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Abstract

Let A be a C*-algebra, L a closed left ideal of A and p the closed projection
related to L. We show that for an xp in A∗∗p (∼= A∗∗/L∗∗) if pAxp ⊂ pAp and
px∗xp ∈ pAp then xp ∈ Ap (∼= A/L). The proof goes by interpreting elements
of A∗∗p (resp. Ap) as admissible (resp. continuous admissible) vector sections
over the base space F (p) = {ϕ ∈ A∗ : ϕ ≥ 0, ϕ(p) = ‖ϕ‖ ≤ 1} in the notions
developed by Diximier and Douady, Fell, and Tomita. We consider that our results
complement both Kadison function representation and Takesaki duality theorem.

1 Introduction

It is known that every closed left ideal L of a C*-algebra A is related to a closed projection

p in the sense that L = A∗∗(1−p)∩A (and thus L∗∗ = A∗∗(1−p)). Moreover, A/L (resp.

A∗∗/L∗∗) is isometrically isomorphic to Ap (resp. A∗∗p) as Banach spaces [?, ?, ?]. Here,

a projection p in A∗∗ is said to be closed if the face F (p) = {ϕ ∈ Q(A) : ϕ(p) = ‖ϕ‖} of

the weak* compact convex set Q(A) = {ϕ ∈ A∗ : ϕ ≥ 0, ‖ϕ‖ ≤ 1} is closed (cf. [?]).
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For each ϕ in F (p), Lϕ = {a ∈ A : ϕ(a∗a) = 0} is a closed left ideal of A, and

L = ∩ϕ∈F (p)Lϕ. This gives a natural embedding

A/L ↪→
∏

ϕ∈F (p)

A/Lϕ, a + L 7−→ (a + Lϕ)ϕ∈F (p).

Let Hϕ be the completion of the pre–Hilbert space A/Lϕ with respect to the inner

product 〈a + Lϕ, b + Lϕ〉ϕ := ϕ(b∗a) for each ϕ in F (p) (i.e. the GNS construction for

ϕ). In this way, A/L ∼= Ap is embedded into the field of Hilbert spaces (F (p), {Hϕ}ϕ).

This also induces an embedding of A∗∗/L∗∗ ∼= A∗∗p into (F (p), {Hϕ}ϕ), since we can

identify Hϕ with the GNS Hilbert space for ϕ when ϕ is regarded as a positive functional

on A∗∗ and the GNS representation of A∗∗ extends that of A.

By a result of Brown [?, 3.5], pAp (resp. pA∗∗p) is isometrically order isomorphic

to the Banach space of all continuous (resp. bounded) affine functions on F (p) which

vanish at zero. In particular, for every xp in Ap the scalar maps ϕ 7−→ ϕ(pa∗xp) =

ϕ(a∗x), ∀a ∈ A, and ϕ 7−→ ϕ(px∗xp) = ϕ(x∗x) are continuous on F (p). In this paper, we

proved that if xp in A∗∗p satisfies conditions that the scalar maps ϕ 7−→ ϕ(a∗x),∀a ∈ A,

and ϕ 7−→ ϕ(x∗x) are continuous on F (p) then xp ∈ Ap. In other words, for xp in A∗∗p,

pAxp ⊂ pAp and px∗xp ∈ pAp imply xp ∈ Ap.

We establish the above result by first looking for an admissibility condition charac-

terizing those vector sections of the field of Hilbert spaces (F (p), {Hϕ}ϕ) arising from

elements of A∗∗p (theorem ??). Then, following ideas of Fell [?] and Diximier and

Douady [?], we implement a continuous structure Γ(Ap) of (F (p), {Hϕ}ϕ) in which all

vector sections arising from elements of Ap are continuous. Finally, we prove that con-

tinuous admissible vector sections of (F (p), {Hϕ}ϕ, Γ(Ap)) are exactly those arising from

elements of Ap (theorem ??). And this is translated to the result just mentioned above

(corollary ??).

The way we look at elements of A∗∗p and Ap as admissible vector sections and

continuous admissible vector sections over the compact convex set F (p) suggests some

interesting questions and results. For example, it is natural to ask for an xp in A∗∗p

if the continuity of the scalar maps ϕ 7−→ ϕ(a∗x), ∀a ∈ A, and ϕ 7−→ ϕ(x∗x) on the

extreme boundary F (p) ∩ (P (A) ∪ {0}) of F (p) can imply xp ∈ Ap, where P (A) is the

pure state space of A. In [?], we prove that such an xp has a continuous atomic part

in many cases, i.e. there is an ap in Ap such that zxp = zap, where z is the maximal

atomic projection of A. Even when p = 1, this is new and supplements results of Shultz

[?] and Brown [?], which say that for an x in A∗∗ if ϕ 7−→ ϕ(x) is uniformly continuous

on P (A) ∪ {0} then zx ∈ zA. On the other hand, following the plan of Tomita [?] and
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using ideas of Rieffel [?], we represent bounded Banach space operators on A/L ∼= Ap as

fields of bounded Hilbert space operators in the context of (F (p), {Hϕ}ϕ, Γ(Ap)). Many

ideas of Tomita about the theory of left regular representation of A on A/L can thus be

implemented in this context (see [?]).

When p = 1, one can easily find the origin of our theory from Kadison function

representation (see section ??) and Takesaki duality theorem [?, ?, ?] (see section ??).

However, the results of Kadison and Takesaki are not ready to apply to left quotients

Ap (∼= A/L) if p 6= 1 (i.e. L 6= {0}). To extend these classical tools to the general case of

p 6= 1 as shown in this paper, Tomita [?, ?] indicates us a way to set up our theory and

Akemann [?, ?, ?], Diximier and Douady [?], Effros [?], Fell [?], and Prosser [?] provide

us the basic machinery.

We would like to express our deep gratitude to Professor L.G. Brown for many

valuable advices. This paper is based on the author’s doctoral dissertation [?] under his

supervision.

2 Represent W*-algebras via admissible vector sec-

tions

Let M be a W*-algebra with predual M∗ and Q∗(M) = {ϕ ∈ M∗ : ϕ ≥ 0, ‖ϕ‖ ≤ 1}. Let

p be a projection in M and F (p) = {ϕ ∈ Q∗(M) : ϕ(p) = ‖ϕ‖}, the face of the convex

set Q∗(M) supported by p. For each ϕ in F (p), the GNS construction yields a cyclic

representation (πϕ, Hϕ, ωϕ) of M . πϕ(M)ωϕ = Hϕ and ϕ(x) = 〈πϕ(x)ωϕ, ωϕ〉ϕ ,∀x ∈ M ,

where 〈·, ·〉ϕ is the inner product of the Hilbert space Hϕ. Write xωϕ for πϕ(x)ωϕ,∀x ∈
M, ∀ϕ ∈ F (p). Note that pωϕ = ωϕ,∀ϕ ∈ F (p). By convention, we set Hϕ to be the

zero dimensional Hilbert space when ϕ = 0. In this way, there is an embedding Mp ↪→∏
ϕ∈F (p) Hϕ defined by xp 7−→ (xωϕ)ϕ∈F (p). If we equip the range of this embedding with

the `∞ norm then it is even an isometry as

‖xp‖2 = sup
ϕ∈Q∗(M)

ϕ(px∗xp) = sup
ϕ∈F (p)

ϕ(x∗x) = sup
ϕ∈F (p)

‖xωϕ‖2
ϕ = ‖(xωϕ)ϕ∈F (p)‖2

∞.

We are going to classify those vector sections in
∏

ϕ∈F (p) Hϕ arising from this embedding.

First, we observe that fibers Hϕ in
∏

ϕ∈F (p) Hϕ are not independent of each other. The

following definition is taken from Tomita [?] (with a slight modification).

Definition 2.1 Let M be a W*-algebra. For each ψ in M∗ and each ϕ in F (p), we set

‖ψ‖ϕ = sup{| ψ(x) |: x ∈ M and ‖xωϕ‖ϕ = ϕ(x∗x)1/2 ≤ 1},
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and L2(ϕ) = {ψ ∈ M∗ : ‖ψ‖ϕ < ∞}. We say that ψ is observable at ϕ if ψ ∈ L2(ϕ). It

follows from the Riesz–Fréchet theorem that for each ψ in L2(ϕ) there is a unique ωψϕ

in Hϕ such that

ψ(x) = 〈xωϕ, ωψϕ〉ϕ , ∀x ∈ M.

It can be verified that the map Λ defined by Λϕ(ψ) = ωψϕ is a conjugate isometrical

isomorphism from L2(ϕ) onto Hϕ [?]. The proof of the following lemma is left to the

readers.

Lemma 2.2 For each ψ in L2(ϕ) and x in M , we have

Λϕ(xψ) = x∗Λϕ(ψ).

In other words,

ω(xψ)ϕ = x∗ωψϕ,

where xψ in MF (p) is defined by xψ(y) = ψ(xy),∀y ∈ M .

Definition 2.3 For each ψ, ϕ in F (p) with 0 ≤ ψ ≤ λϕ for some λ > 0, let

Tψϕ : Hϕ −→ Hψ

be the linear map from Hϕ into Hψ sending xωϕ to xωψ. Note that ψ ∈ L2(ϕ) by

the Cauchy–Schwartz inequality. Moreover, ‖Tψϕ‖ ≤ λ1/2 and T ∗
ψϕ(xωψ) = xωψϕ =

Λϕ(x∗ψ),∀x ∈ M .

Definition 2.4 A vector section f : ϕ 7−→ f(ϕ) ∈ Hϕ is said to be admissible over F (p)

if whenever ψ, ϕ ∈ F (p) such that 0 ≤ ψ ≤ ϕ,

Tψϕ(f(ϕ)) = f(ψ).

f is said to be an affine vector section over F (p) if the functional

ϕ 7−→ 〈f(ϕ), xωϕ〉ϕ

is affine on the convex set F (p) for each x in M .

It is easy to see that whenever 0 ≤ ψ ≤ ϕ ≤ ρ in F (p), TψϕTϕρ = Tψρ. Moreover, for

an admissible vector section f and ϕ, ψ in F (p) such that 0 ≤ ψ ≤ λϕ for some λ > 0,

we have Tψϕf(ϕ) = f(ψ), too.
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Proposition 2.5 Every admissible vector section f = (f(ϕ))ϕ over F (p) is bounded,

i.e. ‖f‖∞ = supϕ∈F (p) ‖f(ϕ)‖ϕ < ∞.

Proof. Assume the contrary and choose ϕn in F (p) such that

‖f(ϕn)‖ϕn > 2n, n = 1, 2, . . .

Set

ϕ =
∑

n

1

2n
ϕn

in F (p). Since 0 ≤ ϕn ≤ 2nϕ, Tϕnϕ in B(Hϕ, Hϕn) exists and ‖Tϕnϕ‖2 ≤ 2n. Therefore,

‖f(ϕn)‖2
ϕn

= ‖Tϕnϕf(ϕ)‖2
ϕn
≤ 2n‖f(ϕ)‖2

ϕ, n = 1, 2, . . .

Hence

‖f(ϕ)‖2
ϕ ≥

1

2n
‖f(ϕn)‖2

ϕn
≥ 1

2n
22n = 2n, n = 1, 2, . . . ,

a contradiction. ¤

Here is our main result:

Theorem 2.6 Mp is isometrically isomorphic to the Banach space of all admissible vec-

tor sections in
∏

ϕ∈F (p) Hϕ equipped with the norm ‖·‖∞. A vector section in
∏

ϕ∈F (p) Hϕ

is admissible if and only if it is bounded and affine.

We shall present the proof of theorem ?? in two parts. It is trivial that each element

of Mp defines an admissible vector section over F (p) in the manner described at the start

of this section. For the converse, we shall associate to each admissible vector section

f = (f(ϕ))ϕ∈F (p) a bounded linear functional f̃ of the predual {ϕ(· p)|Mp
: ϕ ∈ M∗} of

Mp, which can be identified with MF (p) = {xϕ(·) = ϕ(x ·) : x ∈ M, ϕ ∈ F (p)} (cf.

[?]).

Lemma 2.7 Let f = (f(ϕ))ϕ be an admissible vector section over F (p).

(a) If φ in M∗ is observable at both ϕ and ψ in F (p) then

〈f(ϕ), ωφϕ〉ϕ = 〈f(ψ), ωφψ〉ψ .
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(b) If φ ∈ M∗ and ϕ, ψ ∈ F (p) such that

φ = x∗ϕ = y∗ψ

for some x, y in M then

〈f(ϕ), ωφϕ〉ϕ = 〈f(ϕ), xωϕ〉ϕ = 〈f(ψ), yωψ〉ψ = 〈f(ψ), ωφψ〉ψ .

Proof. (a) Let ρ = ϕ+ψ
2

∈ F (p). By the admissibility of f , Tϕρ(f(ρ)) = f(ϕ) and

Tψρ(f(ρ)) = f(ψ). It is easy to see that T ∗
ϕρ(ωφϕ) = ωφρ and T ∗

ψρ(ωφψ) = ωφρ. Now

〈f(ϕ), ωφϕ〉ϕ = 〈Tϕρf(ρ), ωφϕ〉ϕ =
〈
f(ρ), T ∗

ϕρ(ωφϕ)
〉

ρ
= 〈f(ρ), ωφρ〉ρ = 〈f(ψ), ωφψ〉ψ .

(b) First, note that φ is observable at both ϕ and ψ and thus the asserted equalities

make sense. Our assertion follows from lemma ?? and (a) and the following observation

ωφϕ = Λϕ(φ) = Λϕ(x∗ϕ) = xΛϕ(ϕ) = xωϕ

and

ωφψ = Λψ(φ) = Λψ(y∗ψ) = yΛψ(ψ) = yωψ.

¤

Note that Mp = (MF (p))∗. This suggests us to make the following

Definition 2.8 Let f = (f(ϕ))ϕ be an admissible vector section over F (p). Define for

each φ in MF (p),

f̃(φ) = 〈f(ϕ), ωφϕ〉ϕ ,

where ϕ ∈ F (p) and φ is observable at ϕ.

Clearly, f̃(0) = 0. For a non-zero φ in MF (p), it follows from lemma ??(a) that

the definition of f̃(φ) is independent of the choice of ϕ for which φ ∈ L2(ϕ), and

ϕ = |φ|/‖φ‖ is just a good choice, where |φ| is the absolute value of φ coming from the

polar decomposition of φ (see, e.g. [?]). Moreover, if φ = x∗ϕ for some ϕ in F (p) then

by lemma ??(b),

f̃(φ) = 〈f(ϕ), xωϕ〉ϕ .

Proof of the first part of theorem ??. The first task is to prove that f̃ is

a bounded linear functional of MF (p) for every admissible vector section f = (f(ϕ))ϕ

over F (p). To verify that f̃ is additive, let ρ, ϕ and ψ be elements of MF (p) such that
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ρ = ϕ + ψ. In case ϕ = ψ = 0, it is plain that f̃(ρ) = f̃(ϕ) + f̃(ψ). Suppose that not

both ϕ and ψ are zero. [?] or [?] showed that

||ρ|(x)|2 ≤ (‖ϕ‖+ ‖ψ‖)(|ϕ|+ |ψ|)(x∗x), ∀x ∈ M.

Hence, |ρ| ∈ L2(τ), where τ = |ϕ|+|ψ|
‖ϕ‖+‖ψ‖ ∈ F (p). Clearly, |ϕ|, |ψ| ∈ L2(τ). As a result, ρ, ϕ

and ψ ∈ L2(τ). Now, f̃(ρ) = 〈f(τ), ωρτ 〉τ , f̃(ϕ) = 〈f(τ), ωϕτ 〉τ and f̃(ψ) = 〈f(τ), ωψτ 〉τ .
The additivity of f̃ follows easily since, by uniqueness, ωρτ = ωϕτ + ωψτ . By lemma

??, ω(λφ)ϕ = λ̄ωφϕ, ∀λ ∈ C,∀ϕ ∈ F (p),∀φ ∈ L2(ϕ). Therefore, f̃ is a linear functional

on MF (p). For the boundedness of f̃ , assume φ is a nonzero element in MF (p) and

ϕ = |φ|
‖φ‖ then φ ∈ L2(ϕ) with ‖φ‖L2(ϕ) ≤ ‖φ‖ and

|f̃(φ)| = | 〈f(ϕ), ωφϕ〉ϕ | ≤ ‖f(ϕ)‖ϕ‖ωφϕ‖ϕ ≤ ‖f‖∞‖φ‖L2(ϕ) ≤ ‖f‖∞‖φ‖.

Consequently, f̃ ∈ (MF (p))∗ = Mp. When we consider f̃ as an element of Mp, for any

ϕ in F (p) and x in M we have

〈
f̃ωϕ, xωϕ

〉
ϕ

= ϕ(x∗f̃) = x∗ϕ(f̃) = f̃(x∗ϕ) = 〈f(ϕ), xωϕ〉ϕ .

This means that the vector section (f̃ωϕ)ϕ is exactly the original f .

Conversely, since the embedding Mp ↪→ ∏
ϕ∈F (p) Hϕ is an isometry with respect to

the `∞ norm, we have an isometrical isomorphism Θ from Mp onto the Banach space of

all admissible vector sections f over F (p) such that Θ(f̃) = f . ¤

We now proceed to prove the second part of theorem ??. The following easy lemma

is stated for reference.

Lemma 2.9 Let (yϕ)ϕ∈F (p) be an affine vector section over F (p). If 0 ≤ λ ≤ 1,

ϕ, ψ1, . . . , ψn ∈ F (p) and ϕ = ψ1 + . . . + ψn then for every x in M we have

〈yλϕ, xωλϕ〉λϕ = λ 〈yϕ, xωϕ〉ϕ
and

〈yϕ, xωϕ〉ϕ = 〈yψ1 , xωψ1〉ψ1
+ · · ·+ 〈yψn , xωψn〉ψn

.

To motivate the next step of the proof, we note that for yp in Mp and 0 ≤ ψ ≤ ϕ in

F (p) we always have, for all x in M ,

ψ(x∗y) = 〈yωψ, xωψ〉ψ = 〈yωϕ, xωψϕ〉ϕ =
〈
yωϕ, T ∗

ψϕ(xωψ)
〉

ϕ
= 〈Tψϕ(yωϕ), xωψ〉ψ .
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Lemma 2.10 Let (yϕ)ϕ∈F (p) be an affine vector section over F (p). Assume ϕ, ψ in F (p)

satisfy that 0 ≤ ψ ≤ ϕ. Suppose there is a projection P in the commutant πϕ(M)′ of

πϕ(M) in B(Hϕ) such that ψ(x) = 〈xωϕ, Pωϕ〉ϕ ,∀x ∈ M . We have

〈yψ, xωψ〉ψ = 〈yϕ, xωψϕ〉ϕ , ∀x ∈ M.

Proof. Write ϕ = ψ + ρ, where ρ in F (p) is defined by

ρ(x) = 〈xωϕ, (1− P )ωϕ〉ϕ , ∀x ∈ M.

Define two isometries R from Hψ into Hϕ and S from Hρ into Hϕ by setting

R(xωψ) = P (xωϕ) and S(xωρ) = (1− P )(xωϕ), ∀x ∈ M.

Note that RHψ = PHϕ and SHρ = (1− P )Hϕ. Observe that for all x in M ,

〈yψ, xωψ〉ψ = 〈Ryψ, R(xωψ)〉ϕ = 〈Ryψ, xPωϕ〉ϕ
and

〈yρ, xωρ〉ρ = 〈Syρ, S(xωρ)〉ϕ = 〈Syρ, x(1− P )ωϕ〉ϕ .

By lemma ??, for every x in M

〈yϕ, xωϕ〉ϕ = 〈yψ, xωψ〉ψ + 〈yρ, xωρ〉ρ
= 〈Ryψ, xPωϕ〉ϕ + 〈Syρ, x(1− P )ωϕ〉ϕ
= 〈Ryψ + Syρ, xωϕ〉ϕ ,

since (1− P )Ryψ = PSyρ = 0. Consequently, yϕ = Ryψ + Syρ and thus Pyϕ = Ryψ. It

is clear that Pωϕ = ωψϕ. Hence

〈yψ, xωψ〉ψ = 〈Ryψ, R(xωψ)〉ϕ = 〈Pyϕ, xPωϕ〉ϕ = 〈yϕ, xωψϕ〉ϕ .

¤

Proof of the second part of theorem ??. Let (yϕ)ϕ∈F (p) be a bounded affine

vector section over F (p). We prove that for every ϕ and ψ in F (p) such that 0 ≤ ψ ≤ ϕ,

〈yψ, xωψ〉ψ = 〈yϕ, xωψϕ〉ϕ , ∀x ∈ M.

By the Radon–Nikodym theorem (see e.g. Sakai [?]), there is a T in πϕ(M)′, 0 ≤ T ≤ 1,

such that ψ(x) = 〈xωϕ, Tωϕ〉ϕ , ∀x ∈ M , i.e. Tωϕ = ωψϕ. By the spectral theorem for

bounded self-adjoint Hilbert space operators, we can write

T =

∫ 1

0

λ dE(λ),
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where E is the projection-valued measure related to T . For ε > 0, there is a partition

{∆1, . . . , ∆n} of [0, 1] and λ1, . . . , λn between 0 and 1 such that 0 ≤ ∑
λkE(∆k) ≤ T

and ‖T −∑
λkE(∆k)‖ < ε. Define ψk in F (p) by

ψk(x) = 〈xωϕ, E(∆k)ωϕ〉ϕ , ∀x ∈ M,k = 1, . . . , n.

It is equivalent to say that

E(∆k)ωϕ = ωψkϕ, k = 1, . . . , n.

Since E(∆k) ∈ πϕ(M)′, k = 1, . . . , n, we have, by lemma ??,

〈yψk
, xωψk

〉ψk
= 〈yϕ, xωψkϕ〉ϕ = 〈yϕ, xE(∆k)ωϕ〉ϕ .

Let ψ0 =
∑

λkψk. We have 0 ≤ ψ0 ≤ ψ ≤ ϕ. Write ψ = ψ0 + ρ. Note ρ ∈ F (p) and

‖ρ‖ = ‖ψ‖ − ‖ψ0‖ =
〈
ωϕ, (T −

∑
λkE(∆k))ωϕ

〉
ϕ
≤ ‖T −

∑
λkE(∆k)‖ ‖ϕ‖ < ‖ϕ‖ε.

By lemma ??,

〈yψ, xωψ〉ψ = 〈yψ0 , xωψ0〉ψ0
+ 〈yρ, xωρ〉ρ

=
n∑

k=1

λk 〈yψk
, xωψk

〉ψk
+ 〈yρ, xωρ〉ρ

=
n∑

k=1

λk 〈yϕ, xE(∆k)ωϕ〉ϕ + 〈yρ, xωρ〉ρ

=

〈
yϕ, x

n∑

k=1

λkE(∆k)ωϕ

〉

ϕ

+ 〈yρ, xωρ〉ρ .

Therefore,
∣∣∣〈yψ, xωψ〉ψ − 〈yϕ, xωψϕ〉ϕ

∣∣∣

≤
∣∣∣∣∣∣

〈
yϕ, x(T −

n∑

k=1

λkE(∆k))ωϕ

〉

ϕ

∣∣∣∣∣∣
+

∣∣∣〈yρ, xωρ〉ρ
∣∣∣

≤ ‖yϕ‖ϕ ‖x‖ ‖T −
n∑

k=1

λkE(∆k)‖ ‖ωϕ‖ϕ + ‖yρ‖ρ ‖x‖ ‖ωρ‖ρ

< K‖x‖ ‖ϕ‖1/2ε + K‖x‖ ‖ϕ‖1/2ε1/2,

where K = ‖y‖∞ is the bound of y. Since ε is arbitrary, 〈yψ, xωψ〉ψ = 〈yϕ, xωψϕ〉ϕ =〈
yϕ, T ∗

ψϕ(xωψ)
〉

ϕ
,∀x ∈ M . In other words, Tψϕyϕ = yψ, as asserted. Thus (yϕ)ϕ is

admissible. The fact that every admissible vector section is bounded and affine follows

from the first part of the proof. ¤
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3 Represent C*-algebras via continuous admissible

vector sections

Let A be a C*-algebra and p the closed projection in A∗∗ related to a closed left ideal L

of A. Let F (p) = {ϕ ∈ A∗ : ϕ ≥ 0, ϕ(p) = ‖ϕ‖ ≤ 1}. As a special case of theorem ??,

we have

Theorem 3.1 A∗∗p (∼= A∗∗/L∗∗) is isometrically isomorphic to the Banach space of all

admissible vector sections over F (p), which consists exactly of all bounded affine vector

sections over F (p).

It is natural to ask which admissible vector sections Ap contains. Analogous to

the classical Kadison function representation (cf. [?]) one may guess Ap consists of all

“continuous” affine vector sections over F (p). The question is how we define continuity

for the field (F (p), {Hϕ}ϕ) of Hilbert spaces. Of course, all vector sections arising from

Ap should be continuous.

Recall the notion of a continuous field of (complex) Hilbert spaces [?, ?]. Let T be

a Hausdorff space called the base space. For each t in T , let Ht be a (complex) Hilbert

space, called the fiber Hilbert space. A vector section is a function x on T such that

x(t) ∈ Ht, ∀t ∈ T . A (full) continuous structure for the field (T, {Ht}t∈T ) of Hilbert

spaces is a linear space Γ of vector sections, called continuous vector sections, satisfying

the conditions:

(i) t 7−→ ‖x(t)‖Ht is continuous on T for all x in Γ.

(ii) {x(t) : x ∈ Γ} is norm dense in Ht for all t in T .

(iii) Let x be a vector section; if for any t in T and ε > 0 there exists an a in Γ such

that ‖x(t)− a(t)‖ < ε throughout a neighborhood of t then x ∈ Γ.

The triple (T, {Ht}t, Γ) is called a continuous field of Hilbert spaces.

A linear space X of vector sections which satisfies conditions (i) and (ii) defines

a continuous structure Γ(X), which is the set of all vector sections x satisfying the

condition that

(iii)′ For any t in T and ε > 0 there exists an a in X such that ‖x(t) − a(t)‖ < ε

throughout a neighborhood of t.
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It is easy to see that for a vector section x = (x(t))t∈T , x is continuous (that is x ∈ Γ(X))

if and only if

1. t 7−→ 〈x(t), x(t)〉Ht
is continuous on T , and

2. t 7−→ 〈x(t), y(t)〉Ht
is continuous on T , ∀y ∈ X.

A vector section x is said to be bounded if ‖x‖∞ = supt∈T ‖x(t)‖Ht < ∞. x is said

to be weakly continuous in (T, {Ht}t, Γ(X)) if the scalar function t 7−→ 〈x(t), y(t)〉Ht
is

continuous on T for every y in Γ(X). If x is bounded then Γ(X) can be replaced by X

in the above condition. A weakly continuous vector section x is continuous if and only

if t 7−→ 〈x(t), x(t)〉Ht
is continuous on T (cf. [?]).

Now, let us point out that if ap ∈ Ap then ϕ 7−→ ‖aωϕ‖ϕ is continuous on F (p). It is

also clear that Aωϕ is norm dense in Hϕ for each ϕ in F (p). Therefore, the set X of vector

sections arising from Ap defines a continuous structure Γ(X) which we shall henceforth

write as Γ(Ap). A vector section (xϕ)ϕ∈F (p) in (F (p), {Hϕ}ϕ, Γ(Ap)) is continuous if and

only if for any ε > 0 and ϕ in F (p) there exist an a in A and a neighborhood Vϕ of ϕ in

F (p) such that

‖xψ − aωψ‖ψ < ε, ∀ψ ∈ Vϕ.

In this context, a bounded vector section (xϕ)ϕ∈F (p) is weakly continuous if ϕ 7−→
〈xϕ, aωϕ〉ϕ is continuous on F (p),∀a ∈ A. A weakly continuous vector section (xϕ)ϕ∈F (p)

is continuous if ϕ 7−→ 〈xϕ, xϕ〉ϕ is continuous on F (p). Moreover, a vector section

(xϕ)ϕ∈F (p) is continuous if and only if ϕ 7−→ 〈xϕ, yϕ〉ϕ is continuous on F (p) for all

weakly continuous vector sections (yϕ)ϕ∈F (p). In fact, (xϕ)ϕ∈F (p) itself must be weakly

continuous in this case, and thus ϕ 7−→ 〈xϕ, xϕ〉ϕ is continuous on F (p), too. It is plain

that continuous vector sections need not arise from elements of Ap. However, we have

Theorem 3.2 Ap (∼= A/L) is isometrically isomorphic to the Banach space of all con-

tinuous admissible (= continuous and affine) vector sections of the continuous field of

Hilbert spaces (F (p), {Hϕ}ϕ, Γ(A)).

Proof. We adopt the notations used in the last section with M replaced by A∗∗. Let

f = (f(ϕ))ϕ be a continuous admissible vector section over F (p). In view of theorem

??, it suffices to show that whenever φλ −→ φ in the weak* topology of the polar

L◦ = (A/L)∗ of L in A∗, f̃(φλ) −→ f̃(φ). By the Krein–Smulian theorem, we need only to

check this for bounded nets. So assume ‖φλ‖ ≤ 1. Note that L◦ = {ψ ∈ A∗ : ψ = ψ(· p)}
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and hence if ψ ∈ L◦ and ‖ψ‖ ≤ 1 then |ψ| ∈ F (p). Since F (p) is weak* compact, there

is a subnet φk of φλ such that ϕk = |φk| converges to an element ϕ of F (p) in the

weak* topology (note that ϕ is not necessarily |φ|, see e.g. [?]). Now for any a in A the

inequalities

|φk(a)|2 ≤ ‖ϕk‖ϕk(a
∗a), ∀k,

imply

|φ(a)|2 ≤ Kϕ(a∗a).

Here K = supk ‖ϕk‖ ≤ 1. Therefore, φ is observable at ϕ and thus

f̃(φ) = 〈f(ϕ), ωφϕ〉ϕ .

Let ε > 0. Since f is a continuous vector section in (F (p), {Hϕ}ϕ, Γ(Ap)), there exist

a neighborhood Uϕ of ϕ in F (p) and an a in A such that ‖f(ψ) − aωψ‖ψ < ε/3 in Uϕ.

Thus

‖f(ϕ)− aωϕ‖ϕ < ε/3

and

‖f(ϕk)− aωϕk
‖ϕk

< ε/3,

eventually. Also,

|φ(a)− φk(a)| < ε/3

eventually. So for k sufficiently large,

∣∣∣f̃(φ)− f̃(φk)
∣∣∣

=
∣∣∣〈f(ϕ), ωφϕ〉ϕ − 〈f(ϕk), ωφkϕk

〉ϕk

∣∣∣
≤

∣∣∣〈f(ϕ), ωφϕ〉ϕ − 〈aωϕ, ωφϕ〉ϕ
∣∣∣ +

∣∣∣〈aωϕ, ωφϕ〉ϕ − 〈aωϕk
, ωφkϕk

〉ϕk

∣∣∣
+

∣∣∣〈aωϕk
, ωφkϕk

〉ϕk
− 〈f(ϕk), ωφkϕk

〉ϕk

∣∣∣
≤ ‖f(ϕ)− aωϕ‖ϕ + |φ(a)− φk(a)|+ ‖aωϕk

− f(ϕk)‖ϕk

< ε/3 + ε/3 + ε/3 = ε.

Consequently, f̃(φk) −→ f̃(φ). Since the same argument can be applied to any subnet

of φλ, we have f̃(φλ) −→ f̃(φ). Hence f defines an element in Ap, as asserted. ¤
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4 Continuity and weak continuity

From now on, a continuous admissible (resp. admissible) vector section is considered

as an element of Ap (resp. A∗∗p). Denote by Wp the family of all weakly continuous

admissible vector sections over F (p).

Corollary 4.1 Let xp ∈ A∗∗p.

1. px∗xp ∈ pAp and pa∗xp ∈ pAp, ∀ap ∈ Ap ⇔ xp ∈ Ap.

2. pa∗xp ∈ pAp, ∀ap ∈ Ap ⇔ xp ∈ Wp.

3. pw∗xp ∈ pAp, ∀wp ∈ Wp ⇔ xp ∈ Ap.

Proof. It follows from [?, 3.5] that for x, y in A∗∗, ϕ 7−→ 〈xωϕ, yωϕ〉ϕ = ϕ(y∗x) is

continuous on F (p) if and only if py∗xp ∈ pAp. Recalling the discussion of fields of

Hilbert spaces in section 3, we see that (??) and (??) are immediate whilst (??) is just

a restatement of theorem ??. ¤

In case p = 1, an admissible vector section xp is weakly continuous if and only if x ∈
RM(A), the set of right multipliers of A (cf. [?]). In general, we have RM(A)p ⊆ Wp.

To investigate what Wp contains, we quote a result of Brown [?, 3.9]:

Theorem 4.2 Let A be a σ–unital C*-algebra and p a closed projection in A∗∗. Let xp

in A∗∗p be such that ‖xp‖ = 1 and Axp ⊆ Ap. Then there is a right multiplier r of A in

A∗∗ such that ‖r‖ = 1 and xp = rp.

Corollary 4.3 If A is a σ–unital C*-algebra and p is a closed, central projection in A∗∗

then Wp = RM(A)p.

Corollary 4.4 Let A be a σ–unital C*-algebra and p a closed projection in A∗∗. For an

xp in Wp,

xp ∈ RM(A)p ⇔ px∗Axp ⊆ pAp.

Proof. One direction is obvious. For the other one, we assume xp /∈ RM(A)p.

Then there is an a in A such that axp /∈ Ap by theorem ??. Since axp is also a

weakly continuous vector section, we must have px∗a∗axp /∈ pAp. Hence, px∗Axp is not

contained in pAp. ¤
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Corollary 4.5 Let A be a σ–unital C*-algebra and p a closed projection in A∗∗.

1. If xp ∈ Wp and xp = pxp then xp ∈ RM(A)p.

2. If A is simple and p ∈ M(A) then Wp = RM(A)p.

Proof. (??) We check the condition px∗Axp ⊆ pAp. In fact,

px∗Axp = px∗Apxp ⊆ pApxp, since xp ∈ Wp,

= pAxp ⊆ pAp, again since xp ∈ Wp.

(??) Since ApA is an ideal of A and A is simple, either ApA = {0} or the norm

closure ApA of ApA coincides with A. But ApA = {0} implies p = 0. The assertion

becomes trivial in this case. So assume ApA = A. Now if xp ∈ Wp, we have

px∗Axp = px∗ApAxp ⊆ pApAp ⊆ pAp.

The proof is complete since it is always true that RM(A)p ⊆ Wp. ¤

In the following we present an example to show that the conclusions of corollary ??

can fail if the hypothesis in (??) or (??) is not fulfilled.

Example 4.6 Let H be a separable infinite dimensional Hilbert space with an orthonor-

mal basis {e1, e2, . . .}. Let p be the projection of H onto span{e1, e3, e5, . . .} and A =

C*(K, 1− p), the C*-subalgebra of B(H) generated by K, the C*-subalgebra of all com-

pact operators on H, and 1 − p. Then the separable (hence σ–unital) C*-algebra A is

given by

A = {T + λ(1− p) : T ∈ K, λ ∈ C}
and A∗∗ can be described as

A∗∗ = B(H)⊕ C(1− p).

When A∗∗ is viewed in this way, the embedding of A into A∗∗ is given by

T + λ(1− p) −→ (T + λ(1− p), λ(1− p)).

Identify p with p ⊕ 0 in A∗∗. Then p ∈ M(A). Note that A is not simple and thus

corollary ??(??) does not apply. It is easy to see that Ap = Kp, pAp = pKp and

Wp = B(H)p. On the other hand,

RM(A) = {(K + λ(1− p) + pS, λ(1− p)) : K ∈ K, S ∈ B(H) and λ ∈ C}.
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Hence RM(A)p = Kp + pB(H)p. It is clear that Wp 6= RM(A)p. For example, if T is

the unilateral shift, i.e. Ten = en+1, n = 1, 2, . . . then Tp ∈ Wp but Tp /∈ RM(A)p (since

(1− p)Tp = Tp /∈ Ap). We also note that Tp 6= pTp = 0 and thus corollary ??(??) does

not apply, either. ¤

5 Comparison with Takesaki duality theorem

Let A be a C*-algebra. Let H be a Hilbert space of sufficiently large infinite dimension

such that every cyclic representation of A is unitarily equivalent to a cyclic representation

of A on H. Let pπ be the projection of H onto Hπ = π(A)H
‖·‖

for each π in the set

Rep(A,H) of all representations of A on H. For each partial isometry u in B(H) and

π in Rep(A,H) such that u∗u ≥ pπ, we denote by πu the representation uπu∗, i.e.

πu(a) = uπ(a)u∗, ∀a ∈ A. We equip Rep(A, H) the point strong operator topology

(PSOT):

πλ
PSOT−→ π in Rep(A,H) if πλ(a)h

‖·‖−→ π(a)h in H, ∀a ∈ A, ∀h ∈ H.

Definition 5.1 ([?], [?]) A function T : Rep(A,H) 7−→ B(H) is said to be a TB–

admissible operator field if the following conditions are satisfied:

(TB1) ‖T‖ := sup{‖T (π)‖ : π ∈ Rep(A,H)} < ∞.

(TB2) T (π) = pπT (π) = T (π)pπ, ∀π ∈ Rep(A,H).

(TB3) T (π + π′) = T (π) + T (π′) whenever π, π′ ∈ Rep(A,H) such that Hπ ⊥ Hπ′ .

(TB4) T (πu) = uT (π)u∗ whenever π ∈ Rep(A,H) and u is a partial isometry in B(H)

such that u∗u ≥ pπ.

In [?], Bichteler extended Takesaki duality theorem [?] for separable C*-algebras A

to the general form:

Theorem 5.2 The set of all TB-admissible operator fields is isometrically isomorphic

to A∗∗ in the sense that for each TB-admissible operator field T = (T (π))π there is a t

in A∗∗ such that

π(t) = T (π), ∀π ∈ Rep(A,H).

(Here π is understood to be (uniquely) extended to a σ(A∗∗, A∗)–continuous representa-

tion (again denoted by π) of A∗∗ on H.) Moreover, t ∈ A if and only if T is PSOT–SOT
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continuous in the sense that if πλ
PSOT−→ π in Rep(A,H) then T (πλ) −→ T (π) in B(H)

with the strong operator topology (SOT).

A similar argument as in the proof of proposition ?? gives

Proposition 5.3 Every function T : Rep(A,H) −→ B(H) which satisfies (TB2), (TB3)

and (TB4) is TB-admissible. In other words, (TB1) is redundant.

Definition 5.4 Let π ∈ Rep(A,H) and h ∈ H with ‖h‖ ≤ 1. Let ϕ in Q(A) be defined

by ϕ := 〈π(·)h, h〉H . We define an isometry Uϕ
π,h from Hϕ into H by

Uϕ
π,h(aωϕ) := π(a)h, ∀a ∈ A,

where aωϕ denotes πϕ(a)ωϕ in the GNS representation (πϕ, Hϕ, ωϕ) induced by ϕ, as

before.

Some lengthy computation and straightforward reasoning will bring us the follow-

ing connection of Takesaki duality theorem and our representation theory developed in

earlier sections in this paper.

Theorem 5.5 ([?]) There exists an isometrical isomorphism from the Banach space

of all admissible vector sections x = (xϕ)ϕ over Q(A) onto the Banach space of all

TB-admissible operator fields T = (T (π))π such that the relation

Uϕ
π,hxϕ = T (π)h

is satisfied whenever ϕ = 〈π(·)h, h〉H for some π in Rep(A,H) and h in H with ‖h‖ ≤
1. Moreover, T = (T (π))π is a continuous TB-admissible operator field if and only if

x = (xϕ)ϕ is a continuous admissible vector section.

Roughly speaking, Takesaki [?] represented x in A∗∗ as a field of operators (matrices)

π(x)’s and we represent x as a field of vectors (columns) xωϕ’s. The general version of

our representation of A∗∗p is to pay attention only on those columns xωϕ’s of the matrix

π(x) in the range of the closed projection p (i.e. ϕ is supported by p, or equivalently,

pωϕ = ωϕ). Moreover, xp comes from Ap if and only if xp has continuous coordinates

ϕ 7−→ 〈xωϕ, aωϕ〉ϕ ,∀a ∈ A, and continuous norm ϕ 7−→ 〈xωϕ, xωϕ〉1/2
ϕ over F (p). In

this sense, our results extend Takesaki duality theorem.
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