

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The positive contractive part of a noncommutative L^p -space is a complete Jordan invariant

LINEAR

lications

Chi-Wai Leung^a, Chi-Keung Ng^b, Ngai-Ching Wong^{c,*}

 ^a Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
 ^b Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

 $^{\rm c}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

ARTICLE INFO

Article history: Received 22 October 2016 Accepted 22 December 2016 Available online 28 December 2016 Submitted by P. Semrl

MSC: primary 46L10, 46L52 secondary 54E35

Keywords: Non-commutative L^p -spaces Positive contractive elements Metric spaces Bijective isometries Jordan *-isomorphisms

ABSTRACT

Let $1 \leq p \leq +\infty$. We show that the positive part of the closed unit ball of a non-commutative L^p -space, as a metric space, is a complete Jordan *-invariant for the underlying von Neumann algebra.

@ 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: cwleung@math.cuhk.edu.hk (C.-W. Leung), ckng@nankai.edu.cn (C.-K. Ng), wong@math.nsysu.edu.tw (N.-C. Wong).

1. Introduction

Given a von Neumann algebra M, celebrated results of R.V. Kadison showed that several partial structures of M can recover the von Neumann algebra up to Jordan *-isomorphisms. In particular, each of the following is a complete Jordan *-invariant of M: the Banach space structure of the self-adjoint part $M_{\rm sa}$ of M ([4, Theorem 2]), the ordered vector space structure of $M_{\rm sa}$ ([4, Corollary 5]) and the topological convex set structure of the normal state space of M ([5, Theorem 4.5]).

Let $p \in [1, +\infty]$, and let $L^p(M)$ be the non-commutative L^p -space associated to Mwith the canonical cone $L^p(M)_+$. If M is semi-finite, P.-K. Tam showed in [14] that the ordered Banach space $(L^p(M)_{sa}, L^p(M)_+)$ characterises M up to Jordan *-isomorphisms. In the case when M is σ -finite (but not necessarily semi-finite) and p = 2, the corresponding result follows from a result of A. Connes (namely, [2, Théorème 3.3]). For a general W^* -algebra M, results of L.M. Schmitt in [12] show that the ordered Banach space $(L^p(M)_{sa}, L^p(M)_+)$ determines the real Lie algebra M/Z(M), where Z(M) is the center of M. On the other hand, extending results of B. Russo ([11]) and F.J. Yeadon ([16]), D. Sherman showed in [13] that the Banach space $L^p(M)$ is also a complete Jordan *-invariant for a general von Neumann algebra M when $p \neq 2$.

Along these lines, we will show in this article that the underlying metric space structure of the positive contractive part

$$L^{p}(M)^{1}_{+} := L^{p}(M)_{+} \cap L^{p}(M)^{1} \qquad (1 \le p \le +\infty)$$

of $L^p(M)$ is also a complete Jordan *-invariant of M, where $L^p(M)^1$ is the closed unit ball. More precisely, we obtain in Theorem 3.1 that two arbitrary von Neumann algebras M and N are Jordan *-isomorphic whenever there exists a bijection Φ from $L^p(M)^1_+$ onto $L^p(N)^1_+$ which is isometric in the sense that

$$\|\Phi(x) - \Phi(y)\| = \|x - y\| \qquad (x, y \in L^p(M)^1_+).$$

Notice that, when p = 2, the closed unit ball $L^2(M)^1$ itself is not a complete Jordan *-invariant (since for any infinite dimensional von Neumann algebra M with a separable predual, one has $L^2(M) \cong \ell^2$), but its positive part is a Jordan *-invariant.

The ideas of our proof go as follows. In the case of $p = +\infty$, we employ a strong form of the Mazur–Ulam theorem (which was first proved by P. Mankiewicz) to show that a "shifting" Ψ of Φ extends to a linear bijective isometry from $M_{\rm sa}$ onto $N_{\rm sa}$ (see Proposition 3.2), and the map $x \mapsto \Psi(1)\Psi(x)$ induces a Jordan *-isomorphism from M to N (thanks to a result of R.V. Kadison). In the case of p = 1, we use Lemma 3.6 to show that $\Phi(0) = 0$, except for a few finite dimensional cases. We then use our previous result in [6] concerning normal state spaces to obtain the conclusion. For the remaining few finite dimensional cases, we use a Hausdorff dimension argument to show that M and Nare *-isomorphic. In the case of $p \in (1, +\infty)$, we first use the strict convexity of $L^p(N)_{\rm sa}$ to show that Φ is affine (Lemma 3.10) and hence $\Phi(0) = 0$ (Proposition 3.9). Then we use several properties of non-commutative L^p -spaces (see Statement (S1)–(S4)) to relate the restriction of Φ on the positive part of the unit sphere of $L^p(M)_{sa}$ to a biorthogonality preserving bijection between the normal state spaces of M and N. Finally, we use our previous results in [6] to finish the proof.

2. Preliminaries

Throughout this article, if E is a subset of a normed space X and $\lambda > 0$, we set

$$E^{\lambda} := \{ x \in E : \|x\| \le \lambda \}.$$

In the following, we will briefly recall (mainly from [15] and [10]) notations concerning non-commutative L^p -spaces. Let M be a (complex) von Neumann algebra on a (complex) Hilbert space \mathfrak{H} . Let φ be a fixed normal semi-finite faithful weight on M and α : $\mathbb{R} \to \operatorname{Aut}(M)$ be the modular automorphism group corresponding to φ . Then the von Neumann algebra crossed product $\check{M} := M \bar{\rtimes}_{\alpha} \mathbb{R}$ is semi-finite and we fix a normal faithful semi-finite trace τ on \check{M} . The measure topology on \check{M} (as introduced by E. Nelson in [8]) is given by a neighborhood basis at 0 of the form

$$U(\epsilon, \delta) := \{ x \in \check{M} : ||xp|| \le \epsilon \text{ and } \tau(1-p) \le \delta, \text{ for a projection } p \in \check{M} \}.$$

The completion, $L_0(\check{M}, \tau)$, of \check{M} with respect to this topology is a *-algebra extending the *-algebra structure on \check{M} .

One may identify $L_0(\check{M}, \tau)$ with a collection of closed and densely defined operators on $L^2(\mathbb{R}; \mathfrak{H})$ affiliated with \check{M} . More precisely, suppose that T is such a closed operator on $L^2(\mathbb{R}; \mathfrak{H})$ and that |T| is the absolute value of T with the spectral measure $E_{|T|}$. Then Tcorresponds (uniquely) to an element in $L_0(\check{M}, \tau)$ if and only if $\tau (1 - E_{|T|}([0, \lambda])) < +\infty$ when λ is large enough. In this case, the *-operation on $L_0(\check{M}, \tau)$ coincides with the adjoint. Moreover, the addition and the multiplication on $L_0(\check{M}, \tau)$ are the closures of the corresponding operations for densely defined closed operators. We denote by $L_0(\check{M}, \tau)_+$ the set of all positive self-adjoint (but not necessarily bounded) operators in $L_0(\check{M}, \tau)$.

The dual action $\hat{\alpha} : \mathbb{R} \to \operatorname{Aut}(\check{M})$ of α extends to an action on $L_0(\check{M}, \tau)$ by *-automorphisms. For any $p \in [1, +\infty]$, we set (with the convention that $e^{-s/p} = 1$ when $p = +\infty$)

$$L^p(M) := \{ T \in L_0(\check{M}, \tau) : \hat{\alpha}_s(T) = e^{-s/p}T, \text{ for all } s \in \mathbb{R} \}.$$

Denote by $L^p(M)_{sa}$ the set of all self-adjoint operators in $L^p(M)$ and put

$$L^{p}(M)_{+} := L^{p}(M) \cap L_{0}(\check{M}, \tau)_{+}.$$

If $T \in L_0(\check{M}, \tau)$ and T = u|T| is the polar decomposition, then $T \in L^p(M)$ if and only if $|T| \in L^p(M)$.

In the case when $p \in (1, +\infty)$, the map that sends $x \in \check{M}_+$ to x^p extends to a map

$$\Lambda_p: L_0(\dot{M}, \tau)_+ \to L_0(\dot{M}, \tau)_+.$$

For any $T \in L_0(\check{M}, \tau)_+$, one has $T \in L^p(M)$ if and only if $\Lambda_p(T) \in L^1(M)$. There is a canonical identification of M_* with $L^1(M)$ that sends the positive part $M_{*,+}$ of M_* onto $L^1(M)_+$, and this induces a Banach space norm $\|\cdot\|_1$ on $L^1(M)$ (see e.g. Theorem 7 in Chapter II of [15]). The function defined by

$$||T||_p := ||\Lambda_p(|T|)||_1^{1/p}$$
(2.1)

is a norm on $L^{p}(M)$ that turns it into a Banach space. Let us also denote

$$\mathfrak{S}^{p}(M) := \{ T \in L^{p}(M)_{+} : \|T\|_{p} = 1 \}.$$
(2.2)

It is known that $(L^p(M), L^p(M)_+)$ is independent of the choice of φ up to an isometric order isomorphism (see e.g. Theorem 37 and Corollary 38 in Chapter II of [15]). On the other hand, one may identify M with $L^{\infty}(M)$ (as ordered Banach spaces) through the canonical inclusion $M \subseteq \check{M} \subseteq L_0(\check{M}, \tau)$ (see Proposition 10 in Chapter II of [15]).

3. The main result

Theorem 3.1. Let M and N be two von Neumann algebras and let $p \in [1, +\infty]$. If there is a bijective isometry $\Phi: L^p(M)^1_+ \to L^p(N)^1_+$, then M and N are Jordan *-isomorphic.

In order to prove this result, we shall give some preparations in Propositions 3.2, 3.5 and 3.9 for the cases $p = +\infty$, p = 1 and $p \in (1, +\infty)$, respectively.

3.1. The case of $p = +\infty$

Proposition 3.2. If $\Phi: M^1_+ \to N^1_+$ is a bijective isometry, then $\Psi: M^{1/2}_{sa} \to N^{1/2}_{sa}$ given by $\Psi(x) := \Phi(x + \frac{1}{2}) - \frac{1}{2}$ extends to a linear isometry from M_{sa} onto N_{sa} .

It then follows from [4, Theorem 2] that $\Psi(1)$ is a self-adjoint unitary and Ψ further induces a Jordan isomorphism $x \mapsto \Psi(1)\Psi(x)$ from $M_{\rm sa}$ onto $N_{\rm sa}$.

Example 3.3. Let $M = \mathbb{C} \oplus_{\infty} \mathbb{C}$. The set M_{+}^{1} equals the square in $\mathbb{R} \oplus_{\infty} \mathbb{R}$ with vertices (0,0), (0,1), (1,1) and (1,0). If $\Phi_{0} : \mathbb{R} \oplus_{\infty} \mathbb{R} \to \mathbb{R} \oplus_{\infty} \mathbb{R}$ is the clockwise rotation by 90 degree about the center $(\frac{1}{2}, \frac{1}{2})$, then the restriction Φ of Φ_{0} on M_{+}^{1} is a bijective isometry onto M_{+}^{1} that sends (0,0) to (0,1). Hence, Φ itself cannot be extended to a linear map. However, if Ψ is defined as in Proposition 3.2, then $\Psi(1,1) = \Phi\left(\frac{3}{2},\frac{3}{2}\right) - \left(\frac{1}{2},\frac{1}{2}\right) = (1,-1)$ and the map

$$(x,y) \mapsto \Psi(1,1)\Psi(x,y) = (1,-1)(\Phi_0(x+1/2,y+1/2) - (1/2,1/2)) = (y,x)$$

extends to a *-automorphism of M.

In order to establish Proposition 3.2, we need the following stronger version of the Mazur–Ulam theorem, which was first proved in [7, Theorem 2] (see also [1, Theorem 14.1]).

Lemma 3.4. Let U be a non-empty open connected subset of a normed space X and W be an open subset of a normed space Y. Then every isometry from U onto W can be extended uniquely to an affine isometry from X onto Y.

Proof of Proposition 3.2. Let us first note that for any $x \in M_{sa}$, one has $x \in M_{+}^{1}$ if and only if $||x - \frac{1}{2}|| \leq \frac{1}{2}$ (by considering the C^* -subalgebra generated by x and 1). Thus, $x \mapsto x - \frac{1}{2}$ is a bijective isometry from M_{+}^{1} onto $M_{sa}^{\frac{1}{2}}$ and the map Ψ in the statement is a bijective isometry from $M_{sa}^{\frac{1}{2}}$ onto $N_{sa}^{\frac{1}{2}}$.

If $x \in M_{sa}^{\frac{1}{2}}$, then $||x|| = \frac{1}{2}$ if and only if there exists $x' \in M_{sa}^{\frac{1}{2}}$ with ||x - x'|| = 1. This implies

$$\Psi(\{x \in M_{\mathrm{sa}} : \|x\| = 1/2\}) = \{y \in N_{\mathrm{sa}} : \|y\| = 1/2\}.$$

Consequently, $\Psi(0) = 0$ and Ψ will send the interior, $B_M\left(0, \frac{1}{2}\right)$, of $M_{\mathrm{sa}}^{\frac{1}{2}}$ onto the interior of $N_{\mathrm{sa}}^{\frac{1}{2}}$. By Lemma 3.4, the map $\Psi|_{B_M(0,\frac{1}{2})}$ extends to a linear isometry $\tilde{\Psi}$ from M_{sa} onto N_{sa} and the continuity of Ψ tells us that $\tilde{\Psi}|_{M^{\frac{1}{2}}} = \Psi$. \Box

3.2. The case of p = 1

Proposition 3.5. If there exists a bijective isometry Φ from $M^1_{*,+}$ onto $N^1_{*,+}$, then M and N are Jordan *-isomorphic.

Note, first of all, that one cannot use Lemma 3.4 for this case, because the interior of $M^1_{*,+}$ could be an empty set; e.g., when $M = L^{\infty}([0,1])$.

For any $\mu \in M_{*,+}$, we denote by $\operatorname{supp} \mu$ the support projection of μ in M. Recall that for any $\mu, \nu \in M_{*,+}$, we have

$$\|\mu - \nu\| = \|\mu\| + \|\nu\|$$
 if and only if $\operatorname{supp} \mu \cdot \operatorname{supp} \nu = 0.$ (3.1)

In order to obtain Proposition 3.5, we need the following lemma.

Lemma 3.6. If N contains three non-zero projections, q_1 , q_2 and q_3 , orthogonal to each other, then the bijective isometry Φ in Proposition 3.5 will send 0 to 0.

106

Proof. Suppose on the contrary that $\Phi(0) \neq 0$. Let us first show that $\sup \Phi(0) = 1$. Indeed, if it is not the case, one can find $\mu \in M^1_{*,+}$ such that $\|\Phi(\mu)\| = 1$ and $\sup \Phi(\mu) \leq 1 - \sup \Phi(0)$, which, together with (3.1), gives the contradiction that

$$1 \ge \|\mu - 0\| = \|\Phi(\mu) - \Phi(0)\| = \|\Phi(\mu)\| + \|\Phi(0)\| > 1.$$

As a result, $\Phi(0)(q_k) > 0$ for k = 1, 2, 3. We may also assume, without loss of generality, that $\Phi(0)(q_1) \le ||\Phi(0)||/3$ because

$$\sum_{k=1}^{3} \Phi(0)(q_k) \le \|\Phi(0)\|.$$

Now, pick any $\nu \in M^1_{*,+}$ with $\|\Phi(\nu)\| = 1$ and $\operatorname{supp} \Phi(\nu) \leq q_1$. Since $2q_1 - 1$ is a unitary and $\|\Phi(\nu) - \Phi(0)\| = \|\nu\| \leq 1$, one arrives at the following contradiction:

$$1 \ge |(\Phi(\nu) - \Phi(0))(q_1 - (1 - q_1))| = |1 - \Phi(0)(q_1) + \Phi(0)(1 - q_1)|$$

= 1 + ||\Phi(0)|| - 2\Phi(0)(q_1) > 1. \Box

By Lemma 3.6, if N contains three non-zero projections orthogonal to one another, then Φ induces an isometric bijection from the normal state space of M to that of N, and hence, we may conclude that M and N are Jordan *-isomorphic by using [6, Theorem 3.4]. For the benefit of the readers, we will instead go through briefly the argument of [6, Theorem 3.4] by recalling the following two lemmas. These two lemmas will also be needed in the case of $p \in (1, +\infty)$ below.

Let us recall that a bijection Γ from the lattice of projections in M to that of N is an *orthoisomorphism* if for any projections p and q in M, one has

$$pq = 0$$
 if and only if $\Gamma(p)\Gamma(q) = 0$.

Lemma 3.7. ([6, Lemma 3.1(a)]) Suppose that Ψ is a bijection from the normal state space of M to that of N, which is biorthogonality preserving in the sense that for any normal states μ and ν of M, one has

$$\operatorname{supp} \mu \cdot \operatorname{supp} \nu = 0$$
 if and only if $\operatorname{supp} \Psi(\mu) \cdot \operatorname{supp} \Psi(\nu) = 0$.

Then there is an orthoisomorphism $\check{\Psi}$ from the lattice of projections in M to that of N satisfying $\check{\Psi}(\operatorname{supp} \mu) = \operatorname{supp} \Psi(\mu)$ for any normal state μ on M.

A second lemma that we need is the following possibly well-known variant of a theorem of H.A. Dye in [3] (see e.g. [6, Lemma 2.2(a)]). Note that an assumption of not having type I_2 summand is needed for the original version of Dye's theorem. However, the variant here has a weaker conclusion and does not need the assumption concerning the absence of type I_2 summand.

Lemma 3.8. If there exists an orthoisomorphism from the lattice of projections in M to that of N, then M and N are Jordan *-isomorphic.

Proof of Proposition 3.5. Let us first consider the case when N contains three non-zero projections orthogonal to each other. Then by Lemma 3.6, the map Φ restricts to an isometric bijection Ψ from the normal state space of M to that of N. Hence, (3.1) implies that Ψ is biorthogonality preserving. The conclusion now follows from Lemmas 3.7 and 3.8. In the case when M contains three non-zero projections orthogonal to one another, one may obtain the same conclusion by considering the bijective isometry Φ^{-1} .

Suppose that neither M nor N contains three non-zero projections orthogonal to one another. Then M and N can only be \mathbb{C} , $\mathbb{C} \oplus_{\infty} \mathbb{C}$ or $M_2(\mathbb{C})$. Observe that the Hausdorff dimensions of the quasi-state space of \mathbb{C} , $\mathbb{C} \oplus_{\infty} \mathbb{C}$ and $M_2(\mathbb{C})$ are 1, 2 and 4 respectively. Since a bijective isometry preserves Hausdorff dimensions, we conclude that M and Nare *-isomorphic. \Box

3.3. A preparation for the case of $p \in (1, +\infty)$

Proposition 3.9. Let $p \in (1, +\infty)$. Suppose that M and N are two von Neumann algebras such that $M \neq \mathbb{C}$ or $N \neq \mathbb{C}$. If $\Phi : L^p(M)^1_+ \to L^p(N)^1_+$ is a bijective isometry, then Φ is an affine map sending 0 to 0.

Notice that $L^p(M)_{sa}$ and $L^p(N)_{sa}$ are strictly convex Banach spaces for $p \in (1, +\infty)$ (see e.g., Section 5 of [9]). The following lemma is possibly well-known, but we give its simple proof here for completeness.

Lemma 3.10. Let X_1 and X_2 be Banach spaces such that X_2 is strictly convex. Then every isometry from a convex subset K of X_1 to X_2 is automatically an affine map.

Proof. We need to verify that f((x+y)/2) = (f(x)+f(y))/2 for every $x, y \in K$. Suppose that x and y are two arbitrarily chosen fixed elements in K with $x \neq y$. By replacing K with K - y and f with the map from K - y to X_2 that sends z to f(z+y) - f(y), one may assume that y = 0 and f(0) = 0. Thus, we have ||f(z)|| = ||z|| ($z \in K$) and

$$||f(x) - f(x/2)|| = ||x/2|| = ||f(x)||/2 = ||f(x)|| - ||x||/2 = ||f(x)|| - ||f(x/2)||.$$

Now, the strict convexity of X_2 gives $f(x) - f(x/2) = t \cdot f(x/2)$ for some $t \in \mathbb{R}_+$. This, together with ||f(x)||/2 = ||f(x)|| - ||f(x/2)||, will produce t = 1. Hence we have the required relation f(x)/2 = f(x/2). \Box

Proof of Proposition 3.9. We note, first of all, that if $M = \mathbb{C}$, then the Hausdorff dimension of $L^p(M)^1_+$ is one and hence so is the Hausdorff dimension of $L^p(N)^1_+$, which gives $N = \mathbb{C}$. Therefore, we may assume that the dimensions of both $M_{\rm sa}$ and $N_{\rm sa}$ are at least two.

Since $L^p(M)_{sa}$ is strictly convex, the set of extreme points of $L^p(M)^1_+$ is $\mathfrak{S}^p(M) \cup \{0\}$ (see (2.2)). The same is true for $L^p(N)^1_+$. By Lemma 3.10, the map Φ is affine and hence $\Phi(0) \in \mathfrak{S}^p(N) \cup \{0\}$. Suppose on the contrary that $\Phi(0) \in \mathfrak{S}^p(N)$. Then, as $\dim L^p(N)_{sa} > 1$, there is a sequence $\{v_k\}_{k\in\mathbb{N}}$ in $\mathfrak{S}^p(N) \setminus \{\Phi(0)\}$ with $||v_k - \Phi(0)|| \to 0$, and hence $\{\Phi^{-1}(v_k)\}_{k\in\mathbb{N}}$ is a sequence in $\mathfrak{S}^p(M)$ norm-converging to 0, which is absurd. \Box

3.4. The finishing of the proof

For any $T \in L^p(M)_{sa}$, we denote by supp T the support projection of T, i.e. supp T is the smallest projection p in M satisfying $T \cdot p = T$ (or equivalently, $p \cdot T = T$). Let us recall the following statements concerning $S, T \in L^p(M)_+$ from Fact 1.2 and Fact 1.3 of [10]:

S1). $\operatorname{supp} \Lambda_p(T) = \operatorname{supp} T;$

S2). $S \cdot T = 0$ if and only if supp $S \cdot \text{supp } T = 0$;

S3). if supp $S \cdot \text{supp } T = 0$, then $||S + T||_p^p = ||S - T||_p^p = ||S||_p^p + ||T||_p^p$;

S4). if $p \neq 2$ and $||S + T||_p^p = ||S - T||_p^p = ||S||_p^p + ||T||_p^p$, then supp $S \cdot \text{supp } T = 0$.

Proof of Theorem 3.1. The cases of $p = +\infty$ and p = 1 are proved in Proposition 3.2 (together with [4, Theorem 2]) and Proposition 3.5, through the canonical identifications of $L^1(M)$ and $L^{\infty}(M)$ with M_* and M, respectively. Moreover, the case of p = 2 is already established in [6, Corollary 3.11] (due to Proposition 3.9 and [6, Proposition 3.7]).

Now, we consider $p \in (1, +\infty) \setminus \{2\}$. Without loss of generality, we may assume that $M \neq \mathbb{C}$ or $N \neq \mathbb{C}$. By Proposition 3.9, the map Φ is affine and $\Phi(0) = 0$. On the other hand, it follows from Relation (2.1) that Λ_p restricts to a bijection from $L^p(M)^1_+$ onto $L^1(M)^1_+$ with $\Lambda_p(\mathfrak{S}^p(M)) = \mathfrak{S}^1(M)$ (see (2.2)). Therefore, Φ induces a bijection $\hat{\Phi} : \mathfrak{S}^1(M) \to \mathfrak{S}^1(N)$ with $\hat{\Phi}(A) = \Lambda_p(\Phi(\Lambda_p^{-1}(A)))$. For any $A, B \in \mathfrak{S}^1(M)$, it follows from (S1), (S3) and (S4) that

supp
$$A \cdot \text{supp } B = 0$$
 if and only if $\left\| \frac{\Lambda_p^{-1}(A)}{2} + \frac{\Lambda_p^{-1}(B)}{2} \right\|_p^p = \left\| \frac{\Lambda_p^{-1}(A)}{2} - \frac{\Lambda_p^{-1}(B)}{2} \right\|_p^p$
= 2^{1-p} .

As Φ is an isometric affine map satisfying $\Phi(0) = 0$, the map $\hat{\Phi}$ can be regarded as a biorthogonality preserving bijection between the normal state spaces of M and N(through the identification $L^1(M) = M_*$ and (S2)). The conclusion now follows from Lemmas 3.7 and 3.8. \Box

Remark 3.11. Suppose that $M \ncong \mathbb{C}$. When p = 2, one can use [6, Theorem 3.8] and the argument of [6, Proposition 3.7] to obtain a Jordan *-isomorphism $\Theta : N \to M$ with

 $\Lambda_2 \circ \Phi = \Theta^* \circ \Lambda_2|_{L^2(M)^1_+}$. In the case of $p \in [1, +\infty) \setminus \{2\}$, let us state the following question:

Does there exist a Jordan *-isomorphism $\Theta : N \to M$ satisfying $\Lambda_p \circ \Phi = \Theta^* \circ \Lambda_p|_{L^p(M)^1_{\perp}}$?

In the case of $p = +\infty$, we have already seen in Example 3.3 that this stronger version does not hold.

Acknowledgements

The authors are supported by National Natural Science Foundation of China (11471168) and Taiwan MOST grant (104-2115-M-110-009-MY2). They also appreciate for the helpful comments from the referee.

References

- Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Colloq. Publ., vol. 48, Amer. Math. Soc., 2000.
- [2] A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier 24 (1974) 121–155.
- [3] H.A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. 61 (1955) 73–89.
- [4] R.V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. 564 (1952) 494–503.
- [5] R.V. Kadison, Transformations of states in operator theory and dynamics, Topology 3 (suppl. 2) (1965) 177–198.
- [6] C.-W. Leung, C.-K. Ng, N.-C. Wong, Transition probabilities of normal states determine the Jordan structure of a quantum system, J. Math. Phys. 57 (2016) 015212, http://dx.doi.org/10.1063/ 1.4936404, 13 pages.
- [7] P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972) 367–371.
- [8] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974) 103-116.
- [9] G. Pisier, Q. Xu, Non-commutative Lp-spaces, in: Handbook of the Geometry of Banach Spaces, vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517.
- [10] Y. Raynaud, Q. Xu, On subspaces of noncommutative L_p-spaces, J. Funct. Anal. 203 (2003) 149–196.
- B. Russo, Isometrics of L^p-spaces associated with finite von Neumann algebras, Bull. Amer. Math. Soc. 74 (1968) 228–232.
- [12] L.M. Schmitt, Order derivations on L^P-spaces of W*-algebras, Math. Z. 196 (1987) 117–124.
- [13] D. Sherman, Noncommutative L^p-structure encodes exactly Jordan structure, J. Funct. Anal. 211 (2005) 150–166.
- [14] P.-K. Tam, Isometries of L_p -spaces associated with semifinite von Neumann algebras, Trans. Amer. Math. Soc. 254 (1979) 339–354.
- [15] M. Terp, L^p-Spaces Associated with von Neumann Algebras, Notes, Math. Institute, Copenhagen Univ., 1981.
- [16] F.J. Yeadon, Isometries of noncommutative L^p-spaces, Math. Proc. Cambridge Philos. Soc. 90 (1) (1981) 41–50.