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AUTOMATIC CONTINUITY AND C0(Ω)-LINEARITY OF LINEAR

MAPS BETWEEN C0(Ω)-MODULES

CHI-WAI LEUNG, CHI-KEUNG NG AND NGAI-CHING WONG

Abstract. Let Ω be a locally compact Hausdorff space. We show that any local C-
linear map (where “local” is a weaker notion than C0(Ω)-linearity) between Banach
C0(Ω)-modules are “nearly C0(Ω)-linear” and “nearly bounded”. As an application, a
local C-linear map θ between Hilbert C0(Ω)-modules is automatically C0(Ω)-linear. If,
in addition, Ω contains no isolated point, then any C0(Ω)-linear map between Hilbert
C0(Ω)-modules is automatically bounded. Another application is that if a sequence of
maps {θn} between two Banach spaces “preserve c0-sequences” (or “preserve ultra-c0-
sequences”), then θn is bounded for large enough n and they have a common bound.
Moreover, we will show that if θ is a bijective “biseparating” linear map from a “full”
essential Banach C0(Ω)-module E into a “full” Hilbert C0(∆)-module F (where ∆ is
another locally compact Hausdorff space), then θ is “nearly bounded” (in fact, it is
automatically bounded if ∆ or Ω contains no isolated point) and there exists a homeo-
morphism σ : ∆ → Ω such that θ(e · ϕ) = θ(e) · ϕ ◦ σ (e ∈ E,ϕ ∈ C0(Ω)).
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1. Introduction

A linear map θ between the spaces of continuous sections of two bundle spaces over
the same locally compact Hausdorff base space Ω is said to be local if for any continuous
section f , one has supp θ(f) ⊆ supp f , or equivalently, for each g ∈ C0(Ω),

fg = 0 =⇒ θ(f)g = 0.

Consequently, local property is weaker than C0(Ω)-linearity. In the case when the domain
and the range bundles are over different base spaces, a more general notion is defined;
namely, disjointness preserving, or separating (see Section 5).

Local and disjointness preserving linear maps are found in many researches in anal-
ysis. For example, a theorem of Peetre [19] states that local linear maps of the space
of smooth functions defined on a manifold modelled on Rn are exactly linear differential
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operators (see, e.g., [17]). This is further extended to the case of vector-valued differen-
tiable functions defined on a finite dimensional manifold by Kantrowitz and Neumann
[16] and Araujo [3].

In the topological setting, similar results have been obtained. Local linear maps of the
space of continuous functions over a locally compact Hausdorff space are multiplication
operators, while disjointness preserving (separating) linear maps between two such spaces
over possibly different base spaces are weighted composition operators (see, e.g., [1, 5, 18,
14, 12, 15]). Among many interesting questions arising from these two notions, quite a
few efforts has been put on the automatic continuity of such maps. See, e.g., [2, 7, 14, 15]
for the scalar case, and [13, 4, 3, 6] for the vector-valued case.

In this paper, we extend this context to local or separating linear maps between spaces
of continuous sections of vector bundles. Note that similar to the correspondence de-
veloped by Swan [20] between finite dimensional vector bundles over a locally compact
Hausdorff space Ω and certain C0(Ω)-modules, the spaces of continuous sections of “Ba-
nach bundles” are certain Banach C0(Ω)-modules (see, e.g., [10], and Section 2 below).

One of the original motivation behind this work is to investigate up to what extent will
a local linear map between two Banach C0(Ω)-modules be C0(Ω)-linear. Surprisingly, on
top of finding that such maps are “nearly C0(Ω)-linear”, we find that they are also “nearly
bounded”. In fact, it is well known that there are many unbounded C-linear maps from
an infinite dimensional Banach space to another Banach space and so, if S is a finite
set, there are many unbounded C(S)-module maps from certain Banach C(S)-module to
another Banach C(S)-module. The interesting thing we discovered is that the above is,
in many cases, the “only obstruction” to the automatic boundedness of C0(Ω)-module
maps (see Proposition 3.5 as well as Theorems 3.7 and 4.2).

More precisely, if θ is a local C-linear map (not assumed to be bounded) from an
essential Banach C0(Ω)-module E to another such module F , then θ is “nearly C0(Ω)-

linear”, in the sense that the induced map θ̃ : E → F̃ is a C0(Ω)-module map (where
F̃ is the image of F in the space of C0-sections on the canonical “(H)-Banach bundle”
associated with F ; see Section 2). Moreover, θ is “nearly bounded” in the sense that
there exists a finite subset S ⊆ Ω such that

sup
ω∈Ω\S

sup
e∈E;
‖e‖≤1

∥∥∥θ̃(e)(ω)
∥∥∥ < ∞.

Furthermore, if F is “C0(Ω)-normed” (in particular, if F is a Hilbert C0(Ω)-module),
then the finite set S consists of isolated points in Ω, and

θ = θ0 ⊕
⊕

ω∈S

θω

where θ0 : EΩ\S → FΩ\S is a bounded C0(Ω \ S)-linear map (where EΩ\S and FΩ\S are
the canonical essential Banach C0(Ω \ S)-modules induced from E and F respectively)
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and θω are (unbounded) C-linear maps (see Theorems 4.2 and 3.7). Consequently, if Ω
contains no isolated point and F is C0(Ω)-normed, then θ is automatically bounded. As
another application, if X and Y are two Banach spaces and if θk : X → Y is a sequence
of C-linear maps (not assumed to be bounded) such that for any (xn) ∈ c0(X), we have
(θn(xn)) ∈ c0(Y ), then there exists n0 with

sup
n≥n0

‖θn‖ < ∞.

On the other hand, we will also study C-linear maps between two Banach modules
over two different base spaces. In this case, we will consider “separating” maps instead
of local maps. More precisely, if Ω and ∆ are two locally compact Hausdorff spaces, E is
a “full” essential Banach C0(Ω)-module (see Remark 3.2(b)), and F is a “full” Banach
C0(∆)-normed module, then for any bijective linear map θ : E → F (not assumed
to be bounded) with both θ and θ−1 being separating, there exists a homeomorphism
σ : ∆ → Ω such that θ(e ·ϕ) = θ(e) ·ϕ◦σ (e ∈ E,ϕ ∈ C0(Ω)), and there exists a finite set
S consisting of isolated points of ∆ such that the restriction of θ from EΩ\σ(S) to F∆\S is
bounded.

This paper is organised as follows. In Section 2, we will first collect some basic facts
about the correspondence between Banach bundles and Banach C0(Ω)-modules. In Sec-
tion 3, we will show two technical lemmas concerning “near C0(Ω)-linearity” and “near
boundedness” of certain mappings. Section 4 is devoted to automatic C0(Ω)-linearity and
automatic boundedness of local linear mappings, while Section 5 is devoted to the au-
tomatic boundedness of bijective biseparating linear mappings between Banach modules
over different base spaces. Finally, as an attempt to a further generalisation, we show in
the Appendix that for an arbitrary C*-algebra A, every bounded local linear map from
a Banach A-module into a Hilbert A-module is A-linear. The boundedness assumption
can be removed in the case when A is finite dimension (Corollary 4.9).

2. Preliminaries and Notations

Let us first recall (mainly from [10]) some basic terminologies and results concerning
Banach modules and Banach bundles.

Notation 2.1. In this article, Ω and ∆ are two locally compact Hausdorff spaces, E is an
essential Banach C0(Ω)-module, F is an essential Banach C0(∆)-module, and θ : E → F
is a C-linear map (not assumed to be bounded). Furthermore, Ω∞ and ∆∞ are the one-
point compactifications of Ω and ∆ respectively. We denote by NΩ(ω) the set of all
compact neighbourhoods of an element ω in Ω, and by IntΩ(S) the set of all interior
points of a subset S in Ω. Moreover, if U, V ⊆ Ω such that the closure of V is a compact
subset of IntΩ(U), we denote by UΩ(V, U) the collection of all λ ∈ Cc(Ω) with 0 ≤ λ ≤ 1,
λ ≡ 1 on V and the support of λ lies inside IntΩ(U).
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Definition 2.2. Let Ξ be a Hausdorff space and p : Ξ → Ω be a surjective continuous
open map. Suppose that for each ω ∈ Ω,

1). there exists a complex Banach space structure on Ξω := p−1(ω) such that its norm
topology coincides with the topology on Ξω (as a topological subspace of Ξ);

2). {W (ǫ, U) : ǫ > 0, U ∈ NΩ(ω)} forms a neighbourhood basis for the zero element
0ω ∈ Ξω where W (ǫ, U) := {ξ ∈ p−1(U) : ‖ξ‖ < ǫ};

3). the maps C × Ξ → Ξ and {(ξ, η) ∈ Ξ × Ξ : p(ξ) = p(η)} → Ξ given respectively, by
the scalar multiplications and the additions are continuous.

Then (Ξ,Ω, p) (or simply, Ξ) is called an (H)-Banach bundle (respectively, an (F)-Banach
bundle) over Ω if ξ 7→ ‖ξ‖ is an upper-semicontinuous (respectively, continuous) map
from Ξ to R+. In this case, Ω is called the base space of Ξ, the map p is called the
canonical projection and Ξω is called the fibre over ω ∈ Ω.

If Ξ is an (H)-Banach bundle over Ω and Ω0 ⊆ Ω is an open set, then

ΞΩ0 := p−1(Ω0)

is an (H)-Banach bundle over Ω0 and is called the restriction of Ξ to Ω0. If Ξ is an
(F)-Banach bundle, then so is ΞΩ0 .

Definition 2.3. If Λ is an (H)-Banach bundle over ∆, a map ρ : Ξ → Λ is called a
fibrewise linear map covering a map σ : Ω → ∆ if ρ(Ξω) ⊆ Λσ(ω) and the restriction
ρω : Ξω → Λσ(ω) is linear. Moreover, a fibrewise linear map ρ covering a continuous map
σ : Ω → ∆ is called a Banach bundle map if ρ is continuous. A Banach bundle map ρ
is said to be bounded if sup ξ∈Ξ;

‖ξ‖≤1

‖ρ(ξ)‖ <∞.

For any map e : Ω → Ξ, we denote

|e|(ω) := ‖e(ω)‖ (ω ∈ Ω).

Such an e is called a C0-section on Ξ if e is continuous, p(e(ω)) = ω (ω ∈ Ω), and for
any ǫ > 0, there exists a compact set C ⊆ Ω such that |e|(ω) < ǫ (ω ∈ Ω \ C). We put

Γ0(Ξ) := {e : Ω → Ξ | e is a C0−section on Ξ}.

Note that |e| is always upper semi-continuous for every e ∈ Γ0(Ξ) and Ξ is an (F)-Banach
bundle if and only if all such |e| are continuous.

Next, we recall some terminologies and properties concerning an essential Banach
(right) C0(Ω)-module E (regarded as a unital Banach C(Ω∞)-module). For any ω ∈ Ω∞

and S ⊆ Ω∞, we denote

KS := {ϕ ∈ C(Ω∞) : ϕ(S) = {0}}, KE
S := E ·KS and IEω :=

⋃

V ∈NΩ∞ (ω)

KE
V .
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For simplicity, we set KE
ω := KE

{ω}. Note that KE
∞ = E because E is an essential

Banach C0(Ω)-module. By [10, p.37], there exists an (H)-Banach bundle Ξ̌E over Ω∞

with Ξ̌E
ω = E/KE

ω . Since Ξ̌E
∞ = {0}, if we set ΞE := p−1(Ω), then Γ0(Ξ

E) ∼= Γ0(Ξ̌
E)

under the canonical identification. Furthermore, there exists a contraction

∼ : E −→ Γ0(Ξ
E)

such that ẽ(ω) = e+KE
ω . We put Ẽ to be the closure of the image of ∼.

On the other hand, if θ is as in Notation 2.1, we define

θ̃ : E → F̃ by θ̃(e) = θ̃(e) (e ∈ E).

Definition 2.4. Let E be an essential Banach C0(Ω)-module.

(a) E is called a Banach C0(Ω)-convex module if for any ϕ, ψ ∈ C(Ω∞)+ with ϕ+ψ = 1,
one has ‖xϕ+ yψ‖ ≤ max{‖x‖, ‖y‖}.

(b) E is called a Banach C0(Ω)-normed module if there exists a map | · | : E → C0(Ω)+
such that for any x, y ∈ X and a ∈ A,

i). |x+ y| ≤ |x|+ |y|;
ii). |xa| = |x||a|;
iii). ‖x‖ = ‖|x|‖.

Recall that every Hilbert C0(Ω)-module is a Banach C0(Ω)-normed module, and every
Banach C0(Ω)-normed module is C0(Ω)-convex. On the other hand, an essential Banach
C0(Ω)-module E is C0(Ω)-convex if and only if ∼ is an isometric isomorphism onto
Γ0(Ξ

E) (see e.g. [10, Theorem 2.5]). In this case, we will not distinguish E and Γ0(Ξ
E).

Furthermore, E is C0(Ω)-normed if and only if E is C0(Ω)-convex and ΞE is an (F)-
Banach bundle (see e.g. [10, p.48]).

For any open subset Ω0 ⊆ Ω, we set EΩ0 := KE
Ω\Ω0

and ẼΩ0 := Γ0(Ξ
E
Ω0
). One can regard

KE
Ω\Ω0

as an essential Banach C0(Ω0)-module under the identification C0(Ω0) ∼= KΩ\Ω0 .

Note that if E is C0(Ω)-convex, then ẼΩ0 = EΩ0 .

Remark 2.5. (a) Let E be a Banach C0(Ω)-convex module and 0ω is the zero element
in the fibre ΞE

ω (ω ∈ Ω). It is well-known that ω 7→ 0ω is a continuous map from Ω into
ΞE. Thus, if {ωi}i∈I is a net in Ω converging to ω0 ∈ Ω and e ∈

⋂
i∈I K

E
ωi
, then e ∈ KE

ω0
.

Consequently, if e /∈ KE
ω , there exists U ∈ NΩ(ω) such that e /∈ KE

α for any α ∈ U .
(b) For any ω ∈ Ω and e ∈ KE

ω , there exists a net {eV }V ∈NΩ(ω) such that eV ∈ KE
V and

‖e− eV ‖ → 0.

(c) Let Ω = {ω1, ω2, ...} be a countable compact Hausdorff space and E be a Banach
C(Ω)-module. Then ⋂

ω∈Ω

KE
ω = {0},
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or equivalently, the map ∼ is injective. In fact, consider any e ∈
⋂

ω∈ΩK
E
ω and any ǫ > 0.

For k ∈ N, there exists ϕ̄k ∈ K{ωk} with ‖e−eϕ̄k‖ < ǫ/2k+1. Thus, there exists ϕk ∈ C(Ω)
with ϕk vanishing on an open neighbourhood Vk of ωk and ‖e − eϕk‖ < ǫ/2k. Now,
consider a finite subcover {V1, ..., Vn} for Ω and a continuous partition of unity {ψ1, ...ψn}
subordinated to {V1, ..., Vn}. Then ‖e‖ = ‖e− e

∑n
k=1 ϕkψk‖ ≤

∑n
k=1 ‖e− eϕk‖ < ǫ.

3. Some technical results

In this section, we will give two technical lemmas (3.3 and 3.6) which are the crucial
ingredients for all the results in this paper. Before presenting them, let us give another
automatic continuity type lemma that is needed for those two essential lemmas.

Lemma 3.1. Zθ := {ν ∈ ∆ : θ̃(e)(ν) = 0 for all e ∈ E} is a closed subset (where θ̃ is
as in Section 2). Moreover, if σ : ∆θ → Ω∞ (where ∆θ := ∆ \ Zθ) is a map satisfying
θ(IEσ(ν)) ⊆ KF

ν (ν ∈ ∆θ), then σ is continuous.

Proof: It follows from Remark 2.5(a) that Zθ is closed. Suppose on the contrary, that
there exists a net {νi}i∈I in ∆θ that converges to ν0 ∈ ∆θ but σ(νi) 9 σ(ν0). Then
there are U,W ∈ NΩ∞(σ(ν0)) with U ⊆ IntΩ∞(W ) and {i ∈ I : σ(νi) /∈ IntΩ(W )} being
cofinal. As Ω∞ is compact, by passing to a subnet if necessary, we can assume that
{σ(νi)} converges to an element ω ∈ Ω∞, and there exists V ∈ NΩ∞(ω) with V ∩ U = ∅.
Pick any e ∈ E and ϕ ∈ UΩ∞(V,Ω∞ \ U). Since σ(νi) → ω, we see that e(1− ϕ) ∈ IEσ(νi)
when i is large enough and so eventually,

θ̃(e(1− ϕ))(νi) = 0

(by the hypothesis). By Remark 2.5(a), we see that θ̃(e(1 − ϕ))(ν0) = 0. On the other
hand, we have θ(eϕ) ∈ KF

ν0 (because eϕ ∈ IEσ(ν0)) and θ(e) ∈ KF
ν0, which gives the

contradiction that ν0 ∈ Zθ. �

Remark 3.2. (a) Note that for any ν ∈ Zθ, one has

(3.1) θ(IEω ) ⊆ KF
ν (ω ∈ Ω).

Consequently, if we extend σ in Lemma 3.1 by setting σ(ν) arbitrarily for each ν ∈ Zθ,
then θ(IEσ(ν)) ⊆ KF

ν (ν ∈ ∆) but one should not expect such σ to be continuous.

(b) θ is said to be full if Zθ = ∅. Moreover, E is said to be full if id : E → E is full (or
equivalently, E 6= KE

ω for any ω ∈ Ω).

(c) One can use our proof for Lemma 3.1 to give the following (probably known) result:

Suppose that σ : ∆ → Ω is a map and Φ : C0(Ω) → Cb(∆) is a C-linear
map satisfying Φ(λ ·ψ) = Φ(λ) · (ψ ◦σ) (λ, ψ ∈ C0(Ω)), and for any ν ∈ ∆,
there exists λ ∈ C0(Ω) with Φ(λ)(ν) 6= 0. Then σ is continuous.
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Lemma 3.3. Let σ : ∆θ → Ω be a map satisfying θ(IEσ(ν)) ⊆ KF
ν (ν ∈ ∆θ).

(a) If Uθ :=
{
ν ∈ ∆ : sup‖e‖≤1 ‖θ̃(e)(ν)‖ = ∞

}
, then Uθ ⊆ ∆θ,

sup
ν∈∆\Uθ;‖e‖≤1

‖θ̃(e)(ν)‖ < ∞

(we use the convention that sup ∅ = 0) and σ(Uθ) is a finite set.

(b) If Nθ,σ :=
{
ν ∈ ∆θ : θ(K

E
σ(ν)) * KF

ν

}
, then Nθ,σ ⊆ Uθ and σ(Nθ,σ) consists of non-

isolated points in Ω.

(c) If, in addition, σ is an injection sending isolated points in ∆θ to isolated points in Ω,

then θ̃(e · ϕ) = θ̃(e) · ϕ ◦ σ (e ∈ E,ϕ ∈ C0(Ω)).

Proof: (a) The first conclusion is clear. We put Y to be the c0-direct sum
⊕c0

ν∈∆ ΞF
ν .

For every ν ∈ ∆ \ Uθ, one can regard e 7→ θ̃(e)(ν) as a bounded C-linear map from E

into Y (note that
∥∥∥θ̃(e)(ν)

∥∥∥ ≤ ‖θ(e)‖), the uniform boundedness principle will give the

second conclusion. Assume now that σ(Uθ) is infinite. For n = 1, we can find ν1 ∈ ∆ as

well as e1 ∈ E with ‖e1‖ ≤ 1 and
∥∥∥θ̃(e1)(ν1)

∥∥∥ > 1. Inductively, we can find νn ∈ ∆ and

en ∈ E such that

σ(νn) 6= σ(νk) (k = 1, ..., n− 1), ‖en‖ ≤ 1 and ‖θ̃(en)(νn)‖ > n3.

There exist n1 ∈ N and U1 ∈ NΩ(σ(νn1)) such that {n ∈ N : n > n1 and σ(νn) /∈ U1} is
infinite. Inductively, we can find a subsequence {νnk

} and Uk ∈ NΩ(σ(νnk
)) (k ∈ N) such

that Uk ∩Ul = ∅ for distinct k, l ∈ N. Without loss of generality, we assume that nk = k.
Pick Vn ∈ NΩ(σ(νn)) such that Vn is subset of IntΩ(Un). Consider λn ∈ UΩ(Vn, Un)

(n ∈ N) and notice that ‖enλ
2
n‖ ≤ 1. Define e :=

∑∞
k=1

ekλ
2
k

k2
∈ E and take n ∈ N. Since

n2e− enλ
2
n = n2

(
∑

k 6=n

ekλk
k2

)(
∑

k 6=n

λk

)
∈ KE

Un
,

we have n2θ̃(e)(νn) = θ̃(enλ
2
n)(νn) (by the hypothesis). On the other hand, as en−enλ

2
n =

en(1− λ2n) ∈ KE
Vn
, we have,

∥∥∥θ̃(e)
∥∥∥ ≥

∥∥∥θ̃(e)(νn)
∥∥∥ =

1

n2

∥∥∥θ̃(enλ2n)(νn)
∥∥∥ =

1

n2

∥∥∥θ̃(en)(νn)
∥∥∥ > n,

which contradicts the finiteness of ‖θ̃(e)‖.

(b) Consider ν ∈ ∆ \ Uθ and denote κ := sup‖e‖≤1

∥∥∥θ̃(e)(ν)
∥∥∥ < ∞. Pick any e ∈ KE

σ(ν)

and eV ∈ KE
V (V ∈ NΩ(σ(ν))) with ‖eV − e‖ → 0 (Remark 2.5(b)). As θ(eV ) ∈ KF

ν , one
has ∥∥∥θ̃(e)(ν)

∥∥∥ =
∥∥∥θ̃(e− eV )(ν)

∥∥∥ ≤ κ ‖e− eV ‖ ,
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which shows that ν ∈ ∆ \ Nθ,σ. Now, if σ(ν) is an isolated point in Ω, then {σ(ν)} ∈
NΩ(σ(ν)), and we have the contradiction that θ(KE

σ(ν)) ⊆ KF
ν . This gives second state-

ment.

(c) For any ν ∈ ∆ \Nθ,σ and e ∈ E, we have eϕ− eϕ(σ(ν)) = e(ϕ− ϕ(σ(ν))1) ∈ KE
σ(ν).

Thus,

(3.2) θ̃(eϕ)(ν) = θ̃(e)(ν)ϕ(σ(ν)) (e ∈ E, ν ∈ ∆ \Nθ,σ).

In particular, (3.2) is true when ν ∈ ∆ \ Uθ (by part (b)) or when ν ∈ Uθ is an isolated
point of ∆θ (by the hypothesis as well as part (b)). Suppose that ν ∈ Uθ is a non-isolated
point of ∆θ. As σ is injective, part (a) implies that Uθ is a finite set. Hence, there exists
a net {νi} in ∆θ \ Uθ converging to ν. Now, by Lemma 3.1,

θ̃(eϕ)(ν) = lim θ̃(eϕ)(νi) = lim θ̃(e)(νi)ϕ(σ(νi)) = θ̃(e)(ν)ϕ(σ(ν)).

�

Remark 3.4. Note that since Zθ is closed, isolated points in ∆θ are the same as isolated
points of ∆. Moreover, for any ν ∈ Zθ, we have sup‖e‖≤1 ‖θ̃(e)(ν)‖ = 0, and (3.1) holds.
Therefore, Lemma 3.3 remains valid if we replace all the ∆θ with ∆ (in fact, the current
form is stronger as any injection on ∆ restricted to an injection on ∆θ). The same is
true for all the remaining results in this section.

If σ is injective, then Uθ is finite and we have our first nearly automatically boundedness
result which states that if θ is a “module map through an injection σ : ∆ → Ω” (one
can relax this slightly to an injection on ∆θ), then θ is “bounded after taking away finite
number of points from ∆”.

Proposition 3.5. Let Ω and ∆ be two locally compact Hausdorff spaces. Let E and F be
an essential Banach C0(Ω)-module and an essential Banach C0(∆)-module respectively,
and let θ : E → F be a C-linear map (not assumed to be bounded). Suppose that σ : ∆θ →
Ω is an injection satisfying θ(e · ϕ)(ν) = θ(e)(ν)ϕ(σ(ν)) (e ∈ E,ϕ ∈ C0(Ω), ν ∈ ∆θ).
Then there exist a finite subset T ⊆ ∆ and κ > 0 such that

sup
ν∈∆\T

‖θ̃(e)(ν)‖ ≤ κ‖e‖ (e ∈ E).

Lemma 3.6. Let σ : ∆θ → Ω be a map satisfying θ(IEσ(ν)) ⊆ KF
ν (ν ∈ ∆θ). Suppose, in

addition, that F is a Banach C0(∆)-normed module.

(a) Nθ,σ is an open subset of ∆.

(b) If σ is injective, then Uθ is a finite set consisting of isolated points of ∆. If, in
addition, Uθ 6= ∆, then F = F∆\Uθ

⊕
⊕

ν∈Uθ
ΞF
ν and

θ0 := Pθ,σ ◦ θ|EΩ\σ(Uθ)
: EΩ\σ(Uθ) → F∆\Uθ
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is a bounded linear map (where Pθ,σ : F → F∆\Uθ
is the canonical projection) such that

(3.3) θ0(e · ϕ) = θ0(e) · ϕ ◦ σ (e ∈ EΩ\σ(Uθ), ϕ ∈ C0(Ω \ σ(Uθ)))

(note that the value of σ on Zθ can be set arbitrarily).

Proof: Notice, first of all, that as F is C0(Ω)-convex, one can regard θ̃ = θ.

(a) As ∆θ is open in ∆ and Nθ,σ ⊆ Uθ ⊆ ∆θ, it suffices to show that Nθ,σ is open in ∆θ.
By Lemma 3.3(a),

κ := sup
ν /∈Uθ

sup
‖e‖≤1

‖θ(e)(ν)‖ < ∞.

Let {νi}i∈I be a net in ∆θ \Nθ,σ converging to ν0 ∈ ∆θ, and e be an arbitrary element
in KE

σ(ν0)
. By Lemma 3.1, we know that σ(νi) → σ(ν0). Now, we consider two cases

separately. The first case is when {σ(νi)}i∈I is finite. In this case, by passing to subnet,
we can assume that σ(νi) = σ(ν0) (i ∈ I). As e(σ(ν0)) = 0 and νi /∈ Nθ,σ, we have
θ(e)(νi) = 0 which gives θ(e)(ν0) = 0, and so, θ(e) ∈ KF

ν0. The second case (of {σ(νi)}i∈I
being infinite) can be subdivided into two cases. More precisely, if there exists i0 ∈ I
such that νj ∈ Uθ for every j ≥ i0, then we can assume that {σ(νi)}i∈I ⊆ σ(Uθ) which
is a finite set, and the above implies that θ(e) ∈ KF

ν0
. Otherwise, {i ∈ I : νi /∈ Uθ} is

cofinal, and by passing to a subnet, we may assume that νi /∈ Uθ (i ∈ I). For any ǫ > 0,
pick V ∈ NΩ(σ(ν0)) and eV ∈ KE

V with ‖eV − e‖ < ǫ. When i is large enough, σ(νi) ∈ V
and eV (σ(νi)) = 0. Thus,

‖θ(e)(νi)‖ = ‖θ(e− eV )(νi)‖ ≤ κǫ.

By the continuity of the norm function on ΞF , we have ‖θ(e)(ν0)‖ ≤ κǫ which implies
that θ(e)(ν0) = 0.

(b) By the hypothesis and Lemma 3.3(a), one knows that Uθ is finite. Without loss of
generality, we assume ∆ 6= Uθ. Let

(3.4) κ := sup
ν∈∆\Uθ

sup
‖e‖≤1

‖θ(e)(ν)‖ < ∞.

Suppose on the contrary that there is ν0 ∈ Uθ which is not an isolated point in ∆. As Uθ

is finite, there is a net {νi} in ∆ \ Uθ such that νi → ν0. By the definition of Uθ, there is
e ∈ E with ‖e‖ ≤ 1 and ‖θ(e)(ν0)‖ > κ+ 1. However, this will contradict the continuity
of |θ(e)| (because of (3.4)). Now, as Uθ is a finite set consisting of isolated points in ∆
and F is the space of C0-sections on ΞF , we see that

F = KF
Uθ

⊕
⊕

ν∈Uθ

ΞF
ν .

By Lemma 3.3(b) and the argument of Lemma 3.3(c) (more precisely, (3.2)), one easily
check that θ0 will satisfy (3.3). On the other hand, the boundedness θ0 follows from (3.4).
�
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Observe that in Lemmas 3.3(c) and 3.6(b), one can replace the injectivity of σ with
the condition that σ−1(ω) is at most finite for any ω ∈ Ω.

The following is our second nearly automatically boundedness result that applies, in
particular, when F is a Hilbert C0(∆)-module.

Theorem 3.7. Let Ω and ∆ be two locally compact Hausdorff spaces. Let E be an
essential Banach C0(Ω)-module, let F be an essential Banach C0(∆)-normed module, and
let θ : E → F be a C-linear map (not assumed to be bounded). Suppose that σ : ∆θ → Ω
is an injection satisfying θ(IEσ(ν)) ⊆ KF

ν (ν ∈ ∆).

(a) If ∆ contains no isolated point, then θ is bounded.

(b) If σ sends isolated points in ∆θ to isolated points in Ω, then Nθ,σ = ∅ and there exist a
finite set T consisting of isolated points of ∆, a bounded linear map θ0 : EΩ\σ(T ) → F∆\T

as well as linear maps θν : ΞE
σ(ν) → ΞF

ν for all ν ∈ T such that E = EΩ\σ(T )⊕
⊕

ν∈T ΞE
σ(ν),

F = F∆\T ⊕
⊕

ν∈T ΞF
ν and θ = θ0 ⊕

⊕
ν∈T θν.

Proof: (a) This follows directly from Lemma 3.6(b).

(b) The first conclusion follows from Lemma 3.3(c) and the second conclusion follows
from Lemma 3.6(b) (notice that we have a sharper conclusion here since Nθ,σ = ∅). �

4. Applications to local linear mappings

In the section, we will consider the case when ∆ = Ω, σ = id, and the C-linear map
θ is a local map in the sense that θ(e) · ϕ = 0 whenever e ∈ E and ϕ ∈ C0(Ω) satisfying
e · ϕ = 0. It is obvious that any C0(Ω)-module map is local.

Remark 4.1. Suppose that θ is local. Let U, V ⊆ Ω be open sets with the closure of V
being a compact subset of U , and consider λ ∈ UΩ(V, U). For any e ∈ KE

U and any ǫ > 0,
there exists ϕ ∈ KU with ‖e − eϕ‖ < ǫ. Thus, eλ = 0 which implies that θ(e)λ = 0 and
θ(e) = θ(e)(1 − λ) ∈ KF

V . This shows that σ = id will satisfy the hypothesis in all the
results in Section 3.

The following theorem (which follows directly from the results in Section 3 as well as
Remark 4.1) is our main result concerning local linear maps.

Theorem 4.2. Let Ω be a locally compact Hausdorff space. Suppose that E and F are
essential Banach C0(Ω)-modules, and θ : E → F is a local C-linear map (not assumed
to be bounded).

(a) θ̃ is a C0(Ω)-module map and there exist a finite subset T ⊆ ∆ and κ > 0 such that

supν∈∆\T ‖θ̃(e)(ν)‖ ≤ κ‖e‖ (e ∈ E).
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(b) If, in addition, F is a Banach C0(Ω)-normed module, then θ is a C0(Ω)-module map
and there exist a finite set T consisting of isolated points of Ω, a bounded linear map
θ0 : EΩ\T → FΩ\T as well as a linear map θν : ΞE

ν → ΞF
ν for each ν ∈ T such that

E = EΩ\T ⊕
⊕

ν∈T ΞE
ν , F = FΩ\T ⊕

⊕
ν∈T ΞF

ν and θ = θ0 ⊕
⊕

ν∈T θν .

It is natural to ask if one can relax the assumption of F being C0(Ω)-normed to
C0(Ω)-convex in the second statement of Theorem 4.2 (in particular, whether it is true
that every C0(Ω)-module map from an essential Banach C0(Ω)-module to an essential
Banach C0(Ω)-convex module is automatically bounded provided that Ω contains no
isolated point). Unfortunately, it is not the case as can be seen by the following simple
example.

Example 4.3. Let E := C([0, 1]) ⊕∞ X and F := C([0, 1]) ⊕∞ Y , where X and Y are
two infinite dimensional Banach spaces. Then E is an essential Banach C([0, 1])-convex
module under the multiplication: (e, x) ·ϕ = (e ·ϕ, xϕ(0)) (e, ϕ ∈ C([0, 1]); x ∈ X). In the
same way, F is an essential Banach C([0, 1])-convex module. Suppose that R : X → Y is
an unbounded linear map and θ : E → F is given by θ(e, x) = (e, R(x)) (e ∈ C([0, 1]); x ∈
X). Then θ is a C([0, 1])-module map which is not bounded (as its restriction on X is
R). In this case, we have Uθ = {0}.

Corollary 4.4. Let Ω be a locally compact Hausdorff space. Any local C-linear θ from
an essential Banach C0(Ω)-module to a Hilbert C0(Ω)-module is a C0(Ω)-module map.
Moreover, if Ω contains no isolated point, then any such θ is automatically bounded.

Remark 4.5. Let LC0(Ω)(E;C0(Ω)) (respectively, BC0(Ω)(E;C0(Ω))) be the “algebraic
dual” (respectively, “topological dual”) of E, i.e. the collection of all C0(Ω)-module maps
(respectively, bounded C0(Ω)-module maps) from E into C0(Ω). An application of Corol-
lary 4.4 is that the algebraic dual and the topological dual of E coincide in many cases:

If Ω is a locally compact Hausdorff space having no isolated point and E is
an essential Banach C0(Ω)-module, then BC0(Ω)(E;C0(Ω)) = LC0(Ω)(E;C0(Ω)).

Corollary 4.6. Let Ξ and Λ be respectively an (H)-Banach bundle and an (F)-Banach
bundle over the same base space Ω. If ρ : Ξ → Λ is a fibrewise linear map covering id
(without any boundedness nor continuity assumption) such that ρ ◦ e ∈ Γ0(Λ) for every
e ∈ Γ0(Ξ), then there exists a finite subset S ⊆ Ω consisting of isolated points such that
ρ restricts to a bounded Banach bundle map ρ0 : ΞΩ\S → ΛΩ\S.

Let X be a Banach space. We denote by ℓ∞(X) and c0(X) the set of all bounded
sequences and the set of all c0-sequences in X , respectively. We recall that ℓ∞ ∼= C(βN)
where βN is the Stone-Cech compactification of N (which can be identified with the
collection of all ultrafilters on N).
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Proposition 4.7. Let X and Y be Banach spaces, and let θk : X → Y (k ∈ N ∪ {∞})
be linear maps (not assumed to be bounded). For any sequence {xk}k∈N in X, we put
θ({xk}k∈N) := {θk(xk)}k∈N.

(a) If θ(c0(X)) ⊆ c0(Y ), then there exists n0 ∈ N such that supn≥n0
‖θn‖ <∞.

(b) If limk→∞ θk(xk) = θ∞(x) for any {xk}k∈N ∈ ℓ∞(X) with limk→∞ xk = x, then θ∞ is
bounded, and there is n0 ∈ N such that supn≥n0

‖θn‖ <∞.

(c) Suppose that θ(ℓ∞(X)) ⊆ ℓ∞(Y ), and limF θk(xk) = 0 for every {xk}k∈N ∈ ℓ∞(X)
and every ultrafilter F on N with limF xk = 0. Then there exist F1, ...,Fn ∈ βN with

supF 6=F1,...,Fn
‖θF‖ < ∞ (where θF : Ξ

ℓ∞(X)
F

→ Ξ
ℓ∞(Y )
F

is the induced map). In particular,
supn≥n0

‖θn‖ <∞ for some n0 ∈ N.

Proof: (a) Let E = c0(X) and F = c0(Y ). Then θ is a C0(N)-module map and we can
apply Theorem 4.2.

(b) Let E = C(N∞, X) and F = C(N∞, Y ). Then θ⊕θ∞ is a well defined C(N∞)-module
map from E into F and Theorem 4.2 implies this part.

(c) Let E = ℓ∞(X) and F = ℓ∞(Y ). Then E and F are unital Banach C(βN)-modules.
For any ultrafilter F ∈ βN, one has

KE
F

= {(xn) ∈ E : lim
F

xn = 0} and KF
F

= {(yn) ∈ F : lim
F

yn = 0}.

The first hypothesis shows that θ(E) ⊆ F and the second one tells us that θ(KE
F
) ⊆ KF

F
.

On the other hand, if n ∈ N and Fn := {U ⊆ N : n ∈ U}, then

KE
Fn

= {(xk) ∈ ℓ∞(X) : xn = 0}

and so, θFn
= θn. Now, this part follows from Theorem 4.2. �

Remark 4.8. Note that if F is a free ultrafilter on N, then Ξ
ℓ∞(X)
F

and Ξ
ℓ∞(Y )
F

can be
identified with the ultrapowers XF and Y F of X and Y (over F) respectively. One can
interpret Proposition 4.7(c) as follows:

If the sequence {θn} as in Proposition 4.7 induces canonically a map θ :
ℓ∞(X) → ℓ∞(Y ) as well as a map θF : XF → Y F for every free ultrafilter
F (none of them assumed to be bounded), then for all but a finite number
of ultrafilters F, the map θF is bounded and they have a common bound.

It can be shown easily that the converse of the above is also true (but we left it to the
readers to check the details):

If the sequence {θn} is as in Proposition 4.7 and there exists n0 ∈ N with
supn≥n0

‖θn‖ < ∞, then {θn} induces canonically a map from ℓ∞(X) to

ℓ∞(Y ) as well as a map from XF to Y F for every free ultrafilter F.
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Another important point in Theorem 4.2 is the automatic C0(Ω)-linearity. In fact, it
can be shown that for every C∗-algebra A, any bounded local linear map from a Banach
right A-module into a Hilbert A-module is automatically A-linear (see Proposition A.1
in the Appendix). Theorem 4.2 tells us that if A is commutative, then one can relax
the assumption of the range space to a Banach A-convex module and one can remove
the boundedness assumption. Another application of this theorem is that if A is a finite
dimensional C∗-algebras, then every local linear map between any two Banach right
A-modules is A-linear.

Corollary 4.9. Let A be a finite dimensional C∗-algebra. Suppose that E and F are
unital Banach right A-modules. If θ : E → F is a local C-linear map in the sense of
Proposition A.1 (not assumed to be bounded), then θ is an A-module map.

Proof: Pick any x ∈ E and a ∈ Asa. Let Aa := C∗(a, 1). By Remark 2.5(c), both
E and F are unital Banach Aa-convex modules. Thus, Theorem 4.2 tell us that θ is a
Aa-module map. In particular, θ(xa) = θ(x)a. �

Remark 4.10. (a) Suppose that A is a unital C∗-algebra and F is a unital Banach right
A-convex module in the sense ‖xa+ y(1− a)‖ ≤ max{‖x‖, ‖y‖} for x, y ∈ F and a ∈ A+

with a ≤ 1. Then, by the argument of Corollary 4.9, all local linear maps from any unital
Banach right A-module into F are automatically A-linear.

(b) If one can show that for every compact subset Ω ⊆ R and every essential Banach
C(Ω)-module F , the map ∼: F → F̃ is injective, then using the argument of Corollary 4.9,
one can show that for each C∗-algebra A, all local linear maps between any two Banach
right A-modules are A-module maps (without assuming that θ is bounded). However, we
do not know if it is true.

5. Applications to separating mappings

In this section, we consider Ω and ∆ to be possibly different spaces. In this case, one
cannot define local property any more, but one has a weaker natural property called
separating. More precisely, θ is said to be separating if

|θ̃(e)| · |θ̃(g)| = 0, whenever e, g ∈ E satisfying |ẽ| · |g̃| = 0.

In the case when E = C0(Ω) and F = C0(∆), this coincides with the well-known notion
of disjointness preserving (see e.g. [1, 5, 18, 14, 12, 15]).

Lemma 5.1. If θ is separating, there is a continuous map σ : ∆θ → Ω∞ such that
θ(IEσ(ν)) ⊆ IFν (ν ∈ ∆θ).
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Proof: Set
Sν := {ω ∈ Ω∞ : θ(IEω ) ⊆ IFν } (ν ∈ ∆θ).

Suppose there is ν ∈ ∆θ with Sν = ∅. Then for each ω ∈ Ω∞, there exist Uω ∈ NΩ∞(ω)
and eω ∈ KE

Uω
with θ(eω) /∈ IFν . Let {Uωi

}ni=1 be a finite subcover of {Uω}ω∈Ω∞ and {ϕi}
n
i=1

be a partition of unity subordinate to {Uωi
}ni=1. Take any g ∈ E. From |g̃ϕi||ẽωi

| = 0, we

obtain |θ̃(gϕi)||θ̃(eωi
)| = 0, which implies that θ̃(gϕi)(ν) = 0 (because of Remark 2.5(a)

and the fact that θ(eωi
) /∈ IFν ). Consequently,

θ̃(g)(ν) =
n∑

i=1

θ̃(gϕi)(ν) = 0,

and we arrive in the contradiction that ν ∈ Zθ. Suppose there is ν ∈ ∆θ with Sν

containing two distinct points ω1 and ω2. Let U, V ∈ NΩ∞(ω1) with V ⊆ IntΩ∞(U) and
ω2 /∈ U . For any ϕ ∈ UΩ∞(V, U) and e ∈ E, we have e(1− ϕ) ∈ IEω1

and eϕ ∈ IEω2
which

implies that
θ(e) = θ(e(1− ϕ)) + θ(eϕ) ∈ IFν .

This gives the contradiction that ν ∈ Zθ. Therefore, we can define σ(ν) to be the only

point in Sν , and it is clear that θ
(
IEσ(ν)

)
⊆ IFν . Now, the continuity of σ follows from

Lemma 3.1. �

Corollary 5.2. Let Ξ be an (H)-Banach bundle over Ω, let Λ be an (F)-Banach bundle
over ∆, and let ρ : Ξ → Λ be a map (not assumed to be bounded nor continuous). Suppose
that σ : ∆ → Ω is an injection sending isolated points in ∆ to isolated points in Ω such
that e 7→ ρ ◦ e ◦ σ defines a linear map θ : Γ0(Ξ) → Γ0(Λ). Then there exists a finite
set T consisting of isolated points of ∆ such that the restriction of ρ induces a bounded
Banach bundle map ρ0 : ΞΩ\σ(T ) → Λ∆\T (covering σ|∆\T ). Moreover, σ is continuous
on ∆ \ Zρ,σ where Zρ,σ := {ν ∈ ∆ : ρ(e(σ(ν))) = 0 for all e ∈ E}.

Proof: The first conclusion follows from Theorem 3.7. To see the second conclusion,
we note that θ is separating and we can apply Lemma 5.1 (observe that Zρ,σ = Zθ). �

Theorem 5.3. Let Ω and ∆ be two locally compact Hausdorff spaces, and let E be a full
essential Banach C0(Ω)-module (see Remark 3.2(b)) and F be a full essential Banach
C0(∆)-normed module. Suppose that θ : E → F is a bijective C-linear map (not assumed
to be bounded) such that it is biseparating in the sense that both θ and θ−1 are separating.

(a) There exists a homeomorphism σ : ∆ → Ω satisfying

θ(e · ϕ) = θ(e) · ϕ ◦ σ (e ∈ E;ϕ ∈ C0(Ω)).

(b) There exists isolated points ν1, ..., νn ∈ ∆ such that the restriction of θ induces a
Banach space isomorphism θ0 : EΩθ

→ F∆θ
, where ∆θ := ∆\{ν1, ..., νn} and Ωθ := σ(∆θ).
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Proof: (a) If e ∈ E with ẽ = 0, then θ(e) = θ̃(e) = 0 (as θ is separating and F is

C0(∆)-convex), which gives e = 0 (as θ is injective). Hence, one can regard θ̃−1 = θ−1 as
well. The fullness of E and F as well as the surjectivity of θ and θ−1 ensure that Zθ = ∅
and Zθ−1 = ∅. Therefore, by Lemma 5.1, we have two continuous maps

τ : Ω → ∆∞ and σ : ∆ → Ω∞

such that θ−1
(
IFτ(ω)

)
⊆ IEω (ω ∈ Ω) and θ

(
IEσ(ν)

)
⊆ IFν (ν ∈ ∆). Consequently, for any

ν ∈ ∆0 := σ−1(Ω) and ω ∈ Ω0 := τ−1(∆), we have

σ(τ(ω)) = ω and τ(σ(ν)) = ν

(because IEσ(τ(ω)) ⊆ IEω , I
F
τ(σ(ν)) ⊆ IFν , and E as well as F are full). If there exists

ν ∈ ∆ \Nθ,σ (Nθ,σ as in Lemma 3.3(b)) with σ(ν) = ∞, then F = θ
(
KE

∞

)
⊆ KF

ν , which
contradicts the fullness of F . Thus,

∆ \Nθ,σ ⊆ ∆0.

On the other hand, as ∆0∩Nθ,σ is a finite set (by Lemma 3.3(a)&(b) and the fact that σ
is injective on ∆0) and is open in ∆ (by Lemma 3.6(a)), we see that ∆0∩Nθ,σ consists of
isolated points of ∆. Thus, σ(∆0 ∩Nθ,σ) consists of isolated points of Ω0 (as σ restricts
to a homeomorphism from ∆0 to Ω0). We want to show that

∆0 ∩Nθ,σ = ∅.

Suppose on the contrary that there is ν ∈ ∆0 ∩ Nθ,σ. We know that σ(ν) ( 6= ∞) is a
non-isolated point of Ω∞ (by Lemma 3.3(b)). Therefore, there exists a net {ωi}i∈I in
Ω \ {σ(ν)} converging to σ(ν). If {i ∈ I : ωi ∈ Ω0} is cofinal, then there is a net in
Ω0 \ {σ(ν)} converging to σ(ν), which contradicts σ(ν) being an isolated point in Ω0.
Otherwise, ωi ∈ τ−1(∞) eventually, which gives the contradiction that ν = ∞ (note that
τ(ωi) → ν as ν ∈ ∆0). Consequently,

∆ \Nθ,σ = ∆0.

Suppose that Nθ,σ 6= ∅ and ν ∈ Nθ,σ. Since Nθ,σ is an open subset of ∆ (by Lemma
3.6(a)), there exists V ∈ N∆(ν) with V ⊆ Nθ,σ. Take any f ∈ F such that f(ν) 6= 0
(by the fullness of F ) and f vanishes outside V . Thus, f ∈ IF∞ (as V is compact) and
so, θ−1(f)(ω) = 0 for any ω ∈ τ−1(∞). On the other hand, for any ω ∈ Ω0, one has
τ(ω) ∈ ∆0 and so, f ∈ IFτ(ω) (as f vanishes on the open set ∆0 containing τ(ω)) which

implies that θ−1(f)(ω) = 0. Hence θ−1(f) = 0 which contradicts the injectivity of θ−1.
Therefore, Nθ,σ = ∅. Now, part (a) follows from Lemma 3.3(c).

(b) This follows directly from Theorem 3.7(b). �

One can apply the above to the case when F is a full Hilbert C0(∆)-module. Another
direct application of Theorem 5.3 is the following theorem which extends and enriches
a result of Chan [8] (by removing the boundedness assumption on θ), as well as results
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concerning the product bundle cases discussed in [4, 13]. Notice that if (Ω, {Ξx}, E) is a
continuous fields of Banach spaces over a locally compact Hausdorff space Ω (as defined
in [9, 11]), then E is a full essential Banach C0(Ω)-normed module.

Theorem 5.4. Let (Ω, {Ξx}, E) and (∆, {Λy}, F ) be continuous fields of Banach spaces
over locally compact Hausdorff spaces Ω and ∆ respectively. Let θ : E → F be a bi-
jective linear map such that both θ and its inverse θ−1 are separating. Then there is a
homeomorphism σ : ∆ → Ω and a bijective linear operator Hν : Ξσ(ν) → Λν such that

θ(f)(ν) = Hν(f(σ(ν))) (f ∈ E, ν ∈ ∆).

Moreover, at most finitely many Hν are unbounded, and this can happen only when ν is
an isolated point in ∆. In particular, if Ω (or ∆) contains no isolated point, then θ is
automatically bounded.

Appendix A. Bounded local linear maps are A-linear

Proposition A.1. Let A be a C∗-algebra, and let θ be a bounded linear map from a
Banach right A-modules E into a Hilbert A-module F . Then θ is a right A-module map
if and only if θ is local (in the sense that θ(e)a = 0 whenever e ∈ E and a ∈ A with
ea = 0).

Proof. Suppose θ is local. Observe, first of all, that E∗∗ and F ∗∗ are unital Banach A∗∗-
modules, and the bidual map θ∗∗ : E∗∗ → F ∗∗ is a bounded weak*-weak*-continuous
linear map. Fix x ∈ E and a ∈ A+, and let

Φ : C(σ(a))∗∗ → A∗∗

be the map induced by the canonical normal ∗-homomorphism Ψ :M(A)∗∗ → A∗∗. Pick
α, β ∈ R+ with α < β, and define p := Φ(χσ(a)∩(α,β)). Let {fn} and {gn} be two bounded
sequences in C(σ(a))+ such that fngn = 0, as well as

fn ↑ χσ(a)∩(α,β) and gn ↓ χσ(a)\(α,β) pointwisely.

Note that as Ψ(A) ⊆ A, we have an := Φ(fn) ∈ A, and we can write bn := Φ(gn)
as cn + γn1 (where cn ∈ A and γn ∈ C). Fix n ∈ N. Since an and cn commute,
there is a locally compact Hausdorff space Ω with C∗(an, cn) ∼= C0(Ω). By considering
bn ∈ C(Ω∞)+ ∼= C∗(1, an, cn)+, one can find a net {di}i∈I in C0(Ω)+ ⊆ A+ such that
di ≤ bn (i ∈ I) and di → bn pointwisely. As 0 ≤ di ≤ bn and anbn = 0 in C(Ω∞),
one knows that andi = 0. Now, the relation θ(xan)di = 0 and θ(xdi)an = 0 imply
that θ∗∗(xan)bn = 0 and θ∗∗(xbn)an = 0. Since the multiplication in the bidual of
the linking algebra of F is jointly weak*-continuous on bounded subsets, we see that
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θ∗∗(xp)(1− p) = 0 and θ∗∗(x(1− p))p = 0, which implies that θ∗∗(xp) = θ∗∗(x)p. Finally,
there exists rk ∈ R and αk, βk ∈ R+ such that αk ≤ βk and

sup
t∈σ(a)

∣∣∣∣∣a(t)−
M∑

k=1

rkχσ(a)∩(αk ,βk)(t)

∣∣∣∣∣→ 0.

Thus, by the weak*-continuity again, we get θ∗∗(xa) = θ∗∗(x)a as required. �
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