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1. Introduction

Given a von Neumann algebra M , celebrated results of R.V. Kadison showed that 
several partial structures of M can recover the von Neumann algebra up to Jordan 
∗-isomorphisms. In particular, each of the following is a complete Jordan ∗-invariant 
of M : the Banach space structure of the self-adjoint part Msa of M ([4, Theorem 2]), 
the ordered vector space structure of Msa ([4, Corollary 5]) and the topological convex 
set structure of the normal state space of M ([5, Theorem 4.5]).

Let p ∈ [1, +∞], and let Lp(M) be the non-commutative Lp-space associated to M
with the canonical cone Lp(M)+. If M is semi-finite, P.-K. Tam showed in [14] that the 
ordered Banach space (Lp(M)sa, Lp(M)+) characterises M up to Jordan ∗-isomorphisms. 
In the case when M is σ-finite (but not necessarily semi-finite) and p = 2, the corre-
sponding result follows from a result of A. Connes (namely, [2, Théorème 3.3]). For a 
general W ∗-algebra M , results of L.M. Schmitt in [12] show that the ordered Banach 
space (Lp(M)sa, Lp(M)+) determines the real Lie algebra M/Z(M), where Z(M) is the 
center of M . On the other hand, extending results of B. Russo ([11]) and F.J. Yeadon 
([16]), D. Sherman showed in [13] that the Banach space Lp(M) is also a complete Jordan 
∗-invariant for a general von Neumann algebra M when p �= 2.

Along these lines, we will show in this article that the underlying metric space struc-
ture of the positive contractive part

Lp(M)1+ := Lp(M)+ ∩ Lp(M)1 (1 ≤ p ≤ +∞)

of Lp(M) is also a complete Jordan ∗-invariant of M , where Lp(M)1 is the closed unit 
ball. More precisely, we obtain in Theorem 3.1 that two arbitrary von Neumann algebras 
M and N are Jordan ∗-isomorphic whenever there exists a bijection Φ from Lp(M)1+
onto Lp(N)1+ which is isometric in the sense that

‖Φ(x) − Φ(y)‖ = ‖x− y‖ (x, y ∈ Lp(M)1+).

Notice that, when p = 2, the closed unit ball L2(M)1 itself is not a complete Jordan 
∗-invariant (since for any infinite dimensional von Neumann algebra M with a separable 
predual, one has L2(M) ∼= �2), but its positive part is a Jordan ∗-invariant.

The ideas of our proof go as follows. In the case of p = +∞, we employ a strong 
form of the Mazur–Ulam theorem (which was first proved by P. Mankiewicz) to show 
that a “shifting” Ψ of Φ extends to a linear bijective isometry from Msa onto Nsa (see 
Proposition 3.2), and the map x 	→ Ψ(1)Ψ(x) induces a Jordan ∗-isomorphism from M to 
N (thanks to a result of R.V. Kadison). In the case of p = 1, we use Lemma 3.6 to show 
that Φ(0) = 0, except for a few finite dimensional cases. We then use our previous result 
in [6] concerning normal state spaces to obtain the conclusion. For the remaining few 
finite dimensional cases, we use a Hausdorff dimension argument to show that M and N
are ∗-isomorphic. In the case of p ∈ (1, +∞), we first use the strict convexity of Lp(N)sa
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to show that Φ is affine (Lemma 3.10) and hence Φ(0) = 0 (Proposition 3.9). Then we use 
several properties of non-commutative Lp-spaces (see Statement (S1)–(S4)) to relate the 
restriction of Φ on the positive part of the unit sphere of Lp(M)sa to a biorthogonality 
preserving bijection between the normal state spaces of M and N . Finally, we use our 
previous results in [6] to finish the proof.

2. Preliminaries

Throughout this article, if E is a subset of a normed space X and λ > 0, we set

Eλ := {x ∈ E : ‖x‖ ≤ λ}.

In the following, we will briefly recall (mainly from [15] and [10]) notations concerning 
non-commutative Lp-spaces. Let M be a (complex) von Neumann algebra on a (complex) 
Hilbert space H. Let ϕ be a fixed normal semi-finite faithful weight on M and α :
R → Aut(M) be the modular automorphism group corresponding to ϕ. Then the von 
Neumann algebra crossed product M̌ := M�̄αR is semi-finite and we fix a normal faithful 
semi-finite trace τ on M̌ . The measure topology on M̌ (as introduced by E. Nelson in [8]) 
is given by a neighborhood basis at 0 of the form

U(ε, δ) := {x ∈ M̌ : ‖xp‖ ≤ ε and τ(1 − p) ≤ δ, for a projection p ∈ M̌}.

The completion, L0(M̌, τ), of M̌ with respect to this topology is a ∗-algebra extending 
the ∗-algebra structure on M̌ .

One may identify L0(M̌, τ) with a collection of closed and densely defined operators 
on L2(R; H) affiliated with M̌ . More precisely, suppose that T is such a closed operator on 
L2(R; H) and that |T | is the absolute value of T with the spectral measure E|T |. Then T
corresponds (uniquely) to an element in L0(M̌, τ) if and only if τ

(
1 −E|T |([0, λ])

)
< +∞

when λ is large enough. In this case, the ∗-operation on L0(M̌, τ) coincides with the 
adjoint. Moreover, the addition and the multiplication on L0(M̌, τ) are the closures of the 
corresponding operations for densely defined closed operators. We denote by L0(M̌, τ)+
the set of all positive self-adjoint (but not necessarily bounded) operators in L0(M̌, τ).

The dual action α̂ : R → Aut(M̌) of α extends to an action on L0(M̌, τ) by 
∗-automorphisms. For any p ∈ [1, +∞], we set (with the convention that e−s/p = 1
when p = +∞)

Lp(M) := {T ∈ L0(M̌, τ) : α̂s(T ) = e−s/pT, for all s ∈ R}.

Denote by Lp(M)sa the set of all self-adjoint operators in Lp(M) and put

Lp(M)+ := Lp(M) ∩ L0(M̌, τ)+.

If T ∈ L0(M̌, τ) and T = u|T | is the polar decomposition, then T ∈ Lp(M) if and only 
if |T | ∈ Lp(M).
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In the case when p ∈ (1, +∞), the map that sends x ∈ M̌+ to xp extends to a map

Λp : L0(M̌, τ)+ → L0(M̌, τ)+.

For any T ∈ L0(M̌, τ)+, one has T ∈ Lp(M) if and only if Λp(T ) ∈ L1(M). There is a 
canonical identification of M∗ with L1(M) that sends the positive part M∗,+ of M∗ onto 
L1(M)+, and this induces a Banach space norm ‖ · ‖1 on L1(M) (see e.g. Theorem 7 in 
Chapter II of [15]). The function defined by

‖T‖p := ‖Λp(|T |)‖1/p
1 (2.1)

is a norm on Lp(M) that turns it into a Banach space. Let us also denote

Sp(M) := {T ∈ Lp(M)+ : ‖T‖p = 1}. (2.2)

It is known that (Lp(M), Lp(M)+) is independent of the choice of ϕ up to an isometric 
order isomorphism (see e.g. Theorem 37 and Corollary 38 in Chapter II of [15]). On the 
other hand, one may identify M with L∞(M) (as ordered Banach spaces) through the 
canonical inclusion M ⊆ M̌ ⊆ L0(M̌, τ) (see Proposition 10 in Chapter II of [15]).

3. The main result

Theorem 3.1. Let M and N be two von Neumann algebras and let p ∈ [1, +∞]. If there 
is a bijective isometry Φ : Lp(M)1+ → Lp(N)1+, then M and N are Jordan ∗-isomorphic.

In order to prove this result, we shall give some preparations in Propositions 3.2, 3.5
and 3.9 for the cases p = +∞, p = 1 and p ∈ (1, +∞), respectively.

3.1. The case of p = +∞

Proposition 3.2. If Φ : M1
+ → N1

+ is a bijective isometry, then Ψ : M1/2
sa → N

1/2
sa given 

by Ψ(x) := Φ(x + 1
2 ) − 1

2 extends to a linear isometry from Msa onto Nsa.

It then follows from [4, Theorem 2] that Ψ(1) is a self-adjoint unitary and Ψ further 
induces a Jordan isomorphism x 	→ Ψ(1)Ψ(x) from Msa onto Nsa.

Example 3.3. Let M = C ⊕∞ C. The set M1
+ equals the square in R ⊕∞ R with vertices 

(0, 0), (0, 1), (1, 1) and (1, 0). If Φ0 : R ⊕∞ R → R ⊕∞ R is the clockwise rotation by 90 
degree about the center (1

2 , 
1
2 ), then the restriction Φ of Φ0 on M1

+ is a bijective isometry 
onto M1

+ that sends (0, 0) to (0, 1). Hence, Φ itself cannot be extended to a linear map. 
However, if Ψ is defined as in Proposition 3.2, then Ψ(1, 1) = Φ 

( 3
2 ,

3
2
)
−
( 1

2 ,
1
2
)

= (1, −1)
and the map
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(x, y) 	→ Ψ(1, 1)Ψ(x, y) = (1,−1)
(
Φ0(x + 1/2, y + 1/2) − (1/2, 1/2)

)
= (y, x)

extends to a ∗-automorphism of M .

In order to establish Proposition 3.2, we need the following stronger version of the 
Mazur–Ulam theorem, which was first proved in [7, Theorem 2] (see also [1, Theo-
rem 14.1]).

Lemma 3.4. Let U be a non-empty open connected subset of a normed space X and W
be an open subset of a normed space Y . Then every isometry from U onto W can be 
extended uniquely to an affine isometry from X onto Y .

Proof of Proposition 3.2. Let us first note that for any x ∈ Msa, one has x ∈ M1
+ if and 

only if ‖x − 1
2‖ ≤ 1

2 (by considering the C∗-subalgebra generated by x and 1). Thus, 
x 	→ x − 1

2 is a bijective isometry from M1
+ onto M

1
2sa and the map Ψ in the statement is 

a bijective isometry from M
1
2sa onto N

1
2sa.

If x ∈ M
1
2sa, then ‖x‖ = 1

2 if and only if there exists x′ ∈ M
1
2sa with ‖x − x′‖ = 1. This 

implies

Ψ
(
{x ∈ Msa : ‖x‖ = 1/2}

)
= {y ∈ Nsa : ‖y‖ = 1/2}.

Consequently, Ψ(0) = 0 and Ψ will send the interior, BM

(
0, 1

2
)
, of M

1
2sa onto the interior 

of N
1
2sa. By Lemma 3.4, the map Ψ|BM

(
0, 12

) extends to a linear isometry Ψ̃ from Msa onto 

Nsa and the continuity of Ψ tells us that Ψ̃|
M

1
2sa

= Ψ. �
3.2. The case of p = 1

Proposition 3.5. If there exists a bijective isometry Φ from M1
∗,+ onto N1

∗,+, then M and 
N are Jordan ∗-isomorphic.

Note, first of all, that one cannot use Lemma 3.4 for this case, because the interior of 
M1

∗,+ could be an empty set; e.g., when M = L∞([0, 1]).
For any μ ∈ M∗,+, we denote by suppμ the support projection of μ in M . Recall that 

for any μ, ν ∈ M∗,+, we have

‖μ− ν‖ = ‖μ‖ + ‖ν‖ if and only if suppμ · supp ν = 0. (3.1)

In order to obtain Proposition 3.5, we need the following lemma.

Lemma 3.6. If N contains three non-zero projections, q1, q2 and q3, orthogonal to each 
other, then the bijective isometry Φ in Proposition 3.5 will send 0 to 0.
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Proof. Suppose on the contrary that Φ(0) �= 0. Let us first show that suppΦ(0) = 1. 
Indeed, if it is not the case, one can find μ ∈ M1

∗,+ such that ‖Φ(μ)‖ = 1 and suppΦ(μ) ≤
1 − supp Φ(0), which, together with (3.1), gives the contradiction that

1 ≥ ‖μ− 0‖ = ‖Φ(μ) − Φ(0)‖ = ‖Φ(μ)‖ + ‖Φ(0)‖ > 1.

As a result, Φ(0)(qk) > 0 for k = 1, 2, 3. We may also assume, without loss of generality, 
that Φ(0)(q1) ≤ ‖Φ(0)‖/3 because

∑3

k=1
Φ(0)(qk) ≤ ‖Φ(0)‖.

Now, pick any ν ∈ M1
∗,+ with ‖Φ(ν)‖ = 1 and suppΦ(ν) ≤ q1. Since 2q1 − 1 is a unitary 

and ‖Φ(ν) − Φ(0)‖ = ‖ν‖ ≤ 1, one arrives at the following contradiction:

1 ≥ |(Φ(ν) − Φ(0))(q1 − (1 − q1))| = |1 − Φ(0)(q1) + Φ(0)(1 − q1)|
= 1 + ‖Φ(0)‖ − 2Φ(0)(q1) > 1. �

By Lemma 3.6, if N contains three non-zero projections orthogonal to one another, 
then Φ induces an isometric bijection from the normal state space of M to that of 
N , and hence, we may conclude that M and N are Jordan ∗-isomorphic by using [6, 
Theorem 3.4]. For the benefit of the readers, we will instead go through briefly the 
argument of [6, Theorem 3.4] by recalling the following two lemmas. These two lemmas 
will also be needed in the case of p ∈ (1, +∞) below.

Let us recall that a bijection Γ from the lattice of projections in M to that of N is an 
orthoisomorphism if for any projections p and q in M , one has

p q = 0 if and only if Γ(p)Γ(q) = 0.

Lemma 3.7. ([6, Lemma 3.1(a)]) Suppose that Ψ is a bijection from the normal state 
space of M to that of N , which is biorthogonality preserving in the sense that for any 
normal states μ and ν of M , one has

suppμ · supp ν = 0 if and only if supp Ψ(μ) · supp Ψ(ν) = 0.

Then there is an orthoisomorphism Ψ̌ from the lattice of projections in M to that of N
satisfying Ψ̌(suppμ) = suppΨ(μ) for any normal state μ on M .

A second lemma that we need is the following possibly well-known variant of a theorem 
of H.A. Dye in [3] (see e.g. [6, Lemma 2.2(a)]). Note that an assumption of not having 
type I2 summand is needed for the original version of Dye’s theorem. However, the 
variant here has a weaker conclusion and does not need the assumption concerning the 
absence of type I2 summand.
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Lemma 3.8. If there exists an orthoisomorphism from the lattice of projections in M to 
that of N , then M and N are Jordan ∗-isomorphic.

Proof of Proposition 3.5. Let us first consider the case when N contains three non-zero 
projections orthogonal to each other. Then by Lemma 3.6, the map Φ restricts to an 
isometric bijection Ψ from the normal state space of M to that of N . Hence, (3.1) im-
plies that Ψ is biorthogonality preserving. The conclusion now follows from Lemmas 3.7
and 3.8. In the case when M contains three non-zero projections orthogonal to one 
another, one may obtain the same conclusion by considering the bijective isometry Φ−1.

Suppose that neither M nor N contains three non-zero projections orthogonal to one 
another. Then M and N can only be C, C ⊕∞ C or M2(C). Observe that the Hausdorff 
dimensions of the quasi-state space of C, C ⊕∞C and M2(C) are 1, 2 and 4 respectively. 
Since a bijective isometry preserves Hausdorff dimensions, we conclude that M and N
are ∗-isomorphic. �
3.3. A preparation for the case of p ∈ (1, +∞)

Proposition 3.9. Let p ∈ (1, +∞). Suppose that M and N are two von Neumann algebras 
such that M �= C or N �= C. If Φ : Lp(M)1+ → Lp(N)1+ is a bijective isometry, then Φ
is an affine map sending 0 to 0.

Notice that Lp(M)sa and Lp(N)sa are strictly convex Banach spaces for p ∈ (1, +∞)
(see e.g., Section 5 of [9]). The following lemma is possibly well-known, but we give its 
simple proof here for completeness.

Lemma 3.10. Let X1 and X2 be Banach spaces such that X2 is strictly convex. Then 
every isometry from a convex subset K of X1 to X2 is automatically an affine map.

Proof. We need to verify that f
(
(x +y)/2

)
=

(
f(x) +f(y)

)
/2 for every x, y ∈ K. Suppose 

that x and y are two arbitrarily chosen fixed elements in K with x �= y. By replacing K
with K − y and f with the map from K − y to X2 that sends z to f(z + y) − f(y), one 
may assume that y = 0 and f(0) = 0. Thus, we have ‖f(z)‖ = ‖z‖ (z ∈ K) and

‖f(x) − f(x/2)‖ = ‖x/2‖ = ‖f(x)‖/2 = ‖f(x)‖ − ‖x‖/2 = ‖f(x)‖ − ‖f(x/2)‖.

Now, the strict convexity of X2 gives f(x) − f(x/2) = t · f(x/2) for some t ∈ R+. This, 
together with ‖f(x)‖/2 = ‖f(x)‖ − ‖f(x/2)‖, will produce t = 1. Hence we have the 
required relation f(x)/2 = f(x/2). �
Proof of Proposition 3.9. We note, first of all, that if M = C, then the Hausdorff 
dimension of Lp(M)1+ is one and hence so is the Hausdorff dimension of Lp(N)1+, which 
gives N = C. Therefore, we may assume that the dimensions of both Msa and Nsa are 
at least two.
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Since Lp(M)sa is strictly convex, the set of extreme points of Lp(M)1+ is Sp(M) ∪{0}
(see (2.2)). The same is true for Lp(N)1+. By Lemma 3.10, the map Φ is affine and 
hence Φ(0) ∈ Sp(N) ∪ {0}. Suppose on the contrary that Φ(0) ∈ Sp(N). Then, as 
dimLp(N)sa > 1, there is a sequence {vk}k∈N in Sp(N) \ {Φ(0)} with ‖vk −Φ(0)‖ → 0, 
and hence {Φ−1(vk)}k∈N is a sequence in Sp(M) norm-converging to 0, which is ab-
surd. �
3.4. The finishing of the proof

For any T ∈ Lp(M)sa, we denote by suppT the support projection of T , i.e. suppT

is the smallest projection p in M satisfying T · p = T (or equivalently, p · T = T ). Let 
us recall the following statements concerning S, T ∈ Lp(M)+ from Fact 1.2 and Fact 1.3 
of [10]:

S1). suppΛp(T ) = suppT ;
S2). S · T = 0 if and only if suppS · suppT = 0;
S3). if suppS · suppT = 0, then ‖S + T‖pp = ‖S − T‖pp = ‖S‖pp + ‖T‖pp;
S4). if p �= 2 and ‖S + T‖pp = ‖S − T‖pp = ‖S‖pp + ‖T‖pp, then suppS · suppT = 0.

Proof of Theorem 3.1. The cases of p = +∞ and p = 1 are proved in Proposition 3.2
(together with [4, Theorem 2]) and Proposition 3.5, through the canonical identifications 
of L1(M) and L∞(M) with M∗ and M , respectively. Moreover, the case of p = 2 is 
already established in [6, Corollary 3.11] (due to Proposition 3.9 and [6, Proposition 3.7]).

Now, we consider p ∈ (1, +∞) \ {2}. Without loss of generality, we may assume that 
M �= C or N �= C. By Proposition 3.9, the map Φ is affine and Φ(0) = 0. On the 
other hand, it follows from Relation (2.1) that Λp restricts to a bijection from Lp(M)1+
onto L1(M)1+ with Λp(Sp(M)) = S1(M) (see (2.2)). Therefore, Φ induces a bijection 
Φ̂ : S1(M) → S1(N) with Φ̂(A) = Λp(Φ(Λ−1

p (A)). For any A, B ∈ S1(M), it follows 
from (S1), (S3) and (S4) that

suppA · suppB = 0 if and only if

∥∥∥∥∥
Λ−1
p (A)

2 +
Λ−1
p (B)

2

∥∥∥∥∥

p

p

=

∥∥∥∥∥
Λ−1
p (A)

2 −
Λ−1
p (B)

2

∥∥∥∥∥

p

p

= 21−p.

As Φ is an isometric affine map satisfying Φ(0) = 0, the map Φ̂ can be regarded as 
a biorthogonality preserving bijection between the normal state spaces of M and N
(through the identification L1(M) = M∗ and (S2)). The conclusion now follows from 
Lemmas 3.7 and 3.8. �
Remark 3.11. Suppose that M � C. When p = 2, one can use [6, Theorem 3.8] and the 
argument of [6, Proposition 3.7] to obtain a Jordan ∗-isomorphism Θ : N → M with 
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Λ2 ◦ Φ = Θ∗ ◦ Λ2|L2(M)1+ . In the case of p ∈ [1, +∞) \ {2}, let us state the following 
question:

Does there exist a Jordan ∗-isomorphism Θ : N → M satisfying Λp ◦ Φ = Θ∗ ◦
Λp|Lp(M)1+?

In the case of p = +∞, we have already seen in Example 3.3 that this stronger version 
does not hold.
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