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RANK PRESERVING IN INTEGRAL EXTENSIONS OF COMMUTATIVE
C∗-ALGEBRAS

Chung-Wen Tsai and Ngai-Ching Wong

Abstract. Let A, B be two regular commutative unital Banach algebras such
that B is integral over A. In 2003, Dawson and Feinstein showed that the
topological stable rank tsr(B) = 1 whenever tsr(A) = 1. In this note, we
investigate whether we will have tsr(A) = tsr(B) in general. For instance,
when A is a commutative unital C∗-algebra, we show that tsr(A) ≤ tsr(B),
and the equality holds at least when the integral extension is separable. In
general, A and B have the same Bass stable ranks Bsr(A) = Bsr(B).

1. INTRODUCTION

Generalizing the concept of the covering dimension (see Section 2 for defini-
tions), Rieffel [10] introduced the concept of the topological stable rank of a C∗-
algebra in 1983. Motivated by the fact that closed subspaces have smaller covering
dimensions, we may ask whether Banach subalgebras have smaller topological stable
ranks. As an evidence, Dawson and Feinstein [5] showed in 2003 that the property
having topological stable rank one is inherited by integral extensions of commutative
Banach algebras. They first proved this for Arens-Hoffman extensions, and then
extended the result to general integral extensions.

Let A be a commutative unital normed algebra, and α(z) be a monic polynomial
over A, that is α(z) = zn + an−1z

n−1 + · · ·+ a1z + a0 with an−1, . . . , a0 ∈ A.
Here, we do not assume the irreducibility of α(z). No matter α(z) has a root in
A or not, we can enlarge A to a commutative normed algebra Aα, the so called
Arens-Hoffman extension [1] of A with respect to α(z), such that α(z) always has
a new root in Aα. As a simple ring extension, Aα is defined to be A[z]/(α(z)),
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where (α(z)) is the principal ideal in the polynomial ring A[z] generated by α(z).
The norm of Aα is defined by

‖
n−1∑
i=0

biz
i + (α(z))‖ =

n−1∑
i=0

‖bi‖ti,

where
∑n−1

i=0 biz
i ∈ A[z], and t is any but fixed positive number such that tn ≥∑n−1

i=0 ‖ai‖ti. Note that Aα is complete whenever A is. Arens and Hoffman show
that this extension is an isometry. Thus the algebraic and topological properties of
Aα should be closely tied with those of A.

A natural question arises: Which topological and/or algebraic properties of A
will be preserved to Aα under the Arens-Hoffman construction. The readers can
refer to Dawson’s paper [6, Table 2.2] for a list of partial answers to this question.
Note that, in general, Arens-Hoffman extensions of a commutative unital C∗-algebra
may not be a C∗-algebra. But from the table [6, Table 2.2], we know if the monic
polynomial α(z) is separable, that is, the discriminant (cf. [3]) of α(z) is invertible
in A, then the Arens-Hoffman extension preserves these properties: semisimplicity,
self-adjointness and supnorm closedness. Therefore, equipped with the supnorm
(the Gelfand norm), Aα becomes a C∗-algebra if α is separable. It follows from the
Stone-Weierstrass Theorem that Aα

∼= C(ΣAα), where ΣAα is the maximal ideal
space of Aα. It follows from the open mapping theorem that the Arens-Hoffman
norm and the supnorm are equivalent.

Dawson and Feinstein shows

Theorem 1. [5, Theorem 2.1]. Let A be a commutative unital Banach algebra
and α(z) a monic polynomial over A. If tsr(A) = 1, then tsr(Aα) = 1.

Using Theorem 1, they further show in [5] that if B is a commutative unital
Banach algebra, which is an integral extension of A (i.e., every element in B is a
root of a monic polynomial in A[z]), then tsr(A) = 1 implies tsr(B) = 1. It is
interesting to ask the question

“whether the topological stable rank is inherited for Arens-Hoffman
extensions, or generally, integral extensions of regular commutative
unital Banach algebras, that is, whether we will always have tsr(A) =
tsr(Aα) and tsr(A) = tsr(B).”

We shall show in Section 3 that they have equal Bass stable ranks Bsr(A) =
Bsr(Aα) = Bsr(B). Assuming A is a commutative unital C∗-algebra, we shall have
tsr(A) ≤ tsr(Aα), and tsr(A) = tsr(Aα) if α is separable. Moreover, tsr(A) ≤
tsr(B), and tsr(A) = tsr(B) whenever the integral extension of A to B is separable.
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More precisely, we will show that dim ΣA = dimΣAα = dimΣB and the assertions
follow.

Finally, we would like to point out that although it might be possible to derive
our results, Theorems 11 and 12, by using arguments in [9, Chapter 9, Proposition
2.16], here we give a seemingly more direct and more elementary proof, modelling
on the one in a paper of Deckard and Pearcy [7, Theorem 1]. We hope this approach
would provide more insights into the problem.

2. PRELIMINARIES

Definition 2. ([9, Chapter 3]). Let X be a topological space.
(1) The order of a covering {Uλ}λ∈Λ of X is the least integer n such that every

point of X is contained in at most n + 1 elements of {Uλ}λ∈Λ. If no such
integer exists, we say that the order is ∞.

(2) The covering dimension dimX of X is the least integer n such that every
finite open covering of X has an open refinement of order not exceeding n.
If no such integer exists, we say that the covering dimension dimX is ∞.

Theorem 3. ([9, Chapter 3]). Let X be a normal topological space.
(1) If Y is a closed subspace of X , then dimY ≤ dimX .
(2) If X =

⋃
i∈N

Ai is a countable Fσ-set covering of X , then dimX =
supi∈N dim Ai.

Theorem 4. ([9, Theorem 3.5.6]). Let A be a closed subset of a normal space
X . If dim A ≤ n and if dimF ≤ n for each closed subset F of X which does not
meet A, then dimX ≤ n.

Theorem 5. [9, Corollary 8.1.7]). If a space X is the inverse limit (i.e. the pro-
jective limit) of an inverse system {Xα, παβ}α,β∈Ω of nonempty compact Hausdorff
spaces with dimXα ≤ n for each α in Ω, then dim X ≤ n.

Let A be a unital Banach algebra. We use the notation Lgn(A) (resp. Rgn(A))
to denote the set of n-tuples of elements of A which generates A as a left (resp.
right) ideal, that is, A = {Σn

i=1aixi : ai ∈ A} (resp. A = {Σn
i=1xiai : ai ∈ A})

whenever (xi) ∈ Lgn(A) (resp. Rgn(A)). In algebraic K-theory, the elements of
Lgn(A) (resp. Rgn(A)) are traditionally called left (resp. right) unimodular rows.

In this note, we investigate two concepts of dimensions of Banach algebras. The
first one is the Bass stable rank introduced by Bass [2].

Definition 6. ([2, Section 1.4]). The Bass stable rank Bsr(A) of a unital Banach
algebra A is defined to be the least integer n such that for any (a1, a2, . . . , an, an+1)
in Lgn+1(A) there is a (b1, b2, . . . , bn) in An with

(a1 + b1an+1, a2 + b2an+1, . . . , an + bnan+1) ∈ Lgn(A).
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If there is no such n then set Bsr(A) = ∞.

The second one is the topological stable rank introduced by Rieffel [10].

Definition 7. ([10, Definition 1.4]). By the left (resp. right) topological stable
rank of a unital Banach algebra A, denoted by ltsr(A) (resp. rtsr(A)), we mean
the least integer n such that Lgn(A) (resp. Rgn(A) ) is dense in An (in the product
topology). If no such integer exists we set ltsr(A) = ∞ (resp. rtsr(A) = ∞). If
A does not have an identity, then its topological stable rank is defined to be that of
the Banach algebra Ã obtained from A by adjoining an identity.

For a commutative Banach algebra, it is clear that the left and right topological
stable ranks are equal, and so is the case of a Banach algebra with a continuous
involution. On the other hand, the left topological stable rank of a unital Banach
algebra is 1 if and only if its right topological stable rank is 1. By definition, a
unital Banach algebra has topological stable rank one if and only if it has a dense
invertible group. We write tsr(A) for ltsr(A) in case ltsr(A) = rtsr(A).

Theorem 8. ([4], [10]). If X is a compact Hausdorff space, then

tsr(C(X)) = Bsr(C(X)) =
[
dimX

2

]
+ 1.

In general, for a regular commutative unital Banach algebra A, we have

tsr(A) ≥ Bsr(A) =
[
dimΣA

2

]
+ 1,

where ΣA is the maximal ideal space of A, and [r] is the greatest integral part of
a real number r.

We also need the following two results to prove our theorems.

Lemma 9. ([7, Lemma 2.2]). Suppose X is any topological space. Let

P (x, z) = zn + an−1(x)zn−1 + · · ·+ a1(x)z + a0(x),

where all ai ∈ C(X). Fix an x0 in X and let z0 be a root of multiplicity µ of the
polynomial P (x0, z) in z ∈ C. If δ > 0 so that P (x0, z) has no root other than z0

satisfying |z − z0| < δ, then there is a neighborhood U of x 0 such that for all x in
U , the polynomial P (x, z) has exactly µ roots (counting multiplicities) satisfying
|z − z0| < δ.

Theorem 10. ([8, Theorem 3.3]). Let A be a commutative Banach algebra
and B an integral extension of A. If π−1(h) is an infinite subset of ΣB for some
h ∈ ΣA, then B is incomplete under any norm.
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3. THE RESULTS

Theorem 11. Let A be a commutative unital normed algebra with maximal
ideal space ΣA, and let

α(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

be a monic polynomial over A with n > 1. Let Aα be the Arens-Hoffman extension
of A with respect to α(z). Then

dim ΣA = dimΣAα .

Proof. As mentioned in the paper of Arens and Hoffman [1], the maximal
ideal space ΣAα of Aα is contained in ΣA × {λ ∈ C : |λ| ≤ 1}. More precisely,
ΣAα consists exactly of all (h, z) such that

(h, z)(α) = zn + an−1(h)zn−1 + · · ·+ a1(h)z + a0(h) = 0.

We define P : ΣA × C → C by

P (h, z) = zn + an−1(h)zn−1 + · · ·+ a1(h)z + a0(h)

and π : ΣAα → ΣA by

π(h, z) = h or π(h̃) = h̃|A, where h̃ = (h, z) ∈ ΣAα .

Note that for every h0 in ΣA, there is a δ > 0 such that the closed balls B(zi, δ)
in C are pairwise disjoint, where zi are distinct roots of the complex polynomial
P (h0, z). From Lemma 9, there is a compact neighborhood Vh0 of h0 such that
Vh0 = π(Vi) where Vi = (Vh0 × B(zi, δ)) ∩ ΣAα are pairwise disjoint compact
neighborhoods of (h0, zi) and π−1(Vh0) = ∪Vi. Note that for every h′ in Vh0 ,
the complex polynomial P (h′, z) has exactly k roots (counting multiplicities) in the
open balls B(zi, δ) as zi is a root of P (h0, z) of multiplicity k.

Claim. For every point (h0, z0) in ΣAα , there are σ-compact neighborhoods
Uh0 of h0 in ΣA and U(h0,z0) of (h0, z0) in ΣAα such that

dimUh0 = dim U(h0,z0).

We prove the claim by induction on the multiplicity of the root z0 of the complex
polynomial P (h0, z).

Let (h0, z0) be in ΣAα with z0 being a root of P (h0, z) of multiplicity 1. By
Lemma 9 with δ > 0 mentioned above, π|V0 : V0 → Vh0 is a homeomorphism from
the compact neighborhood V0 of (h0, z0) onto the compact neighborhood Vh0 of h0.
Set U(h0,z0) = V0 and Uh0 = Vh0 . Then dimUh0 = dim U(h0,z0).
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Now suppose that for each (h0, z0) in ΣAα with z0 being a root of P (h0, z) of
multiplicity less than k, there are σ-compact neighborhoods Uh0 of h0 in ΣA and
U(h0,z0) of (h0, z0) in ΣAα such that dimUh0 = dimU(h0,z0). Let (h0, z0) ∈ ΣAα

with z0 being a root of P (h0, z) of multiplicity k. By Lemma 9 with δ > 0
mentioned above, there is a compact neighborhood Vh0 of h0 such that for h′ in
Vh0 , the complex polynomial P (h′, z) has exactly k roots (counting multiplicities)
in the open balls B(z0, δ). Furthermore, we can assume that for h′ in Vh0 , the
complex polynomial P (h′, z) has no root satisfying |z− z0| = δ. Let Pm ⊂ Vh0 be
the set of points h′ for which P (h′, z) has two distinct roots with distance not less

than 1
m and they lie in the open ball B(z0, δ). Let P =

∞⋃
m=1

Pm.

For h′ in P , the complex polynomial P (h′, z) has two distinct roots in the open
ball B(z0, δ). By Lemma 9, h′ has a neighborhood such that for every point h in
this neighborhood, P (h, z) has two distinct roots in the open ball B(z0, δ). Hence
P is relatively open in Vh0 and thus Vh0 \ P is relatively closed in Vh0 . For every
h′ in Vh0 \ P , the polynomial P (h′, z) has exactly one root of multiplicity k in the
open ball B(z0, δ). As argued for the case of multiplicity one above, we can prove
that dim(Vh0 \ P) = dimπ−1(Vh0 \ P) ∩ V0.

We next show that Pm is relatively closed in Vh0 for m = 1, 2, . . . . If Pm is
nonempty, let {hλ} be a net in Pm such that hλ → h1 for some h1 in Vh0 , and
for each λ, let z1λ and z2λ be roots of P (hλ, z) satisfying |z1λ − z2λ| ≥ 1

m and
|ziλ− z0| < δ. Choose a subnet {hγ} of {hλ} with the property that the nets {z1γ}
and {z2γ} converge to some z1 and z2, respectively. Then, since P (h, z) is jointly
continuous in h and z, P (h1, z1) = P (h1, z2) = 0, and |z1 − z2| ≥ 1

m . By our
previous arrangements we can not have |zi − z0| = δ. So |zi − z0| < δ for i = 1, 2.
Thus h1 ∈ Pm, and consequently, Pm is relatively closed and hence compact.

On the other hand,
P ′

m := π−1(Pm) ∩ V0

is also compact for each m. For each point (h′, z′) in P ′
m, we have z′ is a root

of P (h′, z) of multiplicity less than k. By the induction hypothesis, there are σ-
compact neighborhoods Uh′ of h′ in ΣA and U(h′,z′) of (h′, z′) in ΣAα such that
dimUh′ = dimU(h′,z′). Consider the covering {U(h,z) : (h, z) ∈ P ′

m} of P ′
m. By

the compactness of P ′
m, it has a finite subcovering {U(hi,zi) : (hi, zi) ∈ P ′

m}n
i=1.

Let P̃ ′
m =

⋃n
i=1 U(hi,zi) and P̃m =

⋃n
i=1 Uhi . Note that P̃ ′

m and P̃m are σ-compact
and dim Uhi = dimU(hi,zi). Then the Sum Theorem (Theorem 3) implies that
dim P̃m = dim P̃ ′

m.
Let

Uh0 = (Vh0 \ P) ∪
∞⋃

m=1

P̃m = Vh0 ∪
∞⋃

m=1

P̃m
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and

U(h0,z0) = (π−1(Vh0 \ P) ∩ V0) ∪
∞⋃

m=1

P̃ ′
m = V0 ∪

∞⋃
m=1

P̃ ′
m.

Note that Uh0 and U(h0,z0) are σ-compact neighborhoods of h0 and (h0, z0), respec-
tively. By the Sum Theorem again, we have dimUh0 = dim U(h0,z0), and we have
verified the claim.

Finally, using the compactness of ΣA and ΣAα , we see that ΣAα and ΣA have
finite σ-compact neighborhood covering {U(hi,zi)}n

i=1 and {Uhi}n
i=1, respectively.

Since dimUhi = dimU(hi,zi) for i = 1, . . . , n, the Sum Theorem furnishes that
dimΣA = dim ΣAα .

Theorem 12. Let A and B be commutative unital Banach algebras such that
B is an integral extension of A. Then

dimΣA = dimΣB.

Proof. Similar to the case of the Arens-Hoffman extension, we can embed ΣB

into the product space ΣA×C
B\A as the subset consisting of points (h, {hb}b∈B\A)

such that h(α)(hb) = 0 whenever α(b) = 0, for all b in B\A and for all α in A[z].
In addition, for each b ∈ B\A, fix a minimal monic polynomial αb in A[z] such that
αb(b) = 0. Let Λ = {αb : b ∈ B\A} and F be the collection of all finite subsets of
Λ. Then ΣB is the limit of the inverse system {ΣAα , παβ}α,β∈F. By Theorems 5
and 11, we have dimΣB ≤ sup dim ΣAα = dimΣA.

Now we prove the reverse inequality. By Theorem 10, we have ΣA =
∞⋃
i=1

Ui

where Ui is the collection of h in ΣA which has at most i extensions in ΣB. Every
Ui is closed in ΣA and thus compact. Note that

U1
∼= π−1(U1),

where π : ΣB → ΣA is defined by π(h, z) = h. Thus, dimU1 = dimπ−1(U1) ≤
dimΣB by Theorem 3(1). Suppose that dimUi−1 ≤ dimΣB. For h ∈ Ui\Ui−1,
by definition h has exactly i extensions h1, . . . , hi to B. Choose a point b ∈ B\A
such that hj(b) �= hk(b), ∀1 ≤ j < k ≤ i. By Lemma 9, h has a compact
neighborhood Uh such that Uh ∩ Ui−1 = ∅ and h has an extension belonging to
Uh × B(hj(b), δ)× C

B\{A∪{b}} for 1 ≤ j ≤ i. Then

Uh ∩ Ui
∼= π−1(Uh ∩ Ui) ∩ (Uh × B(h1(b), δ)× C

B\{A∪{b}}).

It follows from Theorem 3(1) that dim Uh ∩ Ui ≤ dim ΣB.
Let V be a closed subset of Ui such that V ∩Ui−1 = ∅. By the above arguments,

every point h in V has a compact neighborhood Uh such that dim Uh ∩ V ≤
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dimUh ∩ Ui ≤ dimΣB. By the compactness of V , V =
⋃n

m=1 Uhm ∩ V . Thus
dimV = maxdim Uhm ∩ V ≤ dim ΣB. By Theorem 4, dimUi ≤ dimΣB . By
the induction hypothesis and Theorem 3(2), we have dimΣA = supi∈N dimUi ≤
dimΣB.

Theorem 13. Let A be a regular commutative unital Banach algebra.

(1) Let α(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be a monic polynomial over A

with n > 1. Then the Bass stable ranks satisfy

Bsr(A) = Bsr(Aα).

(2) Let B be a regular integral extension of A. Then the Bass stable ranks satisfy

Bsr(A) = Bsr(B).

Proof.

(1) Since A is a regular commutative Banach algebra, Aα is also regular (see,
e.g. [6]). So case (1) reduces to case (2).

(2) By Theorem 8 and Theorem 12, we have

Bsr(A) =
[
dimΣA

2

]
+ 1 =

[
dimΣB

2

]
+ 1 = Bsr(B).

Theorem 14. Let A be a commutative unital C ∗-algebra.

(1) Let α(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be a monic polynomial over A

with n > 1. Then the topological stable ranks satisfy

tsr(A) ≤ tsr(Aα).

They are equal if α(z) is separable.

(2) Let B be a regular integral extension of A. Then

tsr(A) ≤ tsr(B).

If, in addition, every element in B is a root of a separable monic polynomial
over A, then

tsr(A) = tsr(B).

Proof.

(1) By Theorems 8 and 11, we have tsr(A) ≤ tsr(Aα). If α(z) is separable, Aα

is a C∗-algebra in the supnorm. Thus, tsr(A) = tsr(Aα).
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(2) By Theorem 8 and Theorem 12, we have

tsr(A) =
[
dimΣA

2

]
+ 1 =

[
dim ΣB

2

]
+ 1 ≤ tsr(B).

Suppose that tsr(A) = n. Let (a1, a2, . . . , an) ∈ Bn, and ai be a root of
a separable monic polynomial αi(z) in A[z]. Consider the Arens-Hoffman
extension Aα1...αn of A and let xi be the root of αi(z) in the Arens-Hoffman
construction Aα1...αn . Then there is a continuous homomorphism φ from
Aα1...αn into B with respect to the Arens-Hoffman norm, which fixes A

and maps xi to ai. By (1), we have tsr(Aα1...αn) = n. Thus (x1, . . . , xn)
can be approximated by elements in Lgn(Aα1...αn). By the continuity of φ,
(a1, . . . , an) can be approximated by elements in Lgn(B). This shows that
tsr(B) = n.
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