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Abstract

We establish the no trade principle, i.e., the no trade theorem and its converse, for any

dual pair of bet and extended belief spaces, defined on a given measurable space. A key

condition is that, except perhaps one of the agents, everyone else has (weak*) compact sets

of beliefs. We find out that in most of the models of uncertainty adopted in the economic

literature, roughly speaking, the epistemic statement that an agent has a compact set of

beliefs is equivalent to the economic statement that he has an open cone of positive bets.

This improves our understanding of what compactness actually means within an economic

context.
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1. Introduction

The (interim) no trade principle asserts that risk-neutral agents are not prepared to trade

for purely informational reasons, if and only if a common prior exists. This is an important

result because it characterizes an epistemic term (i.e., common prior) in terms of an eco-

nomic term (i.e., no trade). It gives the widely used common prior assumption an economic

meaning.

The purpose of this article is twofold. Firstly, we incorporate the existing literature on the

study of the no trade principle into a unified framework, using the concept of dual pairs. 1 By

extending existing results, we aim to have a comprehensive understanding of the principle.

Secondly, we provide a first attempt to characterize the epistemic term, “compact beliefs”2,

in terms of an economic term. This gives it an economic meaning.

We achieve our first goal by proving Theorem 2.2.3 The result is the no trade principle

established for any dual pair 〈X,X∗〉, where X is a space of bets and X∗ is a space of (signed)

charges (also called finitely additive measures), both defined on a measurable space (Ω,B).

Here, (Ω,B) represents the uncertainty environment, in which Ω and B are the sets of all

possible states, and events, respectively. A belief is a probability measure in X∗. 4 Roughly

speaking, the principle holds as long as each agent has a convex and compact set of beliefs.

We achieve our second goal by showing that the assumption of compact beliefs in the no

trade principle is not merely technical. We explain as follows. When an agent has a set

K of beliefs, we say that a bet is positive for him if it can lead to positive expected gains

with respect to all his beliefs in K. Let CK be the dual cone, which collects all the positive

bets of the agent. We show that, in fact, for several broad classes of dual pairs, a closed

set K of beliefs is compact if and only if its dual cone CK is open (Theorems 4.3, 4.7 and

Corollary 4.4). That CK is open describes a condition on making economic choices. This

1We refer to Aliprantis and Border (2007) for all the mathematical terms used in this article.
2For the sake of simplicity, we say that an agent has compact/closed beliefs if the set of all his possible

beliefs is compact/closed.
3Theorem 5.2 is technically equivalent to Theorem 2.2 in our framework. We regard these two theorems

as a single result.

4For the sake of convenience, we call X∗ the extended belief space.



2

condition says that whenever a bet is positive for an agent, any bet that is close enough to

it is also positive for him.

As pointed out in the opening paragraph, the economic content of the no trade principle

is widely understood. It appears that, in some sense, the main contribution of Theorem 2.2

is just a technical one. However, the duality argument we use not only provides insightful

reasons why the no trade principle is true, but also improves our understanding of the roles

played by various assumptions, in particular, compactness assumptions.

Our setting is clearly a generalization of the one in Ng (2003), but we do not follow its

duality argument. We explain the distinction in the next two paragraphs.

Ng (2003) has already observed that a major reason for the validity of the no trade

principle is that any (non-empty) closed and convex set of beliefs has the bipolar property (see

Lemma 4.1 and the discussion below). The no trade principle then becomes an immediate

consequence because of three features that come along with the model in Ng (2003): (1)

any closed set of beliefs is compact; (2) any compact set of beliefs has an open dual cone;

(3) after being normalized, every positive continuous linear functional on the bet space can

be identified with a unique Borel probability measure (see Remarks 6.5, 6.6, 6.8 and 6.9).

While the bipolar property holds, for any dual pair, none of these three features is true in

general. The duality argument used in Ng (2003) may have obscured our understanding of

the no trade principle.

We have explained that the approach in Ng (2003) does not work in general. Nonetheless,

we have not arrived at the end of reasoning yet, because presumably, we can regard the no

trade principle as a generalization of the Separation Theorem. It is quite natural to assume

directly that at least some agents have compact beliefs. Moreover, there should be some

duality argument that is independent of the topology of the bet space, avoiding the use

of features (2) and (3). It turns out that Lemma 2.1(b) provides such an argument. This

lemma is a new economic observation that explains why the no trade principle generally

holds for any dual pair. It establishes an aggregate duality relationship for any finitely many

agents with convex and compact beliefs. It says that a bet is positive with respect to the

set of all common beliefs if and only if it is a sum of some individual positive bets. Based
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on this observation, we can obtain the no trade principle right away just by using a simple

compactness argument and the Separation Theorem. This line of reasoning does not depend

on any particular dual pair.

We see from Theorem 2.2 that the two fundamental assumptions that we impose on

each agent’s set of beliefs are convexity and compactness. One can justify the convexity

assumption from the interim viewpoint because by Bayes’ rule, any set of prior beliefs is non-

empty and convex. Compact sets of beliefs are always closed (because the weak* topology

is always Hausdorff). Lemma 4.1 shows that for any closed and convex set K of beliefs

we have the bipolar property, i.e., we can recover all the beliefs from its dual cone CK of

positive bets. However, the bipolar property is, in general, not sufficient for proving the no

trade principle, because it only establishes individual duality relationship between beliefs

and bets. Thus, compactness naturally comes into play.

Compactness assumptions are pervasive in the economic literature, indicating their im-

portance. We make two remarks below.

First of all, Feinberg (2000) has demonstrated the failure of the (interim) no trade principle

for the measurable space (N, 2N),5 by giving an example in which there is no common prior

and yet there is no trade involving bounded bets. The paper goes on to argue that the

compactness assumption put on the state space cannot be discarded since in the example,

the state space N is non-compact. The reasoning is quite weak. In fact, in the setting of

the paper, conditions6 that ensure the validity of the no trade principle would imply that

every agent has compact prior beliefs. Theorem 5.2 shows that we can adopt the weaker

assumption of compact prior beliefs, and extend the no trade principle to a setting with

arbitrary dual pair arising from a given measurable space (Ω,B). Moreover, we can easily

find examples in which the underlying state space Ω is non-compact, or even has no topology

imposed (see Section 3). Consequently, the compactness of the state space is not a key to

the validity of the no trade principle. What really matters is the assumption of compact

5We let N be the set of all natural numbers, and if necessary, be endowed with the discrete topology.
6In Feinberg (2000), the state space is compact Hausdorff, and posterior beliefs vary continuously across

states. These are precisely the two conditions which imply that each agent has compact prior beliefs.
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prior beliefs. As a verification, we can actually show that in the counterexample of Feinberg

(2000), no agent has compact prior beliefs (see Section 5.2 for details).

Secondly, we remark that the assumption of compact beliefs has an immediate implication.

It implies that there is no common belief for all the agents if and only if there is no common

belief for some finite subset of agents7. This is a major step in proving that the no trade

principle holds for any number of agents, finite or infinite.

In the next few paragraphs, we shall discuss about the main contribution of Theorems 4.3

and 4.7, and Corollary 4.4. We emphasize that the question of giving an economic char-

acterization of compact beliefs is new, and our results show that such a characterization is

possible for quite general uncertainty environment.

It is customary to model an uncertainty environment as a measurable space (Ω,B). In

fact, the Savage’s theory of choice (regarding the integral representation of preference re-

lations) and many of its extensions (see Fishburn (1970) for details) are built upon such a

general environment. Moreover, this basic model has been widely adopted in various ar-

eas of economic theory, such as the theory of general equilibrium with uncertainty. Some

important results in economic theory are based on the assumption that Ω is a topological

space.8 For example, the construction of the universal space, which consists of (coherent)

hierarchies of beliefs as elements, when there is incomplete information, can be worked out

if Ω is a compact Hausdorff space (see Mertens and Zamir (1985)), or if Ω is a Polish space

(see Brandenburger and Dekel (1993)).

If one considers Ω as purely set-theoretic, then a natural candidate of bet space is the

space of all B-measurable functions on Ω. Because of integrability requirement, if the belief

space is rich enough (see Remark 6.4), then every bet is bounded. It is well known that

〈B(Ω,B), ba(B)〉9 is a dual pair, and it turns out that our characterization holds for it.

7Ng (2003) has got the same result as a consequence of, rather than as a reason for, the no trade principle.
8In this case, it makes no sense if B has no connection with the topology on Ω, and so we naturally let

B be the σ-algebra of all Borel subsets of Ω.
9In order to save space and not to repeat the introduction of notation, we refer to Section 3 for detailed

description of all the dual pairs discussed.
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Suppose that there is a topology on Ω such that B is exactly the σ-algebra of all

Borel subsets of Ω. This happens, for example, when B = 2Ω. Then in addition to

〈B(Ω,B), ba(B)〉, there are some other modeling choices of dual pairs for which our char-

acterization result holds. In this article, we give three such examples (see Corollary 4.4 and

Theorem 4.7). The first one is 〈C(Ω), rca(B)〉, where Ω is compact Hausdorff. The second

one is 〈C(Ω), rcac(B)〉, where Ω is a metric space. The third one is
〈
Cb(Ω), rca(B)

〉
, where

Ω is a complete metric space. Note that in each of these models, bets are continuous and

beliefs are regular, so that the dual pair depends on the topological structure of Ω. Note

also that the aforementioned examples cover most of the models of uncertainty we have

encountered in the economic literature.

For the dual pair 〈C(Ω), rcac(B)〉, where Ω is a metric space, Theorem 4.7 also shows

that a closed set of beliefs is compact if and only if it has a uniform compact support. This

means that an agent with compact beliefs acts as if he has a subjective state space which is

compact. A similar result holds for the dual pair
〈
Cb(Ω), rca(B)

〉
, where Ω is a complete

metric space. In this case, a closed set of beliefs is compact if and only if it is uniformly tight,

and this means an agent acts as if he has a subjective state space that is “approximately”

compact. Technically speaking, these two results nicely connect any compact set of beliefs

to the topology of Ω. As we shall see in Section 5.2, verifying whether a set of beliefs has

a uniform compact support, or whether it is uniformly tight, is much easier than verifying

directly whether it is (weak*) compact.

We regard this article as a sequel to Ng (2003), which has already given a literature review

on the study of the no trade principle. Hence, we just briefly unify the existing literature

using the dual pair framework. Morris (1994) and Samet (1998) have studied the case of

finite state space. In our words, the underlying measurable space is (Ω, 2Ω), where Ω is a

finite set of n elements, and the dual pair considered is 〈Rn,Rn〉. Feinberg (2000) and Ng

(2003) have extended to the case when Ω is compact Hausdorff, and the dual pair considered

is 〈C(Ω), rca(B)〉. In this article, Theorem 2.2 is an extension of the no trade principle

as we can relax the compactness assumption of Ω without any additional condition (see

Examples 3.2 and 3.3).
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Billot et al. (2000) is not a paper about the no trade principle, but its Theorem 2 is a

mathematical result that one can apply, after some generalization, to obtain the principle.

We do not follow this approach because of two reasons. Firstly, it is hard to give an economic

interpretation of the translation that appears in Theorem 2 of Billot et al. (2000). Secondly,

Billot et al. (2000) only explains its theorem from a geometric viewpoint, while our approach

offers an economic insight, i.e., Lemma 2.1(b), which plays a significant role in the explanation

of the no trade principle.

This article provides a pioneer work in the economic characterization of compact beliefs.

It is worthwhile to point out that the proof of Theorem 4.7 is based on two classical results,

the Alaoglu-Bourbaki Theorem in functional analysis, as well as the Prokhorov Theorem in

probability theory (see Prokhorov (1956)).

The rest of this article proceeds as follows. In Section 2, we set up a dual pair framework,

and present a general form of the no trade principle. In Section 3, we give some modeling

choices of dual pairs. In Section 4, we investigate the economic characterization of compact

beliefs. In Section 5, we illustrate how we can apply our main results, to obtain the interim

no trade principle, and to give a detailed analysis of the interesting case when the underlying

measurable space is (N, 2N). We make some concluding remarks in Section 6, and put all

the detailed proofs in the Appendix.

2. Dual Pair and the No Trade Principle

In this section, we present a general form of the no trade principle using the concept of

dual pairs.

Let (Ω,B) be a measurable space, where Ω is a non-empty set and B is a σ-algebra of

subsets of Ω. Let X be a vector space of real-valued functions on Ω and X∗ be a vector

space of signed charges on B. We assume that 〈X,X∗〉 is a dual pair with a (non-degenerate)

bilinear form 〈·, ·〉 defined on X ×X∗ via integration. That is, for each f ∈ X and µ ∈ X∗,

we have 〈f, µ〉 =
∫

Ω
f dµ. Let P be the set of all probability measures on B. It will be

convenient to write P ∗ = P ∩X∗. As described in Section 1, we interpret X as the bet space

of all available bets and P ∗ as the belief space of all admissible beliefs.
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Without confusion, we denote by c the function on Ω that takes the constant value c ∈ R

for all ω ∈ Ω. In order that the equation
∫

Ω
dµ = 1 makes sense for all µ ∈ P ∗, we require

that 1 ∈ X, i.e., X contains all constant functions on Ω. We shall always equip X∗ with the

weak* topology, i.e., the σ(X∗, X)-topology. It is well known that X∗ is a locally convex

(Hausdorff) space and its topological dual is exactly X. Clearly, P ∗ is a convex subset of

X∗ satisfying 〈1, µ〉 = 1 for all µ ∈ P ∗.

Let K be a non-empty subset of X∗. We associate K with its (strict) dual cone

CK = {f ∈ X : 〈f, µ〉 > 0 for all µ ∈ K},

which is clearly convex. If K ⊆ P ∗, then 1 ∈ CK , and so CK 6= ∅. If an agent has a set K

of beliefs in P ∗, then CK is the set of all his positive bets, i.e., CK collects any bet that can

lead to positive expected gains with respect to all his beliefs in K.

Let I denote a non-empty index set of risk-neutral agents. We define

∑
I

CKi =

{∑
i∈J

fi : J is a finite subset of I and fi ∈ CKi

}
,

which equals conv
(⋃

i∈I CKi
)
, i.e., the convex hull of

⋃
i∈I CKi . Define a trade to be a

function f : I −→ X such that for some finite subset J of I, we have
∑

i∈J fi = 0.

Lemma 2.1. Suppose that for each i ∈ I, we have Ki ⊆ P ∗ and
⋂
i∈I Ki 6= ∅. Then,

(a) 0 6∈
∑

I CKi ;

(b) (Aggregate duality)

C⋂
i∈I Ki

=
∑
I

CKi

if I is finite and all Ki’s are weak* compact and convex.

We are now ready to state the no trade principle.

Theorem 2.2 (No Trade Principle). For each i ∈ I, let Ki be non-empty, convex and

weak* closed in P ∗. Suppose that all Ki’s, possibly with one exception, are weak* compact.

Then,
⋂
i∈I Ki 6= ∅ if and only if 0 6∈

∑
I CKi .
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Lemma 2.1(a) is just the standard No Trade Theorem (with no private information).

Lemma 2.1(b) provides an insightful argument why the no trade principle is generally true,

as we have already explained its economic message in Section 1.

Theorem 2.2 is the no trade principle, established for any dual pair 〈X,X∗〉. Its economic

content is well understood. If it is common knowledge that all agents choose positive bets,

then there is a common belief if and only if they are not prepared to trade.

3. Examples of Dual Pairs

In this section, we are going to present three general examples of dual pairs, which are

useful in related areas of economic research. IfX is a locally convex (Hausdorff) space andX∗

is its topological dual, then 〈X,X∗〉 forms a dual pair with the bilinear form 〈x, x∗〉 = x∗(x)

for all (x, x∗) ∈ X ×X∗. This is the way we get our examples.

Example 3.1 (〈X,X∗〉 = 〈B(Ω,B), ba(B)〉). We let X = B(Ω,B) be the space of all

bounded B-measurable functions on Ω. It is well known that B(Ω,B) equipped with the

sup norm is a Banach space. Its topological dual is X∗ = ba(B), which consists of all

signed charges on B with bounded variations (see for example, Section 14.1 of Aliprantis

and Border (2007)). 2

In the next two examples, we shall assume that Ω is a Tychonoff space, i.e., a completely

regular Hausdorff space.10 In this case, we always take B to be the σ-algebra of all the

Borel subsets of Ω. We introduce below some standard notations and definitions before the

presentation of our examples.

Let C(Ω) denote the space of all the continuous real-valued functions on Ω, and Cb(Ω) the

subspace of all the bounded functions in C(Ω). The space rca(B) consists of all the regular

signed measures on B with bounded variations. We recall that the support of a (regular)

measure µ, denoted by suppµ, is the complement of the union of all open sets V ⊂ Ω such

that µ(V ) = 0. A (regular) signed measure has a compact support if its total variation

10Indeed, the state space Ω, modeled as a Tychonoff space, provides the most general topological set

up for dual pair of continuous functions and regular measures, as indicated in (Gillman and Jerison, 1976,

Theorem 3.6).



9

measure has a compact support. The space rcac(B) consists of all the elements in rca(B)

with compact supports.

Example 3.2 (〈X,X∗〉 = 〈C(Ω), rcac(B)〉). We endow X = C(Ω) with the compact-open

topology (also called the topology of uniform convergence on compact sets). Then X is a

locally convex (Hausdorff) space and its topology is generated by the following family of

semi-norms:

‖f‖Ω0 = sup{|f(ω)| : ω ∈ Ω0},

where Ω0 runs through all the non-empty compact subsets of Ω. The topological dual of X

is X∗ = rcac(B) (see Jarchow (1981), Section 7.6.5). 2

Example 3.3 (〈X,X∗〉 =
〈
Cb(Ω), rca(B)

〉
). A real-valued function f on Ω is said to be

vanishing at infinity if for all ε > 0, the set {ω ∈ Ω : |f(ω)| ≥ ε} is compact. Let M0(Ω) be

the set of all the bounded real-valued functions on Ω vanishing at infinity. Each s ∈M0(Ω)

defines a semi-norm ps on Cb(Ω) as follows.

ps(f) = sup
t∈Ω
|f(t)s(t)|.

This family of semi-norms generates a locally convex (Hausdorff) topology on Cb(Ω), called

the strict topology. The topological dual of X is X∗ = rca(B) (see Jarchow (1981), Sec-

tion 7.6.3). 2

We remark that when Ω is compact Hausdorff, the two preceding examples coincide.

4. Individual Duality and Characterization of Compact Beliefs

Motivated by Theorem 2.2 and its proof, we shall study how the assumptions imposed on

a given set K of beliefs are related to the duality relationship between K and its dual cone

CK . In particular, our main purpose in this section is to characterize all the weak* compact

subsets of P ∗. We start with the following observation.

Lemma 4.1 (Individual Duality). Let ∅ 6= K ⊆ P ∗. If K is convex and weak* closed in P ∗

(i.e., K = K ∩ P ∗), then it satisfies the following bipolar property:

(4.1) K = {µ ∈ P ∗ : 〈f, µ〉 > 0 for all f ∈ CK}.
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The converse holds whenever CK is weakly open.

The above lemma shows that any convex and relatively weak* closed subset K of P ∗ can

be exactly described by its dual cone CK , and thus establishes a duality relationship between

beliefs and bets. Such relationship, however, is only at the individual level. To obtain an

aggregate duality relationship between beliefs and bets, we can further assume that a set K

of beliefs is weak* compact as in Lemma 2.1(b). Another way is to further assume that its

dual cone CK is open (in an appropriate topology) and follow the argument in Ng (2003).

The following lemma shows a tight connection between these two approaches.

We recall that a topology τ on X is consistent with the dual pair 〈X,X∗〉 if (X, τ) is a

locally convex Hausdorff space with topological dual exactly equal to X∗. This definition

is not void since the weak topology on X, i.e., the σ(X,X∗) topology, is always, consistent

with 〈X,X∗〉.

Lemma 4.2. Let X be endowed with a topology consistent with the dual pair 〈X,X∗〉. Sup-

pose that ∅ 6= K ⊆ P ∗. If CK is open, then K is relatively weak* compact (in X∗).

We now examine the converse of Lemma 4.2 for each of the three dual pairs described in

Section 3.

Theorem 4.3. Consider the dual pair 〈X,X∗〉 = 〈B(Ω,B), ba(B)〉). Let ∅ 6= K ⊆ P ∗,

and K be weak* closed in ba(B). Then K is weak* compact if and only if CK is open in the

sup norm topology.

Using exactly the same arguments as in the proof of Theorem 4.3, we obtain the following

corollary.

Corollary 4.4. Consider the dual pair 〈X,X∗〉 = 〈C(Ω), rca(B)〉, where Ω is a compact

Hausdorff space. Let ∅ 6= K ⊆ P ∗, and K is weak* closed in rca(B). Then K is weak*

compact if and only if CK is open in the sup norm topology.

We can generalize the dual pair 〈C(Ω), rca(B)〉 where Ω is compact Hausdorff in two

ways by considering the two dual pairs, 〈C(Ω), rcac(B)〉 and
〈
Cb(Ω), rca(B)

〉
where Ω is
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Tychonoff. We would like to introduce two concepts that are useful in the presentation of

our results.

A subset K of P ∩ rcac(B) is said to have uniform compact support if

SK =
⋃
{suppµ : µ ∈ K}

is compact. A subset K of P ∩ rca(B) is said to be uniformly tight (also simply called tight)

if for each ε > 0, there is a compact subset Ω0 of Ω such that for every µ ∈ K, we have

µ(Ω \ Ω0) < ε.

Lemma 4.5. Let Ω be a Tychonoff space. Consider the dual pair 〈C(Ω), rcac(B)〉 (respec-

tively,
〈
Cb(Ω), rca(B)

〉
). Let ∅ 6= K ⊆ P ∗.

(a) K is relatively weak* compact in P ∗ if K has a uniform compact support (respectively,

K is uniformly tight).

(b) K has a uniform compact support (respectively, K is uniformly tight) if either (i) CK

is open, or (ii) Ω is a metric space (respectively, a complete metric space) and K is

relatively weak* compact in P ∗.

Lemma 4.6. Consider the dual pair 〈C(Ω), rcac(B)〉 (respectively,
〈
Cb(Ω), rca(B)

〉
). Let

K ⊆ P ∗ be non-empty and weak* closed in P ∗. Then, K has a uniform compact support

(respectively, K is uniformly tight) if and only if CK is open in the compact-open topology

(respectively, strict topology).

Combining Lemmas 4.5 and 4.6, we obtain the following characterization result.

Theorem 4.7. Consider the dual pair

〈X,X∗〉 = 〈C(Ω), rcac(B)〉 (respectively,
〈
Cb(Ω), rca(B)

〉
).

Let Ω be a metric space (respectively, a complete metric space), and let K be a relatively

weak* closed nonempty subset of P ∗. Then, the following statements are equivalent.

(a) K is weak* compact.

(b) K has a uniform compact support (respectively, K is uniformly tight).

(c) CK is open.
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5. Applications

In this section, we shall state the interim no trade principle as a direct consequence of

Theorem 2.2, and take a close look at it for the case when (Ω,B) =
(
N, 2N

)
.

5.1. Interim No Trade Principle. We can enrich our original model by adding an interim

stage, at which each agent i ∈ I has obtained private information about the state of the

world. He has also formed posterior beliefs over Ω according to Bayes’ rule.

Formally, we define a type space to be a tuple {((Ω,B), (Bi, ti)i∈I)} where for each i ∈ I,

we assume that Bi is a sub-σ-algebra of B, and that ti : B × Ω→ [0, 1] is a type, i.e.,

(a): (posterior beliefs) ti(· |ω) ∈ P ∗ for each ω ∈ Ω;

(b): ti(E | ·) is a Bi-measurable function for each E ∈ B;

(c): for each B ∈ Bi, we have ti(B |ω) =


1, if ω ∈ B;

0, if ω /∈ B.

Let Ti = {ti(· |ω) ∈ P ∗ : ω ∈ Ω}, which is the set of all the posterior beliefs of agent i.

For the sake of convenience, we also call Ti the type of agent i. Following Harsanyi (1968),

a prior (belief) for agent i is an element µ ∈ P ∗ such that the following Bayes’ rule holds:

(5.1) µ(E ∩B) =

∫
B

ti(E |ω)dµ(ω) for every E ∈ B and B ∈ Bi .

Let K(Ti) be the set of all the prior beliefs of agent i. Given any dual pair 〈X,X∗〉 defined

on (Ω,B), by using exactly the same argument as in Ng (2003), we can easily obtain the

following properties of K(Ti).

Proposition 5.1. For each i ∈ I,

(a) conv (Ti) ⊆ K(Ti) ⊆ conv (Ti);

(b) (Dynamic Consistency) CK(Ti) = CTi.

From the Bayes’ rule and Proposition 5.1(a), K(Ti) is always a non-empty convex subset

of P ∗. Combining this fact with Proposition 5.1(b) and Theorem 2.2, we obtain the interim

no trade principle, which is true for any dual pair defined on (Ω,B).
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Theorem 5.2 (Interim No Trade Principle). Suppose that K(Ti) is weak* closed in P ∗

for each i ∈ I, and all K(Ti)’s are weak* compact (with possibly one exception). Then,⋂
i∈I K(Ti) 6= ∅ if and only if 0 6∈

∑
I CTi.

5.2. The Measurable Space (N, 2N). Let (Ω,B) =
(
N, 2N

)
. Consider any type space{

((N, 2N), (Bi, ti)i∈I)
}

. We have the following general observation.

General Claim 1: K(T ) = σ-conv (T ) provided that T is a type for some agent, where

σ-conv (T ) =

{
∞∑
k=1

αkµk ∈ P ∗ : αk ≥ 0, µk ∈ T for each k and
∞∑
k=1

αk = 1

}
.

Proof. Observe that T is countable. Since T ⊆ K(T ), from (5.1), we have σ-conv T ⊆ K(T ).

Now, suppose that T is a type for agent i, and that µ ∈ K(T ). Let B be the partition of

N generated from Bi. Each B ∈ B is associated with exactly one element tB ∈ T . For any

E ∈ 2N, by countable additivity, we have

µ(E) =
∑
B∈B

µ(E ∩B) =
∑

B∈B, µ(B)>0

µ(B) · µ(E ∩B)

µ(B)
=

∑
B∈B, µ(B)>0

µ(B) tB(E).

Since
∑

µ(B)>0 µ(B) = 1, we have µ ∈ σ-conv T . 2

As usual, let `∞(N) be the set of all the bounded real-valued functions on N. We shall also

regard N as a topological space endowed with the discrete topology. Then, it is not difficult

to see that

B(N, 2N) = Cb(N) = `∞(N), and C(N) = RN.

Since N is a Polish space, rca(2N) = ca(2N), which is the space of all signed measures on

2N with bounded variations. Similarly, rcac(2
N) = cac(2

N), which consists of all the elements

in ca(2N) with compact supports.

General Claim 2: The next statement is true for each of the three dual pairs,
〈
`∞(N), ba(2N)

〉
,〈

`∞(N), ca(2N)
〉

and
〈
RN, cac(2

N)
〉
. If T is a type for some agent, then K(T ) is weak*

compact if and only if T is a finite set.
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Proof. In any topological vector space, the convex hull of any finite set is compact. It follows

that no matter which dual pair we consider, if T is finite, then K(T ) = conv (T ) is weak*

compact.

We now prove the other implication. Note that a subset of N is compact if and only if it

is finite.

We first consider the dual pair
〈
RN, cac(2

N)
〉
. By Theorem 4.7, if K(T ) is weak* compact,

then it has a uniform compact support. This implies that T is a finite set.

We next consider the dual pair
〈
`∞(N), ca(2N)

〉
. If T is an infinite set, then for any finite

set A ⊂ N, there is always a µ ∈ T such that µ(N \ A) = 1, and thus K(T ) cannot be

uniformly tight. By Theorem 4.7, we know that K(T ) is not weak* compact. As a result, if

K(T ) is weak* compact, then T is a finite set.

Finally, for the dual pair
〈
`∞(N), ba(2N)

〉
, observe that P ∗ = P ∩ ba(2N) = P ∩ ca(2N).

Therefore, K(T ), as a subset of P ∗, is weak* compact with respect to
〈
`∞(N), ba(2N)

〉
, if

and only if it is weak* compact with respect to
〈
`∞(N), ca(2N)

〉
, if and only if it is finite. 2

Feinberg (2000) has also given an analysis for the measurable space
(
N, 2N

)
and presented

an example in which the interim no trade principle may fail to hold. The bet space and belief

space considered in the example are respectively X = `∞ and P . Hence, we can choose X∗

to be either ba(2N), or ca(2N), so that 〈X,X∗〉 forms a dual pair. Since in the example, every

agent has an infinitely partitioned information structure, our result shows that no agent can

have compact prior beliefs. Notice that if we choose X∗ = ba(2N), we just need to treat N

as a set with no topological structure at all.

For the dual pair
〈
RN, cac(2

N)
〉
, the following example shows that when agents do not

have compact prior beliefs, the interim no trade principle may not hold.

Example 5.3. Consider the dual pair
〈
RN, cac(2

N)
〉
. For each n ∈ N, let δn be the point

mass at n. Define the following two sequences: for n ∈ N,

µ1 = δ1, and µn+1 =
2

3
δ2n +

1

3
δ2n+1;

νn =
2

3
δ2n−1 +

1

3
δ2n.
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Suppose that Alice’s type is {µn : n ∈ N} and Bob’s type is {νn : n ∈ N}. It is easy to verify

that there is no common prior, and yet there is no trade. 2

6. Concluding Remarks

We have shown that the no trade principle holds for any dual pair that we can reasonably

defined on a given measurable space. Furthermore, for several broad classes of dual pairs,

provided that every agent has a closed beliefs, the condition that an agent has compact

beliefs is equivalent to the condition that his set of positive bets is open. These two results

are important because they express “epistemic terms” in terms of “economic terms”. They

improve our understanding of two standard assumptions, i.e., the common prior and compact

belief assumptions, in an economic context.

We would like to end this article with a few remarks.

Remark 6.1 (The choice of X∗). For the convenience of presentation, we have taken a dual

pair 〈X,X∗〉 as given, and assumed that P ∗ = P ∩ X∗. If we take a bet space X and a

convex belief space P ∗ as given, then the choice of X∗ so that P ∗ = P ∩ X∗ and 〈X,X∗〉

forms a dual pair may not be unique (see Section 5.2 for an example). Nonetheless, whether

or not a subset of P ∗ is weak* compact, weak* closed in P ∗ or convex is irrespective of the

choice of X∗. This means that if Theorem 2.2 holds for any particular choice of X∗, it holds

for every choice of X∗.

Remark 6.2 (More examples of dual pairs). Based on the fact that 〈B(Ω,B), ba(B)〉 is a

dual pair, we can actually discover more examples of dual pairs.

Let ca(B) be the space of all the signed measures on B with bounded variations. It is

evident that 〈B(Ω,B), ca(B)〉 forms a dual pair.

Let M(Ω,B) be the space of all the B-measurable functions on Ω. Let baf (B) be the

space of all the elements in ba(B) with finite supports. We can similarly define the space

caf (B). Then both 〈M(Ω,B)), baf (B)〉 and 〈M(Ω,B)), caf (B)〉 are dual pairs.

Unlike the dual pair 〈B(Ω,B), ba(B)〉, we are not aware of any “nice” consistent topology

on the bet space for any of the above three examples.
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Remark 6.3 (Discontinuous bets). Consider the measurable space ([0, 1],B), where B is the

σ-algebra of all the Lebesgue measurable subsets of [0, 1]. Let λ denote the Lebesgue measure.

Let L1([0, 1]) (respectively, L∞([0, 1])) be the Banach space of all the Lebesgue integrable

(respectively, essentially bounded) functions on [0, 1]. It is well known that 〈X,X∗〉 =

〈L1([0, 1]), L∞([0, 1])〉 forms a dual pair. Each element g in X∗ = L∞([0, 1]) can be identified

as a unique measure µg defined by

µg(A) =

∫
A

g dλ, ∀A ∈ B.

It is clear that every continuous bet is in the bet space X = L1([0, 1]), while there exist

discontinuous bets in X as well.

Remark 6.4 (Boundedness). Suppose that 〈X,X∗〉 is a dual pair defined on (Ω,B), and

X∗ contains all the countable convex combinations of point masses on Ω. Then all functions

in X are bounded. Otherwise, we can find a function f ∈ X and a sequence {ωn} in Ω

such that |f(ωn)| ≥ 2n for each n ∈ N. By defining µ =
∑∞

i=1
1

2n
δωn , we see that f is not

integrable with respect to µ, a contradiction.

Remark 6.5 (P ∗ may not be weak* closed). Consider the dual pair
〈
`∞, ba(2N)

〉
. Let

T = {δn : n ∈ N} be the set of all the point masses on N. By Claims 1 and 2 in Section 5.2,

P ∗ = σ-conv T is not weak* compact. On the other hand, the norm-closed unit ball in

ba(2N) is weak* compact by the Banach-Alaoglu Theorem, and it contains P ∗ as a subset. It

follows that P ∗ cannot be weak* closed. In fact, any weak* limit point of T can be identified

with a 0-1 measure defined from a free ultrafilter on N, and so cannot be countably additive.

If we consider 〈X,X∗〉 = 〈C(Ω), rcac(B)〉, or
〈
Cb(Ω), rca(B)

〉
, where Ω is a Tychonoff

space, then P ∗ is weak* closed. To see this, note that for either dual pair, we have

P ∗ = {µ ∈ X∗ : 〈1, µ〉 = 1 and 〈f, µ〉 ≥ 0, ∀f ≥ 0 in X} .

Remark 6.6 (Compactness of P ∗). If Ω is a complete metric space, then from Theorem 4.7

and the previous remark, P ∗ is weak* compact with respect to the dual pair
〈
Cb(Ω), rca(B)

〉
if and only if P ∗ is uniformly tight, or equivalently, Ω is compact. We can also obtain a

similar result for the dual pair 〈C(Ω), rcac(B)〉.
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Corollary 6.7. Consider the dual pair 〈C(Ω), rcac(B)〉 (respectively,
〈
Cb(Ω), rca(B)

〉
). If

Ω is a metric space (respectively, a complete metric space), then P ∗ is weak* compact if and

only if Ω is compact.

Remark 6.8 (Compact but not uniformly tight). Consider the dual pair
〈
Cb(Ω), rca(B)

〉
,

where Ω is a Tychonoff space. In general, it is not true that every weak* compact subset of

P ∗ is uniformly tight (see Section 4 in Topsøe (1974)). Thus, according to Lemma 4.6, the

dual cone of a weak* compact subset of P ∗ may not be (strictly) open in Cb(Ω).

For the dual pair 〈C(Ω), rcac(B)〉, we are not aware of any example in the existing liter-

ature, in which a weak* compact subset of P ∗ may not have a uniform compact support.

Remark 6.9 (Beliefs as linear functionals). In Theorem 2.2, we can actually replace P ∗

with any non-empty convex subset Q of X∗ satisfying
∫

Ω
dµ = 1 for every µ ∈ Q.

We note that in Ng (2003), beliefs are treated as (normalized) positive and continuous

linear functionals on the bet space, rather than as probability measures on B. This approach

is weaker than ours. For the dual pair 〈X,X∗〉, define

Q∗ =

{
µ ∈ X∗ :

∫
Ω

dµ = 1 and

∫
Ω

f dµ ≥ 0,∀f ≥ 0 in X

}
.

Using the argument in Ng (2003), we can only obtain the no trade principle under the

assumption that beliefs are elements of Q∗. This approach creates some difficulty if not

every element in Q∗ is countably additive. We explain as follows.

Consider the dual pair 〈B(Ω,B), ba(B)〉. It is evident that Q∗ is the set of all the prob-

ability charges on B (i.e., any µ ∈ ba(B) satisfying µ ≥ 0 and
∫

Ω
dµ = 1). In other words,

beliefs are finitely additive, but may not be countably additive. Observe that Theorem 5.2

does not hold when the belief space is Q∗ because in general, the law of iterated expectations

holds for probability measures, but not for probability charges.

Remark 6.10 (Topology on X). It is obvious that if the characterization result in Theo-

rems 4.3, 4.7 or Corollary 4.4 holds for a certain topology on X, then it holds for any weaker

topology on X. In particular, Theorem 4.3 and Corollary 4.4 are true with any consistent

topology on X because the norm topology is the strongest consistent topology, i.e., the

Mackey topology, on X.
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Remark 6.11 (Generalizations). As shown by Morris (1994) and Ng (2003), one can easily

extend Theorem 2.2 (and hence Theorem 5.2) to the case in which all agents are risk-averse

by standard convex programming arguments.

We now discuss about other possible generalizations. Recall that Theorem 2.2 actually

consists of two parts: the no trade theorem with no private information (i.e., Lemma 2.1(a))

and its converse.

Since Lemma 2.1(a) follows just from definitions, the interim no trade theorem holds

trivially for dynamically consistent agents. An interesting question is: how far can we

deviate from the framework of expected utility so that the interim no trade theorem still

holds? Halevy (2004) has provided some answer to this question when the number of agents

is finite and the state space is finite.

Note that Theorem 2.2 itself has already taken care of the case when agents have multiple

prior beliefs. The question of whether the interim no trade principle holds in this case is

reduced to the question of finding conditions on a given updating rule so that all agents are

dynamically consistent. The paper, Kajii and Ui (2009), has provided some nice examples

along this line of thought. However, as the converse of Lemma 2.1(a) relies heavily on the

dual pair structure of the bet and (extended) belief spaces, there is little room left for an

extension of Theorem 2.2 to the case when agents have general preferences.

Remark 6.12 (More on (N, 2N)). Recently, there are some papers (for example, Hellman

(2014)) which attempt to establish the no trade principle for the measurable space (N, 2N).

The approach is not a standard one (i.e., there is no decision-theoretic foundation) as these

papers assume that beliefs may be improper. In other words, an agent may assign infinite

probability to the state space. In this case, the bet space X cannot contain any constant

bet. It does not seem that there is a natural duality between beliefs and bets in the sense of

Lemma 4.1. And as expected, it turns out that their results are not entirely positive.

7. Appendix: proofs

In many of our proofs, we shall use the Separation Theorem (see Theorem 3.4, Rudin

(1991), p. 59) and the Fundamental Theorem of Duality (see Theorem 5.91, Aliprantis and
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Border (2007), p. 212). We shall also use the following standard fact from general topology

(see Section 3.11(a), Gillman and Jerison (1976), p.42).

Proposition 7.1. Let Ω be a completely regular space. Let A and B be two disjoint non-

empty subsets of Ω. If A is compact and B is closed, then there exists a continuous function

f : Ω −→ [0, 1] such that f |A ≡ 1 and f |B ≡ 0.

7.1. Proof of Lemma 2.1. (a) If
⋂
i∈I Ki 6= ∅, then each Ki 6= ∅. It follows just from the

definition of each CKi that

∅ 6=
⋂
i∈I

Ki ⊆
⋂
i∈I

{µ ∈ P ∗ : 〈f, µ〉 > 0, ∀ f ∈ CKi}

=

{
µ ∈ P ∗ : 〈f, µ〉 > 0, ∀ f ∈

⋃
i∈I

CKi

}

=

{
µ ∈ P ∗ : 〈f, µ〉 > 0, ∀ f ∈

∑
I

CKi

}
.

It is clear that 0 6∈
∑

I CKi . 2

(b) It suffices to consider the case when I = {1, 2}.

For any f ∈ (CK1 ∪ CK2) and µ ∈ (K1 ∩K2), we have 〈f, µ〉 > 0. Hence,

∑
I

CKi = conv (CK1 ∪ CK2) ⊆ CK1∩K2 .

If f ∈ CK1∩K2 but f 6∈ (CK1 ∪ CK2), then for i = 1, 2, we can find αi ∈ Ki such that

〈f, αi〉 ≤ 0. Moreover, for any µ ∈ (K1 ∩K2), we have 〈f, µ〉 > 0. It follows from the

convexity of Ki and the linearity of f on X∗ that 〈f, βi〉 = 0 for some βi ∈ Ki. Define

H = {µ ∈ X∗ : 〈f, µ〉 = 0} and Ki(f) = Ki ∩H for i = 1, 2.

Then K1(f) and K2(f) are disjoint, non-empty, convex and weak* compact subsets of the

locally convex subspace H of X∗. Since any continuous linear functional on H can be

extended to be an element of X (see Theorem 5.87, Aliprantis and Border (2007), p. 210),

by the Separation Theorem and a translation argument, we can find gi ∈ CKi(f) such that

〈g1 + g2, µ〉 = 0 for all µ ∈ H. Now, fix i = 1 or 2 and consider the weak* closed and
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convex set

Hi = {µ ∈ H : 〈gi, µ〉 = 0} ,

which is disjoint from the weak* compact convex set Ki. By the Separation Theorem, there

is an hi ∈ X and ci ∈ R such that

inf {〈hi, µ〉 : µ ∈ Ki} > ci > sup {〈hi, µ〉 : µ ∈ Hi} .

It is obvious that 〈hi, µ〉 = 0 for all µ ∈ Hi. Indeed, since Hi is a vector space, if there is

an ν ∈ Hi such that 〈hi, ν〉 = di 6= 0, then
〈
hi,
(
ci
di

)
ν
〉

= ci, a contradiction. Consequently,

hi ∈ CKi and by the Fundamental Theorem of Duality, we can find λi ∈ R such that hi = λi gi

on H.

For any µ ∈ Ki(f), we have 〈hi, µ〉 > 0 and 〈gi, µ〉 > 0 so that λi > 0. Let fi = hi
λi
∈ CK1 .

Then, 〈f1 + f2, µ〉 = 0 for all µ ∈ H. Using the Fundamental Theorem of Duality, we can

find λ ∈ R such that f1 + f2 = λ f . By letting both sides of the last equation act on any

µ ∈ K1 ∩K2, we get λ > 0. This implies that f ∈ (CK1 + CK2).

As a result, CK1∩K2 =
∑

I CKi . 2

7.2. Proof of Theorem 2.2. We need to prove that under our assumptions, the converse

of Lemma 2.1(a) is also true.

Suppose that
⋂
i∈I Ki = ∅. Then there are at least two agents. We may assume that

K1 is weak* compact. By the finite intersection property, we may assume that there are

K1, . . . , Km, Km+1 from Ki’s with
⋂m
i=1 Ki 6= ∅ but

⋂m+1
i=1 Ki = ∅. We may also assume

that Km+1 is weak* closed in P ∗, while Ki is weak* compact for every i = 1, 2, . . . ,m. Since

Km+1 ∩ (
⋂m
i=1Ki) = ∅. By the Separation Theorem and a translation argument, there is an

f ∈ X such that −f ∈ CKm+1
⊆ CKm+1 , and f ∈ C⋂m

i=1Ki
=
∑m

i=1CKi (by Lemma 2.1(b)).

This implies that 0 ∈
∑m+1

i=1 CKi ⊆
∑

I CKi . 2

7.3. Proof of Lemma 4.1. Suppose that K ⊆ P ∗ is non-empty, convex and weak* closed

in P ∗. Consider the convex set

D = {µ ∈ P ∗ : 〈f, µ〉 > 0 for all f ∈ CK}.
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By definition, K ⊆ D. Suppose that ν ∈ P ∗ but ν 6∈ K. Then ν 6∈ K. By the Separation

Theorem, there is an f ∈ X and a constant c such that

〈f, µ〉 > c > 〈f, ν〉 ∀ µ ∈ K,

i.e., 〈f − c, µ〉 > 0 > 〈f − c, ν〉 ∀ µ ∈ K.

The first inequality shows that f − c ∈ CK ⊆ CK . The second inequality then shows that

ν 6∈ D. It follows that K = D.

Conversely, we assume CK is weakly open, and K satisfies the bipolar property. It suffices

to prove that D is weak* closed in P ∗. Let µ be a weak* limit point of D in P ∗. Fix any

f ∈ CK . Since CK is weakly open, we can find µ1, . . . , µn ∈ X∗ such that we have g ∈ CK

whenever g ∈ X and −1 <
∫

Ω
(f−g) dµi < 1 for all i. Take ε > 0 so that −1 < ε

∫
Ω
dµi < 1

for all i. This implies that f − ε ∈ CK . By the definition of CK and the fact that µ is a

weak* limit point of D in P ∗, we have
∫

Ω
f dµ ≥ ε > 0. We conclude that K = D is weak*

closed in P ∗. 2

7.4. Proof of Lemma 4.2. Given ∅ 6= K ⊆ P ∗, define CK = {f ∈ X : 〈f, µ〉 ≥ 0,∀ µ ∈ K}

and D =
{
f ∈ X : f + 1 ∈ CK

}
. By definition,

K ⊆
{
µ ∈ P ∗ : 〈f, µ〉 ≥ 0, ∀ f ∈ CK

}
= {µ ∈ P ∗ : 〈f, µ〉 ≥ −1, ∀ f ∈ D} .

Since CK is open and 1 ∈ CK , by translation, 0 is an interior point of D. Therefore, there

is a balanced neighborhood U of 0 such that U ⊆ D. Now, the absolute polar of U is

U◦ = {µ ∈ X∗ : | 〈f, µ〉 | ≤ 1, ∀ f ∈ U}

= {µ ∈ X∗ : 〈f, µ〉 ≥ −1, ∀ f ∈ U} ,

which is weak* compact by the Alaoglu-Bourbaki Theorem (see Theorem 5.105, Aliprantis

and Border (2007), p.218). Since U ⊆ D and K ⊆ {µ ∈ P ∗ : 〈f, µ〉 ≥ −1, ∀ f ∈ D}, we

have K ⊆ U◦. As a result, the weak* closed subset K of U◦ is weak* compact. 2
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7.5. Proof of Theorem 4.3. In view of Lemma 4.2, we only need to show that if K

is weak* compact, then CK is open. The key is that X = B(Ω,B), equipped with the

sup norm, is a Banach space. Fix any f ∈ CK . Since K is weak* compact, we may let

2ε = minν∈K
∫

Ω
f dν > 0. For any µ ∈ K and for any g ∈ X such that ||g− f || < ε, we have∫

Ω

g dµ ≥
∫

Ω

f dµ−
∫

Ω

|g − f | dµ ≥ 2ε− ε = ε > 0.

It follows that g ∈ CK and hence CK is open. 2

7.6. Proof of Lemma 4.5. We note that for the dual pair
〈
Cb(Ω), rca(B)

〉
, the statement

in part (a) is just Prokhorov’s Theorem (see Theorem 12.6.3, p. 268 in Jarchow (1981)).

7.6.1. Proof of (a). We are left with the dual pair 〈C(Ω), rcac(B)〉.

Let K have a uniform compact support SK in Ω. Let D = {B ∩ SK : B ∈ B} be the

collection of all the Borel subsets of SK . Let P (D)(⊆ rca(D) = rcac(D)) be the set of all

the regular probability measures on D . Let {µλ} ⊆ K be a net in P ∗. This induces a net

{νλ} ⊆ P (D) defined by νλ(D) = µλ(D) for all D ∈ D . Now, P (D) is weak* compact

with respect to the dual pair 〈C(SK), rca(D)〉. We may assume that it has a weak* limit

ν ∈ P (D).

Define µ on B by µ(B) = ν(B ∩ SK). It is obvious that µ ∈ P ∗ since suppµ is contained

in the compact set SK . We claim that µ is a weak* limit of {µλ} with respect to the dual

pair 〈C(Ω), rcac(B)〉. Indeed, by taking any f ∈ C(Ω), we have∫
Ω

f dµλ =

∫
SK

f |SK dνλ −→
∫
SK

f |SK dν =

∫
Ω

f dµ .

It follows that K is relatively weak* compact in P ∗. 2

7.6.2. Proof the first part of (b). Assume that condition (b)(i) is satisfied.

(Case 1) We first consider the dual pair 〈C(Ω), rcac(B)〉. Let ∅ 6= K ⊆ P ∗. Suppose that

CK is open in C(Ω). Since 1 ∈ CK , there exists a compact subset Ω0 of Ω and a δ > 0 such

that {f ∈ C(Ω) : ‖f − 1‖Ω0 < δ} ⊆ CK .

Claim:
⋃
µ∈K suppµ ⊆ Ω0 and thus SK ⊆ Ω0 is compact (since Ω0 is a compact set and by

definition, SK is closed).
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Suppose not, then there exists an ω0 ∈ suppµ0, for some µ0 ∈ K but ω0 /∈ Ω0. Since Ω

is completely regular, there exists a continuous function g : Ω → [0, 1] such that g(ω0) = 1

and g|Ω0 ≡ 0. Fix an ε satisfying 0 < ε < 1. By the continuity of g, there exists an open set

V ⊆ Ω such that ω0 ∈ V and for every ω ∈ V , g(ω) ≥ 1 − ε. Let S = suppµ0. Since ω0 ∈

(V ∩S) 6= ∅, we have µ0(V ∩S) > 0 (otherwise µ0(V ) = µ0(V ∩S) +µ0(V ∩Sc) = 0 + 0 = 0

and so V ⊆ Sc, which implies that V ∩ S = ∅, a contradiction). It follows that∫
Ω

g dµ0 ≥
∫
V

g dµ0 ≥ (1− ε)µ0(V ∩ S) > 0.

For any λ > 0, observe that ‖(1− λg)− 1‖Ω0 = 0 < δ. Hence, (1− λg) ∈ CK for all λ > 0.

Since µ0 ∈ K, we have
∫

Ω
(1−λg)dµ0 > 0, or λ

∫
Ω
g dµ0 < 1 for all λ > 0, which is impossible.

This shows that SK is compact and the proof is complete. 2

(Case 2) We next consider the dual pair
〈
Cb(Ω), rca(B)

〉
. Let ∅ 6= K ⊆ P ∗. Suppose

that CK is open in Cb(Ω). Since 1 ∈ CK , there exist a δ > 0 and a function s ∈M0(Ω) such

that {
f ∈ Cb(Ω) : ps(f − 1) = sup

t∈Ω
|(f − 1)(t)s(t)| < δ

}
⊆ CK .

By definition, s vanishes at infinity. Thus, for each ε satisfying 0 < ε < δ, there exists a

compact set Ω0 ⊆ Ω such that

|s(t)| < ε2

2
, ∀ t /∈ Ω0.

We claim that µ(Ω \ Ω0) < ε for all µ ∈ K and thus K is uniformly tight.

Suppose not, then there exists some µ0 ∈ K such that µ0(Ω \ Ω0) ≥ ε. Let S = suppµ0

and ω0 ∈ S ∩ Ωc
0. Since µ0 is regular, there exists a compact set Ω1 ⊆ (S ∩ Ωc

0) such that

µ0(Ω1) ≥ ε
2

and ω0 ∈ Ω1. By Proposition 7.1, there exists a continuous function g : Ω→ [0, 1]

such that g|Ω1 ≡ 1 and g|Ω0 ≡ 0. Thus,
∫

Ω
g dµ0 ≥

∫
Ω1
g dµ0 = µ0(Ω1) ≥ ε

2
. Now,

ps

(
1− 2g

ε
− 1

)
= ps

(
−2g

ε

)
=

2

ε
sup
t∈Ω
|g(t)s(t)| ≤ 2

ε
· ε

2

2
= ε < δ

and therefore,
(
1− 2g

ε

)
∈ CK . However, µ0 ∈ K, implying that

1 >
2

ε

∫
Ω

g dµ0 ≥
2

ε
· ε

2
= 1,

a contradiction. This proves that K is uniformly tight. 2
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7.6.3. Proof of the second part of (b). Assume that condition (b)(ii) is satisfied. Let (Ω, d)

be a metric space. For x ∈ Ω and r > 0, we denote B(x, r) = {ω ∈ Ω : d(x, ω) < r}.

(Case 1) Consider the dual pair 〈C(Ω), rcac(B)〉. Let K be a non-empty and relatively

weak* compact set in P ∗.

Suppose on the contrary that SK is not a compact subset of Ω. Then, SK contains a

countably infinite subset A = {xn : n ∈ N} that has no limit points. Let F =
⋃
µ∈K suppµ.

Note that SK = F . For each n ∈ N, pick an ωn ∈
(
F ∩B(xn,

1
n
)
)

and let B = {ωn : n ∈

N} ⊆ F . Obviously, A and B have the same set of limit points. This implies that B has no

limit points. In particular, B is a discrete subset of Ω. Therefore, there is a sequence {Vn}

of pairwise disjoint open sets such that ωn ∈ Vn ⊆ B
(
ωn,

1
n

)
for each n ∈ N.

Now, for each n ∈ N, pick µn ∈ K such that ωn ∈ suppµn. Then, M = {µn : n ∈ N}

must be an infinite subset of K (otherwise,
⋃
µ∈M suppµ would be compact, and so B would

have a limit point, a contradiction). But by assumption, K is relatively weak* compact

in P ∗. Consequently, M has a weak* limit point µ0 ∈ K ∩ P ∗. By definition, suppµ0 is

compact and so B ∩ (suppµ0) is finite. Replacing B by B \ (suppµ0), we may assume that

B ∩ (suppµ0) = ∅. Thus, we may further assume that (
⋃
n Vn) ∩ (suppµ0) = ∅ (simply

take disjoint open sets V and W such that the closed set B ⊆ V and the compact set

suppµ0 ⊆ W , and replace each Vn by V ∩ Vn).

Since µn is regular, there is a compact set Ωn ⊆ Vn ∩ (suppµn) such that ωn ∈ Ωn and

µn(Ωn) = εn > 0. By Proposition 7.1, there exists a continuous function fn : Ω −→
[
0, 1

εn

]
satisfying fn|Ωn ≡ 1

εn
and fn|V cn ≡ 0.

The function f =
∑∞

n=1 fn is well-defined because f(ω) 6= 0 only when ω ∈ Vn for exactly

one n ∈ N. Clearly, f ≥ 0. We claim that f ∈ C(Ω). To see this, let ω ∈ Ω. We separate

the proof into two cases.

We first suppose that f(ω) > 0. Then, for some m, we have ω ∈ Vm an f |Vm = fm|Vm .

Hence, f is continuous at ω.

We next suppose that f(ω) = 0. If f is not continuous at ω, then there is an ε > 0 and an

infinite set C = {ym} such that ym ∈ B
(
ω, 1

m

)
and f(ym) ≥ ε for each m. But this implies
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that C ⊆
⋃∞
n=1 Vn. Moreover, Vn∩C is finite for each n. In fact, if Vr∩C is infinite for some r,

then we can find an infinite set {zk} ⊆ Vr ∩C satisfying f(ω) ≥ fr(ω) = limk fr(zk) ≥ ε > 0,

a contradiction. As a result, we can define inductively two strictly increasing sequences,

{mk} and {nk}, in N such that ymk ∈ Vnk ⊆ B
(
ωnk ,

1
nk

)
. Hence, we have

d (ω, ωnk) ≤ d (ω, ymk) + d (ymk , ωnk) <
1

mk

+
1

nk
−→ 0 as k −→∞.

It follows that ω is a limit point of B, a contradiction. Consequently, f is continuous at ω.

To complete our proof, observe that for all n ∈ N,∫
Ω

f dµn ≥
∫

Ωn

fn dµn =
µn(Ωn)

εn
= 1.

However, since (
⋃
n Vn)∩ (suppµ0) = ∅, we have

∫
Ω
f dµ0 = 0, which contradicts to the fact

that µ0 is a weak* limit point of M . We conclude that K has a uniform compact support.2

(Case 2) We now consider the dual pair
〈
Cb(Ω), rca(B)

〉
. It is well known that the

assertion holds if Ω is a Polish space (see Theorem 15.22, p. 519 in Aliprantis and Border

(2007)). By an argument similar to the proof in Section 7.6.1, it suffices to show that if

(Ω, d) is a complete metric space and K is a relatively weak* compact set in P ∗, then there

is a Polish subspace Ω∞ of Ω such that µ(Ω∞) = 1 for every µ ∈ K.

Observe that any subset of a uniformly tight set is also uniformly tight. Therefore, we

may assume that K is weak* compact.

All elements in P ∗ are regular. Thus, for each µ ∈ K and each n ∈ N, there exists a

non-empty compact set Ωµ
n such that 1− 1

2n
< µ(Ωµ

n) ≤ 1. Define the closed set

F µ
n =

{
ω ∈ Ω : d(ω,Ωµ

n) ≥ 1

n

}
.

We have Ωµ
n ∩F µ

n = ∅. If F µ
n 6= ∅, then by Proposition 7.1, there is a continuous function

fµn : Ω −→ [0, 1] such that fµn |Ωµn ≡ 1 and fµn |Fµn ≡ 0. If F µ
n = ∅, then we simply take fµn ≡ 1.

For every n ∈ N and µ ∈ K, define the following open set in K:

Uµ
n =

{
ν ∈ K : 1− 1

n
<

∫
Ω

fµn dν ≤ 1

}
.

Obviously, µ ∈ Uµ
n for every µ ∈ K. In other words, {Uµ

n : µ ∈ K} is an open cover of the

weak* compact set K. Hence, there is a finite subset Mn of K such that K =
⋃
µ∈Mn

Uµ
n .
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Let fn = max{fµn : µ ∈Mn}. Define

Ωn =
⋃
µ∈Mn

Ωµ
n and Fn =

{
ω ∈ Ω : d (ω,Ωn) ≥ 1

n

}
.

Then, fn : Ω −→ [0, 1] is continuous. Clearly, fn|Ωn ≡ 1 and fn|Fn ≡ 0. Moreover, for each

µ ∈ K, we have:

1− 1

n
<

∫
Ω

fn dµ ≤ 1.

It follows that for each µ ∈ K, we have

(7.1) µ(Fn) = 1−
∫

Ω\Fn
dµ ≤ 1−

∫
Ω

fn dµ <
1

n
.

Observe that every compact metric space is Polish. Then, Ω∞ =
⋃∞
n=1 Ωn is clearly a

Polish subspace of Ω. We now complete our proof by showing that µ (Ω∞) = 1 for every

µ ∈ K. To see this, let µ ∈ K and Ω0 be any compact subset of Ω such that Ω0 ∩ Ω∞ = ∅.

Choose m ∈ N so that d (Ω0,Ω∞) = minω∈Ω0 d(ω,Ω∞) ≥ 1
m

. For any n ≥ m, we have

d(Ω0,Ωn) ≥ d(Ω0,Ω∞) ≥ 1
n
, and so Ω0 ⊆ Fn. From (7.1), µ(Ω0) < 1

n
for all n ≥ m. This

implies that µ(Ω0) = 0. By the regularity of µ, we must have µ(Ω∞) = 1. 2

7.7. Proof of Lemma 4.6. Because of Lemma 4.5(b)(i), we only need to prove the “only

if” part, and in view of Lemma 4.5(a), we can directly assume that K is weak* compact.

(Case 1) Consider the dual pair 〈C(Ω), rcac(B)〉.

Let f ∈ CK . Since K is weak* compact with a uniform compact support SK , we may

let ε = minµ̄∈K
∫

Ω
f dµ̄ = minµ̄∈K

∫
SK
f dµ̄ > 0. For any µ ∈ K and g ∈ C(Ω) such that

‖g − f‖SK < ε, we have
∫

Ω
g dµ =

∫
SK
g dµ ≥

∫
SK
f dµ−

∫
SK
|g − f |dµ > ε− ε = 0. Thus,

g ∈ CK . As a result, CK is open.

(Case 2) Consider the dual pair
〈
Cb(Ω), rca(B)

〉
.

Fix f ∈ CK . Since K is weak* compact, we may let 2ε = minµ̄∈K
∫

Ω
f dµ̄ > 0. Since K is

uniformly tight, there is an increasing sequence of compact sets, Ω1 ⊆ Ω2 ⊆ · · · , such that

for each n ∈ N and µ ∈ K, we have µ (Ω \ Ωn) > 1
n2n

. Note that for any Borel subset E of

Ω and µ ∈ K, we have µ(E) = limn→∞ µ(E ∩ Ωn).
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Choose an n ∈ N so that ε > 1
n
. Define a function s ∈M0(Ω) by

s(t) =


1 if t ∈ Ωn,

1
m

if t ∈ Ωm+1 \ Ωm for m ≥ n,

0 if t /∈
⋃∞
m=1 Ωm.

Take any g ∈ Cb(Ω) such that ps(g − f) = supt∈Ω |(g − f)(t)s(t)| < ε. If µ ∈ K, then∫
Ω

g dµ ≥
∫

Ω

f dµ−
∫

Ω

|g − f | dµ

≥ 2ε−
∫

Ωn

|g − f | dµ−
∫

Ω\Ωn
|g − f | dµ

> 2ε− ε−
∑
m≥n

∫
Ωm+1\Ωm

|g − f | dµ

> ε− ε
∑
m≥n

mµ(Ωm+1 \ Ωm) (since ps(g − f) < ε)

≥ ε− ε
∑
m≥n

mµ(Ω \ Ωm)

> ε− ε
∑
m≥n

1

2m

≥ ε− ε = 0.

Thus, g ∈ CK . As a result, CK is open. 2
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