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This paper proposes a neural network approach for efficiently solving general nonlinear
convex programs with second-order cone constraints. The proposed neural network model
was developed based on a smoothed natural residual merit function involving an uncon-
strained minimization reformulation of the complementarity problem. We study the exis-
tence and convergence of the trajectory of the neural network. Moreover, we show some
stability properties for the considered neural network, such as the Lyapunov stability,
asymptotic stability, and exponential stability. The examples in this paper provide a further
demonstration of the effectiveness of the proposed neural network. This paper can be
viewed as a follow-up version of [20,26] because more stability results are obtained.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we are interested in finding a solution to the following nonlinear convex programs with second-order cone
constraints (henceforth SOCP):
min f ðxÞ
s:t: Ax ¼ b

�gðxÞ 2 K

ð1Þ
where A 2 Rm�n has full row rank, b 2 Rm, f : Rn ! R; g ¼ ½g1; . . . ; gl�
T : Rn ! Rl with f and gi’s being two order continuous

differentiable and convex on Rn, and K is a Cartesian product of second-order cones (also called Lorentz cones), expressed
as
K ¼ Kn1 �Kn2 � � � � �KnN
with N, n1, . . . , nN P 1, n1 + � � � + nN = l and
Kni :¼ fðxi1; xi2; . . . ; xini
ÞT 2 Rni j kðxi2; . . . ; xini

Þk 6 xi1g:
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Here, k � k denotes the Euclidean norm and K1 means the set of nonnegative reals Rþ. In fact, the problem (1) is equivalent to
the following variational inequality problem, which is to find x 2 D satisfying
hrf ðxÞ; y� xiP 0; 8y 2 D;
where D ¼ fx 2 RnjAx ¼ b; �gðxÞ 2 Kg. Many problems in the engineering, transportation science, and economics commu-
nities can be solved by transforming the original problems into the mentioned convex optimization problems or variational
inequality problems, see [1,7,10,17,23].

Many studies have proposed computational approaches to solve convex optimization problems. Examples of these meth-
ods include the interior-point method [29], merit function method [5,16], Newton method [18,25], and projection method
[10]. However, real-time solutions are imperative in many applications, such as force analysis in robot grasping and control
applications. The traditional optimization methods may not be suitable for these applications because of stringent compu-
tational time requirements. Therefore, a feasible and efficient method is required to solve real-time optimization problems.
The neural network method is an ideal method for solving real-time optimization problems. Compared with previous meth-
ods, the neural network method has an advantage in solving real-time optimization problems. Hence, researchers have
developed many continuous-time neural networks for constrained optimization problems. The literature contains many
studies on neural networks for solving real-time optimization problems, please see [4,9,12,14,15,19–22,27,30–34,36] and
references therein.

Neural networks stemmed back from McCulloch and Pitts’ pioneering work a half century ago, and neural networks were
first introduced to the optimization domain in the 1980s [13,28]. The essence of neural network method for optimization [6]
is to establish a nonnegative Lyapunov function (or energy function) and a dynamic system that represents an artificial neu-
ral network. This dynamic system usually adopts the form of a first-order ordinary differential equation. For an initial point,
the neural network is likely to approach its equilibrium point, which corresponds to the solution to the considered optimi-
zation problem.

This paper presents a neural network method to solve general nonlinear convex programs with second-order cone con-
straints. In particular, we consider the Karush–Kuhn–Tucker (KKT) optimality conditions of the problem (1), which can be
transformed into a second-order cone complementarity problems (SOCCP), as well as some equality constraints. Following
a reformulation of the complementarity problem, an unconstrained optimization problem is formulated. A smoothed natural
residual (NR) complementarity function is then used to construct a Lyapunov function and a neural network model. At the
same time, we show the existence and convergence of the solution trajectory for the dynamic system. This study also inves-
tigates the stability results, such as the Lyapunov stability, the asymptotic stability, and the exponential stability. We want to
point out that the optimization problem considered in this paper is more general than the one studied in [20] where g(x) = �x
is investigated therein. From [20], for solving the specific SOCP (i.e., g(x) = �x), we know that the neural network based on the
cone projection function has better performance than the one based on the Fischer–Burmeister function in most cases (ex-
cept for some oscillating cases). In light of considering this phenomenon, we employ a neural network model based on the
cone projection function for a more general SOCP. Thus, this paper can be viewed as a follow-up of [20] in this sense. Nev-
ertheless, the neural network model studied here is not exactly the same as the one considered in [20]. More specifically, we
consider a neural network based on the smoothed NR function which was studied in [16]. Why do we make such a change?
As in Section 4, we can establish various stability results, including exponential stability for the proposed neural network
that were not achieved in [20]. In addition, the second neural network studied in [27] (for various types of problems) is also
similar to the proposed network. Again, the stability is not guaranteed in that study, but three stabilities are proved here.

The remainder of this paper is organized as follows. Section 2 presents stability concepts and provides related results.
Section 3 describes the neural network architecture, which is based on the smoothed NR function, to solve the problem
(1). Section 4 presents the convergence and stability results of the proposed neural network. Section 5 shows the simulation
results of the new method. Finally, Section 6 gives the conclusion of this paper.

2. Preliminaries

In this section, we briefly recall background materials of the ordinary differential equation (ODE) and some stability con-
cepts regarding the solution of ODE. We also present some related results that play an essential role in the subsequent
analysis.

Let H : Rn ! Rn be a mapping. The first order differential equation (ODE) means
du
dt
¼ HðuðtÞÞ; uðt0Þ ¼ u0 2 Rn: ð2Þ
We start with the existence and uniqueness of the solution of Eq. (2). Then, we introduce the equilibrium point of (2) and
define various stabilities. All of these materials can be found in a typical ODE textbook, such as [24].

Lemma 2.1 (The existence and uniqueness 21, Theorem 2.5). Assume that H : Rn ! Rn is a continuous mapping. Then for
arbitrary t0 P 0 and u0 2 Rn, there exists a local solution u(t), t 2 [t0,s) to (2) for some s > t0. Furthermore, if H is locally Lipschitz
continuous at u0, then the solution is unique; if H is Lipschitz continuous in Rn , then s can be extended to 1.
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Remark 2.1. For Eq. (2), if a local solution defined on [t0,s) cannot be extended to a local solution on a larger interval [t0,s1),
where s1 > s, then it is called a maximal solution, and this interval [t0,s) is the maximal interval of existence. It is obvious
that an arbitrary local solution has an extension to a maximal one.
Lemma 2.2 (21, Theorem 2.6). Let H : Rn ! Rn be a continuous mapping. If u(t) is a maximal solution, and [t0,s) is the maximal
interval of existence associated with u0 and s < +1, then limt"sku(t)k = +1.

For the first-order differential Eq. (2), a point u� 2 Rn is called an equilibrium point of (2) if H(u⁄) = 0. If there is a neigh-
borhood X # Rn of u⁄ such that H(u⁄) = 0 and H(u) – 0 for any u 2Xn{u⁄}, then u⁄ is called an isolated equilibrium point. The
following are definitions of various stabilities, and related materials can be found in [21,24,27].

Definition 2.1 (Lyapunov stability and Asymptotic stability). Let u(t) be a solution to Eq. (2).
(a) An isolated equilibrium point u⁄ is Lyapunov stable (or stable in the sense of Lyapunov) if for any u0 = u(t0) and e > 0,
there exists a d > 0 such that
ku0 � u�k < d ) kuðtÞ � u�k < e for t P t0:
(b) Under the condition that an isolated equilibrium point u⁄ is Lyapunov stable, u⁄ is said to be asymptotically stable if it
has the property that if ku0 � u⁄k < d, then u(t) ? u⁄ as t ?1.
Definition 2.2 (Lyapunov function). Let X # Rn be an open neighborhood of �u. A continuously differentiable function
g : Rn ! R is said to be a Lyapunov function (or energy function) at the state �u (over the set X) for Eq. (2) if
gð�uÞ ¼ 0;
gðuÞ > 0 8u 2 X n f�ug;
dgðuðtÞÞ

dt 6 0; 8u 2 X:

8><
>:
The following Lemma shows the relationship between stabilities and a Lyapunov function, see [3,8,35].
Lemma 2.3.
(a) An isolated equilibrium point u⁄ is Lyapunov stable if there exists a Lyapunov function over some neighborhood X of u⁄.
(b) An isolated equilibrium point u⁄ is asymptotically stable if there exists a Lyapunov function over some neighborhood X of u⁄

that satisfies
dgðuðtÞÞ
dt

< 0; 8u 2 X n fu�g:
Definition 2.3 (Exponential stability). An isolated equilibrium point u⁄ is exponentially stable for Eq. (2) if there exist x < 0,
j > 0, d > 0 such that arbitrary solution u(t) to Eq. (2), with the initial condition u(t0) = u0, ku0 � u⁄k < d, is defined on [0,1)
and satisfies
kuðtÞ � u�k 6 jextkuðt0Þ � u�k; t P t0:
From the above definitions, it is obvious that exponential stability is asymptotic stable.
3. NR neural network model

This section shows how the dynamic system in this study was formed. As mentioned previously, the key steps in the neu-
ral network method lie in constructing the dynamic system and Lyapunov function. To this end, we first look into the KKT
conditions of the problem (1) which are presented as below:
rf ðxÞ � AT yþrgðxÞz ¼ 0;
z 2 K; �gðxÞ 2 K; zT gðxÞ ¼ 0;
Ax� b ¼ 0;

8><
>: ð3Þ
where y 2 Rm,rg(x) denotes the gradient matrix of g. According to the KKT condition, it is well known that if the problem (1)
satisfies Slater’s condition, which means there exists a strictly feasible point for (1), i.e., there exists an x 2 Rn such that
�gðxÞ 2 intðKÞ and Ax = b. Then x⁄ is a solution of the problem (1) if and only if there exist y⁄, z⁄ such that (x⁄,y⁄,z⁄) satisfies
the KKT conditions (3). Hence, we assume that the problem (1) satisfies the Slater’s condition in this paper.
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The following paragraphs provide a brief review of particular properties of the spectral factorization with respect to a sec-
ond-order cone, which will be used in the subsequent analysis. Spectral factorization is one of the basic concepts in Jordan
algebra. For more details, see [5,11,25].

For any vector z ¼ ðz1; z2Þ 2 R� Rl�1ðl P 2Þ, its spectral factorization with respect to the second-order cone K is defined as
z ¼ k1e1 þ k2e2;
where ki = z1 + (�1)ikz2k, (i = 1,2) are the spectral values of z, and
ei ¼
1
2 ð1; ð�1Þi zi

kzik
Þ; z2 – 0

1
2 ð1; ð�1ÞiwÞ; z2 ¼ 0

(

with w 2 Rl�1 such that kwk = 1. The terms e1, e2 are called the spectral vectors of z. The spectral values of z and the vector z
have the following properties: for any z 2 Rl, there have k1 6 k2 and
k1 P 0 () z 2 K:
Now we review the concept of metric projection onto K. For arbitrary element z 2 Rl, the metric projection of z onto K is de-
noted by PKðzÞ and defined as
PKðzÞ :¼ arg min
w2K
kz�wk:
Combining the spectral decomposition of z with the metric projection of z onto K yields the expression of metric projection
PKðzÞ in [11]:
PKðzÞ ¼maxf0; k1ge1 þmaxf0; k2ge2:
The projection function PK has the following property, which is called the Projection Theorem (see [2]).

Lemma 3.1. Let X be a closed convex set of Rn. Then, for all x; y 2 Rn and any z 2X,
ðx� PXðxÞÞTðPXðxÞ � zÞP 0 and kPXðxÞ � PXðyÞk 6 kx� yk:
Given the definition of the projection, suppose z+ denotes the metric projection PKðzÞ of z 2 Rl onto K. Then, the natural
residual (NR) function is given as follows [11]:
UNRðx; yÞ :¼ x� ðx� yÞþ 8x; y 2 Rl:
The NR function is a popular SOC-complementarity function, i.e.,
UNRðx; yÞ ¼ 0() x 2 K; y 2 K and hx; yi ¼ 0:
Because of the non-differentiability of UNR, we consider a class of smoothed NR complementarity function. To this end, we
employ a continuously differentiable convex function ĝ : R! R such that
lim
a!�1

ĝðaÞ ¼ 0; lim
a!1
ðĝðaÞ � aÞ ¼ 0 and 0 < ĝ0ðaÞ < 1: ð4Þ
What kind of functions satisfies the condition (4)? Here we present two examples:
ĝðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4
p

þ a
2

and ĝðaÞ ¼ lnðea þ 1Þ:
Suppose z = k1e1 + k2e2, where ki and ei (i = 1,2) are the spectral values and spectral vectors of z, respectively. By applying the
function ĝ, we define the following function:
PlðzÞ :¼ lĝ
k1

l

� �
e1 þ lĝ

k2

l

� �
e2: ð5Þ
Fukushima et al. [11] show that Pl is smooth for any l > 0; moreover Pl is a smoothing function of the projection PK, i.e.,
liml#0Pl ¼ PK. Hence, a smoothed NR complementarity function is given in the form of
Ulðx; yÞ :¼ x� Plðx� yÞ:
In particular, from [11, Proposition 5.1], there exists a positive constant c > 0 such that
kUlðx; yÞ �UNRðx; yÞk 6 cl
for any l > 0 and ðx; yÞ 2 Rn � Rn.
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Now we look into the KKT conditions (3) of the problem (1). Let
Lðx; y; zÞ ¼ rf ðxÞ � AT yþrgðxÞz; HðuÞ :¼

l
Ax� b

Lðx; y; zÞ
Ulðz;�gðxÞÞ

2
6664

3
7775
and
WlðuÞ :¼ 1
2
kHðuÞk2 ¼ 1

2
kUlðz;�gðxÞÞk2 þ 1

2
kLðx; y; zÞk2 þ 1

2
kAx� bk2 þ 1

2
l2;
where u ¼ ðl; xT ; yT ; zTÞT 2 Rþ � Rn � Rm � Rl. It is known that Wl(u) serves as a smoothing function of the merit function
WNR which means the KKT conditions (3) are shown to be equivalent to the following unconstrained minimization problem
via the merit function approach:
min WlðuÞ :¼ 1
2
kHðuÞk2

: ð6Þ
Theorem 3.1.

(a) Let Pl be defined by (5). Then, r Pl(z) and I �rPl(z) are positive definite for any l > 0 and z 2 Rl.
(b) Let Wl be defined as in (6). Then, the smoothed merit function Wl is continuously differentiable everywhere with
rWl(u) =rH(u)H(u) where
rHðuÞ ¼

1 0 0 � @PlðzþgðxÞÞ
@l

� �T

0 AT r2f ðxÞ þ r2g1ðxÞ þ � � � þ r2glðxÞ �rxPlðzþ gðxÞÞ
0 0 �A 0
0 0 rgðxÞT I �rzPlðzþ gðxÞÞ

2
666664

3
777775: ð7Þ
Proof. Form the proof of [16, Proposition 3.1], it is clear that rPl(z) and I �rPl(z) are positive definite for any l > 0 and
z 2 Rl. With the help of the definition of the smoothed merit function Wl, part (b) easily follows from the chain rule. h

In light of the main ideas for constructing artificial neural networks (see [6] for details), we establish a specific first order
ordinary differential equation, i.e., an artificial neural network. More specifically, based on the gradient of the objective func-
tion Wl in minimization problem (6), we propose the neural network for solving the KKT system (3) of nonlinear SOCP (1)
with the following differential equation:
duðtÞ
dt
¼ �qrWlðuÞ; uðt0Þ ¼ u0; ð8Þ
where q > 0 is a time scaling factor. In fact, if s = qt, then duðtÞ
dt ¼ q duðsÞ

ds . Hence, it follows from (8) that duðsÞ
ds ¼ �rWlðuÞ. In view

of this, for simplicity and convenience, we set q = 1 in this paper. Indeed, the dynamic system (8) can be realized by an archi-
tecture with the cone projection function shown in Fig. 1. Moreover, the architecture of this artificial neural network is cat-
egorized as a ‘‘recurrent’’ neural network according to the classifications of artificial neural networks as in [6, Chapter 2.3.1].
The circuit for (8) requires n + m + l + 1 integrators, n processors for rf(x), l processors for g(x), ln processors for rg(x),
(l + 1)2n processors for r2f ðxÞ þ

Pl
i¼1r2giðxÞ, 1 processor for Ul, 1 processor for @Pl

@l ;n processors for rxPl,l processors for
rzPl, n2 + 4mn + 3ln + l2 + l connection weights and some summers.

4. Stability analysis

In this section, in order to study the stability issues of the proposed neural network (8) for solving the problem (1), we
first make an assumption that will be required in our subsequent analysis.

Assumption 4.1.

(a) The problem (1) satisfies the Slater’s condition.
(b) The matrix r2 f(x) +r2g1(x) + � � � +r2gl(x) is positive definite for each x.

Here we say a few words about Assumption 4.1(a and b). The Slater’s condition is a standard condition that is widely used
in optimization field. Assumption 4.1(b) seems stringent at first glance. Indeed, since f and gi’s are two order continuously
differentiable and convex functions on Rn, if there exists at least one function which is strictly convex among these functions,
then Assumption 4.1(b) is guaranteed.



Fig. 1. Block diagram of the proposed neural network with smoothed NR function.
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Lemma 4.1.

(a) For any u, we have
kHðuÞ � Hðu�Þ � Vðu� u�Þk ¼ oðku� u�kÞ for u! u� and V 2 @HðuÞ
where @H(u) denotes the Clarke generalized Jacobian at u.
(b) Under Assumption 4.1, rH(u)T is nonsingular for any u ¼ ðl; x; y; zÞ 2 Rþþ � Rn � Rm � Rl, where Rþþ denotes the set

{l jl > 0}.
(c) Under Assumption 4.1 and V 2 @P0(w) being a positive definite matrix where @P0(w) denotes the Clarke generalized Jacobian

of the project function P at w, there has
T 2 @HðuÞ ¼

1 0 0 � @PlðzþgðxÞÞ
@l

� �T
jl¼0

0 AT r2f ðxÞ þ r2g1ðxÞ þ � � � þ r2glðxÞ �VTrgðxÞ
0 0 �A 0
0 0 rgðxÞT I � V

2
666664

3
777775jV 2 @P0ðWÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
is nonsingular for any u ¼ ð0; x; y; zÞ 2 f0g � Rn � Rm � Rl.
(d) Wl(u(t)) is nonincreasing with respect to t.
Proof. (a) This result follows directly from the definition of semismoothness of H, see [26] for more details.
(b) From the expression ofrH(u) in Theorem 3.1, it follows thatrH(u)T is nonsingular if and only if the following matrix
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M :¼
A 0 0

r2f ðxÞ þ r2g1ðxÞ þ � � � þ r2glðxÞ �AT rgðxÞ
�rxPlðzþ gðxÞÞT 0 ðI �rzPlðzþ gðxÞÞÞT

2
64

3
75
is nonsingular. Suppose v ¼ ðx; y; zÞ 2 Rn � Rm � Rl. To show the nonsingularity of M, it is enough to prove that
Mv ¼ 0 ) x ¼ 0; y ¼ 0 and z ¼ 0:
Because �rxPl(z + g(x))T = �rPl(w)Tr g(x)T, where w ¼ zþ gðxÞ 2 Rl, from Mv = 0, we have
Ax ¼ 0; ðr2f ðxÞ þ r2g1ðxÞ þ � � � þ r2glðxÞÞx� AT yþrgðxÞz ¼ 0 ð9Þ
and
�rPlðwÞTrgðxÞT xþ ðI �rPlðwÞÞT z ¼ 0: ð10Þ
From (9), it follows that
xTðr2f ðxÞ þ r2g1ðxÞ þ � � � þ r2glðxÞÞxþ ðrgðxÞT xÞ
T
z ¼ 0: ð11Þ
Moveover, Eq. (10) and Theorem 3.1 yield
rgðxÞT x ¼ ðrPlðwÞTÞ
�1
ðI �rPlðwÞÞT z: ð12Þ
Combining (11) and (12) and Theorem 3.1, under the condition of Assumption 4.1, it is not hard to obtain that x = 0 and z = 0.
By looking at Eq. (9) again, since A is full row rank, we have y = 0. Therefore, rH(u)T is nonsingular.

(c) The proof of Part (c) is similar to that of Part (b), in which the only option is to replace rPl(w) with V 2 @ P0(w).
(d) According to the definition of Wl(u(t)) and Eq. (8), it is clear that
dWlðuðtÞÞ
dt

¼ rWlðuðtÞÞ
duðtÞ

dt
¼ �qkrWlðuðtÞÞk2

6 0:
Consequently, Wl(u(t)) is nonincreasing with respect to t. h

Proposition 4.1. Assume that rH(u) is nonsingular for any u 2 Rþ � Rn � Rm � Rl. Then,

(a) (x⁄, y⁄, z⁄) satisfies the KKT conditions (3) if and only if (0,x⁄, y⁄, z⁄) is an equilibrium point of the neural network (8);
(b) Under the Slater’s condition, x⁄ is a solution to the problem (1) if and only if (0,x⁄, y⁄, z⁄) is an equilibrium point of the neural

network (8).
Proof. (a) Because U0 = UNR when l = 0, it follows that (x⁄,y⁄,z⁄) satisfies the KKT conditions (3) if and only if H(u⁄) = 0,
where u⁄ = (0,x⁄,y⁄,z⁄)T. Since rH(u) is nonsingular, we have that H(u⁄) = 0 if and only if r Wl(u⁄) =rH(u⁄)TH(u⁄) = 0. Thus,
the desired result follows.

(b) Under the Slater’s condition, it is well known that x⁄ is a solution of the problem (1) if and only if there exist y⁄ and z⁄

such that (x⁄,y⁄,z⁄) satisfying the KKT conditions (3). Hence, according to Part (a), it follows that (0,x⁄,y⁄,z⁄) is an equilibrium
point of the neural network (8). h

The next result addresses the existence and uniqueness of the solution trajectory of the neural network (8).

Theorem 4.1.

(a) For any initial point u0 = u(t0), there exists a unique continuously maximal solution u(t) with t 2 [t0,s) for the neural net-
work (8), where [t0,s) is the maximal interval of existence.

(b) If the level set Lðu0Þ :¼ fujWlðuÞ 6 Wlðu0Þg is bounded, then s can be extended to +1.
Proof. This proof is exactly the same as the proof of [27, Proposition 3.4], and therefore omitted here. h
Theorem 4.2. Assume that rH(u) is nonsingular and that u⁄ is an isolated equilibrium point of the neural network (8). Then the
solution of the neural network (8) with any initial point u0 is Lyapunov stable.
Proof. From Lemma 2.3, we only need to argue that there exists a Lyapunov function over some neighborhood X of u⁄. Now,
we consider the smoothed merit function
WlðuÞ ¼
1
2
kHðuÞk2:
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Since u⁄ is an isolated equilibrium point of (8), there is a neighborhood X of u⁄ such that
rWlðu�Þ ¼ 0 and rWlðuðtÞÞ– 0; 8uðtÞ 2 X n fu�g:
By the nonsingularity of rH(u) and the definition of Wl, it is easy to obtain that Wl(u⁄) = 0. From the definition of Wl, we
claim that Wl(u(t)) > 0 for any u(t) 2Xn{u⁄}, where X is a neighborhood of u⁄. Suppose not, namely, Wl(u(t)) = 0. It follows
that H(u(t)) = 0. Then, we haverWl(u(t)) = 0 which contradicts with the assumption that u⁄ is an isolated equilibrium point
of (8). Thus, Wl(u(t)) > 0 for any u(t) 2Xn{u⁄}. Furthermore, by the proof of Lemma 4.1(d), we know that for any u(t) 2X
dWlðuðtÞÞ
dt

¼ rWlðuðtÞÞ
duðtÞ

dt
¼ �qkrWlðuðtÞÞk2

6 0: ð13Þ
Consequently, the function Wl is a Lyapunov function over X. This implies that u⁄ is Lyapunov stable for the neural network
(8). h
Theorem 4.3. Assume thatrH(u) is nonsingular and that u⁄ is an isolated equilibrium point of the neural network (8). Then u⁄ is
asymptotically stable for neural network (8).
Proof. From the proof of Theorem 4.2, we consider again the Lyapunov function Wl. By Lemma 2.3 again, we only need to
verify that the Lyapunov function Wl over some neighborhood X of u⁄ satisfies
dWlðuðtÞÞ
dt

< 0; 8uðtÞ 2 X n fu�g: ð14Þ
In fact, by using (13) and the definition of the isolated equilibrium point, it is not hard to check that the Eq. (14) is true.
Hence, u⁄ is asymptotically stable. h
Theorem 4.4. Assume that u⁄ is an isolated equilibrium point of the neural network (8). If rH(u)T is nonsingular for any
u ¼ ðl; x; y; zÞ 2 Rþ � Rn � Rm � Rl, then u⁄ is exponentially stable for the neural network (8).
Proof. From the definition of H(u), we know that H is semismooth. Hence, by Lemma 4.1, we have
HðuÞ ¼ Hðu�Þ þ rHðuðtÞÞTðu� u�Þ þ oðku� u�kÞ; 8u 2 X n fu�g; ð15Þ
where rH(u(t))T 2 @H(u(t)) and X is a neighborhood of u⁄. Now, we let
gðuðtÞÞ ¼ kuðtÞ � u�k2
; t 2 ½t0;1Þ:
Then, we have
dgðuðtÞÞ
dt

¼ 2ðuðtÞ � u�ÞT duðtÞ
dt
¼ �2qðuðtÞ � u�ÞTrWlðuðtÞÞ ¼ �2qðuðtÞ � u�ÞTrHðuÞHðuÞ: ð16Þ
Substituting Eq. (15) into Eq. (16) yields
dgðuðtÞÞ
dt

¼ �2qðuðtÞ � u�ÞTrHðuðtÞÞðHðu�Þ þ rHðuðtÞÞTðuðtÞ � u�Þ þ oðkuðtÞ � u�kÞÞ

¼ �2qðuðtÞ � u�ÞTrHðuðtÞÞrHðuðtÞÞTðuðtÞ � u�Þ þ oðkuðtÞ � u�k2Þ:
Because rH(u) and rH(u)T are nonsingular, we claim that there exists an j > 0 such that
ðuðtÞ � u�ÞTrHðuÞrHðuÞTðuðtÞ � u�ÞP jkuðtÞ � u�k2
: ð17Þ
Otherwise, if (u(t) � u⁄)TrH(u(t))r H(u(t))T(u(t) � u⁄) = 0, it implies that
rHðuðtÞÞTðuðtÞ � u�Þ ¼ 0:
Indeed, from the nonsingularity of H(u), we have u(t) � u⁄ = 0, i.e., u(t) = u⁄which contradicts with the assumption of u⁄ being
an isolated equilibrium point. Consequently, there exists an j > 0 such that (17) holds. Moreover, for o(ku(t) � u⁄k2), there is
e > 0 such that o(ku(t) � u⁄k2) 6 e ku(t) � u⁄k2. Hence,
dgðuðtÞÞ
dt

6 ð�2qjþ eÞkuðtÞ � u�k2 ¼ ð�2qjþ eÞgðuðtÞÞ:
This implies
gðuðtÞÞ 6 eð�2qjþeÞtgðuðt0ÞÞ



Table 1
Stability comparisons of neural networks considered in current paper, [20,27].

Current paper [20] [27]

Problem min f ðxÞ
s:t: Ax ¼ b

�gðxÞ 2 K

min f ðxÞ
s:t: Ax ¼ b

x 2 K

hFðxÞ; y� xiP 0; 8y 2 C
C ¼ fxj hðxÞ ¼ 0;�gðxÞ 2 Kg

ODE Based on smoothed NR-function Based on NR-function and FB-function Based on NR-function and smoothed FB-function
Stability Lyapunov (smoothed NR) Lyapunov (NR) Lyapunov (NR)

Asymptotical (smoothed NR) Lyapunov (FB) Asymptotical (NR)
Exponential (smoothed NR) asymptotical (FB) Exponential (smoothed FB)
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which means
kuðtÞ � u�k 6 e�qjþe
2kuðt0Þ � u�k:
Thus, u⁄ is exponentially stable for the neural network (8). h

To show the contribution of this paper, we present the stability comparisons of neural networks considered in the current
paper, [20,27] in Table 1. More convergence comparisons will be presented in the next section. Generally speaking, we estab-
lish three stabilities for the proposed neural network, whereas not all three stabilities for the similar neural networks studied
in [20,27] are guaranteed. Why do we choose to investigate the proposed neural network? Indeed, in [20], two neural net-
works based on NR function and FB function are considered which does not reach exponential stability. Our target optimi-
zation problem is a wider class than the one studied in [20]. In contrast, the smoothed FB has good performance as is shown
in [27], but not all the three stabilities are established even though exponential stability is good enough. In light of these
observations, we decide to look into the smoothed NR function for our problem which turns out to have better theoretical
results. We summarize their differences in problems format, dynamical model, and stability issues in Table 1.

5. Numerical examples

In order to demonstrate the effectiveness of the proposed neural network, in this section we test several examples for our
neural network (8). The numerical implementation is coded by Matlab 7.0 and the ordinary differential equation solver
adopted here is ode23, which uses the Ruge–Kutta (2;3) formula. As mentioned earlier, the parameter q is set to be 1.
How is l chosen initially? From Theorem 4.2 in previous section, we know the solution converges with any initial point,
we set initial l = 1 in the codes (and of course l ? 0, as seen in the trajectory behavior).

Example 5.1. Consider the following nonlinear convex programming problem:
min eðx1�3Þ2þx2
2þðx3�1Þ2þðx4�2Þ2þðx5þ1Þ2

s:t: x 2 K5;
Here, we denote f ðxÞ :¼ eðx1�3Þ2þx2
2þðx3�1Þ2þðx4�2Þ2þðx5þ1Þ2 and g(x) = �x. Then, we compute
Lðx; zÞ ¼ rf ðxÞ þ rgðxÞz ¼ 2f ðxÞ

x1 � 3
x2

x3 � 1
x4 � 2
x5 þ 1

2
6666664

3
7777775
�

z1

z2

z3

z4

z5

2
6666664

3
7777775
: ð18Þ
Moreover, let x :¼ ðx1; �xÞ 2 R� R4 and z :¼ ðz1;�zÞ 2 R� R4. Then, the element z � x can be expressed as
z� x :¼ k1e1 þ k2e2
where ki ¼ z1 � x1 þ ð�1Þik�z� �xk and ei ¼ 1
2 1; ð�1Þi �z��x

k�z��xk

� �
ði ¼ 1;2Þ if �z� �x – 0, otherwise ei ¼ 1

2 ð1; ð�1ÞiwÞ with w being any
vector in R4 satisfying kwk = 1. This implies that
Ulðz;�gðxÞÞ ¼ z� Plðzþ gðxÞÞ ¼ z� lĝ
k1

l

� �
e1 þ lĝ

k2

l

� �
e2 ð19Þ
with ĝðaÞ ¼
ffiffiffiffiffiffiffiffi
a2þ4
p

þa
2 or ĝðaÞ ¼ lnðea þ 1Þ. Therefore, by Eqs. (18) and (19), we obtain the expression of H(u) as follows:
HðuÞ ¼
l

Lðx; zÞ
Ulðz;�gðxÞÞ

2
64

3
75:
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This problem has an optimal solution x⁄ = (3,0,1,2,�1)T. We use the proposed neural network to solve the above problem
whose trajectories are depicted in Fig. 2. All simulation results show that the state trajectories with any initial point are al-
ways convergent to an optimal solution of the above problem x⁄.

Example 5.2. Consider the following nonlinear second-order cone programming problem:
min f ðxÞ ¼ x2
1 þ 2x2

2 þ 2x1x2 � 10x1 � 12x2

s:t: gðxÞ ¼
8� x1 þ 3x2

3� x2
1 � 2x1 þ 2x2 � x2

2

� �
2 K2:
For this example, we compute that
Lðx; zÞ ¼ rf ðxÞ þ rgðxÞz ¼
2x1 � 2x2 � 10
4x2 þ 2x1 � 12

� �
�
�z1 � 2ðx1 þ 1Þz2

3z3 þ 2ð1� x2Þz2

� �
: ð20Þ
Since
z� gðxÞ ¼
z1 � 8þ x1 � 3x2

z2 � 3þ x2
1 þ 2x1 � 2x2 þ x2

2

� �
;

the vector z � g(x) can be expressed as
z� x :¼ k1e1 þ k2e2
where ki ¼ z1 � 8þ x1 � 3x2 þ ð�1Þijz2 � 3þ x2
1 þ 2x1 � 2x2 þ x2

2j and
ei ¼
1
2

1; ð�1Þi z2 � 3þ x2
1 þ 2x1 � 2x2 þ x2

2

jz2 � 3þ x2
1 þ 2x1 � 2x2 þ x2

2j

� �
ði ¼ 1;2Þ; if z2 � 3þ x2

1 þ 2x1 � 2x2 þ x2
2 – 0;
otherwise, ei ¼ 1
2 ð1; ð�1ÞiwÞ with w being any element in R satisfying jwj = 1. This implies that
Ulðz;�gðxÞÞ ¼ z� Plðzþ gðxÞÞ ¼ z� lĝ
k1

l

� �
e1 þ lĝ

k2

l

� �
e2 ð21Þ
with ĝðaÞ ¼
ffiffiffiffiffiffiffiffi
a2þ4
p

þa
2 or ĝðaÞ ¼ lnðea þ 1Þ. Therefore, by (20) and (21), we obtain the expression of H(u) as follows:
HðuÞ ¼
l

Lðx; zÞ
Ulðz;�gðxÞÞ

2
64

3
75:
This problem has an approximate solution x⁄ = (2.8308,1.6375)T. Note that the objective function is convex and the Hes-
sian matrixr2f(x) is positive definite. Using the proposed neural network in this paper, we can easily obtain the approximate
solution x⁄ of the above problem, see Fig. 3.
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Fig. 2. Transient behavior of the neural network with the smoothed NR function in Example 5.1.
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Fig. 3. Transient behavior of the neural network with the smoothed NR function in Example 5.2.
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Example 5.3. Consider the following nonlinear convex program with second-order cone constraints [18]:
min eðx1�x3Þ þ 3ð2x1 � x2Þ4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3x2 þ 5x3Þ2

q
s:t: �gðxÞ ¼ Axþ b 2 K2;

x 2 K3
where
A :¼
4 6 3
�1 7 �5

� �
; b :¼

�1
2

� �
: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
For this example, f ðxÞ :¼ eðx1�x3Þ þ 3ð2x1 � x2Þ4 þ 1þ ð3x2 þ 5x3Þ2, from which we have
Lðx; y; zÞ ¼ rf ðxÞ þ rgðxÞy�rxz ¼

eðx1�x3Þ þ 24ð2x1 � x2Þ3

�12ð2x1 � x2Þ3 þ 3ð3x2þ5x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð3x2þ5x3Þ2
p

�eðx1�x3Þ þ 5ð3x2þ5x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð3x2þ5x3Þ2
p

2
6664

3
7775�

4y1 � y2

6y1 þ 7y2

3y1 � 5y2

2
64

3
75�

z1

z2

z3

2
64

3
75: ð22Þ
Since
yþ gðxÞ
z� x

� �
¼

y1 � 4x1 � 6x2 � 3x3 þ 1
y2 þ x1 � 7x2 þ 5x3 � 2

z1 � x1

z2 � x2

z3 � x3

2
6666664

3
7777775
;

y + g(x) and z � x can be expressed as follows, respectively,
yþ gðxÞ :¼ k1e1 þ k2e2
and
z� x :¼ j1f1 þ j2f2
where ki = y1 � 4x1 � 6x2 � 3x3 + 1 + (�1)ijy2 + x1 � 7x2 + 5x3 � 2j and
ei ¼
1
2

1; ð�1Þi y2 þ x1 � 7x2 þ 5x3 � 2
jy2 þ x1 � 7x2 þ 5x3 � 2j

� �
ði ¼ 1;2Þ if y2 þ x1 � 7x2 þ 5x3 � 2 – 0;
otherwise, ei ¼ 1
2 ð1; ð�1ÞiwÞ with w being any element in R satisfying jwj = 1. Moveover, let x :¼ ðx1; �xÞ 2 R� R2 and

z :¼ ðz1;�zÞ 2 R� R2. Then, we obtain that ji ¼ z1 � x1 þ ð�1Þik�z� �xk and fi ¼ 1
2 ð1; ð�1Þi �z��x

k�z��xkÞði ¼ 1;2Þ if �z� �x – 0; otherwise
fi ¼ 1

2 ð1; ð�1ÞitÞ with t being any vector in R2 satisfying ktk = 1. This implies that
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Ulð�Þ ¼
y� Plðyþ gðxÞÞ

z� Plðz� xÞ

� �
¼

y� lĝ k1
l

� �
e1 þ lĝ k2

l

� �
e2

z� lĝ j1
l

� �
f1 þ lĝ j2

l

� �
f2

2
64

3
75 ð23Þ
with ĝðaÞ ¼
ffiffiffiffiffiffiffiffi
a2þ4
p

þa
2 or ĝðaÞ ¼ lnðea þ 1Þ. Therefore, by (22) and (23), we obtain the expression of H(u) as below:
HðuÞ ¼
l

Lðx; y; zÞ
Ulð�Þ

2
64

3
75:
The approximate solution to this problem is x⁄ = (0.2324,�0.07309,0.2206)T. The trajectories are depicted in Fig. 4. We want
to point out on thing: Assumption 4.1(a and b) are not both satisfied in this example. More specifically, for this example, the
Assumption 4.1(a) is satisfied, which is obvious. However,r2f(x) +r2g1(x) + � � � +r2gl(x) is not positive semidefinite for each
x. To see this, we compute
r2f ðxÞ þ r2g1ðxÞ þ � � � þ r2glðxÞ ¼ r2f ðxÞ ¼

eðx1�x3Þ þ 144ð2x1 � x2Þ2 �72ð2x1 � x2Þ2 �eðx1�x3Þ

�72ð2x1 � x2Þ2 36ð2x1 � x2Þ2 þ 9

ð1þð3x2þ5x3Þ2Þ
3
2

15

ð1þð3x2þ5x3Þ2Þ
3
2

eðx1�x3Þ 15

ð1þð3x2þ5x3Þ2Þ
3
2

eðx1�x3Þ þ 25

ð1þð3x2þ5x3Þ2Þ
3
2

2
66664

3
77775;
which is not positive semidefinite when 2x1 � x2 = 0 (because the determinant equals zero). Hence, H(u) is not guaranteed to
be nonsingular and all the theorems in Section 4 do not apply for this example. Nonetheless, the solution trajectory does
converge as depicted in Fig. 4. This phenomenon also occurs when it is solved by the second neural network studied in
[27] (the stability is not guaranteed theoretically, but the solution trajectory does converges).

In addition, for Example 5.3, we also do comparisons among three neural networks based on FB function (considered in
[20]), smoothed NR function (considered in this paper), and smoothed FB function (considered in [27]), respectively.
Although Example 5.3 can be solved by all three neural networks, the neural network based on FB function does not behave
as good as the other two neural networks, see Fig. 5.

Example 5.4. Consider the following nonlinear second-order cone programming problem:
min f ðxÞ ¼ ex1x3 þ 3ðx1 þ x2Þ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2x2 � x3Þ2

q
þ 1

2 x2
4 þ 1

2 x2
5

s:t: hðxÞ ¼ �24:51x1 þ 58x2 � 16:67x3 � x4 � 3x5 þ 11 ¼ 0

�g1ðxÞ ¼
3x3

1 þ 2x2 � x3 þ 5x2
3

�5x3
1 þ 4x2 � 2x3 þ 10x3

3

x3

0
B@

1
CA 2 K3;

�g2ðxÞ ¼
x4

3x5

� �
2 K2:
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Fig. 4. Transient behavior of the neural network with the smoothed NR function in Example 5.3.
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Fig. 5. Comparisons of three neural networks based on the FB function, smoothed NR function, and smoothed FB function in Example 5.3.
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For this example, we compute
Lðx; y; zÞ ¼ rf ðxÞ þ
rg1ðxÞy
rg2ðxÞz

� �
¼

x3eðx1x3Þ þ 6ðx1 þ x2Þ
6ðx1 þ x2Þ þ 2ð2x2�x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð2x2�x3Þ2
p

x1eðx1x3Þ þ 2x2�x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2x2�x3Þ2
p

x4

x5

2
666666664

3
777777775
�

9x2
1y1 � 15x2

1y2

2y1 þ 4y2

ð10x3 � 1Þy1 þ ð30x2
3Þy2 þ y3

z1

3z2

2
6666664

3
7777775
: ð24Þ
Moreover, we know
yþ g1ðxÞ
zþ g2ðxÞ

� �
¼

y1 � 3x3
1 � 2x2 þ x3 � 5x2

3

y2 þ 5x3
1 � 4x2 þ 2x3 � 10x3

3

y3 � x3

z1 � x4

z2 � x5

2
6666664

3
7777775
:

Let yþ g1ðxÞ :¼ ðu; �uÞ 2 R� R2 and zþ g2ðxÞ :¼ ðv ; �vÞ 2 R� R, where u ¼ y1 � 3x3
1 � 2x2 þ x3 � 5x2

3,
�u ¼ y2 þ 5x3
1 � 4x2 þ 2x3 � 10x3

3

y3 � x3

" #
and
v ¼ z1 � x4; �v ¼ z2 � x5:
Then, y + g1(x) and z + g2(x) can be expressed as follows:
yþ g1ðxÞ :¼ k1e1 þ k2e2
and
zþ g2ðxÞ :¼ j1f1 þ j2f2
where ki ¼ uþ ð�1Þik�uk; ei ¼ 1
2 1; ð�1Þi �u

k�uk

� �
and ji ¼ v þ ð�1Þij�vj; f i ¼ 1

2 1; ð�1Þi �v
j�v j

� �
(i = 1,2) if �u – 0 and �v – 0, otherwise

ei ¼ 1
2 ð1; ð�1ÞiwÞ with w being any element in R2 satisfying kwk = 1, and fi ¼ 1

2 ð1; ð�1ÞitÞ with t being any vector in R satis-
fying jtj = 1. This implies that
Ulð�Þ ¼
y� Plðyþ g1ðxÞÞ
z� Plðzþ g2ðxÞÞ

� �
¼

y� lĝ k1
l

� �
e1 þ lĝðk2

l Þe2

z� lĝ j1
l

� �
f1 þ lĝ j2

l

� �
f2

2
64

3
75 ð25Þ
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Fig. 6. Transient behavior of the neural network with the smoothed NR function in Example 5.4.

0 50 100 150 200
10−6

10−5

10−4

10−3

10−2

10−1

100

Time (ms)

N
or

m
 o

f e
rro

r

Smoothed NR
Smoothed FB

Fig. 7. Comparisons of two neural network based on smoothed NR function and smoothed FB function in Example 5.4.
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with ĝðaÞ ¼
ffiffiffiffiffiffiffiffi
a2þ4
p

þa
2 or ĝðaÞ ¼ lnðea þ 1Þ. Consequently, by Eqs. (24) and (25), we obtain the expression of H(u) as follows:
HðuÞ ¼
l

Lðx; y; zÞ
Ulð�Þ

2
64

3
75:
This problem has an approximate solution x⁄ = (�0.0903,�0.0449,0.6366,0.0001,0)T and Fig. 6 displays the trajectories
obtained by using the proposed new neural network. All simulation results show that the state trajectory with any initial
point are always convergent to the solution x⁄. As observed, the neural network with the smoothed NR function has a fast
convergence rate.

Furthermore, we also do comparisons between two neural networks based on smoothed NR function (considered in this
paper) and smoothed FB function (considered in [27]) for Example 5.5. Note that Example 5.5 cannot be solved by the neural
networks studied in [20]. Both neural networks possess exponential stability as shown in Table 1, which means the solution
trajectories have the same order of convergence. This phenomenon is reflected in Fig. 7.

6. Conclusion

In this paper, we have studied a neural network approach for solving general nonlinear convex programs with second-
order cone constraints. The proposed neural network is based on the gradient of the merit function derived from smoothed
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NR complementarity function. In particular, from Definition 2.1 and Lemma 2.3, we know that there exists a stable equilib-
rium point u⁄ as long as there exists a Lyapunov function over some neighborhood of u⁄, and the stable equilibrium point u⁄ is
exactly the solution of our considering problem. In addition to studying the existence and convergence of the solution tra-
jectory of the neural network, this paper shows that the merit function is a Lyapunov function. Furthermore, the equilibrium
point of the neural network (8) is stable, including the stability in the sense of Lyapunov, asymptotic stability, and exponen-
tial stability under suitable conditions.

Indeed, this paper can be viewed as a follow-up of [20,27] because we establish three stabilities for the proposed neural
network, but not all three stabilities for the similar neural networks studied in [20,27] are guaranteed. The numerical exper-
iments presented in this study demonstrate the efficiency of the proposed neural network.
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Appendix A

For the function Pl(z) defined as in (5), the following Lemma provides the gradient matrix of Pl(z), which will be used in
numerical computation and coding.

Lemma 6.1. For any z ¼ ðz1; zT
2Þ

T 2 Rn, the gradient matrix of Pl(z) is written as
rPlðzÞ ¼

ĝ0 z1
l

� �
I if z2 ¼ 0;

bl
clzT

2
kz2k

clz2
kz2k

alI þ ðbl � alÞ
z2zT

2

kz2k2

2
64

3
75 if z2 – 0;

8>>>><
>>>>:
where
al ¼
ĝ k2

l

� �
� ĝ k1

l

� �
k2
l �

k1
l

;

bl ¼
1
2

ĝ0
k2

l

� �
þ ĝ0

k1

l

� �� �
;

cl ¼
1
2

ĝ0
k2

l

� �
� ĝ0

k1

l

� �� �
;

and I denotes the identity matrix.
Proof. See Proposition 5.2 in [11]. h
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