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Abstract. For Banach lattices X and Y , let X⊗̂|π|Y and X⊗̌|ε|Y denote the positive

projective and injective tensor products of X and Y , respectively. In this paper, we

characterize the inheritance of reflexivity and containment of copies of c0, `1, `∞ by X⊗̂|π|Y
and X⊗̌|ε|Y from X and Y , when one of them is an atomic Banach lattice. In this case,

we also give an affirmative answer to an open question of Jeurnink.

1. Introduction.

Fremlin [9, 10] and Wittstock [18, 19] in 1970’s introduced and investigated the positive

projective tensor product X⊗̂|π|Y and the positive injective tensor product X⊗̌|ε|Y of

Banach lattices X and Y , respectively. One of the interesting questions about X⊗̂|π|Y
and X⊗̌|ε|Y is what geometric properties of the Banach lattices X and Y are inherited by

X⊗̂|π|Y and X⊗̌|ε|Y . Fremlin [10] in 1974 showed that L2[0, 1]⊗̂|π|L2[0, 1] is not Dedekind

complete and then Schep [17] in 1984 showed that Lp[0, 1]⊗̂|π|Lq[0, 1] (1 < p, q <∞, 1/p+

1/q = 1) is not Dedekind complete. Thus the Radon-Nikodym property is not inherited

by Lp[0, 1]⊗̂|π|Lq[0, 1] (1 < p, q < ∞, 1/p + 1/q = 1). Nevertheless, Bu and Buskes [2] in

2009 showed that the Radon-Nikodym property is inherited by X⊗̂|π|Y whenever one of X

and Y is an atomic Banach lattice. It seems that in this case some geometric properties

of Banach lattices can be inherited by their positive tensor products. For instance, the

reflexivity, the property of containment of copies of c0, `1, `∞, and etc., are inherited by

`ϕ⊗̂|π|X and `ϕ⊗̌|ε|X where `ϕ is an Orlicz sequence space (see [3, 4, 13]).

Let E be an atomic Banach lattice and X be any Banach lattice. The sequential rep-

resentation λπ,0(X) of the positive projective tensor product E⊗̂|π|X was given in [2]. In

section 5 of this paper, we give a sequential representation λε,0(X) of the positive injective
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tensor product E⊗̌|ε|X. After discussing the reflexivity and the containment of copies of

c0, `1, `∞ of λπ,0(X) and λε,0(X) in sections 3 and 4, we obtain characterizations of the

inheritance of the reflexivity and the containment of copies of c0, `1, `∞ by E⊗̂|π|X and

E⊗̌|ε|X in section 6. As a consequence, we obtain the interesting example which shows

that Kr(`p, `q)(1 < p ≤ q <∞), the space generated by positive compact operators from `p

into `q, contains a sublattice isomorphic to c0 but does not contain a sublattice isomorphic

to `∞.

Jeurnink pointed out in [12, chapter 4] that in X∗ ⊗ Y ∗, the positive projective tensor

norm ‖ · ‖|π| is greater than or equal to the dual norm of the positive injective tensor norm

‖ · ‖∗|ε|, and he asked the question whether ‖ · ‖|π| is equal to ‖ · ‖∗|ε| in X∗⊗Y ∗. In section 6

of this paper, we give an affirmative answer to this question in the case that one of X and

Y is an atomic Banach lattice.

For a vector lattice X, let X+ be its positive cone. The X-valued sequence space XN is

a vector lattice with the order and the lattice operations defined coordinatewise. For each

x̄ = (xi)i ∈ XN and each n ∈ N, let

x̄(≤ n) = (x1, · · · , xn, 0, 0, · · · ) and x̄(≥ n) = (0, · · · , 0, xn, xn+1, · · · ).

For a Banach lattice X, let X∗ be its topological dual and BX be its closed unit ball. For

Banach lattices X and Y , let Lr(X,Y ) denote the space of all regular linear operators

from X to Y with the usual regular operator norm ‖ · ‖r. If, in addition, Y is Dedekind

complete then Lr(X,Y ) is a Banach lattice with ‖T‖r = ‖ |T | ‖ for every T ∈ Lr(X,Y ).

Let Kr(X,Y ) denote the linear span of positive compact operators from X to Y .

2. Banach Lattice-valued Sequence Spaces.

Let λ be a solid sequence space, that is, a subspace of RN such that (ai)i ∈ λ whenever

|ai| ≤ |bi| for all i ∈ N and (bi)i ∈ λ. The Köthe dual of λ is defined by

λ′ =
{

(bi)i ∈ RN :
∞∑
i=1

|aibi| < +∞, ∀ (ai)i ∈ λ
}
.

In addition, if λ is a Banach lattice then λ′ ⊆ λ∗. Thus λ′ with the norm induced by λ∗ is

also a Banach lattice. From now on we always assume that λ is a Banach sequence lattice

such that

λ′′ = λ and ‖ei‖λ = 1, ∀i ∈ N.
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Here, ei’s are the standard unit vectors in the sequence space λ. Note that if λ is reflexive

then both λ and λ′ are σ-order continuous.

Define

λε(X) =
{
x̄ = (xi)i ∈ XN : (x∗(|xi|))i ∈ λ, ∀ x∗ ∈ X∗+

}
and

‖x̄‖λε(X) = sup
{
‖(x∗(|xi|))i‖λ : x∗ ∈ BX∗+

}
, ∀ x̄ = (xi)i ∈ λε(X).

Then λε(X) is a Banach lattice (see [5]). (By the Principle of Local Reflexivity for Ba-

nach lattices due to Bernau [1] mentioned in section 3 below, and similar to the proof of

Proposition 4.3 in [2], we can prove that λε(X∗) defined here is the same as that λε(X∗)

defined in [2] if λ′ is replaced by λ there.) Let λε,0(X) denote the closed sublattice of λε(X)

consisting of all such elements of λε(X) whose tails converge to 0, i.e.

λε,0(X) =
{
x̄ ∈ λε(X) : lim

n
‖x̄(≥ n)‖λε(X) = 0

}
.

Then λε,0(X) is an ideal of λε(X). We denote λε,0(R) by λ0.

For each x̄ = (xi)i ∈ λε(X), define a linear operator Tx̄ from (λ′)0 to X by

Tx̄(a) =
∞∑
i=1

aixi, ∀ a = (ai)i ∈ (λ′)0.

Then we have the following proposition due to [5].

Proposition 2.1. If X is Dedekind complete then λε(X) is isometrically isomorphic and

lattice homomorphic to Lr((λ′)0, X) under the mapping x̄ 7→ Tx̄. Moreover, if λ is σ-order

continuous then Tx̄ ∈ Kr((λ′)0, X) if and only if x̄ ∈ λε,0(X).

Define

λπ(X) =
{
x̄ = (xi)i ∈ XN :

∞∑
i=1

x∗i (|xi|) < +∞, ∀(x∗i )i ∈ λ′ε(X∗)+
}

and

‖x̄‖λπ(X) = sup
{ ∞∑
i=1

x∗i (|xi|) : (x∗i )i ∈ Bλ′ε(X∗)+
}
, ∀ x̄ = (xi)i ∈ λπ(X).

Then λπ(X) is a Banach lattice (see [2]). Let λπ,0(X) denote the closed sublattice of λπ(X)

consisting of all such elements of λπ(X) whose tails converge to 0, i.e.

λπ,0(X) =
{
x̄ ∈ λπ(X) : lim

n
‖x̄(≥ n)‖λπ(X) = 0

}
.
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Then λπ,0(X) is an ideal of λπ(X).

Bu and Buskes [2] asked the question whether λπ,0(X) = λπ(X). We will give an affir-

mative answer to this question in the following Proposition 2.2. To prove this proposition,

we need the following vector-valued sequence spaces λw(X) and λs(X) introduced in [2].

Define

λw(X) = λweak(X) =
{
x̄ = (xi)i ∈ XN : (x∗(xi))i ∈ λ, ∀ x∗ ∈ X∗

}
and

‖x̄‖λw(X) = sup
{
‖(x∗(xi))i‖λ : x∗ ∈ BX∗

}
, ∀ x̄ = (xi)i ∈ λw(X).

Then λw(X) is a Banach space (it may not be a Banach lattice). Define

λs(X) = λstrong(X) =
{
x̄ = (xi)i ∈ XN :

∞∑
i=1

|x∗i (xi)| < +∞, ∀(x∗i )i ∈ λ′w(X∗)
}

and

‖x̄‖λs(X) = sup
{∣∣∣ ∞∑

i=1

x∗i (xi)
∣∣∣ : (x∗i )i ∈ Bλ′w(X∗)

}
, ∀ x̄ = (xi)i ∈ λs(X).

Then λs(X) is a Banach space (it may not be a Banach lattice).

Proposition 2.2. If λ is σ-order continuous then λπ,0(X) = λπ(X).

Proof. Take any x̄ = (xi)i ∈ λπ(X). Assume, without loss of generality, that x̄ is positive.

For each n ∈ N we have x̄(≤ n) = (x1, · · · , xn, 0, 0, · · · ) ∈ λs(X). Since x̄(≤ n) is positive,

‖x̄(≤ n)‖λs(X) = ‖x̄(≤ n)‖λπ(X) ≤ ‖x̄‖λπ(X), n = 1, 2, · · · .

For any x̄∗ = (x∗i )i ∈ λ′w(X∗) and any n ∈ N,
n∑
i=1

|x∗i (xi)| ≤ ‖x̄∗(≤ n)‖λ′w(X∗) · ‖x̄(≤ n)‖λs(X) ≤ ‖x̄∗‖λ′w(X∗) · ‖x̄‖λπ(X).

Then
∑∞
i=1 |x∗i (xi)| < ∞ and hence x̄ ∈ λs(X). It follows from [2, Proposition 5.2] that

x̄ ∈ λπ,0(X). �

3. Duality and Reflexivity.

To characterize the dual of λε,0(X) and the dual of λπ,0(X), we need the following

Principle of Local Reflexivity for Banach lattices due to Bernau [1].
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Principle of Local Reflexivity [1]. Let X be a Banach lattice and J be the canonical

injection of X into X∗∗. Suppose ε > 0 and V is a weak∗ neighborhood of 0 in X∗∗. If G is a

finite dimensional sublattice of X∗∗ then there is a lattice isomorphism T : G −→ T [G] ↪→ X

such that ‖T‖ < 1 + ε, ‖T−1‖ < 1 + ε, and x∗∗ − J(Tx∗∗) ∈ ‖x∗∗‖V for all x∗∗ ∈ G.

Theorem 3.1. λε,0(X)∗ is isometrically isomorphic and lattice homomorphic to λ′π(X∗).

Proof. Define ψ : λ′π(X∗) −→ λε,0(X)∗ by

〈x̄, ψ(x̄∗)〉 =
∞∑
i=1

x∗i (xi) (3.1)

for each x̄ = (xi)i ∈ λε,0(X) and each x̄∗ = (x∗i )i ∈ λ′π(X∗). Then ψ is linear and

‖ψ(x̄∗)‖ ≤ ‖x̄∗‖λ′π(X∗).

On the other hand, take any ξ ∈ λε,0(X)∗. For each i ∈ N, define a linear functional x∗i
on X by

x∗i (x) = 〈(0, · · · , 0,
i-th place

x , 0, 0, · · · ), ξ〉

for each x ∈ X. Then x∗i ∈ X∗. Moreover, for each x ∈ X+ we have

|x∗i |(x) = sup
{
|x∗i (y)| : 0 ≤ y ≤ x

}
= sup

{
|〈(0, · · · , 0,

i-th place
y , 0, 0, · · · ), ξ〉| : 0 ≤ y ≤ x

}
= sup

{
|〈ȳ, ξ〉| : 0 ≤ ȳ ≤ (0, · · · , 0,

i-th place
x , 0, 0, · · · )

}
= 〈(0, · · · , 0,

i-th place
x , 0, 0, · · · ), |ξ|〉.

Thus, for each x̄ = (xi)i ∈ λε,0(X)+ we have
n∑
i=1

x∗i (xi) = 〈(xi)n1 , ξ〉 and
n∑
i=1

|x∗i |(xi) = 〈(xi)n1 , |ξ|〉. (3.2)

Now take any (x∗∗i )i ∈ λε(X∗∗)+. For each ε > 0 and each n ∈ N, let G be the sublattice

of X∗∗ generated by {x∗∗i : i = 1, 2, · · · , n} and

V =
{
x∗∗ ∈ X∗∗ :

∣∣∣x∗∗(|x∗i |)∣∣∣ < ε/a, i = 1, 2, · · · , n
}
,

where a =
∑n
i=1 ‖x∗∗i ‖. By the Principle of Local Reflexivity, there is a lattice isomorphism

T : G −→ X such that ‖T‖ < 1 + ε and∣∣∣x∗∗i (|x∗i |)− |x∗i |(Tx∗∗i )
∣∣∣ < ε‖x∗∗i ‖/a, i = 1, 2, · · · , n.
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Then ∥∥∥(Tx∗∗i )n
1

∥∥∥
λε,0(X)

= sup
{∥∥∥(x∗(Tx∗∗i )

)n
1

∥∥∥
λ

: x∗ ∈ BX∗+
}

≤ sup
{∥∥∥T∥∥∥ · ∥∥∥(x∗∗i (x∗)

)n
1

∥∥∥
λ

: x∗ ∈ BX∗+
}

≤ (1 + ε) ·
∥∥∥(x∗∗i )i

∥∥∥
λε(X∗∗)

.

By (3.2) we have
n∑
i=1

∣∣∣x∗∗i (|x∗i |)
∣∣∣ ≤ n∑

i=1

∣∣∣x∗∗i (|x∗i |)− |x∗i |(Tx∗∗i )
∣∣∣+ n∑

i=1

|x∗i |(Tx∗∗i )

≤ ε+ 〈
(
Tx∗∗i

)n
1
, |ξ|〉

≤ ε+ ‖ξ‖ ·
∥∥∥(Tx∗∗i )n1∥∥∥λε,0(X)

≤ ε+ (1 + ε)‖ξ‖ ·
∥∥∥(x∗∗i )i

∥∥∥
λε(X∗∗)

.

Therefore
∞∑
i=1

∣∣∣x∗∗i (|x∗i |)
∣∣∣ ≤ ε+ (1 + ε)‖ξ‖ ·

∥∥∥(x∗∗i )i
∥∥∥
λε(X∗∗)

.

It follows that x̄∗ := (x∗i )i ∈ λ′π(X∗) and ‖x̄∗‖λ′π(X∗) ≤ ‖ξ‖. For each x̄ = (xi)i ∈ λε,0(X)+,

by (3.1) and (3.2) we have

〈x̄, ψ(x̄∗)〉 = lim
n

n∑
i=1

x∗i (xi) = lim
n
〈(xi)n1 , ξ〉 = 〈x̄, ξ〉.

Thus ψ(x̄∗) = ξ, and hence ψ is surjective. Moreover,

‖ψ(x̄∗)‖ ≤ ‖x̄∗‖λ′π(X∗) ≤ ‖ξ‖ = ‖ψ(x̄∗)‖

and ψ is an isometry. Furthermore, by (3.1) and (3.2) again we have

〈x̄, |ψ(x̄∗)|〉 = 〈x̄, |ξ|〉 = lim
n
〈(xi)n1 , |ξ|〉 = lim

n

n∑
i=1

|x∗i |(xi) = 〈x̄, ψ(|x̄∗|)〉.

Therefore |ψ(x̄∗)| = ψ(|x̄∗|) and ψ is a lattice homomorphism. �

Similar to the proof of Theorem 3.1 we have the following Theorem 3.2.

Theorem 3.2. λπ,0(X)∗ is isometrically isomorphic and lattice homomorphic to λ′ε(X
∗).

Theorem 3.3. Let λ and X be reflexive. Then

(i) λπ,0(X) is reflexive if and only if λ′ε(X
∗) = λ′ε,0(X∗).
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(ii) λε,0(X) is reflexive if and only if λε(X) = λε,0(X).

Proof. By Proposition 2.2 we have λπ,0(X) = λπ(X) and λ′π,0(X∗) = λ′π(X∗). (i) If

λ′ε(X
∗) = λ′ε,0(X∗) then by Theorems 3.1 and 3.2,

λπ,0(X)∗∗ = [λ′ε(X
∗)]∗ = [λ′ε,0(X∗)]∗ = λ′′π(X∗∗) = λπ(X) = λπ,0(X).

It follows that λπ,0(X) is reflexive. On the other hand, if λπ,0(X) is reflexive then by

Theorems 3.1 and 3.2 again,

λ′ε,0(X∗)∗ = λ′′π(X∗∗) = λπ(X) = λπ,0(X) = λπ,0(X)∗∗ = λ′ε(X
∗)∗.

It follows that λ′ε(X
∗) = λ′ε,0(X∗). (ii) follows from the following fact:

λε,0(X)∗∗ = λ′π(X∗)∗ = λ′π,0(X∗)∗ = λ′′ε(X
∗∗) = λε(X).

�

4. Containment of copies of c0, `∞, and `1.

It is known from [14, p. 92, Theorem 2.4.12] that a Banach lattice contains no sublattice

isomorphic to c0 if and only if it is a KB-space. In this case, it is also σ-order continuous. For

completeness we mention [2, Theorem 5.5] and [5, Theorem 7] as the following proposition.

Proposition 4.1. (i) λπ,0(X) contains no sublattice isomorphic to c0 if and only if both λ

and X contain no sublattice isomorphic to c0.

(ii) λε,0(X) contains no sublattice isomorphic to c0, if and only if λε(X) contains no

sublattice isomorphic to c0, if and only if both λ and X contain no sublattice isomorphic to

c0 and λε(X) = λε,0(X).

Note that ((λ′)0)∗ = ((λ′)0)′ = λ′′ = λ. Then the fact that λ contains no sublattice

isomorphic to `∞ is equivalent to the fact that λ contains no sublattice isomorphic to c0.

In this case, λ is σ-order continuous and hence λπ,0(X∗) = λπ(X∗) by Proposition 2.2. It

follows from Theorems 3.1 and 3.2 that λπ(X∗) = λ′ε,0(X)∗ and λε(X∗) = λ′π,0(X)∗. Thus

by Proposition 4.1 we have the following.

Theorem 4.2. (i) λπ,0(X∗) contains no sublattice isomorphic to `∞ if and only if both λ

and X∗ contain no sublattice isomorphic to `∞.



8 QINGYING BU AND NGAI-CHING WONG

(ii) λε(X∗) contains no sublattice isomorphic to `∞ if and only if both λ and X∗ contain

no sublattice isomorphic to `∞ and λε(X∗) = λε,0(X∗).

It is known from [14, p. 83, Proposition 2.3.12] that a Banach lattice contains a sublattice

isomorphic to `1 if and only if its dual contains a sublattice isomorphic to `∞. Note that

(λ0)∗ = λ′, and by Theorems 3.1 and 3.2, that λπ,0(X)∗ = λ′ε(X
∗) and λε,0(X)∗ = λ′π(X∗).

By Theorem 4.2 we have the following.

Theorem 4.3. (i) λπ,0(X) contains no sublattice isomorphic to `1 if and only if both λ0

and X contain no sublattice isomorphic to `1 and λ′ε(X
∗) = λ′ε,0(X∗).

(ii) λε,0(X) contains no sublattice isomorphic to `1 if and only if both λ0 and X contain

no sublattice isomorphic to `1.

For an infinite subset M of N, let `∞(M) denote the subspace of `∞ consisting of all

(ξn)n ∈ `∞ with ξn = 0 for n 6∈ M . It is known from [6, p. 13, Remark 1.3.2] that if an

operator T : `∞ −→ Z is weakly compact then for all ξ = (ξn)n ∈ `∞, the series
∑
n ξnT (en)

converges in norm in Z. But its limit
∑∞
n=1 ξnT (en) and T (ξ) may not coincide. To get the

main result in this section, we need the following result due to Drewnowski [8] (also see [6,

p. 14, Corollary 1.3.3]).

Lemma 4.4 [8]. Let Z be a Banach space and let Ti : `∞ −→ Z be weakly compact operators

for each i ∈ N. Then there exists an infinite subset M of N such that

Ti(ξ) =
∞∑
n=1

ξnTi(en), ∀ξ = (ξn)n ∈ `∞(M), ∀i ∈ N.

Theorem 4.5. Let λ′ be σ-order continuous. Then λε,0(X) contains no sublattice isomor-

phic to `∞ if and only if X contains no sublattice isomorphic to `∞.

Proof. Since X is a closed sublattice of λε,0(X), it follows that λε,0(X) contains a sublattice

isomorphic to `∞ whenever X contains a sublattice isomorphic to `∞. Now suppose that

X contains no sublattice isomorphic to `∞ but λε,0(X) contains a sublattice isomorphic

to `∞. Then there is an isomorphism T : `∞ −→ T (`∞) ↪→ λε,0(X). For each i ∈ N,

define a bounded linear operator Ti : `∞ −→ X by Ti(ξ) = T (ξ)i for each ξ ∈ `∞, where

T (ξ)i denotes the i-th coordinate of T (ξ). Since X contains no sublattice isomorphic to

`∞, by Rosenthal’s `∞-theorem (see [15] or [6, p. 12, Theorem 1.3.1]), each Ti is weakly
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compact. Moreover, by Lemma 4.4 there exists an infinite subset M of N such that for all

ξ = (ξn)n ∈ `∞(M),

T (ξ)i = Ti(ξ) =
∞∑
n=1

ξnTi(en) =
∞∑
n=1

ξnT (en)i, ∀i ∈ N. (4.1)

Note that for each m ∈ N,∥∥∥ m∑
n=1

ξnT (en)
∥∥∥
λε(X)

=
∥∥∥T((ξ1, · · · , ξm, 0, 0, · · · )

)∥∥∥
λε(X)

≤ ‖T‖ · ‖(ξ1, · · · , ξm, 0, 0, · · · )‖`∞
≤ ‖T‖ · ‖ξ‖`∞ .

Thus for each x̄∗ = (x∗i )i ∈ λε,0(X)∗ = λ′π(X∗) and for each m, k ∈ N,∣∣∣〈 m∑
n=1

ξnT (en)− T (ξ), x̄∗〉
∣∣∣

=
∣∣∣〈 m∑
n=1

ξnT (en)− T (ξ), x̄∗(≤ k)〉+ 〈
m∑
n=1

ξnT (en)− T (ξ), x̄∗(> k)〉
∣∣∣

≤
k∑
i=1

x∗i

( ∞∑
n=m+1

ξnT (en)i
)

+ ‖x̄∗(> k)‖λ′π(X∗) ·
(∥∥∥ m∑

n=1

ξnT (en)
∥∥∥
λε(X)

+
∥∥∥T (ξ)

∥∥∥
λε(X)

)

≤
k∑
i=1

x∗i

( ∞∑
n=m+1

ξnT (en)i
)

+ 2‖T‖ · ‖ξ‖`∞ · ‖x̄∗(> k)‖λ′π(X∗). (4.2)

By Proposition 2.2 we have limk ‖x̄∗(> k)‖λ′π(X∗) = 0. It follows from (4.1) and (4.2)

that the series
∑
n ξnT (en) converges to T (ξ) weakly in λε,0(X) for all ξ ∈ `∞(M). Thus

the series
∑
n∈M T (en) is weakly subseries convergent and hence subseries convergent in

λε,0(X). Therefore T (en) −→ 0 in λε,0(X) as n ∈ M and n → ∞. But for each n ∈ N,

‖T (en)‖λε(X) ≥ ‖en‖`∞/‖T−1‖ = 1/‖T−1‖. This contradiction shows that λε,0(X) contains

no sublattice isomorphic to `∞. �

5. Positive Tensor Products.

For Banach lattices X and Y , let X ⊗ Y denote the algebraic tensor product of X and

Y . For each u =
∑m
k=1 xk ⊗ yk ∈ X ⊗ Y , define Tu : X∗ −→ Y by

Tu(x∗) =
m∑
k=1

x∗(xk)yk, ∀x∗ ∈ X∗.
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The injective cone of X ⊗ Y is defined by

Ci =
{
u ∈ X ⊗ Y : Tu ≥ 0

}
,

and the positive injective tensor norm of X ⊗ Y is defined by

‖u‖|ε| = ‖Tu‖r.

Let X⊗̌|ε|Y denote the completion of X ⊗ Y with respect to ‖ · ‖|ε|. Then X⊗̌|ε|Y with

Ci as its positive cone is a Banach lattice (see [18, 19] or see [14, section 3.8]), called

the positive injective tensor product of X and Y . It follows from [14, Theorem 3.8.6 and

Proposition 3.8.7] that the mapping (u 7→ Tu) : X ⊗ Y → Lr(X∗, Y ) ↪→ Lr(X∗, Y ∗∗)
extends isometrically to a lattice homomorphism X⊗̌|ε|Y → Lr(X∗, Y ∗∗). That is, every

v ∈ X⊗̌|ε|Y corresponds to Tv ∈ Lr(X∗, Y ∗∗) such that ‖Tv‖r = ‖v‖|ε| and T|v| = |Tv|.

The projective cone of X ⊗ Y is defined by

Cp =
{ n∑
k=1

xk ⊗ yk : n ∈ N, xk ∈ X+, yk ∈ Y +
}
,

and the positive projective tensor norm on X ⊗ Y is defined by

‖u‖|π| = sup
{∣∣∣ n∑

k=1

φ(xk, yk)
∣∣∣ : u =

n∑
k=1

xk ⊗ yk ∈ X ⊗ Y, φ ∈M
}
,

where M is the set of all positive bilinear functionals φ on X × Y with ‖φ‖ ≤ 1. Let

X⊗̂|π|Y denote the completion of X ⊗ Y with respect to ‖ · ‖|π|. Then X⊗̂|π|Y with Cp as

its positive cone is a Banach lattice (see [9, 10] or see [14, section 3.8]), called the positive

projective tensor product of X and Y . The positive projective tensor norm ‖ · ‖|π| has

another equivalent form:

‖u‖|π| = inf
{ n∑
k=1

‖xk‖ · ‖yk‖ : xk ∈ X+, yk ∈ Y +, |u| ≤
n∑
k=1

xk ⊗ yk
}
.

Bu and Buskes [2] gave a sequential representation of the positive projective tensor prod-

uct λ⊗̂|π|X. That is, if λ is σ-order continuous then λ⊗̂|π|X is isometrically isomorphic

and lattice homomorphic to λπ,0(X). Next in Theorem 5.2 we will give a sequential repre-

sentation of the positive injective tensor product λ⊗̌|ε|X.

Lemma 5.1. Let X and Y be vector lattices such that Y is Dedekind complete, and let

T ∈ Lr(X,Y ). If e is an atom in X then |T |(e) = |T (e)|.
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Proof. Recall that if e is an atom in X then x ∈ X with 0 ≤ x ≤ e implies that x = αe for

some α ∈ R+. Thus

|T |(e) = sup{|T (x)| : 0 ≤ x ≤ e} = sup{|T (αe)| : 0 ≤ αe ≤ e} = |T (e)|.

�

Theorem 5.2. If λ is σ-order continuous then λ⊗̌|ε|X is isometrically isomorphic and

lattice homomorphic to λε,0(X).

Proof. Since λ is σ-order continuous, it follows from [2, Lemma 3.4] that λ0 = λ and hence,

λ∗ = λ′. Thus every v ∈ λ⊗̌|ε|X corresponds to Tv ∈ Lr(λ′, X∗∗) such that

‖Tv‖r = ‖v‖|ε| and T|v| = |Tv|. (5.1)

Let φ denote the linear map from λ⊗X into XN induced by the natural map: λ×X −→
XN with (t, x) 7→ (tix)i for every t = (ti)i ∈ λ and every x ∈ X. That is, for every u ∈ λ⊗X
with a representation u =

∑m
k=1 t

(k) ⊗ xk, we have

φ(u) =
( m∑
k=1

t
(k)
i xk

)
i
. (5.2)

For every x∗ ∈ X∗+ and every s = (si)i ∈ λ′+,
∞∑
i=1

six
∗
(
|
m∑
k=1

t
(k)
i xk|

)
≤
∞∑
i=1

m∑
k=1

si|t(k)
i |x

∗(|xk|) ≤ ‖x∗‖ · ‖s‖λ′ ·
m∑
k=1

‖xk‖ · ‖t(k)‖λ.

Thus φ(u) ∈ λε(X). Moreover, by [2, Lemma 3.4], limn ‖t(k)(≥ n)‖λ = 0 for k = 1, 2, · · · ,m
and hence, φ(u) ∈ λε,0(X).

For every s = (si)i ∈ (λ′)0 and every x∗ ∈ X∗, we have

〈Tu(s), x∗〉 =
m∑
k=1

∞∑
i=1

sit
(k)
i x∗(xk) = 〈φ(u), (six∗)i〉, (5.3)

and by Lemma 5.1 we have

|Tu|(s) = |Tu|
( ∞∑
i=1

siei
)

=
∞∑
i=1

si|Tu|(ei) =
∞∑
i=1

si|Tu(ei)| =
∞∑
i=1

si
∣∣∣ m∑
k=1

t
(k)
i xk

∣∣∣,
and thus we have

〈|φ(u)|, (six∗)i〉 = 〈
(
|
m∑
k=1

t
(k)
i xk|

)
i
, (six∗)i〉 =

∞∑
i=1

six
∗
(
|
m∑
k=1

t
(k)
i xk|

)
= 〈|Tu|(s), x∗〉. (5.4)
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If φ(u)i denotes the i-th coordinate of φ(u) then∥∥∥φ(u)
∥∥∥
λε(X)

= sup
{∥∥∥(x∗(|φ(u)i|

))
i

∥∥∥
λ

: x∗ ∈ BX∗+
}

= sup
{ ∞∑
i=1

six
∗(|φ(u)i|

)
: s = (si)i ∈ B(λ′)+0

, x∗ ∈ BX∗+
}

= sup
{
〈|φ(u)|, (six∗)i〉 : s = (si)i ∈ B(λ′)+0

, x∗ ∈ BX∗+
}

= sup
{
〈|Tu|(s), x∗〉 : s = (si)i ∈ B(λ′)+0

, x∗ ∈ BX∗+
}

= ‖ |Tu| ‖ = ‖Tu‖r = ‖u‖|ε|

and hence, φ is an isometry. Extend φ isometrically from (λ⊗X, ‖ · ‖|ε|) to its completion

λ⊗̌|ε|X, denoted by φ̃.

Now take any x̄ = (xi)i ∈ λε,0(X) and let wn =
∑n
i=1 ei ⊗ xi for each n ∈ N. Then for

every m,n ∈ N with m > n,

‖wm − wn‖|ε| =
∥∥∥ m∑
i=n+1

ei ⊗ xi
∥∥∥
|ε|

=
∥∥∥φ̃(

m∑
i=n+1

ei ⊗ xi)
∥∥∥
λε(X)

= ‖(0, · · · , 0, xn+1, · · · , xm, 0, 0, · · · )‖λε(X)

→ 0 as m,n→∞.

Thus {wn}∞1 is a Cauchy sequence in λ⊗̌|ε|X and hence, there exists w ∈ λ⊗̌|ε|X such that

w = limnwn. Note that

φ̃(w) = φ̃(lim
n
wn) = lim

n
φ̃(wn) = lim

n
x̄(≤ n) = x̄.

Therefore, φ̃ is surjective.

Finally we show that φ̃ is a lattice homomorphism. Note that φ̃ and the map v 7→ Tv

are continuous and λ ⊗X is norm dense in λ⊗̌|ε|X. By (5.3) for every v ∈ λ⊗̌|ε|X, every

s = (si)i ∈ (λ′)0, and every x∗ ∈ X∗ we have

〈Tv(s), x∗〉 = 〈φ̃(v), (six∗)i〉. (5.5)

Thus for every u ∈ λ⊗X, every s = (si)i ∈ (λ′)0, and every x∗ ∈ X∗, it follows from (5.1),

(5.4), and (5.5) that

〈|φ̃(u)|, (six∗)i〉 = 〈|Tu|(s), x∗〉 = 〈T|u|(s), x∗〉 = 〈φ̃(|u|), (six∗)i〉,

which implies that |φ̃(u)| = φ̃(|u|). Since φ̃ is continuous and λ ⊗ X is norm dense in

λ⊗̌|ε|X, it follows that |φ̃(v)| = φ̃(|v|) for every v ∈ λ⊗̌|ε|X and hence, φ̃ is a lattice

homomorphism. �
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6. Properties inherited by Positive Tensor Products.

In this section, we will verify some geometric properties that can be inherited by the

positive projective tensor product E⊗̂|π|X and the positive injective tensor product E⊗̌|ε|X,

provided that E is an atomic Banach lattice and X is any Banach lattice.

6.1. Reflexivity. A little bit modifying Proposition 3.4 in [11] gives the following lemma.

Lemma 6.1 [11]. Let E be a Banach lattice and F a separable closed sublattice of E. Then

there exists an ideal G of E containing F such that G is generated by a separable closed

sublattice of E, and there exists a lattice isometric embedding ϕ : G∗ −→ E∗ such that

ϕ(g∗)(g) = g∗(g) for every g ∈ G and every g∗ ∈ G∗. In particular, ϕ[G∗] is norm one

positive complemented in E∗.

In the previous lemma, if E is reflexive then for every x ∈ E we define g : G∗ −→ R by

〈g, g∗〉 = 〈x, ϕ(g∗)〉, ∀ g∗ ∈ G∗.

Then

‖g‖ = sup
{
|〈g, g∗〉| : g∗ ∈ G∗, ‖g∗‖ ≤ 1

}
= sup

{
|〈x, ϕ(g∗)〉| : ‖ϕ(g∗)‖ = ‖g∗‖ ≤ 1

}
≤ ‖x‖.

Thus g ∈ G∗∗ = G and hence the map x→ g is a norm one positive projection from E onto

G. Therefore we have the following.

Lemma 6.2. Let E be a reflexive Banach lattice and F a separable closed sublattice of

E. Then there exists an ideal G of E containing F such that G is generated by a separable

closed sublattice of E and G is norm one positive complemented in E.

We need the following result (due to Wolff [20]) to transform an atomic Banach lattice

into a sequence Banach lattice.

Lemma 6.3 [20]. Let E be a Dedekind complete separable Banach lattice. Then E is atomic

if and only if there is an order continuous and injective lattice homomorphism from E into

a sublattice of RN.
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Let G be a Dedekind complete separable atomic Banach lattice. By Lemma 6.3 there is

an order continuous and injective lattice homomorphism φ from G onto φ[G], a sublattice

of RN. Define a norm on φ[G] by ‖φ(g)‖ = ‖g‖ for all g ∈ G. Then φ is also an isometry,

and hence λ := φ[G] is a Banach sequence lattice such that G⊗̂|π|X and G⊗̌|ε|X are

isometrically isomorphic and lattice homomorphic to λ⊗̂|π|X and λ⊗̌|ε|X, respectively.

Note that λ⊗̂|π|X = λπ,0(X) and λ⊗̌|ε|X = λε,0(X) isometrically. Thus by Proposition 2.1

and Theorem 3.3 we have the following lemma.

Lemma 6.4. Let G be a separable atomic reflexive Banach lattice and X be a reflexive

Banach lattice.

(i) G⊗̂|π|X is reflexive if and only if every positive linear operator from G into X∗ is

compact.

(ii) G⊗̌|ε|X is reflexive if and only if every positive linear operator from G∗ into X is

compact.

In the following theorem we will remove the separability of G in the previous lemma.

Theorem 6.5. Let E be an atomic reflexive Banach lattice and X be a reflexive Banach

lattice.

(i) E⊗̂|π|X is reflexive if and only if every positive linear operator from E into X∗ is

compact.

(ii) E⊗̌|ε|X is reflexive if and only if every positive linear operator from E∗ into X is

compact.

Proof. (i) Suppose that every positive linear operator from E into X∗ is compact. To show

that E⊗̂|π|X is reflexive, it suffices to show that every separable closed sublattice S of

E⊗̂|π|X is reflexive. By the proof of [2, Proposition 6.3] and by Lemma 6.2, there exists

an ideal G of E such that S is a closed sublattice of G⊗̂|π|X, where G is generated by

a separable closed sublattice of E and G is norm one positive complemented in E. Thus

every positive linear operator from G to X∗ is compact. Note that an ideal generated by a

separable closed sublattice in an atomic KB-space is also separable. Then G is separable.

It follows from Lemma 6.4 that G⊗̂|π|X is reflexive. Therefore S, as a closed sublattice of

G⊗̂|π|X, is also reflexive.

On the other hand, suppose that E⊗̂|π|X is reflexive and there exists a positive linear

operator T : E −→ X∗ that is not compact. That is, there is a sequence (xn)∞1 in BE such
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that the sequence (Txn)∞1 has no convergent subsequence in X∗. Let F be the separable

sublattice generated by all xn’s. By Lemma 6.2, there exists an ideal G of E containing F

such that G is generated by a separable closed sublattice of E and G is norm one positive

complemented in E. Thus G⊗̂|π|X is a closed sublattice of E⊗̂|π|X, and hence G⊗̂|π|X is

also reflexive. It follows from Lemma 6.4 that every positive linear operator from G into X∗

is compact. But T |G is not compact. This contradiction shows that if E⊗̂|π|X is reflexive

then every positive linear operator from E into X∗ must be compact.

(ii) Suppose that every positive linear operator from E∗ into X is compact. To show that

E⊗̌|ε|X is reflexive, it suffices to show that every separable closed sublattice S of E⊗̌|ε|X
is reflexive. Since S is separable, there is a separable closed sublattice F of E such that

S ⊆ F ⊗̌|ε|X. Let G be the ideal in Lemma 6.1. Then S ⊆ G⊗̌|ε|X. Note that ϕ[G∗] is

norm one positive complemented in E∗. Every positive linear operator from G∗ into X is

compact. It follows from Lemma 6.4 that G⊗̌|ε|X is reflexive. Note that if E1 is a closed

sublattice of E then E1⊗̌|ε|X is also a closed sublattice of E⊗̌|ε|X. Thus S, as a closed

sublattice of E⊗̌|ε|X, is also a closed sublattice of G⊗̌|ε|X and hence is reflexive. The proof

of the second part is the same as the proof of the second part in (i). �

6.2. Jeurnink’s open question. For a norm ‖ ·‖ in a vector space Z, let ‖ ·‖∗ denote the

dual norm of ‖ · ‖ in the dual space (Z, ‖ · ‖)∗. For Banach lattices E and X, it follows from

[16, p. 204, Theorem 3.2] that (E⊗̂|π|X)∗ = Lr(E,X∗) isometrically. Note that E∗⊗̌|ε|X∗

is a sublattice of Lr(E,X∗). Thus ‖ · ‖|ε| = ‖ · ‖∗|π| in the vector space E∗ ⊗ X∗. On the

other hand, Jeurnink pointed out in [12, chapter 4] that ‖ · ‖|π| ≥ ‖ · ‖∗|ε| in the vector space

E∗ ⊗ X∗. He also asked the question whether ‖ · ‖|π| ≤ ‖ · ‖∗|ε| also holds. The following

theorem gives an affirmative answer to this question in the case that E is a reflexive atomic

Banach lattice.

Theorem 6.6. If E is a reflexive atomic Banach lattice then ‖ · ‖|π| = ‖ · ‖∗|ε| in the vector

space E∗ ⊗X∗.

Proof. It follows from [12, chapter 4] that ‖·‖|π| ≥ ‖·‖∗|ε|. Next we show that ‖·‖|π| ≤ ‖·‖∗|ε|.
Take any u ∈ E∗ ⊗ X∗. Then u admits a representation u =

∑n
k=1 z

∗
k ⊗ x∗k where

z∗k ∈ E∗, x∗k ∈ X∗, k = 1, 2, · · · , n. Let G be the ideal generated by {z∗k}n1 . Then G is

separable since E∗ is atomic. By Lemma 6.3, there is an order continuous and injective

lattice homomorphism φ from G onto φ[G], a sublattice of RN. Define a norm on φ[G] by
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‖φ(g)‖ = ‖g‖ for all g ∈ G. Then φ is also an isometry and hence φ[G] is a reflexive Banach

sequence lattice. Let λ = φ[G]∗. Then λ is reflexive and hence, both λ and λ′ are σ-order

continuous, and thus λ′ = λ∗ = φ[G]∗∗ = φ[G]. By Proposition 2.2 and Theorems 3.1 and

5.2, we have

(λ⊗̌|ε|X)∗ = λε,0(X)∗ = λ′π(X∗) = λ′π,0(X∗) = λ′⊗̂|π|X∗.

It follows that ‖ · ‖|π| = ‖ · ‖∗|ε| in the vector space λ′⊗X∗, and hence ‖ · ‖|π| = ‖ · ‖∗|ε| in the

vector space G⊗X∗. Note that G∗ is a sublattice of E, and hence G∗⊗|ε|X is a sublattice

of E⊗|ε|X. It follows from the equivalent form of the positive projective tensor norm ‖·‖|π|
given at the beginning of section 5 that in the vector space E∗ ⊗X∗,

‖u‖E∗⊗|π|X∗ ≤ ‖u‖G⊗|π|X∗ = ‖u‖∗G∗⊗|ε|X ≤ ‖u‖
∗
E⊗|ε|X .

�

6.3. Copies of c0, `∞, and `1. Recall that the properties of the containment of copies

of c0, `1, `∞ are separably determined. That is, a Banach space has these properties if

and only if every its separable closed subspace has the same properties. With the help of

Lemma 6.3 and using the same argument as the proof of Theorem 7.5 in [2], we can modify

Proposition 4.1(i) and Theorems 4.2(i) and 4.3(ii) to get the following results.

Theorem 6.7. Let E be an atomic Banach lattice and X be a Banach lattice.

(i) E⊗̂|π|X contains no sublattice isomorphic to c0 if and only if neither E nor X contains

a sublattice isomorphic to c0 ([2, Theorem 7.5(i)]).

(ii) E⊗̂|π|X∗ contains no sublattice isomorphic to `∞ if and only if neither E nor X

contains a sublattice isomorphic to `∞.

(iii) E⊗̌|ε|X contains no sublattice isomorphic to `1 if and only if neither E nor X

contains a sublattice isomorphic to `1.

With the help of Lemma 6.3 and using the same argument as the proof of Theorem 6.5,

we can modify Proposition 4.1(ii) and Theorems 4.3(i) and 4.5 to get the following results.

Theorem 6.8. Let E be a reflexive atomic Banach lattice and X be a Banach lattice.

(i) E⊗̌|ε|X contains no sublattice isomorphic to c0 if and only if X contains no sublattice

isomorphic to c0 and every positive linear operator from E∗ into X is compact.

(ii) E⊗̂|π|X contains no sublattice isomorphic to `1 if and only if X contains no sublattice

isomorphic to `1 and every positive linear operator from E into X∗ is compact.
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(iii) E⊗̌|ε|X contains no sublattice isomorphic to `∞ if and only if X contains no sub-

lattice isomorphic to `∞.

Recall that if λ is reflexive then both λ and λ′ are σ-order continuous. Thus by Propo-

sition 2.1 and Theorems 4.2(ii) and 4.5 we have the following.

Theorem 6.9. Let λ be a reflexive Banach sequence lattice and X be a Dedekind complete

Banach lattice.

(i) Kr(λ,X) contains no sublattice isomorphic to `∞ if and only if X contains no sub-

lattice isomorphic to `∞.

(ii) Lr(λ,X∗) contains no sublattice isomorphic to `∞ if and only if X∗ contains no

sublattice isomorphic to `∞ and every positive linear operator from λ to X∗ is compact.

Corollary 6.10. Let 1 < p, q <∞ and Eq be an infinite dimensional reflexive Lq-space.

(i) Kr(`p, Eq) contains no sublattice isomorphic to `∞ for every p, q with 1 < p, q <∞.

(ii) Kr(`p, Eq) contains no sublattice isomorphic to c0 if and only if p > q.

(iii) Lr(`p, Eq) contains no sublattice isomorphic to `∞ if and only if p > q.

Proof. (i) follows from Theorem 6.9 (i). By [7, Theorem 4.9], every positive linear operator

from `p to Eq is compact if and only if p > q. Thus (iii) follows from Theorem 6.9 (ii).

By [5, Theorem 7], Kr(`p, Eq) contains no sublattice isomorphic to c0 if and only if every

positive linear operator from `p to Eq is compact. Thus (ii) follows. �

From Corollary 6.10 we have the following interesting example. If 1 < p ≤ q < ∞
then Kr(`p, `q) contains a sublattice isomorphic to c0 but does not contain a sublattice

isomorphic to `∞.
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