C.
So, ϕ(Tny, u) ≤ ϕ(y, u) for all n ∈ N and y ∈ C and then {Tny} is bounded
for all y ∈ C. We show the reverse. Replacing x by Tnv0 in (5.1), where
n ∈ N ∪ {0}, we get

αϕ
(
Ty, Tn+1v0

)
+ (1− α)ϕ(Ty, Tnv0) + γ

(
ϕ(Tn+1v0, T y)− ϕ(Tnv0, T y)

)

≤ βϕ
(
y, Tn+1v0

)
+ (1− β)ϕ(y, Tnv0) + δ

(
ϕ(Tn+1v0, y)− ϕ(Tnv0, y)

)

for all y ∈ C. Since {Tnv0} is bounded, we can apply a Banach limit µ to
both sides of the inequality. We have

µnϕ(Ty, T
nv0) ≤ µnϕ(y, T

nv0)

for all y ∈ C. Therefore we have Theorem 5.4 from Theorem 5.3. �
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We know that this theorem (Theorem 5.4) is a generalization of the cor-
responding result of Dhompongsa et al. [5]. Using Theorem 5.3, we can also
prove Theorem 4.4.

6. Nonlinear mean convergence theorems

In this section, we prove a nonlinear mean convergence theorem of Baillon’s
type [3] for semigroups of mappings without continuity in a Banach space.
Before proving it, we need the following four lemmas which are proved by us-
ing the ideas of [22, 24].

Lemma 6.1. Let E be a smooth, strictly convex and reflexive Banach space
with the duality mapping J and let D be a nonempty, closed and convex sub-
set of E. Let S be a semitopological semigroup with identity and let C(S)
be the Banach space of all bounded real-valued continuous functions on S
with supremum norm. Let u : S → E be a continuous function such that
{u(s) : s ∈ S} ⊂ D is bounded and let µ be a mean on C(S). If g : D → R is
defined by

g(z) = µsϕ(u(s), z) ∀z ∈ D,

then the mean vector z0 of {u(s) : s ∈ S} for µ is a unique minimizer in D
such that

g(z0) = min{g(z) : z ∈ D}.

Proof. For a bounded net {u(s)} ⊂ D and a mean µ on C(S), we know that
a function g : D → R defined by

g(z) = µsϕ(u(s), z) ∀z ∈ D

is well defined. We also know from the proof of Theorem 4.2 that there exists
a mean vector z0 of {u(s)} for µ, that is, there exists z0 ∈ co {u(s) : s ∈ S}
such that

µs⟨u(s), y∗⟩ = ⟨z0, y∗⟩ ∀y∗ ∈ E∗.

Since D is closed and convex and {u(s)} ⊂ D, we have z0 ∈ D. Furthermore,
we have from (2.3) and (2.4) that for any z ∈ D,

g(z)− g(z0) = µsϕ(u(s), z)− µsϕ(u(s), z0)

= µs

(
ϕ(u(s), z)− ϕ(u(s), z0)

)

= µs

(
ϕ(u(s), z)− ϕ(u(s), z)− ϕ(z, z0)− 2⟨u(s)− z, Jz − Jz0⟩

)

= µs

(
− ϕ(z, z0)− 2⟨u(s)− z, Jz − Jz0⟩

)

= −ϕ(z, z0)− 2⟨z0 − z, Jz − Jz0⟩
= −ϕ(z, z0)− ϕ(z0, z0)− ϕ(z, z) + ϕ(z0, z) + ϕ(z, z0)

= ϕ(z0, z).

Then we have

g(z) = g(z0) + ϕ(z0, z) ∀z ∈ D. (6.1)
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This implies that z0 ∈ D is a minimizer in D such that

g(z0) = min{g(z) : z ∈ D}.

Furthermore, if u ∈ D satisfies g(u) = g(z0), then we have from (6.1) that
ϕ(z0, u) = 0. Since E is strictly convex, we have that z0 = u and hence z0 is a
unique minimizer in D such that g(z0) = min{g(z) : z ∈ D}. This completes
the proof. �

Using Lemma 6.1, we obtain the following result.

Lemma 6.2. Let E be a smooth, strictly convex and reflexive Banach space
with the duality mapping J and let C be a nonempty subset of E. Let S be
a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself. Suppose
that A(S) = B(S) is nonempty. Then for any x ∈ C, the net {Tsx : s ∈ S}
is bounded and the set

∩s co {Tt+sx : t ∈ S} ∩A(S)

consists of one point z0, where z0 is a unique minimizer of A(S) such that

lim
s

ϕ(Tsx, z0) = min
{
lim
s

ϕ(Tsx, z) : z ∈ A(S)
}
.

Additionally, if C is closed and convex, then the set

∩s co {Tt+sx : t ∈ S} ∩ F (S)

consists of one point z0.

Proof. Since A(S) = B(S) is nonempty, then for any z ∈ A(S) = B(S) and
x ∈ C, we have

ϕ(Tt+sx, z) ≤ ϕ(Tsx, z) ∀s, t ∈ S.

Thus {Tsx : s ∈ S} is bounded. Let µ be an invariant mean on C(S). From
Lemma 6.1, a unique minimizer z0 ∈ E such that

µsϕ(Tsx, z0) = min
{
µsϕ(Tsx, y) : y ∈ E

}

is the mean vector z0 ∈ E of {Tsx : s ∈ S} for µ, that is, a point z0 ∈ E such
that z0 ∈ co {Tsx : s ∈ S} and

µs⟨Tsx, y
∗⟩ = ⟨z0, y∗⟩ ∀y∗ ∈ E∗.

We also know from the proof of Theorem 4.2 that z0 ∈ A(S). Furthermore,
this z0 ∈ A(S) satisfies

µsϕ(Tsx, z0) = min
{
µsϕ(Tsx, y) : y ∈ A(S)

}
.

Let us show that z0 ∈ ∩s co {Tt+sx : t ∈ S}. If not, there exists some s0 ∈ S
such that z0 /∈ co {Tt+s0x : t ∈ S}. By the separation theorem, there exists
y∗0 ∈ E∗ such that

⟨z0, y∗0⟩ < inf
{
⟨z, y∗0⟩ : z ∈ co {Tt+s0x : t ∈ S}

}
.
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Using the property of the invariant mean µ, we have

⟨z0, y∗0⟩ < inf
{
⟨z, y∗0⟩ : z ∈ co {Tt+s0x : t ∈ S}

}

≤ inf{⟨Tt+s0x, y
∗
0⟩ : t ∈ S}

≤ µt⟨Tt+s0x, y
∗
0⟩

= µt⟨Ttx, y
∗
0⟩

= ⟨z0, y∗0⟩.

This is a contradiction. Thus z0 ∈ ∩s co {Tt+sx : t ∈ S}. Next, we show that
∩s co {Tt+sx : t ∈ S} ∩A(S) consists of one point z0. Assume that

z1 ∈ ∩s co {Tt+sx : t ∈ S} ∩A(S).
Since z1 ∈ A(S) = B(S), we have

ϕ(Tt+sx, z1) ≤ ϕ(Tsx, z1) ∀s, t ∈ S.

Then lims ϕ(Tsx, z1) exists. Furthermore, we know from the property of an
invariant mean µ that

µsϕ(Tsx, z1) = lim
s

ϕ(Tsx, z1).

In general, since lims ϕ(Tsx, z) exists for every z ∈ A(S), we define a function
g : A(S) → R as follows:

g(z) = lim
s

ϕ(Tsx, z) ∀z ∈ A(S).

Since

ϕ(z0, z1) = ϕ(Tsx, z1)− ϕ(Tsx, z0)− 2⟨Tsx− z0, Jz0 − Jz1⟩
for every s ∈ S, we have

ϕ(z0, z1) + 2 lim
s
⟨Tsx− z0, Jz0 − Jz1⟩

= lim
s

ϕ(Tsx, z1)− lim
s

ϕ(Tsx, z0)

≥ 0.

Let ϵ > 0. Then we have

2 lim
s
⟨Tsx− z0, Jz0 − Jz1⟩ > −ϕ(z0, z1)− ϵ.

Hence there exists s0 ∈ S such that

2⟨Ts+s0x− z0, Jz0 − Jz1⟩ > −ϕ(z0, z1)− ϵ

for every s ∈ S. Since z1 ∈ ∩s co {Tt+sx : t ∈ S}, we have

2⟨z1 − z0, Jz0 − Jz1⟩ ≥ −ϕ(z0, z1)− ϵ.

We have from (2.4) that

ϕ(z1, z1) + ϕ(z0, z0)− ϕ(z1, z0)− ϕ(z0, z1) ≥ −ϕ(z0, z1)− ϵ

and hence ϕ(z1, z0) ≤ ϵ. Since ϵ > 0 is arbitrary, we have ϕ(z1, z0) = 0.
Since E is strictly convex, we have z0 = z1. Therefore,

{z0} = ∩s co {Tt+sx : n ∈ S} ∩A(S).
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Additionally, if C is closed and convex, then

z0 ∈ ∩s co {Tt+sx : t ∈ S} ∩ F (S).

Since ∩s co {Tt+sx : t ∈ S} ∩A(S) consists of one point z0, we have

∩s co {Tt+sx : t ∈ S} ∩ F (S) = {z0}.

This completes the proof. �

Lemma 6.3. Let E be a smooth and reflexive Banach space and let C be
a nonempty subset of E. Let S be a commutative semitopological semigroup
with identity. Let S = {Ts : s ∈ S} be a continuous representation of S as
mappings of C into itself. Suppose that {Tsx : s ∈ S} is bounded for some
x ∈ C and

µsϕ(Tsx, Tty) ≤ µsϕ(Tsx, y), y ∈ C, t ∈ S

for all invariant means µ on C(S). Let {µα} be an asymptotically invariant
net of means on C(S); i.e., for each f ∈C(S) and s∈S, µα(f)−µα(lsf) → 0.
If a subnet {Tµαβ

x} of {Tµαx} converges weakly to a point u ∈ E, then u ∈
A(S). Additionally, if E is strictly convex and C is closed and convex, then
u ∈ F (S).

Proof. Since {µα} is a net of means on C(S), it has a cluster point µ in the
weak∗ topology. We show that µ is an invariant mean on C(S). In fact, since
the set

{λ ∈ C(S)∗ : λ(e) = ∥λ∥ = 1}
is closed in the weak∗ topology, it follows that µ is a mean on C(S). Further-
more, since {µα} is asymptotically invariant, for any ε > 0, f ∈ C(S) and
s ∈ S, there exists α0 such that

∣∣µα(f)− µα(lsf)
∣∣ ≤ ε

3
∀α ≥ α0.

Since µ is a cluster point of {µα}, we can choose β ≥ α0 such that

|µβ(f)− µ(f)| ≤ ε

3
and

∣∣µβ(lsf)− µ(lsf)
∣∣ ≤ ε

3
.

Hence we have∣∣µ(f)− µ(lsf)
∣∣ ≤ ∣∣µ(f)− µβ(f)

∣∣+ ∣∣µβ(f)− µβ(lsf)
∣∣

+
∣∣µβ(lsf)− µ(lsf)

∣∣
≤ ε

3
+

ε

3
+

ε

3
= ε.

Since ε > 0 is arbitrary, we have

µ(f) = µ(lsf) ∀f ∈ C(S), s ∈ S.

Suppose that a subnet {Tµαβ
x} of {Tµαx} converges weakly to some u ∈ E.

If λ is also a cluster point of {µαβ
} in the weak∗ topology, then λ is a cluster

point of {µα}. Then λ is an invariant mean on C(S). Without loss of gener-
ality, we may assume that µαβ

⇀ λ in the weak∗ topology. Furthermore, we
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have from Tµαβ
x ⇀ u that

λs⟨Tsx, y
∗⟩ = lim

β
(µαβ

)s⟨Tsx, y
∗⟩ = lim

β
⟨Tµαβ

x, y∗⟩ = ⟨u, y∗⟩ ∀y∗ ∈ E∗.

On the other hand, we have from (2.4) that for y ∈ C and s, t ∈ S,

2⟨Tsx− Tty, Jy − JTty⟩ − ϕ(Tty, y) = ϕ(Tsx, Tty)− ϕ(Tsx, y).

We apply µαβ
to both sides of the inequality, we get

2(µαβ
)s⟨Tsx− Tty, Jy − JTty⟩ − ϕ(Tty, y)

= (µαβ
)sϕ(Tsx, Tty)− (µαβ

)sϕ(Tsx, y).

Since µαβ
⇀ λ, we have

2(λ)s⟨Tsx− Tty, Jy − JTty⟩ − ϕ(Tty, y) = (λ)sϕ(Tsx, Tty)− (λ)sϕ(Tsx, y)

and hence

2⟨u− Tty, Jy − JTty⟩ − ϕ(Tty, y) = (λ)sϕ(Tsx, Tty)− (λ)sϕ(Tsx, y).

Since (λ)sϕ(Tsx, Tty)− (λ)sϕ(Tsx, y) ≤ 0 by the assumption, we have

2⟨u− Tty, Jy − JTty⟩ − ϕ(Tty, y) ≤ 0.

Since 2⟨u− Tty, Jy − JTty⟩ − ϕ(Tty, y) = ϕ(u, Tty)− ϕ(u, y), we have

ϕ(u, Tty) ≤ ϕ(u, y), y ∈ C, t ∈ S. (6.2)

This implies that u ∈ A(Tt). Therefore u ∈ A(S).
In particular, if E is strictly convex and C is closed and convex, then u

is an element of C. Putting y = u in (6.2), we get Ttu = u. Therefore

u ∈ F (S) = ∩{F (Tt) : t ∈ S}.
This completes the proof. �

Lemma 6.4. Let E be a uniformly convex and smooth Banach space. Let C be
a nonempty subset of E. Let S be a commutative semitopological semigroup
with identity and let S = {Ts : s ∈ S} be a continuous representation of S
as mappings of C into itself such that B(S) ̸= ∅. Then, there exists a unique
sunny generalized nonexpansive retraction R of E onto B(S). Furthermore,
for any x ∈ C, lims RTsx exists in B(S), where lims RTsx = q means that
lims ∥RTsx− q∥ = 0.

Proof. We have from Lemmas 5.1 and 5.2 that B(S) is closed and JB(S)
is closed and convex. Then from Lemmas 2.3 and 2.5, there exists a unique
sunny generalized nonexpansive retraction R of E onto B(S). For an invariant
mean µ on C(S), there exists q ∈ E such that

µt⟨RTtx, y
∗⟩ = ⟨q, y∗⟩ ∀y∗ ∈ E∗.

We also have that for any s ∈ S,

µt⟨RTt+sx, y
∗⟩ = µt⟨RTtx, y

∗⟩ = ⟨q, y∗⟩ ∀y∗ ∈ E∗.

Thus

q ∈ co
{
RTt+sx : t ∈ S

}
∀s ∈ S. (6.3)



222 W. Takahashi, N.-C. Wong and J.-C. Yao JFPTA20 W. Takahashi, N.-C. Wong and J.-C. Yao

From the property of the sunny generalized nonexpansive retraction R, we
have

0 ≤ ⟨v −Rv, JRv − Ju⟩ ∀v ∈ E, u ∈ B(S). (6.4)

We have from (6.4) and (2.4) that

0 ≤ 2⟨v −Rv, JRv − Ju⟩
= ϕ(v, u) + ϕ(Rv,Rv)− ϕ(v,Rv)− ϕ(Rv, u)

= ϕ(v, u)− ϕ(v,Rv)− ϕ(Rv, u).

Hence we have

ϕ(Rv, u) ≤ ϕ(v, u)− ϕ(v,Rv) ∀v ∈ E, u ∈ B(S). (6.5)

Since ϕ(Tsz, u) ≤ ϕ(z, u) for all s ∈ S, u ∈ B(S) and z ∈ C, it follows that

ϕ(Tt+sx,RTt+sx) ≤ ϕ(Tt+sx,RTsx) ≤ ϕ(Tsx,RTsx). (6.6)

Hence we have from (6.6) and Theorem 3.3 that

ϕ(Tsx,RTsx) → inf
w∈S

ϕ(Twx,RTwx) as s → ∞. (6.7)

Putting u = RTsx and v = Tt+sx in (6.5), we get

ϕ(RTt+sx,RTsx) ≤ ϕ(Tt+sx,RTsx)− ϕ(Tt+sx,RTt+sx)

≤ ϕ(Tsx,RTsx)− ϕ(Tt+sx,RTt+sx)

≤ ϕ(Tsx,RTsx)− inf
w∈S

ϕ(Twx,RTwx).

Since ϕ(·, z) is weakly lower semicontinuous for all z ∈ E, we have from (6.3)
that

ϕ(q,RTsx) ≤ ϕ(Tsx,RTsx)− inf
w∈S

ϕ(Twx,RTwx) ∀s ∈ S.

Thus we have from (6.7) that

∥RTsx− q∥ → 0 as s → ∞.

Since B(S) is closed, then {RTsx} converges strongly to q ∈ B(S). This com-
pletes the proof. �

Now, we can prove the following nonlinear mean convergence theorem of
Baillon’s type [3] for semigroups of mappings without continuity in a Banach
space.

Theorem 6.5. Let E be a uniformly convex Banach space with a Fréchet dif-
ferentiable norm and let C be a nonempty subset of E. Let S be a commutative
semitopological semigroup with identity. Let S = {Ts : s ∈ S} be a continuous
representation of S as mappings of C into itself such that A(S) = B(S) ̸= ∅
and let RB(S) be the sunny generalized nonexpansive retraction of E onto
B(S). Suppose that

µsϕ(Tsx, Tty) ≤ µsϕ(Tsx, y) ∀x, y ∈ C, t ∈ S (6.8)

for all invariant means µ on C(S). Let {µα} be an asymptotically invariant
net of means on C(S); i.e., for each f ∈ C(S) and s ∈ S,

µα(f)− µα(lsf) → 0.
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Then, {Tµαx} converges weakly to a point u ∈ A(S), where

u = lim
s

RB(S)Tsx.

Additionally, if C is closed and convex, then u ∈ F (S), where

u = lim
s

RF (S)Tsx.

Proof. Let x ∈ C. Since A(S) is nonempty, the net {Tsx : s ∈ S} is bounded.
So, {Tµαx} is bounded. In fact, we have

∥Tµαx∥ = sup
{
|⟨Tµαx, x

∗⟩| : ∥x∗∥ = 1
}

= sup
{
|(µα)t⟨Ttx, x

∗⟩| : ∥x∗∥ = 1
}

≤ sup

{
∥µα∥ · sup

t
|⟨Ttx, x

∗⟩| : ∥x∗∥ = 1

}

≤ sup

{
sup
t

∥Ttx∥ · ∥x∗∥ : ∥x∗∥ = 1

}

= sup
t

∥Ttx∥.

We also know from Theorem 6.2 that the set

∩s co {Tt+sx : t ∈ S} ∩A(S)

consists of one point. To prove that {Tµαx} converges weakly to a point z0
in A(S), it is sufficient to show that if a subnet {Tµαβ

x} of {Tµαx} converges

weakly to a point v ∈ E, i.e., Tµαβ
x ⇀ v, then v ∈ A(S) and

v ∈ ∩s co {Tt+sx : t ∈ S}.

From Lemma 6.3, we have that v ∈ A(S). Next, we show that

v ∈ ∩s co {Tt+sx : t ∈ S}.

Since {Tµαβ
x} ⇀ v, we also know that

λs⟨Tsx, y⟩ = ⟨v, y⟩ ∀y ∈ H

for some invariant mean λ on C(S). Then, from Lemma 6.2, we have that

v ∈ ∩t co {Tt+sx : s ∈ S}.

Therefore {Tµαx} converges weakly to z0 of A(S). Additionally, if C is closed
and convex, then z0 ∈ C and hence z0 ∈ F (S). Therefore {Tµαx} converges
weakly to z0 ∈ F (S). To show that z0 = lims PF (S)Tsx, we may follow the
proof of Lemma 6.4. This completes the proof. �

Using Theorem 6.5, we obtain the following nonlinear mean convergence
theorem for generalized nonspreading mappings in a Banach space which was
proved by Lin and Takahashi [21].
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Theorem 6.6 (See [21]). Let E be a uniformly convex Banach space with a
Fréchet differentiable norm and let C be a nonempty subset of E. Let T : C →
C be a generalized nonspreading mapping such that A(T ) = B(T ) ̸= ∅. Let R
be the sunny generalized nonexpansive retraction of E onto B(T ). Then, for
any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞ RTnx. Additionally, if C
is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ).

Proof. Let x ∈ C. Since A(T ) is nonempty, the sequence {Tnx} is bounded.
Since T : C → C is a generalized nonspreading, we have

αϕ
(
Tn+1x, Ty

)
+ (1− α)ϕ(Tnx, Ty) + γ

(
ϕ(Ty, Tn+1x)− ϕ(Ty, Tnx)

)

≤ βϕ
(
Tn+1x, y

)
+ (1− β)ϕ(Tnx, y) + δ

(
ϕ(y, Tn+1x)− ϕ(y, Tnx)

)

for all x, y ∈ C. Since {Tnx} is bounded, we can apply a Banach limit µ to
both sides of the inequality. We have

µnϕ(T
nx, Ty) ≤ µnϕ(T

nx, y)

for all y ∈ C. Therefore we have Theorem 6.6 from Theorem 6.5. �

Using Theorem 6.5, we also have the nonlinear mean convergence the-
orem for ϕ-nonexpansive semigroups in a Banach space.

Theorem 6.7. Let E be a uniformly convex Banach space with a Fréchet
differentiable norm and let C be a nonempty subset of E. Let S be a com-
mutative semitopological semigroup with identity. Let S = {Ts : s ∈ S} be a
ϕ-nonexpansive semigroup on C such that A(S) = B(S) ̸= ∅ and let RB(S)

be the sunny generalized nonexpansive retraction of E onto B(S). Let {µα}
be an asymptotically invariant net of means on C(S); i.e., for each f ∈ C(S)
and s ∈ S, µα(f)− µα(lsf) → 0. Then, {Tµαx} converges weakly to a point
u ∈ A(S), where u = lims RB(S)Tsx. Additionally, if C is closed and convex,
then u ∈ F (S), where u = lims RF (S)Tsx.

Proof. Since S = {Ts : s ∈ S} is a ϕ-nonexpansive semigroup on C, we have

ϕ(Tt+sx, Tty) ≤ ϕ(Tsx, y)

for all x, y ∈ C and s, t ∈ S. Since A(T ) is nonempty, {Tsx} is bounded for all
x ∈ C. So, we can apply an invariant mean µ to both sides of the inequality.
Then we have that for any y ∈ C and t ∈ S,

µsϕ(Tt+sx, Tty) ≤ µsϕ(Tsx, y)

and hence

µsϕ(Tsx, Tty) ≤ µsϕ(Tsx, y).

By Theorem 6.5, we have Theorem 6.7. This completes the proof. �



Vol. 16 (2014) Attractive point and mean convergence theorems 225Attractive point and mean convergence theorems 23

As a direct consequence of Theorem 6.7, we have a mean convergence
theorem for commutative semigroups of nonexpansive mappings in a Hilbert
space which was proved by Atsushiba and Takakashi [2].

Theorem 6.8 (See [2]). Let H be a Hilbert space and let C be a nonempty sub-
set of H. Let S be a commutative semitopological semigroup with identity. Let
S = {Ts : s ∈ S} be a nonexpansive semigroup on C such that A(S) is non-
empty. Let {µα} be an asymptotically invariant net of means on C(S). Then,
{Tαx} converges weakly to a point u ∈ A(S), where u = lims PA(S)Tsx. Addi-
tionally, if C is closed and convex, then u ∈ F (S), where u = lims PF (S)Tsx.
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