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ABSTRACT. In this paper, we obtain several new continuous selection theo-
rems for multi-valued mappings on completely regular spaces and fixed point
theorems for multi-valued maps on nonmetrizable spaces. They, in particular,
provide a partial solution of a conjecture of X. Wu.

1. INTRODUCTION

In [4l [5], Browder first used a continuous selection theorem to prove the Fan-
Browder fixed point theorem. Later, Yannelis and N. D. Prabhakar [17], Ben-El-
Mechaiekh [2} [3], Ding, Kim and Tan [8], Horvath [1I], Wu [16] [15], Park [12] [13],
and many others, established several continuous selection theorems with applica-
tions. We note that in all the continuous selection theorems studied by the above
authors, the multi-valued maps are defined on a compact or paracompact space. In
[18], Yu and Lin studied continuous selections of multi-valued mappings defined on
noncompact spaces, but they assume some kind of coercivity conditions instead.

In this paper, we establish a continuous selection theorem for a multi-valued
map defined on a completely regular topological space. We do not assume the
compactness of its domain.

In the second part of this paper, we discuss collectively fixed points of lower
semicontinuous multi-valued maps. Recently, many authors studied fixed point
theorems of lower semicontinuous multi-valued maps; see for example [14] @], [T5] [T].
In particular, Wu established the following one.

Theorem 1.1 ([15]). Let X be a nonempty subset of a Hausdorff locally convex
topological vector space, let D be a nonempty compact metrizable subset of X, and
let T : X — 2P be a multi-valued mapping with the following properties:

(a) T(x) is a nonempty closed convex set for each x in X;
(b) T is lower semicontinuous.

Then there exists a point T in D such that T € T(Z).

Wu conjectured in [15] that the conclusion of Theorem [Tl remains true even
if the metrizability condition of D is dropped. In this paper, we shall use the
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approximate continuous selection theorem of Deutsch and Kenderov [7] (see also
[20]) to establish an approximate fixed point theorem for a sub-lower semicontinuous
multi-valued map. This gives rise to a partial solution of the conjecture of Wu
[15]. We shall also provide a simple proof of a Himmelberg type collectively fixed
point theorem. We remark that our results differ from the approximate fixed point
theorem recently established by Park [13].

We would like to thank the referee for many helpful suggestions on improving
the presentation and the bibliography in this paper.

2. PRELIMINARIES

Let X and Y be topological spaces. A multi-valued map T : X — 2V is a map
from X into the power set 2¥ of Y. Let 77! : Y — 2% be defined by the condition
that o € T~ 1y if and only if y € T'(x). Recall that

(a) T is said to be closed if its graph G,.(T) = {(z,y) : z € X,y € T(z)} is
closed in the product space X x Y

(b) T is said to be upper semicontinuous (in short, u.s.c.) at x if for every open
set V in Y with T'(x) C V, there exists a neighborhood W (z) of x such
that T(W(z)) C V; T is said to be u.s.c. on X if T is u.s.c. at every point
of X;

(c) T is said to be lower semicontinuous (in short, l.s.c.) at x if for every open
neighborhood V (y) of every y in T'(x), there exists a neighborhood W (x)
of x such that T'(u) NV (y) # 0 for all v in W(z); T is said to be l.s.c. on
X if T is l.s.c. at every point of X;

(d) in case Y is a topological linear space, T' is said to be sub-lower semicontin-
uous (see, e.g., [20]) at an z in X if for each neighborhood V of 0 in Y, there
is a z in T'(z) and a neighborhood U(x) of x in X such that z € T(y) + V
for each y in U(z); T is said to be sub-lower semicontinuous on X if T is
sub-lower semicontinuous at every point of X. It is plain that if T" is lower
semicontinuous at x, then T is sub-lower semicontinuous at x.

The following lemmas are needed in this paper.
Lemma 2.1 (Deutsch and Kenderov [7]). Let X be a paracompact topological space,
let Y be a locally convex topological linear space, and let F : X — 2Y. Then F is

sub-lower semicontinuous if and only if for each neighborhood V' of 0 in Y, there is
a continuous function f: X —Y such that f(z) € F(x) +V for each x in X.

Lemma 2.2 (Yuan [19]). Let X be a topological space, let Y be a nonempty subset
of a topological vector space with a base B for the zero meighborhoods, and let F :
X — 2Y. For each V in B, define Fyy : X — 2 by

Fy(z)=(F(x)+V)nY, VrelX.
Write §j € F(z) if (z,9) € G, F. Then for any T in X and 3 in'Y, we have

y € F(z) whenever € m Fy(2).

veB

Lemma 2.3 (Himmelberg [I0]). Let X be a nonempty convex subset of a locally
convez topological vector space. Let T : X — 2% be a w.s.c. multi-valued map
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with nonempty closed conver values such that T(X) = |J,cx T(x) is contained in
a compact subset of X. Then there exists an T in X such that T € T(Z).

Lemma 2.4 (Granas [9]; see also Ding, Kim and Tan [8]). Let D be a nonempty
compact subset of a topological vector space. Then the convex hull coD of D is
o-compact and hence is paracompact.

3. CONTINUOUS SELECTION THEOREMS

Note that the set S™!(y) = {z € X : y € S(x)} below can have empty interior
for some y in K.

Theorem 3.1. Let X be a completely regular space and let K be a nonempty
subset of a Hausdorff topological vector space E. Assume a multi-valued function
S : X — 2K satisfies the following conditions:

(a) For each x in X, the set S(x) is convex.

(b) X =HintS~(y):y € K}.
Then for any compact subset F' of X there is an open dense subset U of X containing
F such that S has a continuous selection f: U — K, that is, f(x) € S(x) for all x
mU.

Proof. By assumption (b), there are finitely many points 41, ..., ¥y, in K such that
FCint S~ (y1)U---Uint S~ (y,).

For each k = 1,...,n and x in F Nint S~!(yz), there is a continuous function
gz on X such that 0 < g, < 1, g.(x) = 1 and g, vanishes outside int S~1(yy).
By the compactness of F', there are finitely many ¢, such that for every point in
F at least one of them assumes a value not less than 1/2. Summing them in an
appropriate way, we will have nonnegative continuous functions ¢i,...,g, on X
such that gy vanishes outside int S~'(yx), and >, _, gx(x) > 1/2 for all z in F.
Let V.={x e X : >} _ gu(x) >1/3}. Set fj(z) = g;(x)/ > r_; gx(x) on V, and
fi(xz) =3gj(xz) on X \ V. Define a continuous function fy : X — E by

fv(z) = ka(x)yk, Vo e X.
k=1
For each z in V and for each k with fi(x) # 0, we have z € int S~!(y;). Hence,
yr € S(x). Consequently, fy(x) € co(S(x)) = S(z) C K for all  in V. In other
words, the restriction of fy to V gives rise to a continuous selection of S on the
open set V which contains F.
Denote by

W ={(fw,W) : where W is an open subset of X containing F' and

fw : W — K gives rise to a continuous selection of S on W}.

Then W is not empty as (fy,V) € W. Order W by extension and we get a
nonempty partially ordered set. In other words, (fw, W) < (fy,V) it W C V and
fviw = fw. Applying Zorn’s Lemma, we get a maximal element (fu,U) of W.
The last step is to verify that U is dense in X. Suppose not and there were an
x in X outside the closure of U. Let x € int S~!(y) for some y in K. By setting
flw = y, we get a continuous selection of S on an open neighborhood W of x
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disjoint from U by restriction. Then the union fyuw : U UW — K defined in a
natural way provides a contradiction to the maximality of (fy,U). (]

We call a topological space X residually paracompact if for every open dense
subset U of X the complement X \ U is paracompact.

Theorem 3.2. In addition to conditions (a) and (b) in Theorem Bl, if we assume
further that

(c) X is residually paracompact,

then there is a continuous function f : X — K such that f(z) € S(x) for all x in
X.

Proof. It follows from Theorem[3.I]that there is a continuous function fy : U — K
defined on an open dense subset U of X with fy(z) € S(x) for all x in U. For each
zin X \ U, there is a y in K such that z € int S~*(y) by condition (b). By setting
Jiw. =y we get a continuous selection of S on an open neighborhood W of z. The
paracompactness of X \ U ensures it has a locally finite covering by open sets in
X, each of which is contained in some W,. Adding one more open set U, we have a
locally finite open covering of X. This provides us with a family {gx} of nonzero
continuous functions from X into [0, 1] dominated by the open sets W, and U such
that gx(z) = 0 for all but finitely many X’s and ), gx(z) =1 for all « in X. If gy
vanishes outside U, we set fy = fu. Otherwise, we fix a choice of z such that g
vanishes outside W, and set fy = fy,. Define f : X — K by

f@)=>"ga(@)fa(x), VreX.
A

For each x in X, only finitely many g, (x)’s are nonzero in the sum, and the nonzero
terms give rise to a convex combination of points in the convex set S(x). Thus
f(z) € S(x) for all z in X. O

It is easy to see that the following corollary follows from Theorem 3.1.
Corollary 3.3. The conclusion of Theorem[Bdl remains true if conditions (a) and
(b) are replaced by

(a)" for each x in X, the set S(x) is a nonempty convex set;

(b)" for each y in K, the set S~1(y) is open.

Remark 3.4. Corollary B.3 implies Theorem [3.1]
Proof. Let T : X — 2K be defined by
T(x)={yecK:xzcintS '(y)}.

Then T (y) = int S~1(y) is open for each y in K. By (b), for each z in X, there
exists y in K such that z € int S~1(y). Therefore y € T(z) # 0 for each x in X.
Let H : X — 2K be defined by H(z) = coT(x). Then H(x) is nonempty for each =
in X, and H~!(y) is open for each y in K. By Corollary[33] there is an open dense
subset U of X, containing any but a fixed compact set D, and there is a continuous
function f: U — K such that f(z) € H(z) = coT(z) C S(x) for all z in U. O
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4. FIXED POINT THEOREMS

Theorem 4.1. For each i in a nonempty index set I, let X; be a nonempty convex
subset of a Hausdorff locally convex topological vector space E;, and let D; be a
compact subset of X;. Let X = [],c; Xi be the product space. Let F; : X —
2D be sub-lower semicontinuous with nonempty convex values. Then for every
neighborhood V; of 0 in E;, there exists a point Ty = (xv;) in D = [[,o; D;i such
that (Zy, + Vi) N F;(zTv) # 0 for all i in I.

icl

Proof. Let V; be a neighborhood of zero in F; for each ¢ in I. Fix any ¢ in I. There
exists an absolutely convex neighborhood W; of 0 such that W; C V;. Note that
D is a compact subset of X. By Lemma [24] co D is a paracompact subset of X.
Since F; : X — 2P¢ is a sub-lower semicontinuous multi-valued map with nonempty
convex values, by Lemma[2 Tl there exists a continuous function f; : co D — D; such
that

filx) € (Fi(x) + W;) N D; for each z € coD.

Define f : coD — D by f(x) = [[,c;fi(z) for  in coD. By the Himmelberg
fixed point theorem (Lemma [Z3]), there exists an Zy = (Zy; );cs in co D such that
ry = f(Tv) = [Lic; fi(Zv). That is, zy, = fi(Zv) € (Fi(@v) + W;) N D;. Thus,
Ty, € D; and (Tv, + W;) N Fy(Zyv) # 0 for all ¢ in I. Since W; C V;, we have
(i + Vi) NFy(zy) # 0 for all i in I. O

Theorem 4.2. Suppose in Theorem [A1] we assume further that for each x =
(Zi)ier € X, its coordinates x; & F;(x) \ Fi(x) for all i in I. Then there exists
a point T = (T;)ier € D = [[;c;Di such that Z; € F;() for each i in I.

Proof. For each i in I, let B; be the collection of all absolutely convex open neigh-
borhoods of zero in E; and B = [[;c;Bi. Given any V = [[,.;Vi in B, let
Qv = {x € D : z; € Fy(x) foralliin I}. Then Qv is a nonempty closed
subset of D for each V in B by Theorem @Il Let {V(1),... V(™} be any finite
subset of B. Write V() = ngVj(i), where Vj(i) € Bj for each i = 1,---,n. Let
V' =TLe, (N V) € B. Clearly, 0 # Qur € (-, Qy ). Therefore, the family
{Qv : V € B} has the finite intersection property. Since Qv C D for all V in B
and D is compact, [\, cgQv # 0. Let Z = (Z;)icr € Ny epQv. Then Z; € Fy,(Z)
for all i in I and all V; in By, i.e., Z; € (y, ¢p, Fv; (7) for all i in I. It follows from
Lemma 22l that z; € F;(z) for all i in I. By assumption, z; € F;(z) for all i in
I ([

We remark that if F} is closed, then z; ¢ F;(z)\ F;(z) for each x = (2;);er in X.
As a special case of Theorem 2] we have the following collectively Himmelberg
type fixed point theorem.

Corollary 4.3. For each i in a nonempty index set I, let X; be a nonempty convex
subset of a locally convex topological vector space E;, let D; be a nonempty compact
subset of X;, and let f; : X = HieIXi — D; be a continuous function. Then there
exists T = (T;)ier € D = [[;c;Di such that Z; = fi(%) for each i in I.

If the index set I is a singleton, then Theorem reduces to the following
corollary, which provides a partial solution to a conjecture of Wu [15].
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Corollary 4.4. Let X be a nonempty convex subset of a locally convex topological
vector space E, let D be a nonempty compact subset of X, and let F : X — 2P be
sub-lower semicontinuous with nonempty conver values. Suppose x ¢ F(x)\ F(x)
for each x in X. Then there exists a point T in D such that T € F(Z).

By Theorem [£.1] we have the following almost fixed point theorem.

Corollary 4.5. The conclusions of Theorems 1] and B2 remain valid if the con-
dition “F; : X — 2P is sub-lower semicontinuous for each i in 17 is replaced by
“FY(y;) is open for each y; in D; and each i in I.”

Finally we remark that in case I is a singleton, Theorem [£1] provides a different
result from [I2] Theorem 3].
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