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CONTINUOUS SELECTIONS AND FIXED POINTS
OF MULTI-VALUED MAPPINGS

ON NONCOMPACT OR NONMETRIZABLE SPACES
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(Communicated by Jonathan M. Borwein)

Abstract. In this paper, we obtain several new continuous selection theo-
rems for multi-valued mappings on completely regular spaces and fixed point
theorems for multi-valued maps on nonmetrizable spaces. They, in particular,
provide a partial solution of a conjecture of X. Wu.

1. Introduction

In [4, 5], Browder first used a continuous selection theorem to prove the Fan-
Browder fixed point theorem. Later, Yannelis and N. D. Prabhakar [17], Ben-El-
Mechaiekh [2, 3], Ding, Kim and Tan [8], Horvath [11], Wu [16, 15], Park [12, 13],
and many others, established several continuous selection theorems with applica-
tions. We note that in all the continuous selection theorems studied by the above
authors, the multi-valued maps are defined on a compact or paracompact space. In
[18], Yu and Lin studied continuous selections of multi-valued mappings defined on
noncompact spaces, but they assume some kind of coercivity conditions instead.

In this paper, we establish a continuous selection theorem for a multi-valued
map defined on a completely regular topological space. We do not assume the
compactness of its domain.

In the second part of this paper, we discuss collectively fixed points of lower
semicontinuous multi-valued maps. Recently, many authors studied fixed point
theorems of lower semicontinuous multi-valued maps; see for example [14, 6, 15, 1].
In particular, Wu established the following one.

Theorem 1.1 ([15]). Let X be a nonempty subset of a Hausdorff locally convex
topological vector space, let D be a nonempty compact metrizable subset of X, and
let T : X → 2D be a multi-valued mapping with the following properties:

(a) T (x) is a nonempty closed convex set for each x in X;
(b) T is lower semicontinuous.

Then there exists a point x̄ in D such that x̄ ∈ T (x̄).

Wu conjectured in [15] that the conclusion of Theorem 1.1 remains true even
if the metrizability condition of D is dropped. In this paper, we shall use the
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approximate continuous selection theorem of Deutsch and Kenderov [7] (see also
[20]) to establish an approximate fixed point theorem for a sub-lower semicontinuous
multi-valued map. This gives rise to a partial solution of the conjecture of Wu
[15]. We shall also provide a simple proof of a Himmelberg type collectively fixed
point theorem. We remark that our results differ from the approximate fixed point
theorem recently established by Park [13].

We would like to thank the referee for many helpful suggestions on improving
the presentation and the bibliography in this paper.

2. Preliminaries

Let X and Y be topological spaces. A multi-valued map T : X → 2Y is a map
from X into the power set 2Y of Y . Let T−1 : Y → 2X be defined by the condition
that x ∈ T−1y if and only if y ∈ T (x). Recall that

(a) T is said to be closed if its graph Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)} is
closed in the product space X × Y ;

(b) T is said to be upper semicontinuous (in short, u.s.c.) at x if for every open
set V in Y with T (x) ⊂ V , there exists a neighborhood W (x) of x such
that T (W (x)) ⊂ V ; T is said to be u.s.c. on X if T is u.s.c. at every point
of X;

(c) T is said to be lower semicontinuous (in short, l.s.c.) at x if for every open
neighborhood V (y) of every y in T (x), there exists a neighborhood W (x)
of x such that T (u) ∩ V (y) �= ∅ for all u in W (x); T is said to be l.s.c. on
X if T is l.s.c. at every point of X;

(d) in case Y is a topological linear space, T is said to be sub-lower semicontin-
uous (see, e.g., [20]) at an x in X if for each neighborhood V of 0 in Y , there
is a z in T (x) and a neighborhood U(x) of x in X such that z ∈ T (y) + V
for each y in U(x); T is said to be sub-lower semicontinuous on X if T is
sub-lower semicontinuous at every point of X. It is plain that if T is lower
semicontinuous at x, then T is sub-lower semicontinuous at x.

The following lemmas are needed in this paper.

Lemma 2.1 (Deutsch and Kenderov [7]). Let X be a paracompact topological space,
let Y be a locally convex topological linear space, and let F : X → 2Y . Then F is
sub-lower semicontinuous if and only if for each neighborhood V of 0 in Y , there is
a continuous function f : X → Y such that f(x) ∈ F (x) + V for each x in X.

Lemma 2.2 (Yuan [19]). Let X be a topological space, let Y be a nonempty subset
of a topological vector space with a base B for the zero neighborhoods, and let F :
X → 2Y . For each V in B, define FV : X → 2Y by

FV (x) = (F (x) + V ) ∩ Y, ∀x ∈ X.

Write ȳ ∈ F (x̄) if (x̄, ȳ) ∈ GrF . Then for any x̄ in X and ȳ in Y , we have

ȳ ∈ F (x̄) whenever ȳ ∈
⋂

V ∈B
FV (x̄).

Lemma 2.3 (Himmelberg [10]). Let X be a nonempty convex subset of a locally
convex topological vector space. Let T : X → 2X be a u.s.c. multi-valued map
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with nonempty closed convex values such that T (X) =
⋃

x∈X T (x) is contained in
a compact subset of X. Then there exists an x̄ in X such that x̄ ∈ T (x̄).

Lemma 2.4 (Granas [9]; see also Ding, Kim and Tan [8]). Let D be a nonempty
compact subset of a topological vector space. Then the convex hull co D of D is
σ-compact and hence is paracompact.

3. Continuous selection theorems

Note that the set S−1(y) = {x ∈ X : y ∈ S(x)} below can have empty interior
for some y in K.

Theorem 3.1. Let X be a completely regular space and let K be a nonempty
subset of a Hausdorff topological vector space E. Assume a multi-valued function
S : X −→ 2K satisfies the following conditions:

(a) For each x in X, the set S(x) is convex.
(b) X =

⋃
{int S−1(y) : y ∈ K}.

Then for any compact subset F of X there is an open dense subset U of X containing
F such that S has a continuous selection f : U → K, that is, f(x) ∈ S(x) for all x
in U .

Proof. By assumption (b), there are finitely many points y1, . . . , yn in K such that

F ⊆ int S−1(y1) ∪ · · · ∪ int S−1(yn).

For each k = 1, . . . , n and x in F ∩ int S−1(yk), there is a continuous function
gx on X such that 0 ≤ gx ≤ 1, gx(x) = 1 and gx vanishes outside int S−1(yk).
By the compactness of F , there are finitely many gx such that for every point in
F at least one of them assumes a value not less than 1/2. Summing them in an
appropriate way, we will have nonnegative continuous functions g1, . . . , gn on X
such that gk vanishes outside int S−1(yk), and

∑n
k=1 gk(x) ≥ 1/2 for all x in F .

Let V = {x ∈ X :
∑n

k=1 gk(x) > 1/3}. Set fj(x) = gj(x)/
∑n

k=1 gk(x) on V , and
fj(x) = 3gj(x) on X \ V . Define a continuous function fV : X −→ E by

fV (x) =
n∑

k=1

fk(x)yk, ∀x ∈ X.

For each x in V and for each k with fk(x) �= 0, we have x ∈ int S−1(yk). Hence,
yk ∈ S(x). Consequently, fV (x) ∈ co(S(x)) = S(x) ⊆ K for all x in V . In other
words, the restriction of fV to V gives rise to a continuous selection of S on the
open set V which contains F .

Denote by

W = {(fW , W ) : where W is an open subset of X containing F and

fW : W → K gives rise to a continuous selection of S on W}.

Then W is not empty as (fV , V ) ∈ W . Order W by extension and we get a
nonempty partially ordered set. In other words, (fW , W ) ≤ (fV , V ) if W ⊆ V and
fV |W = fW . Applying Zorn’s Lemma, we get a maximal element (fU , U) of W .

The last step is to verify that U is dense in X. Suppose not and there were an
x in X outside the closure of U . Let x ∈ int S−1(y) for some y in K. By setting
f|W ≡ y, we get a continuous selection of S on an open neighborhood W of x
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disjoint from U by restriction. Then the union fU∪W : U ∪ W −→ K defined in a
natural way provides a contradiction to the maximality of (fU , U). �

We call a topological space X residually paracompact if for every open dense
subset U of X the complement X \ U is paracompact.

Theorem 3.2. In addition to conditions (a) and (b) in Theorem 3.1, if we assume
further that

(c) X is residually paracompact,

then there is a continuous function f : X → K such that f(x) ∈ S(x) for all x in
X.

Proof. It follows from Theorem 3.1 that there is a continuous function fU : U −→ K
defined on an open dense subset U of X with fU (x) ∈ S(x) for all x in U . For each
z in X \U , there is a y in K such that z ∈ int S−1(y) by condition (b). By setting
f|Wz

≡ y we get a continuous selection of S on an open neighborhood Wz of z. The
paracompactness of X \ U ensures it has a locally finite covering by open sets in
X, each of which is contained in some Wz. Adding one more open set U , we have a
locally finite open covering of X. This provides us with a family {gλ}λ of nonzero
continuous functions from X into [0, 1] dominated by the open sets Wz and U such
that gλ(x) = 0 for all but finitely many λ’s and

∑
λ gλ(x) = 1 for all x in X. If gλ

vanishes outside U , we set fλ = fU . Otherwise, we fix a choice of z such that gλ

vanishes outside Wz, and set fλ = fWz
. Define f : X −→ K by

f(x) =
∑

λ

gλ(x)fλ(x), ∀x ∈ X.

For each x in X, only finitely many gλ(x)’s are nonzero in the sum, and the nonzero
terms give rise to a convex combination of points in the convex set S(x). Thus
f(x) ∈ S(x) for all x in X. �

It is easy to see that the following corollary follows from Theorem 3.1.

Corollary 3.3. The conclusion of Theorem 3.1 remains true if conditions (a) and
(b) are replaced by

(a)′ for each x in X, the set S(x) is a nonempty convex set;
(b)′ for each y in K, the set S−1(y) is open.

Remark 3.4. Corollary 3.3 implies Theorem 3.1.

Proof. Let T : X → 2K be defined by

T (x) = {y ∈ K : x ∈ int S−1(y)}.

Then T−1(y) = int S−1(y) is open for each y in K. By (b), for each x in X, there
exists y in K such that x ∈ int S−1(y). Therefore y ∈ T (x) �= ∅ for each x in X.
Let H : X → 2K be defined by H(x) = coT (x). Then H(x) is nonempty for each x
in X, and H−1(y) is open for each y in K. By Corollary 3.3, there is an open dense
subset U of X, containing any but a fixed compact set D, and there is a continuous
function f : U → K such that f(x) ∈ H(x) = co T (x) ⊂ S(x) for all x in U . �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONTINUOUS SELECTIONS AND FIXED POINTS 3425

4. Fixed point theorems

Theorem 4.1. For each i in a nonempty index set I, let Xi be a nonempty convex
subset of a Hausdorff locally convex topological vector space Ei, and let Di be a
compact subset of Xi. Let X =

∏
i∈I Xi be the product space. Let Fi : X →

2Di be sub-lower semicontinuous with nonempty convex values. Then for every
neighborhood Vi of 0 in Ei, there exists a point x̄V = (xVi

) in D =
∏

i∈I Di such
that (x̄Vi

+ Vi) ∩ Fi(x̄V ) �= ∅ for all i in I.

Proof. Let Vi be a neighborhood of zero in Ei for each i in I. Fix any i in I. There
exists an absolutely convex neighborhood Wi of 0 such that Wi ⊂ Vi. Note that
D is a compact subset of X. By Lemma 2.4, co D is a paracompact subset of X.
Since Fi : X → 2Di is a sub-lower semicontinuous multi-valued map with nonempty
convex values, by Lemma 2.1 there exists a continuous function fi : coD → Di such
that

fi(x) ∈ (Fi(x) + Wi) ∩ Di for each x ∈ coD.

Define f : coD → D by f(x) =
∏

i∈Ifi(x) for x in coD. By the Himmelberg
fixed point theorem (Lemma 2.3), there exists an x̄V = (x̄Vi

)i∈I in co D such that
x̄V = f(x̄V ) =

∏
i∈Ifi(x̄V ). That is, x̄Vi

= fi(x̄V ) ∈ (Fi(x̄V ) + Wi) ∩ Di. Thus,
x̄Vi

∈ Di and (x̄Vi
+ Wi) ∩ Fi(x̄V ) �= ∅ for all i in I. Since Wi ⊂ Vi, we have

(x̄i + Vi) ∩ Fi(x̄V ) �= ∅ for all i in I. �

Theorem 4.2. Suppose in Theorem 4.1 we assume further that for each x =
(x̄i)i∈I ∈ X, its coordinates xi �∈ Fi(x) \ Fi(x) for all i in I. Then there exists
a point x̄ = (x̄i)i∈I ∈ D =

∏
i∈IDi such that x̄i ∈ Fi(x̄) for each i in I.

Proof. For each i in I, let Bi be the collection of all absolutely convex open neigh-
borhoods of zero in Ei and B =

∏
i∈IBi. Given any V =

∏
i∈IVi in B, let

QV = {x ∈ D : xi ∈ FVi
(x) for all i in I}. Then QV is a nonempty closed

subset of D for each V in B by Theorem 4.1. Let {V (1), · · ·, V (n)} be any finite
subset of B. Write V (i) =

∏
j∈IV

(i)
j , where V

(i)
j ∈ Bj for each i = 1, · · ·, n. Let

V ′ =
∏

j∈I(
⋂n

i=1V
(i)
j ) ∈ B. Clearly, ∅ �= QV ′ ⊆

⋂n
i=1QV (i) . Therefore, the family

{QV : V ∈ B} has the finite intersection property. Since QV ⊂ D for all V in B
and D is compact,

⋂
V ∈BQV �= ∅. Let x̄ = (x̄i)i∈I ∈

⋂
V ∈BQV . Then x̄i ∈ FVi

(x̄)
for all i in I and all Vi in Bi, i.e., x̄i ∈

⋂
Vi∈Bi

FVi
(x̄) for all i in I. It follows from

Lemma 2.2 that x̄i ∈ Fi(x̄) for all i in I. By assumption, x̄i ∈ Fi(x̄) for all i in
I. �

We remark that if Fi is closed, then xi �∈ Fi(x)\Fi(x) for each x = (xi)i∈I in X.
As a special case of Theorem 4.2, we have the following collectively Himmelberg
type fixed point theorem.

Corollary 4.3. For each i in a nonempty index set I, let Xi be a nonempty convex
subset of a locally convex topological vector space Ei, let Di be a nonempty compact
subset of Xi, and let fi : X =

∏
i∈IXi → Di be a continuous function. Then there

exists x̄ = (x̄i)i∈I ∈ D =
∏

i∈IDi such that x̄i = fi(x̄) for each i in I.

If the index set I is a singleton, then Theorem 4.2 reduces to the following
corollary, which provides a partial solution to a conjecture of Wu [15].
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Corollary 4.4. Let X be a nonempty convex subset of a locally convex topological
vector space E, let D be a nonempty compact subset of X, and let F : X → 2D be
sub-lower semicontinuous with nonempty convex values. Suppose x �∈ F (x) \ F (x)
for each x in X. Then there exists a point x̄ in D such that x̄ ∈ F (x̄).

By Theorem 4.1, we have the following almost fixed point theorem.

Corollary 4.5. The conclusions of Theorems 4.1 and 4.2 remain valid if the con-
dition “Fi : X → 2Di is sub-lower semicontinuous for each i in I” is replaced by
“F−1

i (yi) is open for each yi in Di and each i in I.”

Finally we remark that in case I is a singleton, Theorem 4.1 provides a different
result from [12, Theorem 3].
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