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Abstract
Recently, Kawasaki and Takahashi (J. Nonlinear Convex Anal. 14:71-87, 2013) defined a
broad class of nonlinear mappings, called widely more generalized hybrid, in a Hilbert
space which contains generalized hybrid mappings (Kocourek et al. in Taiwan. J. Math.
14:2497-2511, 2010) and strict pseudo-contractive mappings (Browder and Petryshyn
in J. Math. Anal. Appl. 20:197-228, 1967). They proved fixed point theorems for such
mappings. In this paper, we prove fixed point theorems for widely more generalized
hybrid non-self mappings in a Hilbert space by using the idea of Hojo et al. (Fixed
Point Theory 12:113-126, 2011) and Kawasaki and Takahashi fixed point theorems
(J. Nonlinear Convex Anal. 14:71-87, 2013). Using these fixed point theorems for
non-self mappings, we proved the Browder and Petryshyn fixed point theorem
(J. Math. Anal. Appl. 20:197-228, 1967) for strict pseudo-contractive non-self mappings
and the Kocourek et al. fixed point theorem (Taiwan. J. Math. 14:2497-2511, 2010) for
super hybrid non-self mappings. In particular, we solve a fixed point problem.
MSC: Primary 47H10; secondary 47H05

Keywords: Hilbert space; nonexpansive mapping; nonspreading mapping; hybrid
mapping; fixed point; non-self mapping

1 Introduction
LetR be the real line and let [, π

 ] be a bounded, closed and convex subset ofR. Consider
a mapping T : [, π

 ] →R defined by

Tx =
(
 +



x
)
cosx –



x

for all x ∈ [, π
 ]. Such a mapping T has a unique fixed point z ∈ [, π

 ] such that cos z = z.
What kind of fixed point theorems can we use to find such a unique fixed point z of T?
Let H be a real Hilbert space and let C be a non-empty subset of H . Kocourek, Taka-

hashi and Yao [] introduced a class of nonlinearmappings in a Hilbert space which covers
nonexpansivemappings, nonspreadingmappings [] and hybridmappings []. Amapping
T : C →H is said to be generalized hybrid if there exist α,β ∈ R such that

α‖Tx – Ty‖ + ( – α)‖x – Ty‖ ≤ β‖Tx – y‖ + ( – β)‖x – y‖ (.)

for all x, y ∈ C. We call such a mapping an (α,β)-generalized hybrid mapping. An
(α,β)-generalized hybrid mapping is nonexpansive for α =  and β = , i.e.,

‖Tx – Ty‖ ≤ ‖x – y‖
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for all x, y ∈ C. It is nonspreading for α =  and β = , i.e.,

‖Tx – Ty‖ ≤ ‖x – Ty‖ + ‖y – Tx‖

for all x, y ∈ C. Furthermore, it is hybrid for α = 
 and β = 

 , i.e.,

‖Tx – Ty‖ ≤ ‖x – Ty‖ + ‖y – Tx‖ + ‖y – x‖

for all x, y ∈ C. They proved fixed point theorems and nonlinear ergodic theorems of Bail-
lon type [] for generalized hybrid mappings; see also Kohsaka and Takahashi [] and
Iemoto andTakahashi []. Very recently, Kawasaki andTakahashi [] introduced a broader
class of nonlinear mappings than the class of generalized hybrid mappings in a Hilbert
space. A mapping T from C into H is called widely more generalized hybrid if there exist
α,β ,γ , δ, ε, ζ ,η ∈ R such that

α‖Tx – Ty‖ + β‖x – Ty‖ + γ ‖Tx – y‖ + δ‖x – y‖

+ ε‖x – Tx‖ + ζ‖y – Ty‖ + η
∥∥(x – Tx) – (y – Ty)

∥∥ ≤  (.)

for all x, y ∈ C. Such amappingT is called an (α,β ,γ , δ, ε, ζ ,η)-widelymore generalized hy-
brid mapping. In particular, an (α,β ,γ , δ, ε, ζ ,η)-widely more generalized hybrid mapping
is generalized hybrid in the sense of Kocourek, Takahashi and Yao [] if α + β = –γ – δ = 
and ε = ζ = η = . An (α,β ,γ , δ, ε, ζ ,η)-widely more generalized hybrid mapping is strict
pseudo-contractive in the sense of Browder and Petryshyn [] if α = , β = γ = , δ = –,
ε = ζ = , η = –k, where  ≤ k < . A generalized hybrid mapping with a fixed point is
quasi-nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive in general even if it has a fixed point. In [], Kawasaki and Takahashi proved
fixed point theorems and nonlinear ergodic theorems of Baillon type [] for such widely
more generalized hybrid mappings in a Hilbert space. In particular, they proved directly
the Browder andPetryshyn fixed point theorem [] for strict pseudo-contractivemappings
and the Kocourek, Takahashi and Yao fixed point theorem [] for super hybrid mappings
by using their fixed point theorems.However, we cannot useKawasaki andTakahashi fixed
point theorems to solve the above problem. For a nice synthesis on metric fixed point the-
ory, see Kirk [].
In this paper, motivated by such a problem, we prove fixed point theorems for widely

more generalized hybrid non-self mappings in a Hilbert space by using the idea of Hojo,
Takahashi and Yao [] and Kawasaki and Takahashi fixed point theorems []. Using these
fixed point theorems for non-self mappings, we prove the Browder and Petryshyn fixed
point theorem [] for strict pseudo-contractive non-self mappings and the Kocourek,
Takahashi and Yao fixed point theorem [] for super hybrid non-self mappings. In par-
ticular, we solve the above problem by using one of our fixed point theorems.

2 Preliminaries
Throughout this paper, we denote byN the set of positive integers. LetH be a (real) Hilbert
space with the inner product 〈·, ·〉 and the norm ‖·‖, respectively. From [], we know the
following basic equality: For x, y ∈H and λ ∈R, we have

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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Furthermore, we know that for x, y,u, v ∈H ,

〈x – y,u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖. (.)

Let C be a non-empty, closed and convex subset of H and let T be a mapping from C
into H . Then we denote by F(T) the set of fixed points of T . A mapping S : C → H is
called super hybrid [, ] if there exist α,β ,γ ∈R such that

α‖Sx – Sy‖ + ( – α + γ )‖x – Sy‖

≤ (
β + (β – α)γ

)‖Sx – y‖ + (
 – β – (β – α – )γ

)‖x – y‖

+ (α – β)γ ‖x – Sx‖ + γ ‖y – Sy‖ (.)

for all x, y ∈ C. We call such a mapping an (α,β ,γ )-super hybrid mapping. An (α,β , )-
super hybrid mapping is (α,β)-generalized hybrid. Thus the class of super hybrid map-
pings contains generalized hybrid mappings. The following theorem was proved in [];
see also [].

Theorem. ([]) Let C be a non-empty subset of a Hilbert space H and let α, β and γ be
real numbers with γ �= –. Let S and T be mappings of C into H such that T = 

+γ
S + γ

+γ
I .

Then S is (α,β ,γ )-super hybrid if and only if T is (α,β)-generalized hybrid. In this case,
F(S) = F(T). In particular, let C be a nonempty, closed and convex subset of H and let α, β
and γ be real numbers with γ ≥ . If a mapping S : C → C is (α,β ,γ )-super hybrid, then
the mapping T = 

+γ
S + γ

+γ
I is an (α,β)-generalized hybrid mapping of C into itself.

In [], Kocourek, Takahashi and Yao also proved the following fixed point theorem for
super hybrid mappings in a Hilbert space.

Theorem . ([]) Let C be a non-empty, bounded, closed and convex subset of a Hilbert
space H and let α, β and γ be real numbers with γ ≥ . Let S : C → C be an (α,β ,γ )-super
hybrid mapping. Then S has a fixed point in C. In particular, if S : C → C is an
(α,β)-generalized hybrid mapping, then S has a fixed point in C.

A super hybrid mapping is not quasi-nonexpansive in general even if it has a fixed
point. There exists a class of nonlinear mappings in a Hilbert space defined by Kawasaki
and Takahashi [] which covers contractive mappings and generalized hybrid map-
pings. A mapping T from C into H is said to be widely generalized hybrid if there exist
α,β ,γ , δ, ε, ζ ∈R such that

α‖Tx – Ty‖ + β‖x – Ty‖ + γ ‖Tx – y‖ + δ‖x – y‖

+max
{
ε‖x – Tx‖, ζ‖y – Ty‖} ≤ 

for any x, y ∈ C. Such a mapping T is called (α,β ,γ , δ, ε, ζ )-widely generalized hybrid.
Kawasaki and Takahashi [] proved the following fixed point theorem.

Theorem . ([]) Let H be a Hilbert space, let C be a non-empty, closed and convex
subset of H and let T be an (α,β ,γ , δ, ε, ζ )-widely generalized hybrid mapping from C into
itself which satisfies the following conditions () and ():

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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() α + β + γ + δ ≥ ;
() ε + α + γ > , or ζ + α + β > .

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n = , , . . .} is
bounded. In particular, a fixed point of T is unique in the case of α + β + γ + δ >  under
the condition ().

Very recently, Kawasaki andTakahashi [] also proved the following fixed point theorem
which will be used in the proofs of our main theorems in this paper.

Theorem. ([]) Let H be aHilbert space, let C be a non-empty, closed and convex subset
of H and let T be an (α,β ,γ , δ, ε, ζ ,η)-widelymore generalized hybridmapping from C into
itself, i.e., there exist α,β ,γ , δ, ε, ζ ,η ∈R such that

α‖Tx – Ty‖ + β‖x – Ty‖ + γ ‖Tx – y‖ + δ‖x – y‖

+ ε‖x – Tx‖ + ζ‖y – Ty‖ + η
∥∥(x – Tx) – (y – Ty)

∥∥ ≤ 

for all x, y ∈ C. Suppose that it satisfies the following condition () or ():
() α + β + γ + δ ≥ , α + γ + ε + η >  and ζ + η ≥ ;
() α + β + γ + δ ≥ , α + β + ζ + η >  and ε + η ≥ .

Then T has a fixed point if and only if there exists z ∈ C such that {Tnz | n = , , . . .} is
bounded. In particular, a fixed point of T is unique in the case of α + β + γ + δ >  under
the conditions () and ().

In particular, we have the following theorem from Theorem ..

Theorem . Let H be a Hilbert space, let C be a non-empty, bounded, closed and convex
subset of H and let T be an (α,β ,γ , δ, ε, ζ ,η)-widelymore generalized hybridmapping from
C into itself which satisfies the following condition () or ():
() α + β + γ + δ ≥ , α + γ + ε + η >  and ζ + η ≥ ;
() α + β + γ + δ ≥ , α + β + ζ + η >  and ε + η ≥ .

Then T has a fixed point. In particular, a fixed point of T is unique in the case of α + β +
γ + δ >  under the conditions () and ().

3 Fixed point theorems for non-self mappings
In this section, using the fixed point theorem (Theorem .), we first prove the following
fixed point theorem for widely more generalized hybrid non-self mappings in a Hilbert
space.

Theorem . Let C be a non-empty, bounded, closed and convex subset of a Hilbert space
H and let α,β ,γ , δ, ε, ζ ,η ∈R. Let T : C → H be an (α,β ,γ , δ, ε, ζ ,η)-widely more general-
ized hybrid mapping. Suppose that it satisfies the following condition () or ():
() α + β + γ + δ ≥ , α + γ + ε + η > , α + β + ζ + η ≥  and ζ + η ≥ ;
() α + β + γ + δ ≥ , α + β + ζ + η > , α + γ + ε + η ≥  and ε + η ≥ .

Assume that there exists a positive number m >  such that for any x ∈ C,

Tx = x + t(y – x)

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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for some y ∈ C and t with  < t ≤ m. Then T has a fixed point in C. In particular, a fixed
point of T is unique in the case of α + β + γ + δ >  under the conditions () and ().

Proof We give the proof for the case of (). By the assumption, we have that for any x ∈ C,
there exist y ∈ C and t with  < t ≤ m such that Tx = x + t(y – x). From this, we have
Tx = ty + ( – t)x and hence

y =

t
Tx +

t – 
t

x.

Define Ux ∈ C as follows:

Ux =
(
 –

t
m

)
x +

t
m
y =

(
 –

t
m

)
x +

t
m

(

t
Tx +

t – 
t

x
)
=


m
Tx +

m – 
m

x.

Taking λ >  withm =  + λ, we have that

Ux =


 + λ
Tx +

λ

 + λ
x

and hence

T = ( + λ)U – λI. (.)

Since T : C → H is an (α,β ,γ , δ, ε, ζ ,η)-widely more generalized hybridmapping, we have
from (.) and (.) that for any x, y ∈ C,

α
∥∥( + λ)Ux – λx –

(
( + λ)Uy – λy

)∥∥

+ β
∥∥x – (

( + λ)Uy – λy
)∥∥ + γ

∥∥( + λ)Ux – λx – y
∥∥ + δ‖x – y‖

+ ε
∥∥x – (

( + λ)Ux – λx
)∥∥ + ζ

∥∥( + λ)Uy – λy – y
∥∥

+ η
∥∥x – (

( + λ)Ux – λx
)
–

(
y –

(
( + λ)Uy – λy

))∥∥

= α
∥∥( + λ)(Ux –Uy) – λ(x – y)

∥∥

+ β
∥∥( + λ)(x –Uy) – λ(x – y)

∥∥ + γ
∥∥( + λ)(Ux – y) – λ(x – y)

∥∥

+ δ‖x – y‖ + ε
∥∥( + λ)(x –Ux)

∥∥ + ζ
∥∥( + λ)(y –Uy)

∥∥

+ η
∥∥( + λ)(x –Ux) – ( + λ)(y –Uy)

∥∥

= α( + λ)‖Ux –Uy‖ – αλ‖x – y‖ + αλ( + λ)
∥∥x – y – (Ux –Uy)

∥∥

+ β( + λ)‖x –Uy‖ – βλ‖x – y‖ + βλ( + λ)‖y –Uy‖

+ γ ( + λ)‖Ux – y‖ – γ λ‖x – y‖ + γ λ( + λ)‖x –Ux‖ + δ‖x – y‖

+ ε( + λ)‖x –Ux‖ + ζ ( + λ)‖y –Uy‖

+ η( + λ)
∥∥x –Ux – (y –Uy)

∥∥

= α( + λ)‖Ux –Uy‖ + β( + λ)‖x –Uy‖ + γ ( + λ)‖Ux – y‖

+ (–αλ – βλ – γ λ + δ)‖x – y‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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+ (γ λ + ελ + ε)( + λ)‖x –Ux‖ + (βλ + ζλ + ζ )( + λ)‖y –Uy‖

+ (αλ + ηλ + η)( + λ)
∥∥x – y – (Ux –Uy)

∥∥ ≤ .

This implies thatU is widelymore generalized hybrid. Since α+β+γ +δ ≥ , α+γ +ε+η >
, α + β + ζ + η ≥  and ζ + η ≥ , we obtain that

α( + λ) + β( + λ) + γ ( + λ) – αλ – βλ – γ λ + δ = α + β + γ + δ ≥ ,

α( + λ) + γ ( + λ) + (γ λ + ελ + ε)( + λ) + (αλ + ηλ + η)( + λ)

= ( + λ)
(
α + γ + ε + η + λ(γ + ε + α + η)

)
= ( + λ)(α + γ + ε + η) > ,

(βλ + ζλ + ζ )( + λ) + (αλ + ηλ + η)( + λ)

=
(
(α + β + ζ + η)λ + ζ + η

)
( + λ) ≥ .

By Theorem ., we obtain that F(U) �= ∅. Therefore, we have from F(U) = F(T) that
F(T) �= ∅. Suppose that α + β + γ + δ > . Let p and p be fixed points of T . We have that

α‖Tp – Tp‖ + β‖p – Tp‖ + γ ‖Tp – p‖ + δ‖p – p‖

+ ε‖p – Tp‖ + ζ‖p – Tp‖ + η
∥∥(p – Tp) – (p – Tp)

∥∥

= (α + β + γ + δ)‖p – p‖ ≤ 

and hence p = p. Therefore, a fixed point of T is unique.
Similarly, we can obtain the desired result for the case when α + β + γ + δ ≥ , α + β +

ζ + η > , α + γ + ε + η ≥  and ε + η ≥ . This completes the proof. �

The following theorem is a useful extension of Theorem ..

Theorem . Let H be a Hilbert space, let C be a non-empty, bounded, closed and convex
subset of H and let T be an (α,β ,γ , δ, ε, ζ ,η)-widelymore generalized hybridmapping from
C into H which satisfies the following condition () or ():
() α + β + γ + δ ≥ , α + γ + ε + η > , α + β + ζ + η ≥  and

[, )∩ {λ | (α + β)λ + ζ + η ≥ } �= ∅;
() α + β + γ + δ ≥ , α + β + ζ + η > , α + γ + ε + η ≥  and

[, )∩ {λ | (α + γ )λ + ε + η ≥ } �= ∅.
Assume that there exists m >  such that for any x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t with  < t ≤ m. Then T has a fixed point. In particular, a fixed point
of T is unique in the case of α + β + γ + δ >  under the conditions () and ().

Proof Let λ ∈ [, ) ∩ {λ | (α + β)λ + ζ + η ≥ } and define S = ( – λ)T + λI . Then S is
a mapping from C into H . Since λ �= , we obtain that F(S) = F(T). Moreover, from T =

http://www.fixedpointtheoryandapplications.com/content/2013/1/116


Takahashi et al. Fixed Point Theory and Applications 2013, 2013:116 Page 7 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/116


–λ

S – λ
–λ

I and (.), we have that

α

∥∥∥∥
(


 – λ

Sx –
λ

 – λ
x
)
–

(


 – λ
Sy –

λ

 – λ
y
)∥∥∥∥



+ β

∥∥∥∥x –
(


 – λ

Sy –
λ

 – λ
y
)∥∥∥∥



+ γ

∥∥∥∥
(


 – λ

Sx –
λ

 – λ
x
)
– y

∥∥∥∥


+ δ‖x – y‖

+ ε

∥∥∥∥x –
(


 – λ

Sx –
λ

 – λ
x
)∥∥∥∥



+ ζ

∥∥∥∥y –
(


 – λ

Sy –
λ

 – λ
y
)∥∥∥∥



+ η

∥∥∥∥
(
x –

(


 – λ
Sx –

λ

 – λ
x
))

–
(
y –

(


 – λ
Sy –

λ

 – λ
y
))∥∥∥∥



= α

∥∥∥∥ 
 – λ

(Sx – Sy) –
λ

 – λ
(x – y)

∥∥∥∥


+ β

∥∥∥∥ 
 – λ

(x – Sy) –
λ

 – λ
(x – y)

∥∥∥∥


+ γ

∥∥∥∥ 
 – λ

(Sx – y) –
λ

 – λ
(x – y)

∥∥∥∥


+ δ‖x – y‖

+ ε

∥∥∥∥ 
 – λ

(x – Sx)
∥∥∥∥


+ ζ

∥∥∥∥ 
 – λ

(y – Sy)
∥∥∥∥


+ η

∥∥∥∥ 
 – λ

(x – Sx) –


 – λ
(y – Sy)

∥∥∥∥


=
α

 – λ
‖Sx – Sy‖ + β

 – λ
‖x – Sy‖

+
γ

 – λ
‖Sx – y‖ +

(
–

λ

 – λ
(α + β + γ ) + δ

)
‖x – y‖

+
ε + γ λ

( – λ)
‖x – Sx‖ + ζ + βλ

( – λ)
‖y – Sy‖

+
η + αλ

( – λ)
∥∥(x – Sx) – (y – Sy)

∥∥ ≤ .

Therefore S is an ( α
–λ

, β

–λ
, γ

–λ
, – λ

–λ
(α + β + γ ) + δ, ε+γ λ

(–λ) ,
ζ+βλ

(–λ) ,
η+αλ

(–λ) )-widely more gener-
alized hybrid mapping. Furthermore, we obtain that

α

 – λ
+

β

 – λ
+

γ

 – λ
–

λ

 – λ
(α + β + γ ) + δ = α + β + γ + δ ≥ ,

α

 – λ
+

γ

 – λ
+

ε + γ λ

( – λ)
+

η + αλ

( – λ)
=

α + γ + ε + η

( – λ)
> ,

α

 – λ
+

β

 – λ
+

ζ + βλ

( – λ)
+

η + αλ

( – λ)
=

α + β + ζ + η

( – λ)
≥ ,

ζ + βλ

( – λ)
+

η + αλ

( – λ)
=
(α + β)λ + ζ + η

( – λ)
≥ .

Furthermore, from the assumption, there existsm >  such that for any x ∈ C,

Sx = ( – λ)Tx + λx = ( – λ)
(
x + t(y – x)

)
+ λx = t( – λ)(y – x) + x,

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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where y ∈ C and  < t ≤ m. From  ≤ λ < , we have  < t( – λ) ≤ m. Putting s = t( – λ),
we have that there existsm >  such that for any x ∈ C,

Sx = x + s(y – x)

for some y ∈ C and swith  < s ≤ m. Therefore, we obtain fromTheorem . that F(S) �= ∅.
Since F(S) = F(T), we obtain that F(T) �= ∅.
Next, suppose that α + β + γ + δ > . Let p and p be fixed points of T . As in the proof

of Theorem ., we have p = p. Therefore a fixed point of T is unique.
In the case of α + β + γ + δ ≥ , α + β + ζ + η > , α + γ + ε + η ≥  and [, ) ∩ {λ |

(α + γ )λ + ε + η ≥ } �= ∅, we can obtain the desired result by replacing the variables x
and y. �

Remark  We can also prove Theorems . and . by using the condition

–β – δ + ε + η > , or – γ – δ + ε + η > 

instead of the condition

α + γ + ε + η > , or α + β + ζ + η > ,

respectively. In fact, in the case of the condition –β – δ + ε + η > , we obtain from α +β +
γ + δ ≥  that

 < –β – δ + ε + η ≤ α + γ + ε + η.

Thus we obtain the desired results by Theorems . and .. Similarly, in the case of –γ –
δ + ε + η > , we can obtain the results by using the case of α + β + ζ + η > .

4 Fixed point theorems for well-knownmappings
Using Theorem ., we first show the following fixed point theorem for generalized hybrid
non-self mappings in a Hilbert space; see also Kocourek, Takahashi and Yao [].

Theorem . Let H be a Hilbert space, let C be a non-empty, bounded, closed and convex
subset of H and let T be a generalized hybrid mapping from C into H , i.e., there exist α,β ∈
R such that

α‖Tx – Ty‖ + ( – α)‖x – Ty‖ ≤ β‖Tx – y‖ + ( – β)‖x – y‖

for any x, y ∈ C. Suppose α – β ≥  and assume that there exists m >  such that for any
x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t with  < t ≤ m. Then T has a fixed point.

Proof An (α,β)-generalized hybrid mapping T from C into H is an (α,  – α, –β , –( –
β), , , )-widelymore generalized hybridmapping. Furthermore, α+(–α)–β–(–β) =

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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, α + ( – α) +  +  =  > , α – β +  +  = α – β ≥  and  +  = , that is, it satisfies
the condition () in Theorem .. Furthermore, since there exists m ≥  such that for any
x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t with  < t ≤ m, we obtain the desired result from Theorem .. �

Using Theorem ., we can also show the following fixed point theorem for widely gen-
eralized hybrid non-self mappings in a Hilbert space; see Kawasaki and Takahashi [].

Theorem . Let H be a Hilbert space, let C be a non-empty, bounded, closed and convex
subset of H and let T be an (α,β ,γ , δ, ε, ζ )-widely generalized hybrid mapping from C into
H which satisfies the following condition () or ():
() α + β + γ + δ ≥ , α + γ + ε >  and α + β ≥ ;
() α + β + γ + δ ≥ , α + β + ζ >  and α + γ ≥ .

Assume that there exists m >  such that for any x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t ∈ R with  < t ≤ m. Then T has a fixed point. In particular, a fixed
point of T is unique in the case of α + β + γ + δ >  under the conditions () and ().

Proof Since T is (α,β ,γ , δ, ε, ζ )-widely generalized hybrid, we obtain that

α‖Tx – Ty‖ + β‖x – Ty‖ + γ ‖Tx – y‖ + δ‖x – y‖

+max
{
ε‖x – Tx‖, ζ‖y – Ty‖} ≤ 

for any x, y ∈ C. In the case of α + γ + ε > , from

ε‖x – Tx‖ ≤ max
{
ε‖x – Tx‖, ζ‖y – Ty‖},

we obtain that

α‖Tx – Ty‖ + β‖x – Ty‖ + γ ‖Tx – y‖ + δ‖x – y‖ + ε‖x – Tx‖ ≤ ,

that is, it is an (α,β ,γ , δ, ε, , )-widely more generalized hybrid mapping. Furthermore,
we have that α + β + γ + δ ≥ , α + γ + ε +  = α + γ + ε > , α + β +  +  = α + β ≥ 
and + = , that is, it satisfies the condition () in Theorem .. Furthermore, since there
existsm ≥  such that for any x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t with  < t ≤ m, we obtain the desired result from Theorem .. In
the case of α + β + γ + δ ≥ , α + β + ζ >  and α + γ ≥ , we can obtain the desired result
by replacing the variables x and y. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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We know that an (α,β ,γ , δ, ε, ζ ,η)-widely more generalized hybrid mapping with α = ,
β = γ = ε = ζ = , δ = – and η = –k ∈ (–, ] is a strict pseudo-contractive mapping in the
sense of Browder and Petryshyn []. We also define the following mapping: T : C → H is
called a generalized strict pseudo-contractivemapping if there exist r,k ∈ Rwith  ≤ r ≤ 
and  ≤ k <  such that

‖Tx – Ty‖ ≤ r‖x – y‖ + k
∥∥(x – Tx) – (y – Ty)

∥∥

for any x, y ∈ C. Using Theorem ., we can show the following fixed point theorem for
generalized strict pseudo-contractive non-self mappings in a Hilbert space.

Theorem . Let H be a Hilbert space, let C be a non-empty, bounded, closed and convex
subset of H and let T be a generalized strict pseudo-contractive mapping from C into H ,
that is, there exist r,k ∈R with  ≤ r ≤  and  ≤ k <  such that

‖Tx – Ty‖ ≤ r‖x – y‖ + k
∥∥(x – Tx) – (y – Ty)

∥∥

for all x, y ∈ C. Assume that there exists m >  such that for any x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t ∈Rwith  < t ≤ m.Then T has a fixed point. In particular, if  ≤ r < ,
then T has a unique fixed point.

Proof A generalized strict pseudo-contractive mapping T from C intoH is a (, , ,–r, ,
,–k)-widely more generalized hybrid mapping. Furthermore,  +  +  + (–r) ≥ ,  +  +
+(–k) = –k > , +++(–k) = –k >  and [, )∩{λ | (+)λ+–k ≥ } = [k, ) �= ∅,
that is, it satisfies the condition () in Theorem .. Furthermore, since there existsm ≥ 
such that for any x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t with  < t ≤ m, we obtain the desired result from Theorem .. In
particular, if  ≤ r < , then  +  +  + (–r) > . We have from Theorem . that T has a
unique fixed point. �

Let us consider the problem in the Introduction. A mapping T : [, π
 ] →R was defined

as follows:

Tx =
(
 +



x
)
cosx –



x (.)

for all x ∈ [, π
 ]. We have that

Tx =
(
 +



x
)
cosx –



x

⇐⇒ 
 + 

x
Tx +


x

 + 
x

x = cosx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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Thus we have that for any x ∈ [, π
 ],

 + 
x

 + π

(


 + 
x

Tx +

x

 + 
x

)
+

(
 –

 + 
x

 + π

)
x

=
 + 

x
 + π

cosx +
(
 –

 + 
x

 + π

)
x,

and hence


 + π

Tx +
π

 + π
x =

 + 
x

 + π
cosx +

π – 
x

 + π
x.

Using this, we also have from (.) that for any x, y ∈ [, π
 ],

∣∣∣∣ 
 + π

Tx +
π

 + π
x –

(


 + π
Ty +

π

 + π
y
)∣∣∣∣



=
∣∣∣∣ +


x

 + π
cosx +

π – 
x

 + π
x –

( + 
y

 + π
cos y +

π – 
y

 + π
y
)∣∣∣∣



and hence


 + π

|Tx – Ty| + π

 + π
|x – y| – π

( + π )
∣∣x – y – (Tx – Ty)

∣∣

=
∣∣∣∣ +


x

 + π
cosx +

π – 
x

 + π
x –

( + 
y

 + π
cos y +

π – 
y

 + π
y
)∣∣∣∣



. (.)

Define a function f : [, π
 ] →R as follows:

f (x) =
 + 

x
 + π

cosx +
π – 

x
 + π

x

for all x ∈ [, π
 ]. Then we have

f ′(x) =



 + π
cosx –

 + 
x

 + π
sinx +

π

 + π
–

x
 + π

and

f ′′(x) = –


 + π
sinx –

 + 
x

 + π
cosx –


 + π

.

Since

f ′() =

 + π

 + π
, f ′

(
π



)
=
– + 

π

 + π

and f ′′(x) <  for all x ∈ [, π
 ], we have from the mean value theorem that there exists a

positive number r with  < r <  such that

∣∣∣∣ +

x

 + π
cosx +

π – 
x

 + π
x –

( + 
y

 + π
cos y +

π – 
y

 + π
y
)∣∣∣∣



≤ r|x – y|
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for all x, y ∈ [, π
 ]. Therefore, we have from (.) that


 + π

|Tx – Ty| + π

 + π
|x – y| ≤ r|x – y| + π

( + π )
∣∣x – y – (Tx – Ty)

∣∣

for all x, y ∈ [, π
 ]. Furthermore, we have from (.) that

Tx =
(
 +



x
)
(cosx – x) + x

for all x ∈ [, π
 ]. Take m =  + π and let t =  + 

x and y = cosx for all x ∈ [, π
 ]. Then we

have that

Tx = t(y – x) + x, y = cosx ∈
[
,

π



]
and  < t =  +



x ≤  + π .

Using Theorem ., we have that T has a unique fixed point z ∈ [, π
 ]. We also know that

z = Tz is equivalent to cos z = z. In fact,

z = Tz ⇐⇒ z =
(
 +



z
)
(cos z – z) + z

⇐⇒  =
(
 +



z
)
(cos z – z)

⇐⇒  = cos z – z.

Using Theorem ., we can also show the following fixed point theorem for super hybrid
non-self mappings in a Hilbert space; see [].

Theorem . Let H be a Hilbert space, let C be a non-empty, bounded, closed and convex
subset of H and let T be a super hybrid mapping from C into H , that is, there exist α,β ,γ ∈
R such that

α‖Tx – Ty‖ + ( – α + γ )‖x – Ty‖

≤ (
β + (β – α)γ

)‖Tx – y‖ + (
 – β – (β – α – )γ

)‖x – y‖

+ (α – β)γ ‖x – Tx‖ + γ ‖y – Ty‖

for all x, y ∈ C. Assume that there exists m >  such that for any x ∈ C,

Tx = x + t(y – x)

for some y ∈ C and t with  < t ≤ m. Suppose that α – β ≥  or γ ≥ . Then T has a fixed
point.

Proof An (α,β ,γ )-super hybrid mapping T from C into H is an (α,  – α + γ , –β – (β –
α)γ , – + β + (β – α – )γ , –(α – β)γ , –γ , )-widely more generalized hybrid mapping.
Furthermore, α + ( – α + γ ) + (–β – (β – α)γ ) + (– + β + (β – α – )γ ) = , α + ( – α +
γ ) + (–γ ) +  =  >  and α – β – (β –α)γ – (α – β)γ +  = α – β ≥ , that is, it satisfies the

http://www.fixedpointtheoryandapplications.com/content/2013/1/116
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conditions α + β + γ + δ ≥ , α + β + ζ + η >  and α + γ + ε + η ≥  in () of Theorem ..
Moreover, we have that

[, )∩ {
λ | (α +

(
–β – (β – α)γ

))
λ +

(
–(α – β)γ

)
+  ≥ 

}
= [, )∩ {

λ | (α – β)
(
( + γ )λ – γ

) ≥ 
}
.

If α – β > , then

[, )∩ {
λ | (α – β)

(
( + γ )λ – γ

) ≥ 
}
= [, )∩ {

λ | ( + γ )λ – γ ≥ 
}

=

⎧⎨
⎩
[, ) if γ < ,

[ γ

+γ
, ) if γ ≥ 

�= ∅,

that is, it satisfies the condition [, )∩ {λ | (α + γ )λ+ ε + η ≥ } �= ∅ in () of Theorem ..
If α – β = , then

[, )∩ {
λ | (α – β)

(
( + γ )λ – γ

) ≥ 
}
= [, ) �= ∅,

that is, it satisfies the condition [, )∩ {λ | (α + γ )λ+ ε + η ≥ } �= ∅ in () of Theorem ..
If α – β <  and γ ≥ , then

[, )∩ {
λ | (α – β)

(
( + γ )λ – γ

) ≥ 
}

= [, )∩ {
λ | ( + γ )λ – γ ≤ 

}

=
[
,

γ

 + γ

]
�= ∅,

that is, it again satisfies the condition [, ) ∩ {λ | (α + γ )λ + ε + η ≥ } �= ∅ in () of The-
orem .. Then we obtain the desired result from Theorem .. Similarly, we obtain the
desired result from Theorem . in the case of (). �

We remark that some recent results related to this paper have been obtained in [–].
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