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We studymaps𝜙 of positive operators of the Schatten𝑝-classes (1 < 𝑝 < +∞), which preserve the𝑝-norms of convex combinations,
that is, ‖𝑡𝜌 + (1 − 𝑡)𝜎‖

𝑝
= ‖𝑡𝜙(𝜌) + (1 − 𝑡)𝜙(𝜎)‖

𝑝
, ∀𝜌, 𝜎 ∈ S+

𝑝
(𝐻)1, 𝑡 ∈ [0, 1]. They are exactly those carrying the form 𝜙(𝜌) =

𝑈𝜌𝑈∗ for a unitary or antiunitary𝑈. In the case𝑝 = 2, we have the same conclusionwhenever it just holds ‖𝜌 + 𝜎‖
2
= ‖𝜙(𝜌) + 𝜙(𝜎)‖

2

for all the positive Hilbert-Schmidt class operators 𝜌, 𝜎 of norm 1. Some examples are demonstrated.

1. Introduction

TheMazur-Ulam theorem states that every bijective distance
preservingmapΦ from a Banach space onto another is affine;
that is,

Φ(𝑡𝑥 + (1 − 𝑡) 𝑦) = 𝑡Φ (𝑥) + (1 − 𝑡)Φ (𝑦) ,

∀𝑥, 𝑦, 0 ≤ 𝑡 ≤ 1.
(1)

After translation, we can assume that Φ(0) = 0 and Φ
is indeed a surjective real linear isometry. Let us consider
another version of this statement. Suppose thatΦ is a bijective
map from aHilbert space𝐻 onto𝐻 andΦ preserves norm of
convex combinations:

𝑡Φ (𝑥) + (1 − 𝑡)Φ (𝑦)
 =

𝑡𝑥 + (1 − 𝑡) 𝑦
 ,

∀𝑥, 𝑦 ∈ 𝐻, 0 ≤ 𝑡 ≤ 1.
(2)

Let us further relax the assumption that (2) holds for just one
fixed 𝑡 in (0, 1). By letting 𝑦 = 𝑥 in (2), we see that ‖Φ(𝑥)‖ =
‖𝑥‖ for all 𝑥 in𝐻. Squaring both sides of (2), we will see that
the real parts of the inner products coincide; that is,

Re ⟨𝑥, 𝑦⟩ = Re ⟨Φ (𝑥) , Φ (𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (3)

Then the classical Wigner theorem (see, e.g., [1, Theorem 3])
ensures that there is a surjective real linear isometry𝑈 : 𝐻 →
𝐻 such thatΦ(𝑥) = 𝑈𝑥 for all 𝑥 in𝐻.

Characterizing isometries, linear or not, of spaces of
operators under various norms has been a fruitful area of
research for a long time. See, for example, [2, 3] for good
surveys. In particular, the spaces S𝑝(𝐻) of the Schatten 𝑝-
class operators on a (complex)Hilbert space𝐻 (1 ≤ 𝑝 < +∞)
are important objects in both analysis and physics. They are
widely used in operator theory and quantum mechanics, for
example.

Let S+
𝑝
(𝐻) be the set of all positive operators in S𝑝(𝐻),

and let S+
𝑝
(𝐻)1 be the set of all positive operators in S+

𝑝
(𝐻)

of 𝑝-norm one. Recall that an affine automorphism (or S-
automorphism in [4] or Kadison automorphism in [5]) is a
bijective affine map 𝜙 : S+

1
(𝐻)1 → S+

1
(𝐻)1; that is,

𝜙 (𝑡𝜌 + (1 − 𝑡) 𝜎) = 𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎) ,

∀𝜌, 𝜎 ∈ S
+

1
(𝐻)1, 𝑡 ∈ [0, 1] .

(4)

It is known (see, e.g., [6]) that affine automorphisms are
exactly those carrying the form 𝜙(𝜌) = 𝑈𝜌𝑈∗ for a unitary
or antiunitary 𝑈 on𝐻.

Recently, Nagy [7] established a Mazur-Ulam-type result
for the Schatten 𝑝-class operators. Suppose that 𝜙 :
S+
𝑝
(𝐻)1 → S+

𝑝
(𝐻)1 (1 < 𝑝 < +∞) is a bijective map

preserving the distance induced by the norm ‖ ⋅ ‖𝑝. Then 𝜙
is implemented by a unitary or an antiunitary operator 𝑈
such that 𝜙(𝜌) = 𝑈𝜌𝑈∗. In this paper, we will establish a
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counterpart of Nagy’s result similar to the one demonstrated
in the first paragraph. More precisely, we will characterize
those maps 𝜙 : S+

𝑝
(𝐻)1 → S+

𝑝
(𝐻)1 satisfying

𝑡𝜌 + (1 − 𝑡) 𝜎
𝑝 =

𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎)
𝑝,

∀𝜌, 𝜎 ∈ S
+

𝑝
(𝐻)1, 𝑡 ∈ [0, 1] .

(5)

We will show that they are implemented by a unitary or an
antiunitary operator.

Our main theorem follows.

Theorem 1. Let 𝐻 be a separable complex Hilbert space of
finite or infinite dimension. Let 1 < 𝑝 < +∞. Suppose that
𝜙 is a map from S+

𝑝
(𝐻)1 into S+𝑝(𝐻)1, which will be assumed

to be surjective when dim 𝐻 = +∞. The following conditions
are equivalent.

(1) 𝜙 preserves the Schatten 𝑝-norms of convex combina-
tions; that is,
𝑡𝜌 + (1 − 𝑡) 𝜎

𝑝 =
𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎)

𝑝,

∀𝜌, 𝜎 ∈ S
+

𝑝
(𝐻)1, 𝑡 ∈ [0, 1] .

(6)

(2) 𝜙 preserves the pairings; that is, for all 𝜌, 𝜎 ∈ S+
𝑝
(𝐻)1,

one has 𝜎𝑝−1𝜌 ∈ S1(𝐻), and

tr (𝜎𝑝−1𝜌) = tr (𝜙(𝜎)𝑝−1𝜙 (𝜌)) . (7)

(3) There exists a unitary or antiunitary operator 𝑈 on 𝐻
such that

𝜙 (𝜌) = 𝑈𝜌𝑈
∗
, ∀𝜌 ∈ S

+

𝑝
(𝐻)1. (8)

We note that condition (6) becomes a tautology when
𝑝 = 1. On the other hand, the conclusion of Theorem 1 holds
again if we replace S+

𝑝
(𝐻)1 by S+

𝑝
(𝐻) everywhere. In this

case, setting 𝜎 = 𝜌 in (6), we see that 𝜙 does map S+
𝑝
(𝐻)1

into S+
𝑝
(𝐻)1.

The proof of Theorem 1 is given in Section 2. When 𝑝 =
2, we see in Section 3 that for 𝜙 carrying the expected form
stated inTheorem 1(3) it suffices to say that condition (6) held
for only one fixed 𝑡 in (0, 1). Finally, we demonstrate some
examples in Section 4.

2. Proof of the Main Theorem

In what follows, we fix some notation and definitions used
throughout the paper. Let 𝐻 stand for a separable complex
Hilbert space of finite dimension or infinite dimension. Let
𝐵(𝐻) denote the algebra of all bounded linear operators on𝐻.
For a compact operator 𝑇 in 𝐵(𝐻), let 𝑠1(𝑇) ≥ 𝑠2(𝑇) ≥ ⋅ ⋅ ⋅ ≥
0 denote the singular values of 𝑇, that is, the eigenvalues of
|𝑇| = (𝑇𝑇∗)1/2 arranged in their decreasing order (repeating
according to multiplicity). A compact operator 𝑇 belongs to
the Schatten 𝑝-classes S𝑝(𝐻) (1 ≤ 𝑝 < +∞) if

‖𝑇‖𝑝 := (
∞

∑
𝑖=1

𝑠𝑖(𝑇)
𝑝
)

1/𝑝

= (tr |𝑇|𝑝)1/𝑝 < +∞, (9)

where tr denotes the trace functional. We call ‖𝑇‖𝑝 the
Schatten 𝑝-norm of 𝑇. In particular, S1(𝐻) is the trace class
and S2(𝐻) is the Hilbert-Schmidt class. The cone of positive
operators inS𝑝(𝐻) is denoted by S

+

𝑝
(𝐻), and the set of rank

one projections in S+
𝑝
(𝐻) is denoted by 𝑃1(𝐻).

Recall that the norm of a normed space is Fréchet
differentiable at 𝑥 ̸= 0 if lim 𝑡→0((‖𝑥 + 𝑡𝑦‖ − ‖𝑥‖)/𝑡) exists and
uniform for all norm one vectors 𝑦.

Lemma 2 (see [8, Theorem 2.3]). Let 1 < 𝑝 < +∞ and 𝜌 in
S+
𝑝
(𝐻) be nonzero.The norm ofS+

𝑝
(𝐻) is Fréchet differentiable

at 𝜌. For any 𝜎 in S+
𝑝
(𝐻), one has

𝑑
𝜌 + 𝑡𝜎

𝑝

𝑑𝑡

𝑡=0
= tr(

𝜌𝑝−1𝜎
𝜌

𝑝−1

𝑝

) . (10)

Lemma 3. Suppose 𝜌, 𝜎 ∈ S+
𝑝
(𝐻) (1 < 𝑝 < +∞). The

following conditions are equivalent.

(1) 𝜌 = 𝜎.

(2) ‖𝑡𝜌 + (1 − 𝑡)𝑃‖
𝑝
= ‖𝑡𝜎 + (1 − 𝑡)𝑃‖𝑝 for all 𝑃 in 𝑃1(𝐻)

and all 𝑡 in [0, 1].

(3) tr(𝑃𝜌) = tr(𝑃𝜎) for all 𝑃 in 𝑃1(𝐻).

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3): Differentiating both sides of ‖𝑡𝜌 + (1 − 𝑡)𝑃‖

𝑝
=

‖𝑡𝜎 + (1 − 𝑡)𝑃‖𝑝 at 𝑡 = 0+, we have tr𝑃𝜌 = tr𝑃𝑝−1𝜌 =

tr𝑃𝑝−1𝜎 = tr𝑃𝜎 by Lemma 2.
(3) ⇒ (1): Since 𝜌 and 𝜎 are positive, 𝜌 − 𝜎 is Hermitian.

There exists an orthonormal basis {𝑒𝑖}
∞

𝑖=1
of 𝐻 such that 𝜌 −

𝜎 = ∑
∞

𝑖=1
𝜆𝑖𝑒𝑖 ⊗ 𝑒𝑖. Choosing 𝑃𝑖 = 𝑒𝑖 ⊗ 𝑒𝑖, we have 𝜆𝑖 =

tr(𝑃𝑖(𝜌 − 𝜎)) = 0 for all 𝑖 = 1, 2, . . .. It follows that 𝜌 − 𝜎 =
0.

We say that two self-adjoint operators 𝜌, 𝜎 in 𝐵(𝐻) are
orthogonal if 𝜌𝜎 = 0, which is equivalent to the property that
they have mutually orthogonal ranges.

Lemma 4. Suppose that 𝜌, 𝜎 ∈ S+
𝑝
(𝐻) for 1 < 𝑝 < +∞. The

following conditions are equivalent.

(1) 𝜌, 𝜎 are orthogonal; that is, 𝜌𝜎 = 0.

(2) ‖𝛼𝜌 + (1 − 𝛼)𝜎‖𝑝
𝑝
= 𝛼𝑝‖𝜌‖𝑝

𝑝
+ (1 − 𝛼)𝑝‖𝜎‖𝑝

𝑝
for any

(and thus all) 𝛼 in (0, 1).

(3) tr(𝜌𝜎) = 0.

(4) ‖𝜌 + 𝑡𝜎‖
𝑝
≥ ‖𝜌‖

𝑝
for all 𝑡 in R; that is, 𝜌 ⊥ 𝜎 in

Birkhoff ’s sense.

(5) tr(𝜌𝑝−1𝜎) = 0.

Proof. (1) ⇔ (2): From [9, Lemma 2.6], we know that for any
two positive operators 𝐴, 𝐵 in S+

𝑝
(𝐻), we have

tr (𝐴 + 𝐵)𝑝 ≥ tr𝐴𝑝 + tr𝐵𝑝. (11)
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Here, the equality holds if and only if𝐴𝐵 = 0. Setting𝐴 = 𝛼𝜌
and 𝐵 = (1 − 𝛼)𝜎, we get

𝜌𝜎 = 0 ⇐⇒ (𝛼𝜌) ((1 − 𝛼) 𝜎) = 0

⇐⇒ tr (𝛼𝜌 + (1 − 𝛼) 𝜎)𝑝 = tr (𝛼𝜌)𝑝 + tr ((1 − 𝛼) 𝜎)𝑝

⇐⇒
𝛼𝜌 + (1 − 𝛼) 𝜎


𝑝

𝑝
= 𝛼
𝑝𝜌

𝑝

𝑝
+ (1 − 𝛼)

𝑝
‖𝜎‖
𝑝

𝑝
.

(12)

(1) ⇔ (3): One direction is obvious. For the other,
because 𝜌, 𝜎 are positive,

tr [(𝜌1/2𝜎1/2) (𝜌1/2𝜎1/2)
∗

]

= tr (𝜌1/2𝜎1/2𝜎1/2𝜌1/2) = tr (𝜌𝜎) = 0.
(13)

This forces 𝜌1/2𝜎1/2 = 0, and thus 𝜌𝜎 = 𝜌1/2(𝜌1/2𝜎1/2)𝜎1/2 =
0.

(1) ⇒ (4): Since𝜌𝜎 = 0, there exists an orthonormal basis
{𝑒𝑖}
∞

𝑖=1
of 𝐻 such that 𝜌 = ∑∞

𝑖=1
𝜆𝑖𝑒𝑖 ⊗ 𝑒𝑖, 𝜎 = ∑

∞

𝑖=1
𝜇𝑖𝑒𝑖 ⊗ 𝑒𝑖,

𝜆𝑖 ≥ 0, 𝜇𝑖 ≥ 0, and 𝜆𝑖𝜇𝑖 = 0 for all 𝑖 = 1, 2, . . .. Hence,

𝜌 + 𝑡𝜎

𝑝

𝑝
= tr 𝜌 + 𝑡𝜎


𝑝

=
∞

∑
𝑖=1

(𝜆𝑖 + |𝑡| 𝜇𝑖)
𝑝
≥
∞

∑
𝑖=1

𝜆
𝑝

𝑖
=
𝜌

𝑝

𝑝
.

(14)

(4) ⇒ (5): Without loss of generality, we can assume
that 𝜌 ̸= 0. Define 𝑓(𝑡) = ‖𝜌 + 𝑡𝜎‖

𝑝
≥ ‖𝜌‖

𝑝
. Then 𝑓(𝑡)

is differentiable and attains its minimum at 𝑡 = 0. From
Lemma 2,

0 =
𝑑
𝜌 + 𝑡𝜎

𝑝

𝑑𝑡

𝑡=0
= tr(

𝜌𝑝−1𝜎
𝜌

𝑝−1

𝑝

) , (15)

and assertion (5) follows.
(5) ⇒ (1): As in proving (3) ⇒ (1), we have 𝜌𝑝−1𝜎 = 0.

Then, there exists an orthonormal basis {𝑒
𝑖
}∞
𝑖=1

of𝐻 such that
𝜌𝑝−1 = ∑

∞

𝑖=1
𝜉𝑖𝑒


𝑖
⊗𝑒
𝑖
, 𝜎 = ∑∞

𝑖=1
𝜂𝑖𝑒


𝑖
⊗𝑒
𝑖
, with 𝜉𝑖 ≥ 0, 𝜂𝑖 ≥ 0, and

𝜉𝑖𝜇𝑖 = 0 for all 𝑖 = 1, 2, . . .. Thus, tr(𝜌𝜎) = ∑∞
𝑖=1
𝜉
1/(𝑝−1)

𝑖
𝜂𝑖 =

0.

Lemma 5. Let 1 < 𝑝 < +∞. Suppose that 𝜙 is a map
fromS+

𝑝
(𝐻)1 intoS+𝑝(𝐻)1 preserving the Schatten 𝑝-norms of

convex combinations; that is, (6) holds. Then, one has

tr (𝜎𝑝−1𝜌) = tr (𝜙(𝜎)𝑝−1𝜙 (𝜌)) . (16)

Proof. Differentiating both sides of (6) with respect to 𝑡 and
evaluating at 𝑡 = 0, we have

𝑑
𝑡𝜌 + (1 − 𝑡) 𝜎

𝑝

𝑑𝑡

𝑡=0
=
𝑑
𝜎 + 𝑡 (𝜌 − 𝜎)

𝑝

𝑑𝑡

𝑡=0

= tr(
𝜎𝑝−1 (𝜌 − 𝜎)

‖𝜎‖
𝑝−1

𝑝

)

=
tr (𝜎𝑝−1𝜌)

‖𝜎‖
𝑝−1

𝑝

− ‖𝜎‖𝑝

= tr (𝜎𝑝−1𝜌) − 1,

𝑑
𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎)

𝑝

𝑑𝑡

𝑡=0
=
tr (𝜙(𝜎)𝑝−1𝜌)
𝜙 (𝜎)


𝑝−1

𝑝

−
𝜙(𝜎)

𝑝

= tr (𝜙(𝜎)𝑝−1𝜌) − 1.
(17)

Since (6) holds for 𝑡 in (0, 1], these derivatives agree.
Therefore, tr(𝜎𝑝−1𝜌) = tr(𝜙(𝜎)𝑝−1𝜙(𝜌)).

Proposition 6. Suppose that 𝜙 : S+
𝑝
(𝐻)1 → S+

𝑝
(𝐻)1 satisfies

tr (𝜎𝑝−1𝜌) = tr (𝜙(𝜎)𝑝−1𝜙 (𝜌)) , ∀𝜌, 𝜎 ∈ S
+

𝑝
(𝐻)1. (18)

Then the following assertions hold.

(1) 𝜙 preserves orthogonality in both directions; that is

𝜌𝜎 = 0 ⇐⇒ 𝜙 (𝜌) 𝜙 (𝜎) = 0, ∀𝜌, 𝜎 ∈ S
+

𝑝
(𝐻)1. (19)

(2) When dim𝐻 < +∞, 𝜙 maps rank-one projections to
rank-one projections. This also holds when dim𝐻 =
+∞ and 𝜙 is surjective.

(3) When dim𝐻 < +∞, one has

tr𝑃𝑄 = tr𝜙 (𝑃) 𝜙 (𝑄) , ∀𝑃, 𝑄 ∈ 𝑃1 (𝐻) . (20)

This also holds when dim𝐻 = +∞ and 𝜙 is surjective.

Proof. (1) follows from Lemma 4.
(2) First, we assume that dim𝐻 = 𝑛 < +∞. Suppose 𝜌 is

a rank-one projection. We can find 𝑛− 1 pairwise orthogonal
rank-one projections 𝜌1, . . . , 𝜌𝑛−1 such that 𝜌𝜌𝑖 = 0 for 1 ≤
𝑖 ≤ 𝑛 − 1. From (1), we know that 𝜙(𝜌), 𝜙(𝜌1), . . . , 𝜙(𝜌𝑛−1) are
nonzero and pairwise orthogonal. This forces that𝜙(𝜌) has
rank one since dim𝐻 = 𝑛. By (18), taking 𝜎 = 𝜌, we see that
tr𝜙(𝜌)𝑝 = tr 𝜌𝑝 = tr 𝜌 = 1. Therefore, the rank-one positive
operator 𝜙(𝜌) is a projection.

Next, we consider the case dim𝐻 = +∞ and 𝜙 is
surjective. Suppose that there exists a rank-one projection 𝜌
in S+
𝑝
(𝐻) such that 𝜙(𝜌) has rank greater than one. Then,

there are two nonzero orthogonal operators 𝑇1 and 𝑇2 in
S+
𝑝
(𝐻) such that 𝜙(𝜌) = 𝑇1 + 𝑇2. Since 𝜙 is surjective

and preserves orthogonality in both directions, there are two
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nonzero orthogonal operators 𝜌1 and 𝜌2 inS+
𝑝
(𝐻)1 such that

𝜙(𝜌1) = 𝑇1/‖𝑇1‖𝑝 and 𝜙(𝜌2) = 𝑇1/‖𝑇2‖𝑝. For any 𝜎 in S+
𝑝
(𝐻)

with 𝜎𝜌 = 0, we have

𝜙 (𝜎) (
𝑇1
𝑝𝜙 (𝜌1) +

𝑇2
𝑝𝜙 (𝜌2))

= 𝜙 (𝜎) (𝑇1 + 𝑇2) = 𝜙 (𝜎) 𝜙 (𝜌) = 0.
(21)

It forces that
𝑇1
𝑝𝜙 (𝜎) 𝜙 (𝜌1) 𝜙 (𝜎) = −

𝑇2
𝑝𝜙 (𝜎) 𝜙 (𝜌2) 𝜙 (𝜎) = 0,

(22)

and hence 𝜙(𝜎)𝜙(𝜌1) = 𝜙(𝜎)𝜙(𝜌2) = 0, because 𝜙(𝜎), 𝜙(𝜌1),
and 𝜙(𝜌2) are all positive. This implies 𝜎𝜌1 = 𝜎𝜌2 = 0.
Therefore, 𝜌1 = 𝜆1𝜌 and 𝜌2 = 𝜆2𝜌 for some nonzero 𝜆1, 𝜆2.
This contradicts the fact that 𝜌1𝜌2 = 0.

(3) From (2), we know that 𝜙(𝑃), 𝜙(𝑄) are rank-one
projections in 𝑃1(𝐻). Therefore, 𝑃𝑝−1 = 𝑃, 𝜙(𝑃)𝑝−1 = 𝜙(𝑃).
Using (18) with 𝜎 = 𝑃, 𝜌 = 𝑄, we have

tr𝑃𝑄 = tr (𝑃𝑝−1𝑄) = tr (𝜙(𝑃)𝑝−1𝜙 (𝑄)) = tr𝜙 (𝑃) 𝜙 (𝑄) .
(23)

Proof of Theorem 1. (1) ⇒ (2) follows from Lemma 5.
(3) ⇒ (1) is obvious.
(2) ⇒ (3): From Proposition 6, we obtain that 𝜙|𝑃

1
(𝐻) :

𝑃1(𝐻) → 𝑃1(𝐻) satisfies tr𝑃𝑄 = tr𝜙(𝑃)𝜙(𝑄) for all rank-
one projections 𝑃,𝑄 in 𝑃1(𝐻). From a nonsurjective version
of Wigner’s theorem, cf. [6, Theorem 2.1.4], there exists an
isometry or anti-isometry 𝑈 on𝐻 such that

𝜙 (𝑃) = 𝑈𝑃𝑈
∗
, ∀𝑃 ∈ 𝑃1 (𝐻) . (24)

Note that 𝑈 is indeed surjective even when 𝐻 is of infinite
dimension, since 𝜙 is assumed to be surjective in this case.

For any rank-one projection 𝑃 in 𝑃1(𝐻), setting 𝜎 = 𝑃 in
(7), we have

tr (𝑃𝜌) = tr (𝑃𝑝−1𝜌) = tr (𝜙(𝑃)𝑝−1𝜙 (𝜌)) = tr (𝜙 (𝑃) 𝜙 (𝜌))

= tr (𝑈𝑃𝑈∗𝜙 (𝜌)𝑈) = tr (𝑃𝑈∗𝜙 (𝜌)𝑈) .
(25)

We have𝑈∗𝜙(𝜌)𝑈 = 𝜌 by Lemma 3.This gives 𝜙(𝜌) = 𝑈𝜌𝑈∗.

3. Maps Preserving Norms of Just a Special
Convex Combination

A careful look at the proof of Lemma 5 tells us that the
condition ‖𝑡𝜌 + (1 − 𝑡)𝜎‖

𝑝
= ‖𝑡𝜙(𝜌) + (1 − 𝑡)𝜙(𝜎)‖

𝑝
suffices

to hold for the members of any sequence in (0, 1] converging
to 0 rather than for any point 𝑡 in [0, 1]. Indeed, in order to
get some good properties of 𝜙 stated in the previous section,
we only need to assume that 𝜙 preserves the Schatten 𝑝-norm
of convex combination with a given system of coefficients.

Proposition 7. Let 𝜙 : S+
𝑝
(𝐻)1 → S+

𝑝
(𝐻)1 (1 < 𝑝 < +∞).

Let 𝛼 in (0, 1) be arbitrary but fixed. Suppose
𝛼𝜌 + (1 − 𝛼) 𝜎

𝑝 =
𝛼𝜙 (𝜌) + (1 − 𝛼) 𝜙 (𝜎)

𝑝,

∀𝜌, 𝜎 ∈ S
+

𝑝
(𝐻)1.

(26)

The following properties are satisfied.

(1) 𝜙 is injective.
(2) 𝜙 preserves orthogonality in both directions.
(3) When dim𝐻 < +∞, 𝜙 maps rank-one projections to

rank-one projections. This also holds when dim𝐻 =
+∞ and 𝜙 is surjective.

Proof. (1) Assume 𝜙(𝜌) = 𝜙(𝜎). We have ‖𝛼𝜙(𝜌)+
(1 − 𝛼)𝜙(𝜎)‖

𝑝
= 1. From (26), we get ‖𝛼𝜌 + (1 − 𝛼)𝜎‖

𝑝
= 1.

Hence,
𝛼𝜌 + (1 − 𝛼) 𝜎

𝑝 = 𝛼
𝜌
𝑝 + (1 − 𝛼) ‖𝜎‖𝑝. (27)

This forces 𝜌 = 𝜎 since the norm ‖ ⋅ ‖𝑝 is strictly convex for
1 < 𝑝 < +∞.

(2) Assume 𝜌𝜎 = 0. From Lemma 4, we have
𝛼𝜌 + (1 − 𝛼) 𝜎


𝑝

𝑝
= 𝛼
𝑝𝜌

𝑝
+ (1 − 𝛼)

𝑝
‖𝜎‖
𝑝

= 𝛼
𝑝𝜙 (𝜌)


𝑝
+ (1 − 𝛼)

𝑝𝜙 (𝜎)

𝑝
.

(28)

Together with (26), we have
𝛼𝜙 (𝜌) + (1 − 𝛼) 𝜙 (𝜎)


𝑝

𝑝

= 𝛼
𝑝𝜙 (𝜌)


𝑝
+ (1 − 𝛼)

𝑝𝜙 (𝜎)

𝑝
.

(29)

Hence, we have 𝜙(𝜌)𝜙(𝜎) = 0 fromLemma 4 again.The other
implication follows similarly.

(3) The proof is similar to that of Proposition 6(2).

When 𝑝 = 2, we get an improvement of Theorem 1.

Theorem 8. Let 𝐻 be a separable complex Hilbert space.
Suppose that 𝜙 : S+

2
(𝐻)1 → S+

2
(𝐻)1, which needs to be

surjective when dim 𝐻 = +∞. The following conditions are
equivalent.

(1) 𝜙 preserves the Hilbert-Schmidt norms of all convex
combinations; that is,
𝑡𝜌 + (1 − 𝑡) 𝜎

2 =
𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎)

2,

∀𝜌, 𝜎 ∈ S
+

2
(𝐻)1, 𝑡 ∈ [0, 1] .

(30)

(2) For any (and thus all) 𝛼 in (0, 1) one has
𝛼𝜌 + (1 − 𝛼) 𝜎

2 =
𝛼𝜙 (𝜌) + (1 − 𝛼) 𝜙 (𝜎)

2,

∀𝜌, 𝜎 ∈ S
+

2
(𝐻)1.

(31)

A special case states that
𝜌 + 𝜎

2 =
𝜙 (𝜌) + 𝜙 (𝜎)

2, ∀𝜌, 𝜎 ∈ S
+

2
(𝐻)1. (32)
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(3) tr(𝜌𝜎) = tr(𝜙(𝜌)𝜙(𝜎)) for all 𝜌, 𝜎 in S+
2
(𝐻)1.

(4) There exists a unitary or antiunitary operator 𝑈 such
that

𝜙 (𝜌) = 𝑈𝜌𝑈
∗
, ∀𝜌 ∈ S

+

2
(𝐻)1. (33)

Proof. We prove (2) ⇒ (3) only. Observe
𝛼𝜌 + (1 − 𝛼) 𝜎


2

2
= tr (𝛼𝜌 + (1 − 𝛼) 𝜎)2

= 𝛼
2 tr 𝜌2 + 2𝛼 (1 − 𝛼) tr (𝜌𝜎)

+ (1 − 𝛼)
2 tr𝜎2,

𝛼𝜙 (𝜌) + (1 − 𝛼) 𝜙 (𝜎)

2

2
= 𝛼
2 tr𝜙(𝜌)2

+ 2𝛼 (1 − 𝛼) tr (𝜙 (𝜌) 𝜙 (𝜎))

+ (1 − 𝛼)
2 tr𝜙(𝜎)2.

(34)

We have tr(𝜌𝜎) = tr(𝜙(𝜌)𝜙(𝜎)).

4. Examples

We remark that all results in previous sections hold for a map
𝜙 : S+

𝑝
(𝐻) → S+

𝑝
(𝐻) which satisfies instead of (6) the

condition
𝑡𝜌 + (1 − 𝑡) 𝜎

𝑝 =
𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎)

𝑝,

∀𝜌, 𝜎 ∈ S
+

𝑝
(𝐻) , 𝑡 ∈ [0, 1] .

(35)

The proofs go in exactly the same ways.
The following example shows that a norm preserver of

S+
𝑝
(𝐻)might not be affine.

Example 1. Let 𝐻 be a finite dimensional Hilbert space with
an orthonormal basis {𝑒𝑖}

𝑛

𝑖=1
. Let 1 < 𝑝 < +∞. Define a map

𝜙 from S+
𝑝
(𝐻) into itself by

𝜙 (𝜌) =

{{{
{{{
{

0, if 𝜌 = 0,
𝜌
𝑝

∑
𝑛

𝑖=1
𝑃𝑖𝜌𝑃𝑖

𝑝

𝑛

∑
𝑖=1

𝑃𝑖𝜌𝑃𝑖, if 𝜌 ̸= 0,
(36)

where 𝑃𝑖 = 𝑒𝑖 ⊗ 𝑒𝑖 is a rank-one projection for 𝑖 = 1, . . . , 𝑛.
Obviously, 𝜙(𝜌) is positive and ‖𝜙(𝜌)‖

𝑝
= ‖𝜌‖

𝑝
for all 𝜌 in

S+
𝑝
(𝐻). However, 𝜙 does not preserve the Schatten 𝑝-norms

of convex combinations, as the eigenvalues of 𝜌 and 𝜙(𝜌) can
be different from each other.

Our theorems are about the Schatten 𝑝-norms for 1 <
𝑝 < +∞. Here is an example of a map of S+

1
(𝐻) which

preserves trace norms of convex combinations. However, it
is not implemented by a unitary or antiunitary.

Example 2. Consider Example 1 in the case where 𝑝 = 1. In
this case,

𝜙 (𝜌) =
𝑛

∑
𝑖=1

𝑃𝑖𝜌𝑃𝑖. (37)

It is easy to see that the map 𝜙 satisfies the condition
𝑡𝜌 + (1 − 𝑡) 𝜎

1 =
𝑡𝜙 (𝜌) + (1 − 𝑡) 𝜙 (𝜎)

1,

∀𝜌, 𝜎 ∈ S
+

1
(𝐻) , 𝑡 ∈ [0, 1] .

(38)

But there does not exist a unitary or antiunitary 𝑈 such that
𝜙(𝜌) = 𝑈𝜌𝑈∗ for all 𝜌 in S+

1
(𝐻).

Example 3. Let 𝐻 be a separable Hilbert space of infinite
dimension, and let {𝑒𝑛 : 𝑛 = 1, 2, . . .} be a basis of𝐻. Let 𝑆 be
the unilateral shift on𝐻 defined by 𝑆𝑒𝑛 = 𝑒𝑛+1 for 𝑛 = 1, 2, . . ..
Let 𝜙 be defined by 𝜙(𝜌) = 𝑆𝜌𝑆∗ for 𝜌 inS+

𝑝
(𝐻). Themap 𝜙 is

not surjective, as 𝑒1 ⊗𝑒1 is not in its range. It is easy to see that
‖𝑡𝜌 + (1 − 𝑡)𝜎‖

𝑝
= ‖𝑡𝜙(𝜌) + (1 − 𝑡)𝜙(𝜎)‖

𝑝
holds for all 𝜌, 𝜎 in

S+
𝑝
(𝐻) and 𝑡 in [0, 1]. However, 𝜙 is not implemented by a

unitary or antiunitary.
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