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INNER PRODUCTS AND MODULE MAPS OF HILBERT

C∗-MODULES

MING-HSIU HSU AND NGAI-CHING WONG

Abstract. Let E and F be two Hilbert C∗-modules over C∗-algebras A and B,
respectively. Let T be a surjective linear isometry from E onto F and ϕ a map
from A into B. We will prove in this paper that if the C∗-algebras A and B are
commutative, then T preserves the inner products and T is a module map, i.e.,
there exists a ∗-isomorphism ϕ between the C∗-algebras such that

〈Tx, T y〉 = ϕ(〈x, y〉),

and
T (xa) = T (x)ϕ(a).

In case A or B is noncommutative C∗-algebra, T may not satisfy the equations
above in general. We will also give some condition such that T preserves the inner
products and T is a module map.

1. Introduction

A (right) Hilbert C∗-module over a C∗-algebra A is a right A-module E equipped
with A-valued inner product 〈·, ·〉 which is conjugate A-linear in the first variable
and A-linear in the second variable such that E is a Banach space with respect to
the norm ‖x‖ = ‖〈x, x〉‖1/2.

Let X be a locally compact Hausdorff space and H a Hilbert space, the Banach
space C0(X,H) of all continuous H-valued functions vanishing at infinity is a Hilbert
C∗-module over the C∗-algebra C0(X) with inner product 〈f, g〉(x) := 〈f(x), g(x)〉
and module operation (fφ)(x) = f(x)φ(x), for all f ∈ C0(X,H) and φ ∈ C0(X).
Every C∗-algebra A is a Hilbert C∗-module over itself with inner product 〈a, b〉 :=
a∗b.

Let X and Y be two locally compact Hausdorff spaces, the Banach-Stone theorem
states that every surjective linear isometry between C0(X) and C0(Y ) is a weighted
composition operator. More precisely, let T be a surjective linear isometry from
C0(X) onto C0(Y ), then there exists a continuous function h ∈ C0(Y ) with |h(y)| =
1, for all y in Y , and a homeomorphism ϕ from Y onto X such that T is of the form:

Tf(y) = h(y)f(ϕ(y)), ∀f ∈ C0(X), ∀y ∈ Y.(1)

Let H1 and H2 be two Hilbert spaces. In [7], Jerison characterizes surjective linear
isometries between C0(X,H1) and C0(Y,H2), see also [12, 6]. It is said that every
surjective linear isometry T from C0(X,H1) onto C0(Y,H2) is also of the form (1)
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in which h(y) is a unitary operator from H1 onto H2 and h is continuous from Y

into (B(H1, H2), SOT ), the space of all bounded linear operators with the strong
operator topology. In this case, we can find a relationship of inner products of
C0(X,H1) and C0(Y,H2) by a simple calculation:

〈Tf, Tg〉(y) = 〈Tf(y), T g(y)〉 = 〈h(y)(f(ϕ(y))), h(y)(f(ϕ(y)))〉

= 〈f(ϕ(y)), f(ϕ(y))〉 = 〈f, g〉 ◦ ϕ(y).

i.e.
〈Tf, Tg〉 = 〈f, g〉 ◦ ϕ.

Let Rϕ : C0(X) → C0(Y ) be the ∗-isomorphism defined by Rϕ(φ) = φ ◦ ϕ. Then T

preserves the inner products with respect to Rϕ, i.e.,

〈Tf, Tg〉 = Rϕ(〈f, g〉).

By (1), it is easy to see that T is a module map with respect to Rϕ in the sense

T (fφ) = T (f)Rϕ(φ), for all f ∈ C0(X,H1) and φ ∈ C0(X).

It is natural to ask if these properties are true for surjective linear isometries between
Hilbert C∗-modules over C∗-algebras. We will show in this paper that the answer
is yes if the C∗-algebras are commutative. Unfortunately, if one of the C∗-algebras
is noncommutative, the answer is more complicated. We will give an example (see
Example 3) to explain this is not true in general. And we will give a condition on
T (see Theorem 9) such that T is a module map and preserves the inner products.

2. Preliminaries

Let E be a Hilbert C∗-module over C∗-algebra A. We set 〈E,E〉 to be the linear
span of elements of the form 〈x, y〉, x, y ∈ E. E is said to be full if the closed

two-sided ideal 〈E,E〉 equal A.

A JB∗-triple is a complex vector space V with a continuous mapping V 3 →
V, (x, y, z) → {x, y, z}, called a Jordan triple product, which is symmetric and
linear in x, z and conjugate linear in y such that for x, y, z, u, v in V , we have

(1) {x, y, {z, u, v}} = {{x, y, z}, u, v} − {z, {y, x, u}, v}+ {z, u, {x, y, v}};
(2) the mapping z → {x, x, z} is hermitian and has non-negative spectrum;
(3) ‖{x, x, x}‖ = ‖x‖3.

In [5], J. M. Isidro shows that every Hilbert C∗-module is a JB∗-triple with the
Jordan triple product

{x, y, z} =
1

2
(x〈y, z〉+ z〈y, x〉).

A well-known theorem of Kaup [10] (see also [1]) states that every surjective linear
isometry between JB∗-triples is a Jordan triple homomorphism, i.e., it preserves the
Jordan triple product

T{x, y, z} = {Tx, Ty, T z}, ∀x, y, z ∈ E.

Hence, if T is a surjective linear isometry between Hilbert C∗-modules, then

T (x〈y, z〉+ z〈y, x〉) = Tx〈Ty, Tz〉+ Tz〈Ty, Tx〉, ∀x, y, z ∈ E.(2)
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The equation (2) holds if and only if

T (x〈x, x〉) = Tx〈Tx, Tx〉, ∀x ∈ E(3)

by triple polarization

2{x, y, z} =
1

8

∑

α4=β2=1

αβ〈x+ αy + βz, x+ αy + βz〉(x+ αy + βz).

A ternary ring of operators (TRO) between two Hilbert spaces H and K is a
linear subspace R of B(H,K), the space of all bounded linear operators from H

into K, satisfying AB∗C ∈ R. Zettl shows in [17] that every Hilbert C∗-module is
isomorphic to a norm closed TRO. In this case, Hilbert C∗-modules have another
triple product, i.e.,

{x, y, z} := x〈y, z〉.

A map between TROs is said to be a triple homomorphism if it preserves the triple
products. In the case of Hilbert C∗-modules, a map T is a triple homomorphism if
it satisfies

T (x〈y, z〉) = Tx〈Ty, Tz〉, ∀x, y, z.(4)

We have known every surjective linear isometry is a Jordan triple homomorphism,
but it could not be a triple homomorphism, see Example 3.

Let R be a TRO. Then Mn(R), the space of all n×n matrices whose entries are in
R, has a TRO-structure. Let T be a map between TROs R1 and R2. For all positive
integer n, define maps T (n) : Mn(R1) → Mn(R2) by T (n)((xij)ij) = (T (xij))ij . We
call T n-isometry if T (n) is isometric and complete isometry if each T (n) is isometric
for all n. It has been shown that a surjective linear isometry between TROs is a
triple homomorphism if and only if it is completely isometric. More details about
TROs mentioned above, we refer to [17], see also [14, 3]. In fact, Solel shows in [16]
that every surjective 2-isometry between two full Hilbert C∗-modules is necessarily
completely isometric.

3. Results

Note that in the case of a commutative C∗-algebra A = C0(X), for some locally
compact Hausdorff space X , Hilbert C∗-modules over C0(X) are the same as Hilbert
bundles, or equivalently, continuous fields of Hilbert spaces, over X .

We showed the following theorem in [4].

Theorem 1. Let E and F be two Hilbert C∗-modules over commutative C∗-algebras

C0(X) and C0(Y ), respectively. Then every surjective linear isometry from E onto

F is a weighted composition operator

Tf(y) = h(y)(f(ϕ(y))), ∀f ∈ E, ∀y ∈ Y

Here, ϕ is a homeomorphism from Y onto X, h(y) is a unitary operator between

the corresponding fibers of E and F , for all y in Y .

By the similar argument discussed in the introduction, we have
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Corollary 2. Every surjective linear isometry between Hilbert C∗-modules over com-

mutative C∗-algebras preserves the inner products and is a module map.

Now we discuss the case of noncommutative C∗-algebras. From equation (4), it
seems that a surjective linear isometry T indicates that T preserves inner products
and that T is a module map. We explain this could be not true in general by a
example.

Example 3. Given a positive integer n. The Hilbert column space Hn
c is the subspace

of Mn(C) consisting of all matrices whose non-zero entries are only in the first
column. Similarly, the Hilbert row space is the subspace consisting of matrices
whose non-zero entries are only in the first row. Clearly, Hc and Hr are right
Hilbert C∗-modules over C∗-algebras C and Mn(C), respectively, with the inner
product 〈A,B〉 := A∗B. Define a surjective linear isometry T : Hn

r → Hn
c by

T (A) = At, the transpose of A. Then 〈T (A), T (B)〉 = tr〈A,B〉, the trace of 〈A,B〉,
but T is not a module map with respect to the trace. For the surjective linear
isometry T : Hn

c → Hn
r , T (A) = At. Let ϕ : C → Mn(C) be defined by ϕ(α) = αI.

Then T is a module map with respect to ϕ, but the equation 〈TA, TB〉 = ϕ(〈A,B〉)
does not hold. It is clear that T does not satisfy the equation (4).

Remark 4. In fact, the corollary above says that there exists a ∗-isomorphism ϕ

between the C∗-algebras such that

〈Tx, Ty〉 = ϕ(〈x, y〉)

and
T (xa) = T (x)ϕ(a).

We have seen in the Example 3 that even if T is a module map or preserves the
inner products, the map ϕ might be just a linear map.

In the following, E and F stand for two Hilbert C∗-modules over C∗-algebras A
and B, respectively. T is a map from E into F and ϕ is a map from A into B. The
following lemmas explain the relations of T , ϕ, when T preserves the inner products
and when T is a module map, see also [8].

Lemma 5. If ϕ is linear, every map T from E into F which preserves the inner

products with respect to ϕ is linear.

Proof. Since T preserves the inner products with respect to ϕ. Then for all x, y and
z in E, α in C,

〈T (αx+ y), T z〉 = ϕ(〈αx+ y, z〉) = αϕ(〈x, z〉) + ϕ(〈y, z〉) = 〈αTx+ Ty, Tz〉.

Similarly, we have
〈Tx, T (αy + z)〉 = 〈Tx, αTy + Tz〉.

It is easy to show that

〈T (αx+ y)− (αTx+ Ty), T (αx+ y)− (αTx+ Ty)〉 = 0.

This proves T (αx+ y) = αTx+ Ty and hence T is linear. �

Lemma 6 ([8]). Let T be a surjective linear map which preserves the inner products

and is a module map w.r.t. ϕ. If F is full, then ϕ is a ∗-homomorphism.
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Proof. Let a1, a2 in A and α in C. It is easy to show that

T (x)(ϕ(αa1 + a2)− αϕ(a1)− ϕ(a2))

= T (x)ϕ(αa1 + a2)− αT (x)ϕ(a1)− T (x)ϕ(a2)

= T (αxa1 + xa2)− αT (xa1)− T (xa2) = 0.

and

T (x)(ϕ(a1a2)− ϕ(a1)ϕ(a2))

= T (x)ϕ(a1a2)− T (x)ϕ(a1)ϕ(a2)

= T (xa1a2)− T (xa1a2) = 0.

Since T is surjective and F is full, we have ϕ(αa1 + a2) = αϕ(a1) + ϕ(a2) and
ϕ(a1a2) = ϕ(a1)ϕ(a2).

Let x, y in A, we have

ϕ(〈x, y〉∗) = ϕ(〈y, x〉) = 〈Ty, Tx〉 = 〈Tx, Ty〉∗ = ϕ(〈x, y〉)∗.

For a in A,

〈T (x)(ϕ(a∗)− ϕ(a)∗), T (x)(ϕ(a∗)− ϕ(a)∗)〉

= ϕ(a∗)∗ϕ(〈x, x〉)ϕ(a∗)− ϕ(a∗)∗ϕ(〈x, x〉)ϕ(a)∗ − ϕ(a)ϕ(〈x, x〉)ϕ(a∗) + ϕ(a)ϕ(〈x, x〉)ϕ(a)∗

= (ϕ(〈xa∗, x〉)ϕ(a∗))∗ − (ϕ(a)ϕ(〈x, x〉)ϕ(a∗))∗ − ϕ(〈xa∗, xa∗〉) + (ϕ(a)ϕ(〈x, xa∗〉))∗

= 0.

Hence, T (x)(ϕ(a∗) − ϕ(a)∗) = 0 for all x in E. Since T is surjective and F is full,
we have ϕ(a∗) = ϕ(a)∗. �

Lemma 7. If ϕ is a ∗-homomorphism, then every map T which preserves the inner

products w.r.t. ϕ is a module map w.r.t. ϕ.

Proof. Let x and y in E and a in A. Then

〈T (xa), T y〉 = ϕ(〈xa, y〉) = ϕ(a)∗ϕ(〈x, y〉) = 〈T (x)ϕ(a), T y〉.

Similarly, we have

〈T (x), T (ya)〉 = 〈T (x), T (y)ϕ(a)〉.

It is easy to show that

〈T (xa)− T (x)ϕ(a), T (xa)− T (x)ϕ(a)〉 = 0.

Hence, T (xa) = T (x)ϕ(a). �

Lemma 8 ([13]). Let T be a surjective linear isometry and ϕ a ∗-isomorphism. If

T is a module map w.r.t. ϕ, then T preserves the inner products with respect to ϕ.

Proof. It suffices to prove that 〈Tx, Tx〉 = ϕ(〈x, x〉) for all x in E. Note that
|a| := (a∗a)1/2. For all b in B, let ϕ(a) = b, then

‖|Tx|b‖2 = ‖b∗|Tx|2b‖ = ‖〈T (x)ϕ(a), T (x)ϕ(a)〉‖

= ‖〈T (xa), T (xa)〉‖ = ‖〈xa, xa〉‖ = ‖|x|a‖2 = ‖ϕ(|x|a)‖2 = ‖ϕ(|x|)b‖2.

By Lemma 3.5 in [11], we get |Tx| = (ϕ(|x|) and hence 〈Tx, Tx〉 = ϕ(〈x, x〉). �
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Theorem 9. Let T be a surjective linear 2-isometry from E onto F . Then there

exists a ∗-isomorphism ϕ from 〈E,E〉 onto 〈F, F 〉 such that, for all x, y in E, and

a in A,

〈Tx, Ty〉 = ϕ(〈x, y〉)

and

T (xa) = T (x)ϕ(a).

Proof. We can regard E and F as full modules over 〈E,E〉 and 〈F, F 〉, respectively.
In this case, as we mentioned above, T is completely isometric and hence it preserves
the triple products

T (z〈x, y〉) = Tz〈Tx, Ty〉, ∀x, y, z ∈ E.

Define ϕ : 〈E,E〉 → 〈F, F 〉 by

ϕ(
n∑

i=i

αi〈xi, yi〉) :=
n∑

i=i

αi〈Txi, T yi〉, xi, yi ∈ E, αi ∈ C, i = 1, · · · , n.

Let xi, yi and z ∈ E, αi ∈ C, i = 1, · · · , n. Then
n∑
i=i

αi〈xi, yi〉 = 0 if and only if

z(
n∑
i=i

αi〈xi, yi〉) = 0 for all z if and only if T (z)(
n∑
i=i

αi〈Txi, T yi〉) =
n∑
i=i

αiTz〈Txi, T yi〉 =

n∑
i=i

αiT (z〈xi, yi〉) = T (z(
n∑
i=i

αi〈xi, yi〉)) = 0 for all z if and only if
n∑
i=i

αi〈Txi, T yi〉 = 0

since T is injective,
n∑
i=i

αi〈xi, yi〉 ∈ 〈E,E〉 and
n∑
i=i

αi〈Txi, T yi〉 ∈ 〈F, F 〉. This shows

that ϕ is well-defined and injective. From the defintion of ϕ, since T is surjective, it
is clear that ϕ is a surjective ∗-homomorphism and T preserves the inner products
w.r.t. ϕ. By lemma 7, T is a module map w.r.t ϕ. �

Corollary 10. Every surjective linear 2-isometry between two full Hilbert C∗-modules

preserves the inner products and is a module map with respect to some ∗-isomorphism

of underlying C∗-algebras.

References

1. C-H. Chu, M, Mackey, Isometries between JB∗-triples. Math. Z. 251 (2005), no. 3, 615–633.
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