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1 Introduction

LetH be a real Hilbert space endowed with an inner product ⟨·, ·⟩. The complementarity

problem CP(K,T ) in H is, for any given closed convex cone K ⊆ H and a continuously

F(réchet)-differentiable mapping T : H → H, to find a vector x ∈ H such that

x ∈ K, T (x) ∈ K∗ and ⟨x, T (x)⟩ = 0 (1)

where K∗ := {x ∈ H | ⟨x, y⟩ ≥ 0 ∀y ∈ K} is the dual cone of K. A closed convex

cone K in H is called self-dual if K coincides with its dual cone K∗; for example, the

non-negative orthant cone IRn
+ := {(x1, . . . xn) ∈ IRn | xj ≥ 0, j = 1, 2, . . . , n} and the

second-order cone (also called Lorentz cone) IKn := {(r, x′) ∈ IR × IRn−1 | r ≥ ∥x′∥}.
This paper is concerned with the complementarity problem associated with the infinite-

dimensional second-order cone IK in H which is closed, convex and self-dual (see Section

2 for its definition). The problem, denoted by CP(IK, T ), is to find an x ∈ IK such that

x ∈ IK, T (x) ∈ IK and ⟨x, T (x)⟩ = 0. (2)

This class of problems arises directly from the optimality conditions of certain types of

infinite-dimensional optimization problems such as the one in [10], which is the refor-

mulation of a min-max optimization problem with linear constraints in a Hilbert space.

Recently, nonlinear symmetric cone optimization and complementarity problems in

finite-dimensional spaces such as semidefinite cone optimization and complementarity

problems, second-order cone (SOC) optimization and complementarity problems, and

general symmetric cone optimization and complementarity problems, become an active

research field of mathematical programming. Taking SOC optimization and comple-

mentarity problems for example, there have proposed many effective solution methods,

including the interior point methods [2, 18, 21, 22], the smoothing Newton methods

[5, 9, 11], the semismooth Newton methods [16, 19], and the merit function method

[6, 3]. However, to our best knowledge, there are few works about nonlinear symmetric

cone optimization and complementarity problems in infinite-dimensional spaces except

[10], in which with the JB algebras of finite rank primal-dual interior-point methods are

presented for some special type of infinite-dimensional cone optimization problems.

In this paper, we consider a merit function method for solving the problem CP(IK, T ).

The method aims to seek a smooth merit function Ψ : H×H → IR+ satisfying

Ψ(x, y) = 0 ⇐⇒ x ∈ IK, y ∈ IK, ⟨x, y⟩ = 0, (3)

and reformulates the problem CP(IK, T ) as a smooth minimization problem

min
x∈H

Ψ(x, T (x)) (4)
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in the sense that x∗ is a solution of CP(IK, T ) if and only if x∗ solves (4) with zero optimal

value. We call such Ψ a merit function associated with IK. Like handling complemen-

tarity problems in finite-dimensional spaces, we seek a merit function associated with IK

with a complementarity function (C-function for short) associated with IK. Specifically,

a mapping Φ: H×H → H is called a C-function associated with IK if for any x, y ∈ H,

Φ(x, y) = 0 ⇐⇒ x ∈ IK, y ∈ IK and ⟨x, y⟩ = 0.

Clearly, the squared norm of Φ induces a merit function associated with IK.

WhenH is the Euclidean space IRn, the Fischer-Burmeister (FB) and natural residual

(NR) C-functions associated with the SOC IKn [9] are respectively defined as

Φ
FB
(x, y) := (x2 + y2)1/2 − (x+ y) ∀x, y ∈ IRn (5)

and

Φ
NR
(x, y) := x− (x− y)+ ∀x, y ∈ IRn, (6)

where x2 = x•x with “•” means the Jordan product in IRn, x1/2 with x ∈ IKn is a vector

such that x1/2 • x1/2 = x, and (x)+ denotes the projection onto IKn. The function Φ
FB

was well-studied in [6, 20], and particularly its squared norm was shown to be a smooth

merit function in [6]. Since the squared norm of Φ
NR

is not differentiable, it is often

involved in the smoothing methods for the SOCCPs [5, 11]. The above two C-functions

are subsumed in Kanzow and Kleinmichel C-function associated with IKn:

Φt(x, y) :=
[
(x− y)2 + 2tx • y

]1/2 − (x+ y) ∀x, y ∈ IRn (7)

where t is an arbitrary but fixed real number from [0, 2). This function was studied in [4]

and its squared norm with t ∈ (0, 2) was shown to be continuously differentiable. Note

that, when n = 1, Φ
FB
, Φ

NR
and Φt reduce to the FB NCP-function [8], the minimum

function [14], and the Kanzow and Kleinmichel NCP-function [12], respectively.

To define these C-functions in the Hilbert space H, we introduce the Jordan product

associated with the cone IK, and extend the Kanzow and Kleinmichel C-function defined

in (7) to H and show that it satisfies the property (3) for each t ∈ [0, 2). In Section 4, we

prove that the squared norm of this class of C-functions with t ∈ (0, 2) are continuously

F-differentiable in H×H. Note that the corresponding results in [4, 6] were proved by

the spectral factorization of vectors, but here we shall not formally use this concept. In

Section 5, under the monotonicity assumption, we establish that every stationary point

of the unconstrained minimization problem involving this class of merit functions is a

solution of CP(IK, T ), which generalizes the results of [4, Prop.4.1] and [6, Prop.3].

Throughout this paper, ∥ · ∥ denote the norm induced by the inner product ⟨·, ·⟩ in
H. For any given Banach spaces X and Y , let L(X ,Y) denote the Banach space of all
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continuous linear mappings from X into Y . We simply write L(X ,X ) = L(X ) and de-

note GL(X ) by the set of all invertible mappings in L(X ). The norm of any l ∈ L(X ,Y)

is defined by ∥l∥ := sup{∥l(x)∥ | x ∈ X and ∥x∥ = 1}. In addition, for any self-adjoint

linear operator l from X → X , we write l ≻ 0 (respectively, l ≽ 0) to mean that l is

positive definite (respectively, positive semidefinite).

2 Lorentz cone and Jordan product

This section is devoted to introducing the Lorentz cone IK mentioned above which is the

unique self-dual cone in a family of pointed closed convex cones K in H. Every cone

in K is the image of IK under some mapping in GL(H). Associated with the self-dual

closed convex cone, the Jordan product is introduced into the Hilbert space H.

For every integer n > 1, the Lorentz cone IKn given in Section 1 can be written as

IKn :=

{
x ∈ IRn | ⟨x, e⟩ ≥ 1√

2
∥x∥
}

with e = (1, 0) ∈ IR× IRn−1.

This motivates us to consider the following closed convex cone in the Hilbert space H:

K(e, r) :=
{
x ∈ H | ⟨x, e⟩ ≥ r∥x∥

}
where e ∈ H with ∥e∥ = 1 and r ∈ IR with 0 < r < 1. Observe that K(e, r) is pointed,

i.e., K(e, r) ∩ (−K(e, r)) = {0}. Let ⟨e⟩⊥ :=
{
x ∈ H | ⟨x, e⟩ = 0

}
. Then any x ∈ H can

be written as x = x′ + λe with x′ ∈ ⟨e⟩⊥ and λ ∈ IR. By noting that

⟨x, e⟩ ≥ r∥x∥ ⇐⇒ λ ≥ r(∥x′∥2 + λ2)1/2 ⇐⇒ λ ≥ r√
1− r2

∥x′∥,

the closed convex cone K(e, r) can be expressed as

K(e, r) =

{
x′ + λe ∈ H | x′ ∈ ⟨e⟩⊥ and λ ≥ r√

1− r2
∥x′∥

}
.

Proposition 2.1 For any unit vector e ∈ H and 0 < r < 1, the dual cone of K(e, r) is

K(e,
√
1− r2). Hence, the cone K

(
e, 1√

2

)
=
{
x′ + λe ∈ H | λ ≥ ∥x′∥

}
is self-dual.

Proof. Let x = x′ + λe ∈ K(e,
√
1− r2 ) and y = y′ + µe ∈ K(e, r) be arbitrary. Since

λµ ≥ ∥x′∥ · ∥y′∥, we have ⟨x, y⟩ ≥ ⟨x′, y′⟩+ ∥x′∥ · ∥y′∥ ≥ 0. This proves that

K(e,
√
1− r2 ) ⊂ K∗(e, r).
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Conversely, let x = x′+λe ∈ K∗(e, r) be arbitrary, and we will prove x ∈ K(e,
√
1− r2 ),

i.e., λ ≥ r−1
√
1− r2 ∥x′∥. This is trivial when x′ = 0. When x′ ̸= 0, by considering the

element v = −r−1
√
1− r2 x′ + ∥x′∥ e of K(e, r), we have

0 ≤ ⟨x, v⟩ =
(
λ− r−1

√
1− r2∥x′∥

)
∥x′∥,

which implies the result. The proof is complete. 2

Note that the unit vector e ∈ H is not unique. Every unit vector e determines a

Lorentz cone K(e, 1√
2
). In this work, we consider a fixed unit vector e and write

IK = K

(
e,

1√
2

)
=
{
x′ + λe ∈ H | λ ≥ ∥x′∥

}
.

Unless stated otherwise, we shall alternatively write any x ∈ H as x = x′ + λe with

x′ ∈ ⟨e⟩⊥ and λ = ⟨x, e⟩. This expression is needed for stating many results and sim-

plifying the computation in the subsequent analysis. In addition, for any x, y ∈ H, we

shall write x ≻IK y (respectively, x ≽IK y) if x− y ∈ intIK (respectively, x− y ∈ IK).

Next we show that the solution sets of complementarity problems associated with

any K(e, r) are related to those associated with IK via the mappings in GL(H).

Lemma 2.1 For any given 0 < r, s < 1, let Λ(r,s) : H → H be the mapping defined by

Λ(r,s)(x
′ + λe) :=

√
1− s2√
1− r2

x′ +
sλ

r
e ∀x′ + λe ∈ H.

Then, the following statements hold.

(a) Λ(r,s) ∈ GL(H) with Λ−1
(r,s) = Λ(s,r), and Λ(r,s) maps K(e, r) onto K(e, s).

(b) Let Λr := Λ(r, 1√
2
). If r

2 + s2 = 1, then ⟨Λr(x), Λs(y)⟩ = 1
2rs

⟨x, y⟩ for all x, y ∈ H.

Proof. (a) It is clear that Λ(r,s) is linear and Λ−1
(r,s) = Λ(s,r). For x

′ ∈ ⟨e⟩⊥ and λ ∈ IR,

∥Λ(r,s)(x
′ + λe)∥2 = 1− s2

1− r2
∥x′∥2 + s2

r2
λ2 ≤ max

{
1− s2

1− r2
,
s2

r2

}
∥x′ + λe∥2 .

This proves the continuity of Λ(r,s). Also, Λ(r,s) maps K(e, r) onto K(e, s) by noting that

x′ + λe ∈ Λ(r,s)(K(e, r)) ⇐⇒ Λ(s,r)(x
′ + λe) ∈ K(e, r)

⇐⇒ rλ

s
≥ r√

1− r2
·
√
1− r2√
1− s2

∥x′∥

⇐⇒ λ ≥ s√
1− s2

∥x′∥.
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(b) We write x = x′ + λe and y = y′ + µe. Then,

Λr(x
′ + λe) =

1√
2(1− r2)

x′ +
λ√
2r

e =
1√
2s

x′ +
λ√
2r

e ;

Λs(y
′ + µe) =

1√
2r

y′ +
µ√

2(1− r2)
e =

1√
2r

y′ +
µ√
2s

e .

Now, the assertion follows immediately by a direct computation. 2

From Lemma 2.1, we immediately obtain the following proposition.

Proposition 2.2 Let 0 < r, s < 1 be such that r2 + s2 = 1, and T : H → H be given.

(a) A point x ∈ H solves the problem CP(K(e, r), T ) if and only if Λr(x) solves the

problem CP(IK,Λs ◦ T ◦ Λ−1
r ).

(b) If Φ : H×H → H is a C-function associated with IK, then the mapping Φr(x, y) :=

Φ(Λr(x),Λs(y)) is a C-function associated with K(e, r).

Next we introduce the Jordan product associated with the Lorentz cone IK. For any

x = x′ + λe ∈ H and y = y′ + µe ∈ H, we define the Jordan product of x and y by

x • y := (µx′ + λy′) + ⟨x, y⟩e, (8)

and write x2 = x • x. Clearly, when H = IRn and e = (1, 0) ∈ IR × IRn−1, this

definition is same as the one given by [7, Chapter II]. By the definition in (8) and a

direct computation, it is easy to verify that the following properties hold.

Property 2.1 (i) x • y = y • x and x • e = x for all x, y ∈ H.

(ii) (x+ y) • z = x • z + y • z for all x, y, z ∈ H.

(iii) ⟨x, y • z⟩ = ⟨y, x • z⟩ = ⟨z, x • y⟩ for all x, y, z ∈ H.

(iv) For any x = x′ + λe ∈ H, x2 = x • x = 2λx′ + ∥x∥2e ∈ IK and ⟨x2, e⟩ = ∥x∥2.

(v) If x = x′ + λe ∈ IK, then there is a unique x1/2 ∈ IK such that (x1/2)2 = x, where

x1/2 =

{
0 if x = 0;

x′/(2τ) + τe othewise
with τ =

√
λ+

√
λ2 − ∥x′∥2
2

. (9)

(vi) Every x = x′ + λe ∈ H with λ2 − ∥x′∥2 ̸= 0 is invertible w.r.t. the Jordan product,

i.e., there is a unique point x−1 ∈ H such that x • x−1 = e, where

x−1 =
−x′ + λe

λ2 − ∥x′∥2
. (10)

Moreover, x ∈ intIK if and only if x−1 ∈ intIK.
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Associated with every x ∈ H, we define a linear mapping Lx from H to H by

Lxy := x • y for any y ∈ H. (11)

Clearly, Lx ∈ L(H). Also, the mapping possesses the following favorable properties.

Lemma 2.2 For any x ∈ H, let Lx ∈ L(H) be defined as above. Then, we have

(a) x ≻IK 0 ⇐⇒ Lx ≻ 0 and x ≽IK 0 ⇐⇒ Lx ≽ 0.

(b) If x= x′+λe with λ ̸= 0 and |λ| ̸=∥x′∥, then Lx∈ GL(H) with the inverse given by

L−1
x y = λ−1

(
y′ − ⟨x−1, y⟩x′

)
+ ⟨x−1, y⟩e for any y = y′ + µe ∈ H. (12)

Proof. (a) Fix any x = x′ + λe ∈ H. It suffices to prove the first equivalence, and the

second equivalence follow from the first equivalence and the closedness of IK. Note that

Lx ≻ 0 if and only if ⟨h, Lxh⟩ > 0 for any h = h′ + ξe ∈ H\{0}, whereas

⟨h, Lxh⟩ > 0 ⇐⇒ λ∥h′∥2 + 2ξ⟨x′, h′⟩+ λξ2 > 0

⇐⇒ λ > 0 and 4⟨x′, h′⟩2 − 4λ2∥h′∥2 < 0

⇐⇒ λ > 0 and ∥x′∥ < λ.

(b) To prove Lx ∈ GL(H), it suffices to prove that Lxy = 0 for some y = y′ + µe ∈ H
implies y = 0. Indeed, since Lxy = 0 implies ∥x • y∥2 = 0, which is equivalent to

λy′ + µy′ = 0 and ⟨x′, y′⟩+ λµ = 0.

Since λ ̸= 0, from the first equality we have y′ = −λ−1µx′. Substituting it into the

second equality yields µ = 0, and so y′ = 0. A direct computation verifies (12). 2

3 Kanzow-Kleinmichel merit function

In this section, we will extend Kanzow-Kleinmichel C-function in (7) to the real Hilbert

spaceH, and present some technical lemmas that will be used in the subsequent analysis.

Let t be an arbitrary real number in [0, 2). Define the mapping Φt : H×H → H by

Φt(x, y) :=
[
(x− y)2 + 2t(x • y)

]1/2 − (x+ y). (13)

Note that, for any t ∈ [0, 2) and any x, y ∈ H,

(x− y)2 + 2t(x • y) = (x+ (t− 1)y)2 + t(2− t)y2 ∈ IK. (14)
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Hence, the function Φt is well-defined. It is easy to see that when t = 1 and t = 0, Φt

reduces to the FB and the NR C-function associated with IK, respectively.

To show that each Φt is a C-function associated with IK, we need the following result

which is an infinitely dimensional version of [9, Prop.2.1]. The proof given in [9] was

based on the geometry of vectors in Euclidean spaces, that is, the notion of an angle

between vectors. We here give another proof without using this notion.

Lemma 3.1 For any x, y ∈ H, the following statements are equivalent:

(a) x ∈ IK, y ∈ IK and ⟨x, y⟩ = 0;

(b) x ∈ IK, y ∈ IK and x • y = 0;

(c) x+ y ∈ IK and x • y = 0.

(d) It holds that (i) x = 0, y ∈ IK; or (ii) x ∈ IK, y = 0; or (iii) x ∈ ∂IK, y ∈ ∂IK and

⟨x, y⟩ = 0, where ∂IK := {x′ + λe ∈ H | λ = ∥x′∥} denotes the boundary of IK.

Proof. Clearly, (b) ⇒ (c) and (d) ⇒ (a). We need to prove (a) ⇒ (b) and (c) ⇒ (d).

(a) ⇒ (b). Write x = x′ + λe and y = y′ + µe. By (8) and ⟨x, y⟩ = 0, we have

x • y = (µx′ + λy′). Since λ ≥ ∥x′∥ and µ ≥ ∥y′∥ by x, y ∈ IK, it follows that

∥µx′ + λy′∥2 = µ2∥x′∥2 − 2λ2µ2 + λ2∥y′∥2 ≤ 0,

and µx′ + λy′ = 0 follows. Thus, we obtain x • y = 0, and hence (a) implies (b).

(c) ⇒ (d). Since x • y = 0 implies ∥(µx′ + λy′) + ⟨x, y⟩e∥2 = ∥µx′ + λy′∥2 + ⟨x, y⟩2 = 0,

we have ⟨x, y⟩ = 0 and µx′ + λy′ = 0. If λ = 0, µ ̸= 0, then from µx′ + λy′ = 0 and

⟨x, y⟩ = 0, we get x′ = 0, and then x = 0. Together with x + y ∈ IK, we obtain y ∈ IK,

and so Case (i) holds. If λ ̸= 0, µ = 0, a similar argument yields that Case (ii) holds.

If λ = µ = 0, then from x + y ∈ IK it follows that ∥x′ + y′∥ = 0. This along with

⟨x, y⟩ = 0 and λ = 0, µ = 0 yields that x′ = 0 and y′ = 0, and consequently, x = y = 0.

Hence, Cases (i), (ii) and (iii) hold. Now, assume that λµ ̸= 0. From µx′ + λy′ = 0

and ⟨x, y⟩ = 0, we obtain λ2 = ∥x′∥2 and µ2 = ∥y′∥2. This, together with x + y ∈ IK,

i.e. (λ + µ)2 ≥ ∥x′ + y′∥2, implies λµ ≥ ⟨x′, y′⟩ = −λµ, and hence λµ > 0. Since

λ+ µ ≥ ∥x′ + y′∥, we get λ > 0 and µ > 0. Thus, λ = ∥x′∥ and µ = ∥y′∥, which implies

that x, y ∈ IK. That is, Case (iii) follows. 2

Let Ψt : H×H → IR+ denote the squared norm of the function Φt, that is,

Ψt(x, y) := ∥Φt(x, y)∥2 ∀x, y ∈ H. (15)
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From the expression of Φt and Lemma 3.1, it follows that

Ψt(x, y) = 0 ⇔ Φt(x, y) = 0 ⇔ x+ y ∈ IK and (x− y)2 + 2t(x • y) = (x+ y)2

⇔ x+ y ∈ IK and x • y = 0

⇔ x ∈ IK, y ∈ IK, ⟨x, y⟩ = 0.

These equivalence immediately implies the following result.

Proposition 3.1 The functions Φt and Ψt are respectively a C-function and a merit

function associated with IK.

In what follows, we provide some necessary technical lemmas that will be used later.

Lemma 3.2 For any given 0 < t < 2, x = x′ + λe ∈ H and y = y′ + µe ∈ H, we have

(x− y)2 + 2t(x • y) ∈ ∂IK ⇐⇒ x2 + y2 ∈ ∂IK

⇐⇒ |λ| = ∥x′∥, |µ| = ∥y′∥, λµ = ⟨x′, y′⟩ (16)

=⇒ λy′ = µx′

Proof. Using |λ| = ∥x′∥, |µ| = ∥y′∥ and λµ = ⟨x′, y′⟩, it is easy to verify ∥λy′−µx′∥2 = 0.

So, the implication in (16) holds. Now we prove the second equivalence. Noting that

x2 + y2 = 2(λx′ + µy′) + (∥x∥2 + ∥y∥2)e,
2∥λx′ + µy′∥ ≤ 2∥λx′∥+ 2∥µy′∥ ≤ ∥x∥2 + ∥y∥2,

we have x2 + y2 ∈ ∂IK if and only if ∥x∥2 + ∥y∥2 = 2∥λx′∥+2∥µy′∥ = 2∥λx′ + µy′∥, i.e.,
(|λ| − ∥x′∥)2 + (|µ| − ∥y′∥)2 = 0 and ∥λx′∥+ ∥µy′∥ = ∥λx′ + µy′∥. Thus, we have

x2 + y2 ∈ ∂IK ⇐⇒ |λ| = ∥x′∥, |µ| = ∥y′∥, λµ⟨x′, y′⟩ = |λµ| · ∥x′∥ · ∥y′∥.

We may argue that, when |λ| = ∥x′∥ and |µ| = ∥y′∥, there holds that

λµ⟨x′, y′⟩ = |λµ| · ∥x′∥ · ∥y′∥ ⇐⇒ λµ = ⟨x′, y′⟩.

Indeed, if the equality on the right hand side holds, then λµ⟨x′, y′⟩ = λ2µ2 = |λµ| ·
∥x′∥ · ∥y′∥, which implies the equality of the left hand side. Assume that the equality of

the left hand side holds. If λµ = 0 or ∥x′∥ · ∥y′∥ = 0, then x = 0 or y = 0, and thus

λµ = 0 = ⟨x′, y′⟩; and if λµ ̸= 0 and ∥x′∥·∥y′∥ ̸= 0, using λµ⟨x′, y′⟩ = |λµ| ·∥x′∥·∥y′∥ > 0

then yields that |⟨x′, y′⟩| = ∥x′∥ · ∥y′∥ = |λµ| and ⟨x′, y′⟩ = λµ. This proves that the

equality of the right hand side holds, and the second equivalence in (16) follows.

To establish the first equivalence in (16), it suffices to prove that

(x− y)2 + 2t(x • y) ∈ ∂IK ⇐⇒ |λ| = ∥x′∥, |µ| = ∥y′∥, λµ = ⟨x′, y′⟩. (17)
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Recall that (x− y)2 + 2t(x • y) = (x+ (t− 1)y)2 + (
√
t(2− t) y)2. By the result above,

(x− y)2 + 2t(x • y) ∈ ∂IK ⇐⇒ |λ+ (t− 1)µ| = ∥x′ + (t− 1)y′∥, |µ| = ∥y′∥,
µ(λ+ (t− 1)µ) = ⟨x′ + (t− 1)y′, y′⟩.

Taking into account that |µ| = ∥y′∥ implies the following equivalences

|λ+ (t− 1)µ| = ∥x′ + (t− 1)y′∥ ⇐⇒ λ2 + 2(t− 1)λµ = ∥x′∥2 + 2(t− 1)⟨x′, y′⟩,
µ(λ+ (t− 1)µ) = ⟨x′ + (t− 1)y′, y′⟩ ⇐⇒ λµ = ⟨x′, y′⟩,

we immediately obtain (17). Thus, the proof is complete. 2

The following lemma is essentially proved in [6, Lemma 3]. We give a simpler proof.

Lemma 3.3 For j = 1, 2, let xj = x′j + λje ∈ H. If λ1x
′
1 + λ2x

′
2 ̸= 0, then for j = 1, 2,(

λj + (−1)j
⟨

λ1x
′
1 + λ2x

′
2

∥λ1x′1 + λ2x′2∥
, x′j

⟩)2

≤
∥∥∥∥x′j + (−1)jλj

λ1x
′
1 + λ2x

′
2

∥λ1x′1 + λ2x′2∥

∥∥∥∥2
≤ ∥x1∥2 + ∥x2∥2 + 2(−1)j∥λ1x′1 + λ2x

′
2∥.

Proof. It suffices to prove the inequalities for j = 1. The first inequality holds trivially

since |⟨v, w⟩| ≤ ∥v∥ · ∥w∥ for all v, w ∈ H. The second inequality is proved as follows.∥∥∥∥x′1 − λ1
λ1x

′
1 + λ2x

′
2

∥λ1x′1 + λ2x′2∥

∥∥∥∥2 = ∥x′1∥2 −
2

∥λ1x′1 + λ2x′2∥
⟨λ1x′1, λ1x′1 + λ2x

′
2⟩+ λ21

= ∥x1∥2 − 2∥λ1x′1 + λ2x
′
2∥+

2⟨λ2x′2, λ1x′1 + λ2x
′
2⟩

∥λ1x′1 + λ2x′2∥
≤ ∥x1∥2 − 2∥λ1x′1 + λ2x

′
2∥+ 2|λ2|∥x′2∥

≤ ∥x1∥2 − 2∥λ1x′1 + λ2x
′
2∥+ ∥x2∥2,

where the last inequality is using ∥x2∥2 = λ22+ ∥x′2∥2. Thus, the proof is complete. 2

To end the contents of this section, we recall the concept of F(réchet)-differentiability

and present some continuously F-differentiable mappings for later use. For given Banach

spaces X and Y , a mapping f from a nonempty open subset X of X into Y is said to

be F-differentiable at x ∈ X if there exists lx ∈ L(X ,Y) such that

lim
h→0

f(x+ h)− f(x)− lxh

∥h∥
= 0,

and lx is called the F-differential of f at x, written by f ′(x). When f is F-differentiable

at every point of X, we say that f is F-differentiable on X. If f is F-differentiable
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on a neighborhood U ⊂ X of a point x0 ∈ X, and if, as a mapping from U into

the Banach space L(X ,Y), the mapping x 7−→ f ′(x) is continuous at x0, then f is

said to be continuously F-differentiable at x0. The mapping f is called continuously

F-differentiable on X if it is continuously F-differentiable at every point of X. Note

that if f ∈ L(X ,Y), then f is continuously F-differentiable on X with f ′(x) = f for

every x ∈ X , i.e., f ′(x)v = f(v) for all v ∈ X . By the definition, it is easy to verify the

continuous F-differentiability of the mappings given below.

Example 3.1 (i) f(x) = ⟨x, e⟩ for any x ∈ H with f ′(x)v = ⟨v, e⟩ for all v ∈ H.

(ii) f(x) = x− ⟨x, e⟩e for any x ∈ H with f ′(x)v = v − ⟨v, e⟩e for all v ∈ H.

(iii) f(x) = x2 = x • x for any x ∈ H with f ′(x)v = 2x • v for all v ∈ H.

(iv) f(x) = ∥x∥2 for any x ∈ H with f ′(x)v = 2⟨x, v⟩ for all x, v ∈ H.

(v) f(x) = ∥x∥ = ⟨x, x⟩1/2 for any x ∈ H. Such f is continuously F-differentiable only

on H \ {0} with f ′(x)v = 1
∥x∥⟨x, v⟩ for all v ∈ H.

4 Smoothness of merit function

This section is devoted to establishing the continuous F-differentiability (smoothness) of

Ψt. For this purpose, we first investigate the F-differentiability of two special mappings

defined as in the following two lemmas, respectively.

Lemma 4.1 Let σ(x) := x1/2 for any x ∈ IK. Then, the following statements hold.

(a) σ is continuously F-differentiable on intIK, and for all v ∈ H,

σ′(x)v =

√
λ2 − ∥x′∥2

2τ
⟨x−1/2, v⟩x−1/2 +

v − ⟨v, e⟩e
2τ

where τ is given as in (9).

(b) For every x ∈ intIK, 2σ′(x)v = L−1
σ(x)v for all v ∈ H.

(c) For every x ∈ intIK, the F-differential σ′(x) is a self-adjoint operator in L(H),

i.e., ⟨σ′(x)v, w⟩ = ⟨v, σ′(x)w⟩ for all v, w ∈ H.

Proof. (a) Recall that σ(x) = x′

2τ
+ τe for x = x′+λe ∈ IK \ {0}. Since τ as a mapping

of x ∈ IK \ {0} is F-differentiable on intIK, the function σ is F-differentiable on intIK.
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The differential of σ is computed as follows. Taking into account 2τ 2 = λ+
√
λ2 − ∥x′∥2,

by Example 3.1 it is not hard to calculate that for all v ∈ H,

4ττ ′(x)v = ⟨v, e⟩+ λ⟨v, e⟩ − ⟨v, x′⟩√
λ2 − ∥x′∥2

=
⟨v, 2τ 2e− x′⟩√
λ2 − ∥x′∥2

,

and consequently,

τ ′(x)v =
1

2
√
λ2 − ∥x′∥2

⟨
τe− x′

2τ
, v

⟩
=

1

2

⟨
x−1/2, v

⟩
.

Together with the expression σ(x) = x′

2τ
+ τe, we obtain that

σ′(x)v =
−τ ′(x)v
2τ 2

x′ +
1

2τ
(v − ⟨v, e⟩e) + (τ ′(x)v) e

=

⟨
x−1/2, v

⟩
2τ

(
−x′

2τ
+ τe

)
+

1

2τ
(v − ⟨v, e⟩e) (18)

=

⟨
x−1/2, v

⟩
2τ

·
√
λ2 − ∥x′∥2x−1/2 +

1

2τ
(v − ⟨v, e⟩e) .

We next prove that the F-differential σ′ is continuous at any given point a = a′ + αe ∈
intIK. For any x = x′ + λe ∈ intIK, we write

τ(x) = τ =

√
λ+

√
λ2 − ∥x′∥2
2

and p(x) =

√
λ2 − ∥x′∥2
2τ(x)

.

Then, from the last equality in (18), it follows that for all v ∈ H,

∥σ′(x)v − σ′(a)v∥

≤
∥∥p(x)⟨x−1/2, v⟩x−1/2 − p(a)⟨a−1/2, v⟩a−1/2

∥∥+ ∣∣∣∣ 1

2τ(x)
− 1

2τ(a)

∣∣∣∣ · ∥v − ⟨v, e⟩e∥

≤ |p(x)− p(a)| ·
∣∣⟨x−1/2, v⟩

∣∣ · ∥∥x−1/2
∥∥+ p(a) ·

∣∣⟨x−1/2 − a−1/2, v⟩
∣∣ · ∥∥x−1/2

∥∥
+p(a) ·

∣∣⟨a−1/2, v⟩
∣∣ · ∥∥x−1/2 − a−1/2

∥∥+ ∣∣∣∣ 1

2τ(x)
− 1

2τ(a)

∣∣∣∣ · ∥v∥
≤ |p(x)− p(a)| · ∥x−1/2∥2 · ∥v∥+

∣∣∣∣ 1

2τ(x)
− 1

2τ(a)

∣∣∣∣ · ∥v∥
+p(a) ·

∥∥x−1/2 − a−1/2
∥∥ (∥∥x1/2∥∥+ ∥∥a−1/2

∥∥) · ∥v∥.
This implies that

∥σ′(x)− σ′(a)∥ ≤ |p(x)− p(a)| ·
∥∥x−1/2

∥∥2 + ∣∣∣∣ 1

2τ(x)
− 1

2τ(a)

∣∣∣∣
+p(a) ·

∥∥x−1/2 − a−1/2
∥∥ (∥x1/2∥+ ∥a−1/2∥

)
,
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and consequently ∥σ′(x)− σ′(a)∥ → 0 as x→ a.

(b) From the second equality in (18) and equation (12), we obtain for any v = v′+θe ∈ H,

2σ′(x)v =
1

τ
⟨σ(x)−1, v⟩ ·

(
−x′

2τ
+ τe

)
+
v′

τ

=
1

τ

(
v′ − ⟨σ(x)−1, v⟩ · x

′

2τ

)
+ ⟨σ(x)−1, v⟩e = L−1

σ(x)v.

(c) For any given v, w ∈ H, we write σ′(x)v = v1 and σ′(x)w = w1. Then, by part (b),

we have v = 2σ(x) • v1 and w = 2σ(x) • w1, and consequently

⟨σ′(x)v, w⟩ = 2⟨v1, σ(x) • w1⟩ = 2⟨σ(x) • v1, w1⟩ = ⟨v, σ′(x)w⟩.

This shows that σ′(x) is a self-adjoint operator. The proof is completed. 2

Lemma 4.2 For any x, y ∈ H and r ∈ IR, let ψr(x, y) := 2⟨(x2 + y2)
1/2
, x+ ry⟩. Then,

(a) ψr is F-differentiable at every point (a, b) ∈ H ×H with a2 + b2 ∈ ∂IK.

(b) For any given x = x′ + λe ∈ H and y = y′ + µe ∈ H with x2 + y2 ∈ ∂IK \ {0},

ψ′
r(x, y)(v, w) =

2(λ+ rµ)√
λ2 + µ2

· (⟨v, x⟩+ ⟨w, y⟩) + 2
⟨(
x2 + y2

)1/2
, v + rw

⟩
for all v, w ∈ H. Furthermore, ∥ψ′

r(x, y)∥ ≤ 4(1 + |r|)
√
∥x∥2 + ∥y∥2.

Proof. (a) For any (x, y) ̸= (0, 0), it can be seen that ψr is F-differentiable at (0, 0)

since

|ψr(x, y)− ψr(0, 0)| = 2
∣∣⟨(x2 + y2)1/2, x+ ry

⟩∣∣ ≤ 2
√
∥x∥2 + ∥y∥2 · ∥x+ ry∥.

Next, we consider the case where (a, b) ̸= (0, 0). Write a = a′ + αe and b = b′ + βe.

Since a2 + b2 ∈ ∂IK, we have 2∥αa′ + βb′∥ = ∥a∥2 + ∥b∥2 > 0. So, there exist a convex

and bounded open neighborhood U of (a, b) in H ×H and a constant ρ > 0 such that

∥λx′ + βy′∥ ≥ ρ for any (x, y) ∈ U with x = x′ + λe and y = y′ + µe. Notice that

(x2 + y2)1/2 =
λx′ + µy′

τ(x, y)
+ τ(x, y)e

where

τ(x, y) =

√
∥x∥2 + ∥y∥2 +

√
(∥x∥2 + ∥y∥2)2 − 4∥λx′ + µy′∥2

2
.

13



Write

τj = τj(x, y) := ∥x∥2 + ∥y∥2 + 2(−1)j ∥λx′ + µy′∥ for j = 1, 2.

It is not difficult to verify that

τ(x, y) =

√
τ1 +

√
τ2

2
and

1

τ(x, y)
=

√
τ2 −

√
τ1

2∥λx′ + µy′∥
. (19)

Consequently,

ψr(x, y) = 2

⟨
λx′ + µy′

τ(x, y)
, x′ + ry′

⟩
+ 2τ(x, y)(λ+ rµ)

= (
√
τ2 −

√
τ1)

⟨
λx′ + µy′

∥λx′ + µy′∥
, x′ + ry′

⟩
+ (

√
τ1 +

√
τ2) (λ+ rµ)

:= φ1(x, y) + φ2(x, y)

where

φj(x, y) :=
√
τj(x, y)

(
λ+ rµ+ (−1)j

⟨
λx′ + µy′

∥λx′ + µy′∥
, x′ + ry′

⟩)
for j = 1, 2.

Since λx′ + µy′ ̸= 0 for any (x, y) ∈ U , the mappings

(x, y) 7−→ ∥λx′ + µy′∥ and (x, y) 7−→ ∥λx′ + µy′∥−1

are continuously F-differentiable on U , and then
√
τ2(x, y) is continuously F-differentiable

on U since τ2(x, y) > 0 for (x, y) ̸= (0, 0). Hence, φ2 is continuously Fréchet differentiable

on U . To prove that φ1 is F-differentiable at (a, b), we let

f(x, y) := λ+ rµ, g(x, y) := λx′ + µy′, p(x, y) :=
g(x, y)

∥g(x, y)∥
,

h(x, y) := x′ + ry′, φ3(x, y) := f(x, y)− ⟨p(x, y), h(x, y)⟩

for any (x, y) ∈ U with x = x′ + λe and y = y′ + µe. Then,

τ1(x, y) = ∥x∥2 + ∥y∥2 − 2∥g(x, y)∥ and φ1(x, y) =
√
τ1(x, y) φ3(x, y). (20)

By Example 3.1, it is not hard to calculate that for any (v, w) ∈ H ×H,

f ′(x, y)(v, w) = ⟨v, e⟩+ r⟨w, e⟩;
g′(x, y)(v, w) = λv + ⟨v, e⟩(x′ − λe) + µw + ⟨w, e⟩(y′ − µe);

p′(x, y)(v, w) =
g′(x, y)(v, w)

∥g(x, y)∥
− ⟨g′(x, y)(v, w), g(x, y)⟩

∥g(x, y)∥3
g(x, y),

h′(x, y)(v, w) = v − ⟨v, e⟩e+ rw − r⟨w, e⟩e.
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Note that ∥g(x, y)∥ ≥ ρ for all (x, y) ∈ U . By the boundedness of U , there is a constant

c > 0 such that ∥x∥ + ∥y∥ ≤ c for all (x, y) ∈ U . Thus, for any (x, y) ∈ U and any

(v, w) ∈ H ×H, from the last four equalities it follows that

∥f ′(x, y)(v, w)∥ ≤ (|r|+ 1)(∥v∥+ ∥w∥), ∥h′(x, y)(v, w)∥ ≤ (|r|+ 1)(∥v∥+ ∥w∥),

∥g′(x, y)(v, w)∥ ≤ 2c(∥v∥+ ∥w∥), ∥p′(x, y)(v, w)∥ ≤ 4c(∥v∥+ ∥w∥)
ρ

.

Consequently,

∥τ ′1(x, y)(v, w)∥ =

∥∥∥∥2⟨x, v⟩+ 2⟨y, w⟩ − 2⟨g′(x, y)(v, w), g(x, y)⟩
∥g(x, y)∥

∥∥∥∥ ,
≤ 2c(∥v∥+ ∥w∥) + 2∥g′(x, y)(v, w)∥ ≤ 6c(∥v∥+ ∥w∥),

|φ′
3(x, y)(v, w)| ≤ ∥f ′(x, y)(v, w)∥+ ∥p′(x, y)(v, w)∥ · ∥h(x, y)∥+ ∥h′(x, y)(v, w)∥

≤ M1(∥v∥+ ∥w∥)

where M1 = 2(|r| + 1) + 4ρ−1c2(|r| + 1). By the mean-value theorem, for any given

(x, y) ∈ U , there exists (x̄, ȳ) ∈ U on the line segment joining (a, b) to (x, y) such that

|φ3(x, y)− φ3(a, b)| = |φ′
3(x̄, ȳ)(x− a, y − b)| ≤M1(∥x− a∥+ ∥y − b∥).

We claim that φ3(a, b) = 0. To see this, from Lemma 3.2, |α| = ∥a′∥, |β| = ∥b′∥ and

αβ = ⟨a′, b′⟩, which implies that ∥αa′ + βb′∥ = α2 + β2, and

φ3(a, b) = α+ rβ − 1

α2 + β2
(α∥a′∥2 + (rα + β)⟨a′, b′⟩+ rβ∥b′∥2)

= α+ rβ − 1

α2 + β2
(α3 + rα2β + αβ2 + rβ3) = 0.

This claim implies that

|φ3(x, y)| ≤M1(∥x− a∥+ ∥y − b∥) for any (x, y) ∈ U . (21)

In addition, noting that τ1(a, b) = 0 and applying the Mean Value Theorem to τ1,√
τ1(x, y) ≤M2 ·

√
∥x− a∥+ ∥y − b∥ for any (x, y) ∈ U , (22)

where M2 =
√
6c. Now from equations (20)–(22) it follows that, for any (x, y) ∈ U ,

|φ1(x, y)− φ2(a, b)| = |φ1(x, y)| ≤M1M2(∥x− a∥+ ∥y − b∥)3/2,

which says that φ1 is F-differentiable at (a, b) with φ′
1(a, b) being the zero mapping in

L(H×H, IR). So, ψr is F-differentiable at (a, b) with ψ′
r(a, b) = φ′

2(a, b).

(b) From part (a), we know that ψ′
r(x, y) = φ′

2(x, y). To compute φ′
2(x, y), we write

φ4(x, y) := f(x, y) + ⟨p(x, y), h(x, y)⟩ = λ+ rµ+

⟨
λx′ + µy′

∥λx′ + µy′∥
, x′ + ry′

⟩
.
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From the expression of φ2(x, y), it follows that φ2(x, y) =
√
τ2(x, y) · φ4(x, y). Hence,

φ′
2(x, y)(v, w) =

τ ′2(x, y)(v, w)

2
√
τ2(x, y)

· φ4(x, y) +
√
τ2(x, y) · φ′

4(x, y)(v, w) (23)

for any v, w ∈ H. By the expressions of φ4(x, y) and τ2(x, y),

φ′
4(x, y)(v, w) = f ′(x, y)(v, w) + ⟨p′(x, y)(v, w), h(x, y)⟩+ ⟨p(x, y), h′(x, y)(v, w)⟩,

τ ′2(x, y)(v, w) = 2⟨v, x⟩+ 2⟨w, y⟩+ 2
⟨g′(x, y)(v, w), g(x, y)⟩

∥g(x, y)∥
. (24)

Since |λ| = ∥x′∥, |µ| = ∥y′∥, ∥λx′+µy′∥ = λ2+µ2, ⟨x′, y′⟩ = λµ by Lemma 3.2, we have

g(x, y) = λ2 + µ2,
√
τ2(x, y) = 2

√
λ2 + µ2 and φ4(x, y) = 2(λ+ rµ).

Using these equalities and µx′ = λy′, it is not hard to calculate that for any v, w ∈ H,

f ′(x, y)(v, w) = ⟨v, e⟩+ r⟨w, e⟩ = ⟨v + rw, e⟩;

⟨p′(x, y)(v, w), h(x, y)⟩ =
⟨g′(x, y)(v, w), h(x, y)⟩

∥g(x, y)∥

−⟨g′(x, y)(v, w), g(x, y)⟩
∥g(x, y)∥3

⟨g(x, y), h(x, y)⟩ = 0;

⟨p(x, y), h′(x, y)(v, w)⟩ =

⟨
g(x, y)

∥g(x, y)∥
, v − ⟨v, e⟩e+ rw − r⟨w, e⟩e

⟩
= (λ2 + µ2)−1 ⟨λx′ + µy′, v + rw⟩ ;

⟨g′(x, y)(v, w), g(x, y)⟩ = ⟨λv, λx′ + µy′⟩+ ⟨v, e⟩ · ⟨x′ − λe, λx′ + µy′⟩
+⟨µw, λx′ + µy′⟩+ ⟨w, e⟩ · ⟨y′ − µe, λx′ + µy′⟩

= ⟨v, λ2x′ + λµy′⟩+ λ⟨v, e⟩(λ2 + µ2)

+⟨w, λµx′ + µ2y′⟩+ µ⟨w, e⟩(λ2 + µ2)

= (λ2 + µ2)⟨v, x′⟩+ λ⟨v, e⟩(λ2 + µ2)

+(λ2 + µ2)⟨w, y′⟩+ µ⟨w, e⟩(λ2 + µ2)

= (λ2 + µ2)(⟨v, x⟩+ ⟨w, y⟩).

Combining the last three equations with equation (24), it follows that

τ ′2(x, y)(v, w) = 4⟨v, x⟩+ 4⟨w, y⟩;√
τ2(x, y)φ

′
4(x, y)(v, w) = 2

√
λ2 + µ2

{
⟨v + rw, e⟩+ ⟨λx′ + µy′, v + rw⟩

λ2 + µ2

}
= 2

√
λ2 + µ2

⟨
λx′ + µy′

λ2 + µ2
+ e, v + rw

⟩
= 2

⟨(
x2 + y2

)1/2
, v + rw

⟩
,
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where the last equality holds since τ(x, y) = τ2(x, y). This together with (23) yields that

φ′
2(x, y)(v, w) =

2(λ+ rµ)√
λ2 + µ2

· (⟨v, x⟩+ ⟨w, y⟩) + 2
⟨(
x2 + y2

)1/2
, v + rw

⟩
,

∥φ′
2(x, y)(v, w)∥ ≤ 2(1 + |r|)(∥v∥ · ∥x∥+ ∥w∥ · ∥y∥) + 2

√
∥x∥2 + ∥y∥2 · ∥v + rw∥

≤ 4(1 + |r|)
√

∥x∥2 + ∥y∥2 ·
√

∥v∥2 + ∥w∥2.

Together with φ′
r(x, y) = φ′

2(x, y), we obtain the desired results. 2

Next we use Lemmas 4.1 and 4.2 to establish the F-differentiability of Ψt, and present

the explicit formula for the differential of Ψt. Note that, for any given point (x, y) ∈
H × H, the differential Ψ′

t(x, y) induces two continuous linear mappings in L(H, IR),
which are v 7−→ Ψ′

t(x, y)(v, 0) and w 7−→ Ψ′
t(x, y)(0, w) for v, w ∈ H, called the partial

derivatives of Ψt at (x, y) w.r.t. x and y, respectively. It is well known that for any

given l ∈ L(H, IR) there is a unique point a ∈ H such that l(v) = ⟨a, v⟩ for all v ∈ H.

We let D1Ψt(x, y) ∈ H and D2Ψt(x, y) ∈ H be such that

Ψ′
t(x, y)(v, 0) = ⟨D1Ψt(x, y), v⟩ and Ψ′

t(x, y)(0, w) = ⟨D2Ψt(x, y), w⟩

for all v, w ∈ H. By identifying D1Ψt(x, y) with the mapping v 7−→ Ψ′
t(x, y)(v, 0), we

shall call D1Ψt(x, y) the partial derivative of Ψt at (x, y) w.r.t. x. Similarly, D2Ψt(x, y)

is called the partial derivative of Ψt at (x, y) w.r.t. y.

Theorem 4.1 The function Ψt with 0 < t < 2 is F-differentiable on H×H. Also,

(a) If (x, y) = (0, 0), then D1Ψt(x, y) = D2Ψt(x, y) = 0 ∈ H.

(b) If x = x′ + λe ∈ H and y = y′ + µe ∈ H with x2 + y2 ∈ ∂IK \ {0}, then

D1Ψt(x, y) = 2

(
λ+ (t− 1)µ

τ
− 1

)
Φt(x, y)

D2Ψt(x, y) = 2

(
(t− 1)λ+ µ

τ
− 1

)
Φt(x, y) (25)

with τ =
√
(λ− µ)2 + 2tλµ.

(c) If (x, y) ∈ H ×H with x2 + y2 ∈ intIK, then

D1Ψt(x, y) = 2
[
(x+ (t− 1)y) • L−1

z Φt(x, y)− Φt(x, y)
]

D2Ψt(x, y) = 2
[
((t− 1)x+ y) • L−1

z Φt(x, y)− Φt(x, y)
]

(26)

with z = [(x− y)2 + 2t(x • y)]1/2 and L−1
z defined as in equation (12).
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Proof. For 0 < t < 2, we consider the mapping St : H×H → H×H defined by

St(x, y) :=
(
x+ (t− 1)y,

√
t(2− t)y

)
.

Note that St ∈ GL(H×H) with the inverse given by

S−1
t (x, y) =

(
x+

1− t√
t(2− t)

y,
y√

t(2− t)

)
for any x, y ∈ H,

and

Φt ◦ S−1
t (x, y) =

(
x2 + y2

)1/2 − (x+√
2t−1 − 1 y

)
. (27)

Therefore, every Φt is continuously F-differentiable on the open set

Ω :=
{
(x, y) ∈ H ×H | (x− y)2 + 2t(x • y) ∈ intIK

}
=

{
(x, y) ∈ H ×H | x2 + y2 ∈ intIK

}
, (28)

if the mapping (x, y) 7→ (x2 + y2)1/2 is continuously F-differentiable on Ω, where the

second equality in (28) is due to Lemma 3.2. Since the mapping x 7−→ x2 is continuously

F-differentiable on H, the mapping (x, y) 7−→ x2+ y2 is continuously F-differentiable on

H × H. By Lemma 4.1 (a), (x, y) 7→ (x2 + y2)1/2 is then continuously F-differentiable

on Ω. It remains to show that Ψt is F-differentiable on

∂Ω =
{
(x, y) ∈ H ×H | (x− y)2 + 2t(x • y) ∈ ∂IK

}
(29)

=
{
(x, y) ∈ H ×H | x2 + y2 ∈ ∂IK

}
.

From equation (27), for any x, y ∈ H,

Ψt ◦ S−1
t (x, y) =

∥∥Φt ◦ S−1
t (x, y)

∥∥2 = ∥∥∥(x2 + y2)1/2 − (x+
√
2t−1 − 1 y)

∥∥∥2 ,
= ∥x∥2 + ∥y∥2 − ψr(x, y) + ∥x+ ry∥2

with r =
√
2t−1 − 1. Notice that the mapping x 7→ ∥x∥2 is continuously differentiable,

whereas by Lemma 4.2 (a) the mapping ψr(x, y) is F-differentiable at every point of ∂Ω.

Therefore, Ψt is F-differentiable on the set ∂Ω.

(a) By Lemma 4.2, Ψ′
t(0, 0) is the zero mapping in L(H×H, IR), which implies that

D1Ψt(0, 0) = D2Ψt(0, 0) = 0 ∈ H.

We next compute the partial derivatives of Ψt at points in H ×H \ {(0, 0)}. From

the definition of Ψt, it follows that for any x, y ∈ H,

Ψt(x, y) = ∥x+ (t− 1)y∥2 + t(2− t)∥y∥2 − ψr ◦ St(x, y) + ∥x+ y∥2
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with r =
√
2t−1 − 1. Therefore, for all v, w ∈ H, we have

Ψ′
t(x, y)(v, w) = 2⟨x+ (t− 1)y, v + (t− 1)w⟩+ 2t(2− t)⟨y, w⟩

−ψ′
r(St(x, y)) ◦ St(v, w) + 2⟨x+ y, v + w⟩,

which in turn implies that

Ψ′
t(x, y)(v, 0) = 2⟨2x+ ty, v⟩ − ψ′

r(St(x, y)) ◦ St(v, 0), (30)

Ψ′
t(x, y)(0, w) = 2⟨tx+ 2y, w⟩ − ψ′

r(St(x, y)) ◦ St(0, w). (31)

(b) Let x = x′ + λe ∈ H and y = y′ + µe ∈ H with x2 + y2 ∈ ∂IK \ {0}, and write

a = x+ (t− 1)y, b =
√
t(2− t)y, c = (t− 1)x+ y, and z = (a2 + b2)1/2.

Note that z ∈ ∂IK \ {0} and Φt(x, y) = z − (x+ y). It follows from Lemma 4.2 (b) that

ψ′
r(a, b)(v, w) =

2(α+ rβ)√
α2 + β2

· (⟨a, v⟩+ ⟨b, w⟩) + 2⟨z, v + rw⟩

for all v, w ∈ H, where α = ⟨a, e⟩ = λ+ (t− 1)µ and β = ⟨b, e⟩ =
√
t(2− t)µ. Since

α+ rβ = λ+ µ, α2 + β2 = τ 2 and v + (t− 1)w + r
√
t(2− t)w = v + w,

we have

ψ′
r(St(x, y)) ◦ St(v, w) = ψ′

r(a, b)(v + (t− 1)w,
√
t(2− t)w)

=
2(λ+ µ)

τ
· (⟨a, v⟩+ ⟨c, w⟩) + 2⟨z, v + w⟩.

This means that

ψ′
r(St(x, y)) ◦ St(v, 0) =

2(λ+ µ)

τ
· ⟨a, v⟩+ 2⟨z, v⟩,

ψ′
r(St(x, y)) ◦ St(0, w) =

2(λ+ µ)

τ
· ⟨c, w⟩+ 2⟨z, w⟩.

Using equations (30) and (31), it then follows that

1

2
D1Ψt(x, y) = 2x+ ty − λ+ µ

τ
· a− z =

(
1− λ+ µ

τ

)
a− Φt(x, y)

1

2
D2Ψt(x, y) = tx+ 2y − λ+ µ

τ
· c− z =

(
1− λ+ µ

τ

)
c− Φt(x, y).

Now to obtain the two equalities in (25), it suffices to prove that

λ+ (t− 1)µ

τ
Φt(x, y) =

(
1− λ+ µ

τ

)
a,

(t− 1)λ+ µ

τ
Φt(x, y) =

(
1− λ+ µ

τ

)
c. (32)
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Since α = ⟨a, e⟩ and τ = ⟨z, e⟩, we write a = a′ + αe and z = z′ + τe with

a′ = x′ + (t− 1)y′ and ζ =
(λ+ (t− 1)µ)x′ + (λ(t− 1) + µ)y′

τ
.

Noting that Φt(x, y) = z − (x+ y), we readily have

λ+ (t− 1)µ

τ
⟨Φt(x, y), e⟩ =

α

τ
(τ − λ− µ) =

(
1− λ+ µ

τ

)
α.

On the other hand, since λy′ = µx′ by Lemma 3.2, it is not hard to verify that

λa′ = αx′, µa′ = αy′,
α

τ
(x′ + y′) =

λ+ µ

τ
a′,

α

τ
z′ =

λ+ (t− 1)µ

τ
· λa

′

τ
+
λ(t− 1) + µ

τ
· µa

′

τ
= a′,

and consequently
α

τ
(z′ − x′ − y′) =

(
1− λ+ µ

τ

)
a′.

The two sides show that the first equality in (32) holds. Using the similar arguments,

we can prove that the second equality in (32) also holds.

(c) Write q(x, y) = x2 + y2. Then, by the definition of σ(x) given by Lemma 4.1,

ψr(x, y) = ⟨σ(q(x, y)), x+ y⟩.

Applying the Chain Rule of differential, we have for any v, w ∈ H

ψ′
r(St(x, y)) ◦ St(v, w) = 2⟨σ′(z2) ◦ q′(St(x, y)) ◦ St(v, w), x+ y⟩+ 2⟨z, v + w⟩,

and consequently,

ψ′
r(St(x, y)) ◦ St(v, 0) = 2⟨σ′(z2) ◦ q′(St(x, y))(v, 0), x+ y⟩+ 2⟨z, v⟩

ψ′
r(St(x, y)) ◦ St(0, w) = 2⟨σ′(z2) ◦ q′(St(x, y))((t− 1)w,

√
t(2− t)w), x+ y⟩

+2⟨z, w⟩.

Noting that q′(x, y)(v, w) = 2(x • v) + 2(y • w) and σ′(z2) is self-adjoint, we have

⟨σ′(z2) ◦ q′(St(x, y))(v, 0), x+ y⟩ = 2⟨a • v, σ′(z2)(x+ y)⟩ = 2⟨v, a • σ′(z2)(x+ y)⟩

and ⟨
σ′(z2) ◦ q′(St(x, y))((t− 1)w,

√
t(2− t)w), x+ y

⟩
= 2(t− 1)

⟨
w, b • σ′(z2)(x+ y)

⟩
+ 2t(2− t)

⟨
w, b • σ′(z2)(x+ y)

⟩
= 2

⟨
w, b • σ′(z2)(x+ y)

⟩
.
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Together with equations (30)–(31), it then follows that

1

2
D1Ψt(x, y) = 2x+ ty − 2a • σ′(z2)(x+ y)− z,

1

2
D2Ψt(x, y) = tx+ 2y − 2b • σ′(z2)(x+ y)− z.

From Lemma 4.1, we have 2σ′(z2)v = L−1
z v for all v ∈ H. Therefore,

1

2
D1Ψt(x, y) = (x+ (t− 1)y)− Φt(x, y)− a • L−1

z (x+ y)

= a • L−1
z z − Φt(x, y)− a • L−1

z (x+ y)

= a • L−1
z Φt(x, y)− Φt(x, y),

where the second equality is using L−1
z z = e. This proves the first equality in (26).

Similar, we can obtain the second equality in (26). The proof is complete. 2

In what follows, we investigate the continuity of the differential Ψ′
t. From the proof

of Theorem 4.1, we see that, to establish the continuity of Ψ′
t in H × H, it suffices to

show that the differential of ψr is continuous at every point (a, b) ∈ ∂Ω. The following

proposition shows that ψ′
r is continuous at ∂Ω\{(0, 0)}.

Proposition 4.1 Let ψr be defined as in Lemma 4.2. Then its F-differential is contin-

uous at every point (a, b) ∈ ∂Ω\{(0, 0)}.

Proof. We shall use notations given in the proof of Lemma 4.2. Recall that

ψr(x, y) = φ1(x, y) + φ2(x, y) for any (x, y) ∈ U ,

and φ2 is continuously F-differentiable on U , particularly at (a, b). To prove the continu-

ity of F-differential of φ1 at (a, b), we recall that φ′
1(x, y) = 0 ∈ L(H×H, IR) whenever

(x, y) ∈ U with x2 + y2 ∈ ∂IK. Hence, for any (x, y) ∈ U with x2 + y2 ∈ intIK,

φ′
1(x, y)(v, w)− φ′

1(a, b)(v, w) =
2τ ′1(x, y)(v, w)√

τ1(x, y)
φ3(x, y) +

√
τ1(x, y)φ

′
3(x, y)(v, w).

From the proof of Lemma 4.2, we know that for any (x, y) ∈ U and any v, w ∈ H,

∥τ ′1(x, y)(v, w)∥ ≤ 6c(∥v∥+ ∥w∥) and ∥φ′
3(x, y)(v, w)∥ ≤M1(∥v∥+ ∥w∥),

where M1 > 0 and c > 0 are constants. In addition, from the expression of φ3(x, y) and

Lemma 3.3, it follows that for any (x, y) ∈ U with x2 + y2 ∈ intIK,

|φ3(x, y)| =

∣∣∣∣λ+ γµ−
⟨

λx′ + µy′

∥λx′ + µy′∥
, x′ + ry′

⟩∣∣∣∣
≤

∣∣∣∣λ−
⟨

λx′ + µy′

∥λx′ + µy′∥
, x′
⟩∣∣∣∣+ |r|

∣∣∣∣µ−
⟨

λx′ + µy′

∥λx′ + µy′∥
, y′
⟩∣∣∣∣

≤ (1 + |r|) · τ1(x, y).
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Now, for any (x, y) ∈ U with x2 + y2 ∈ intIK and for any v, w ∈ H, we have

|φ′
1(x, y)(v, w)− φ′

1(a, b)(v, w)| ≤
[
12c(1 + |r|) +M1

]√
τ1(x, y) · (∥v∥+ ∥w∥),

which in turn implies that

∥φ′
1(x, y)− φ′

1(a, b)∥ ≤ 2
[
12c(1 + |r|) +M1

]√
τ1(x, y) for any (x, y) ∈ U.

Since τ1(a, b) = 0, we have ∥φ′
1(x, y)− φ′

1(a, b)∥ → 0 as (x, y) → (a, b). 2

To prove the continuity of the differential ψ′
r at (0, 0), we need the following lemma

which establishes the boundedness of the differentials of (x, y) 7−→ (x2 + y2)1/2 on Ω.

Lemma 4.3 Let σ : IK → IK be given as in Lemma 4.1 and q(x, y) := x2 + y2 for any

x, y ∈ H. Then σ̂ = σ ◦ q is continuously F-differentiable on Ω, and moreover, there is

a constant C1 > 0 such that ∥σ̂′(x, y)∥ ≤ C1 for all (x, y) ∈ Ω.

Proof. Since σ is continuously F-differentiable on intIK, and q is continuously F-

differentiable on H × H, it follows that σ̂ is continuously F-differentiable on Ω. In

the following, we prove that the F-differential of σ̂ is bounded on Ω. For any point

(x, y) ∈ Ω, we write x = x′ + λe and y = y′ + µe. Then, for all v, w ∈ H,

q′(x, y)(v, w) = 2
[
⟨v, e⟩x′ + λv + ⟨v, x′⟩e+ ⟨w, e⟩y′ + µw + ⟨w, y′⟩e

]
.

Now, applying Lemma 4.1 (a) yields that

σ̂′(x, y)(v, w) = σ′(x2 + y2) ◦ q′(x, y)(v, w)

=

√
τ1τ2
2τ

·
⟨(
x2 + y2

)−1/2
, q′(x, y)(v, w)

⟩ (
x2 + y2

)−1/2

+
1

2τ
·
[
q′(x, y)(v, w)− ⟨q′(x, y)(v, w), e⟩e

]
, (33)

where τ = τ(x, y) and τj = τj(x, y) for j = 1, 2 with τ(x, y) and τj(x, y) given as in the

proof of Lemma 4.2. Using a direct computation and noting that
√
∥x∥2 + ∥y∥2 ≤

√
2τ ,

1

2τ
∥q′(x, y)(v, w)− ⟨q′(x, y)(v, w), e⟩e∥ ≤ 2

τ

√
∥x∥2 + ∥y∥2 ·

√
∥v∥2 + ∥w∥2

≤ 2
√
2
√
∥v∥2 + ∥w∥2. (34)

By writing z = λx′+µy′

∥λx′+µy′∥ and using equations (10) and (19), it follows that

(
x2 + y2

)−1/2
=

1
√
τ1τ2

(
−λx′ − µy′

τ
+ τe

)
=

1
√
τ1τ2

(√
τ1 −

√
τ2

2
z +

√
τ2 +

√
τ1

2
e

)
.
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This together with the expression of q′(x, y)(v, w) implies that⟨(
x2 + y2

)−1/2
, q′(x, y)(v, w)

⟩
= (τ1τ2)

−1/2 (
√
τ1 −

√
τ2)
[
⟨v, e⟩⟨z, x′⟩+ λ⟨z, v⟩+ ⟨w, e⟩ ⟨z, y′⟩+ µ⟨z, w⟩

]
+(τ1τ2)

−1/2(
√
τ2 +

√
τ1)
[
λ⟨v, e⟩+ ⟨v, x′⟩+ µ⟨w, e⟩+ ⟨w, y′⟩

]
= τ

−1/2
2

[
(λ+ ⟨z, x′⟩)⟨v, e⟩+ ⟨x′ + λz, v⟩+ (µ+ ⟨z, y′⟩)⟨w, e⟩+ ⟨µz + y′, w⟩

]
+τ

−1/2
1

[
(λ− ⟨z, x′⟩)⟨v, e⟩+ ⟨x′ − λz, v⟩+ (µ− ⟨z, y′⟩)⟨w, e⟩+ ⟨y′ − µz, w⟩

]
.

Noting that

∥x′ + λz∥+ ∥y′ + µz∥ ≤
√
2(∥x∥+ ∥y∥) ≤ 2

√
τ2,

|λ+ ⟨z, x′⟩|+ |µ+ ⟨z, y′⟩| ≤
√
2(∥x∥+ ∥y∥) ≤ 2

√
τ2,

it follows that

1
√
τ2
∥(λ+ ⟨z, x′⟩)⟨v, e⟩+ ⟨x′ + λz, v⟩+ (µ+ ⟨z, y′⟩)⟨w, e⟩+ ⟨µz + y′, w⟩∥ ≤ 4(∥v∥+ ∥w∥).

On the other hand, applying Lemma 3.3, we have

1
√
τ1
∥(λ− ⟨z, x′⟩)⟨v, e⟩+ ⟨x′ − λz, v⟩+ (µ− ⟨z, y′⟩)⟨w, e⟩+ ⟨y′ − µz, w⟩∥ ≤ 2(∥v∥+ ∥w∥).

Therefore,∣∣⟨(x2 + y2)−1/2, q′(x, y)(v, w)⟩
∣∣ ≤ 6(∥v∥+ ∥w∥) ≤ 12

√
∥v∥2 + ∥w∥2. (35)

In addition, since∥∥∥(x2 + y2
)−1/2

∥∥∥2 = ⟨(x2 + y2)−1, e⟩ = ∥x∥2 + ∥y∥2

τ1τ2
≤ 2τ 2

τ1τ2
,

we also have ∥∥∥∥ √τ1τ22τ

(
x2 + y2

)−1//2

∥∥∥∥ ≤ 1√
2
. (36)

Now combining the inequalities (34)–(36) with equation (33) leads to

∥σ̂′(x, y)(v, w)∥ ≤ 8
√
2
√
∥v∥2 + ∥w∥2

for all (x, y) ∈ Ω and v, w ∈ H. Therefore, ∥σ̂′(x, y)∥ ≤ 8
√
2 for all (x, y) ∈ Ω. 2

Proposition 4.2 Let ψr be the mapping defined as in Lemma 4.2. Then, there is a

constant C > 0, independent of r, such that

∥ψ′
r(x, y)∥ ≤ C(1 + |r|)

√
∥x∥2 + ∥y∥2 for all x, y ∈ H.

Consequently, the F-differential of ψr is continuous at (0, 0) ∈ H ×H.
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Proof. From Lemma 4.2(b), we have ψ′
r(0, 0) = 0. So, it suffices to prove the inequality

given in the theorem for (x, y) ∈ H × H \ {(0, 0)}. Let σ̂ be given as in Lemma 4.3.

Then, from the definition of ψr, it follows that for any (x, y) ∈ Ω and for v, w ∈ H,

ψ′
r(x, y)(v, w) = 2⟨σ̂′(x, y)(v, w), x+ ry⟩+ 2⟨σ̂(x, y), v + rw⟩.

By Lemma 4.3, there is a constant C1 > 0 such that for any (x, y) ∈ Ω and v, w ∈ H

2|⟨σ̂′(x, y)(v, w), x+ ry⟩| ≤ 2C1(1 + |r|)
√
∥v∥2 + ∥w∥2

√
∥x∥2 + ∥y∥2.

In addition, from the definition of σ̂(x, y), we also have

2|⟨σ̂(x, y), v + rw⟩| ≤ 2(1 + |r|)
√
∥x∥2 + ∥y∥2 ·

√
∥v∥2 + ∥w∥2.

The last three equations show that, for (x, y) ∈ Ω,

∥ψ′
r(x, y)∥ ≤ 2(C1 + 1)(1 + |r|)

√
∥x∥2 + ∥y∥2.

The inequality together with Lemma 4.1 imply that for all (x, y) ∈ H ×H,

∥ψ′
r(x, y)∥ ≤ C(1 + |r|)

√
∥x∥2 + ∥y∥2,

where C = 2max{2, C1 + 1} is independent of r. 2

From Theorem 4.1, Prop.4.1 and Prop.4.2, we readily obtain the following result.

Theorem 4.2 The function Ψt with 0 < t < 2 is smooth everywhere on H×H.

5 Stationary point conditions

From the previous discussions, we learn that the complementarity problem CP(IK, T ) in

the Hilbert space H with the continuously F-differentiable mapping T : H → H can be

transformed into an unconstrained smooth minimization problem

min
x∈H

f(x) := Ψt(x, T (x)) with 0 < t < 2. (37)

However, when applying minimization algorithms for (37), we can only expect to obtain

stationary points of (37). Thus, it is natural to ask under what conditions each stationary

point of the minimization problem (37) is a solution to the problem CP(IK, T ). To

achieve this goal, we first establish some favorable properties for the differential Ψ′
t(x, y).

This needs the following key lemma which generalizes the result of [9, Prop. 3.4] to H.
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Lemma 5.1 For any x, y ∈ H and z ≻IK 0, the following implications hold

z2 ≻IK x
2 + y2 =⇒ L2

z − L2
x − L2

y ≻ 0, (38)

z2 ≻IK x
2 =⇒ z ≻IK x. (39)

Moreover, the implications (38) and (39) remain true when “≻” is replaced by “≽”.

Proof. Similar to [9], we first prove (38) for the case where z = (x2 + y2 + δe)1/2 for

some δ > 0. Fix any x, y ∈ H and any δ > 0. Let z = (x2 + y2 + δe)1/2. It suffices to

prove that for any nonzero vector h in H,

0 <
⟨
h, (L2

z − L2
x − L2

y)h
⟩

= ⟨Lzh, Lzh⟩ − ⟨Lzx, Lzx⟩ − ⟨Lzy, Lzy⟩
= ∥z • h∥2 − ∥x • h∥2 − ∥y • h∥2.

Let x = x′ + λe, y = y′ + µe, z = z′ + νe and h = h′ + ξe. We calculate that

∥z • h∥2 − ∥x • h∥2 − ∥y • h∥2 = ξ2∥z∥2 + ν2∥h′∥2 + 4ξν⟨z′, h′⟩+ ⟨z′, h′⟩2

−
[
ξ2∥x∥2 + λ2∥h′∥2 + 4ξλ⟨x′, h′⟩+ ⟨x′, h′⟩2

]
−
[
ξ2∥y∥2 + µ2∥h′∥2 + 4ξµ⟨y′, h′⟩+ ⟨y′, h′⟩2

]
= ξ2

[
∥z∥2 − ∥x∥2 − ∥y∥2

]
+
[
ν2 − λ2 − µ2

]
∥h′∥2

+
(
⟨z′, h′⟩2 − ⟨x′, h′⟩2 − ⟨y′, h′⟩2

)
+4 (ξν⟨z′, h′⟩ − ξλ⟨x′, h′⟩ − ξµ⟨y′, h′⟩) . (40)

From the expression of z = (x2 + y2 + δe)1/2, it is not hard to obtain that

z′ = τ−1 (λx′ + µy′) and ν = τ,

where

τ =

√
∥x∥2 + ∥y∥2 + δe+

√
(∥x∥2 + ∥y∥2 + δe)2 − 4∥λx′ + µy′∥2

2
.

Substituting the expression of z′ above into ⟨z′, h′⟩ and using ν = τ yields that

ξν⟨z′, h′⟩ − ξλ⟨x′, h′⟩ − ξµ⟨y′, h′⟩ = 0 (41)

and

[ν2 − λ2 − µ2]∥h′∥2 + ⟨z′, h′⟩2 − ⟨x′, h′⟩2 − ⟨y′, h′⟩2

= [ν2 − λ2 − µ2]∥h′∥2 + (λ2 + µ2 − τ 2)(⟨x′, h′⟩2 + ⟨y′, h′⟩2)
τ 2

− ⟨h′, µx′ − λy′⟩2

τ 2

=
(τ 2 − λ2 − µ2)(τ 2∥h′∥2 − ⟨x′, h′⟩2 − ⟨y′, h′⟩2)

τ 2
− ⟨h′, µx′ − λy′⟩2

τ 2
. (42)
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Now combining equations (41)–(42) with equation (40) yields that

∥z • h∥2 − ∥x • h∥2 − ∥y • h∥2 = ξ2
[
∥z∥2 − ∥x∥2 − ∥y∥2

]
− ⟨h′, µx′ − λy′⟩2

τ 2

+
(τ 2 − λ2 − µ2)(τ 2∥h′∥2 − ⟨x′, h′⟩2 − ⟨y′, h′⟩2)

τ 2
. (43)

Notice that ∥z∥2 = ∥x∥2 + ∥y∥2 + δ > ∥x∥2 + ∥y∥2 is equivalent to

∥λx′ + µy′∥2

τ 2
+ τ 2 > ∥x′∥2 + λ2 + ∥y′∥2 + µ2.

Multiplying the two sides of the last inequality with τ 2, and then adding µ2∥x′∥2+λ2∥y′∥2
to the both sides of the inequality, we obtain

(λ2 + µ2)(∥x′∥2 + ∥y′∥2) + τ 4 − τ 2(∥x′∥2 + λ2 + ∥y′∥2 + µ2) > ∥µx′ − λy′∥2

or

(τ 2 − ∥x′∥2 − ∥y′∥2)(τ 2 − λ2 − µ2) > ∥µx′ − λy′∥2. (44)

This means that both τ 2 − ∥x′∥2 − ∥y′∥2 and τ 2 − λ2 − µ2 are positive or negative. If

both are negative, then we would have ∥x′∥2 + ∥y′∥2 ≥ τ 2 and λ2 +µ2 ≥ τ 2, which leads

to a contradiction that ∥x∥2 + ∥y∥2 ≥ 2τ 2 ≥ ∥x∥2 + ∥y∥2 + δ. Consequently,

τ 2 − ∥x′∥2 − ∥y′∥2 > 0 and τ 2 − λ2 − µ2 > 0.

Together with (43) and (44) and ∥z∥2 > ∥x∥2 + ∥y∥2, it follows that

∥z • h∥2 − ∥x • h∥2 − ∥y • h∥2

≥ (τ 2 − λ2 − µ2)(τ 2 − ∥x′∥2 − ∥y′∥2)∥h′∥2

τ 2
− ∥h′∥2∥λx′ − µy′∥2

τ 2
> 0.

So, (38) holds for any x, y ∈ H and z of the form z = (x2 + y2 + δe)1/2 for some δ > 0.

In view of Lemma 2.2, the rest arguments are same as those of [9, Prop. 3.4]. 2

Lemma 5.2 Let Ψt be given in (15) with 0 < t < 2. Then, for any x, y ∈ H,

(a) ⟨D1Ψt(x, y), D2Ψt(x, y)⟩ ≥ 0 with equality holding if and only if Φt(x, y) = 0;

(b) ⟨D1Ψt(x, y), x⟩+ ⟨D2Ψt(x, y), y⟩ = 2Ψt(x, y);

(c) D1Ψt(x, y) = 0 ⇐⇒ D2Ψt(x, y) = 0 ⇐⇒ Ψt(x, y) = 0.
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Proof. (a) We proceed the arguments by three cases shown as below.

Case (a.1): (x, y) = (0, 0). Since D1Ψt(0, 0) = D2Ψt(0, 0) = 0, the result is true.

Case (a.2): x2 + y2 ∈ ∂IK\{0}. Let x = x′ + λe and y = y′ + µe. By Theorem 4.1,

⟨D1Ψt(x, y), D2Ψt(x, y)⟩ = 4

(
λ+ (t− 1)µ

τ
− 1

)(
µ+ (t− 1)λ

τ
− 1

)
Ψt(x, y)

where τ =
√

(λ− µ)2 + 2tλµ. Noting that τ can be rewritten as

τ =
√
(λ+ (t− 1)µ)2 + t(2− t)µ2 =

√
(µ+ (t− 1)λ)2 + t(2− t)λ2,

and λ and µ can not be zero simultaneously by Lemma 3.2, it follows that(
λ+ (t− 1)µ

τ
− 1

)(
µ+ (t− 1)λ

τ
− 1

)
> 0.

Hence, ⟨D1Ψt(x, y), D2Ψt(x, y)⟩ ≥ 0, and the equality holds if and only if Φt(x, y) = 0.

Case (a.3): x2 + y2 ∈ intIK. By Theorem 4.1 and the definition of Lx, we have

⟨D1Ψt(x, y), D2Ψt(x, y)⟩
=

⟨(
Lx+(t−1)yL

−1
z − I

)
Φt(x, y),

(
Ly+(t−1)xL

−1
z − I

)
Φt(x, y)

⟩
=

⟨(
Lx+(t−1)y − Lz

)
L−1
z Φt(x, y),

(
Ly+(t−1)x − Lz

)
L−1
z Φt(x, y)

⟩
=

⟨
L−1

z Φt(x, y),
(
Lz − Lx+(t−1)y

) (
Lz − Ly+(t−1)x

)
L−1
z Φt(x, y)

⟩
(45)

where z = [(x−y)2+2t(x•y)]1/2 and I ∈ L(H) is an identity mapping. From elementary

calculation, we obtain that(
Lz − Lx+(t−1)y

) (
Lz − Ly+(t−1)x

)
+
(
Lz − Ly+(t−1)x

) (
Lz − Lx+(t−1)y

)
= t

(
Lz − Lx − Ly

)2
+

(
L2
z − L2

x+(t−1)y − L2√
t(2−t) y

)
. (46)

Since x2 + y2 ∈ intIK, from Lemma 3.2 we get z ∈ intIK. Noting that

z2 − (x+ (t− 1)y)2 −
(√

t(2− t)y
)2

= 0,

we have L2
z − L2

x+(t−1)y − L2√
t(2−t)y

≽ 0 by Lemma 5.1. Along with (45) and (46),

⟨D1Ψt(x, y), D2Ψt(x, y)⟩ ≥
t

2

∥∥(Lz − Lx − Ly)L
−1
z Φt(x, y)

∥∥2 ≥ 0,

which in turn implies that

⟨D1Ψt(x, y), D2Ψt(x, y)⟩ = 0 ⇐⇒ (Lz − Lx − Ly)L
−1
z Φt(x, y) = 0

⇐⇒ Lz−x−yL
−1
z Φt(x, y) = 0

⇐⇒ Φt(x, y) • (L−1
z Φt(x, y)) = 0.
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Since x • y = 0 implies ⟨x, y⟩ = 0, the last equivalence means that

⟨D1Ψt(x, y), D2Ψt(x, y)⟩ = 0 =⇒ ⟨Φt(x, y), L
−1
z Φt(x, y)⟩ = 0 =⇒ Φt(x, y) = 0

where the last implication is due to z ∈ intIK and Lemma 2.2. Conversely, if Φt(x, y) = 0,

⟨D1Ψt(x, y), D2Ψt(x, y)⟩ = 0 follows directly from (45). This proves part (a).

(b) It suffices to prove the assertion for (x, y) ∈ H×H \ {(0, 0)}. If x2 + y2 ∈ ∂IK \ {0},
then using the formula (25), we obtain

⟨D1Ψt(x, y), x⟩+ ⟨D2Ψt(x, y), y⟩

= 2

⟨
Φt(x, y),

(
λ+ (t− 1)µ

τ
− 1

)
x+

(
(t− 1)λ+ µ

τ
− 1

)
y

⟩
= 2 ⟨Φt(x, y), z − (x+ y)⟩ = 2Ψt(x, y).

When x2 + y2 ∈ intIK, from the formula (26), it follows that

⟨D1Ψt(x, y), x⟩+ ⟨D2Ψt(x, y), y⟩
= 2⟨L−1

z Φt(x, y), (x+ (t− 1)y) • x+ (y + (t− 1)x) • y⟩ − 2⟨Φt(x, y), x+ y⟩
= 2⟨L−1

z Φt(x, y), z
2⟩ − 2⟨Φt(x, y), x+ y⟩

= 2⟨Φt(x, y), z − (x+ y)⟩ = 2Ψt(x, y).

(c) The result is direct by part (a) and the expression of Ψ′
t given by Theorem 4.1. 2

Now we are in a position to establish the main result of this section by Lemma 5.2.

Theorem 5.1 Let T : H → H be a given continuously F-differentiable mapping and

f(x) = Ψt(x, T (x)) with 0 < t < 2. If T is monotone, then for every x ∈ H, either (i)

f(x) = 0 or (ii) f ′(x) ̸= 0 and ⟨d(x), f ′(x)⟩ < 0 with d(x) = −D2Ψt(x, T (x)).

Proof. Fix any x ∈ H. From Theorem 4.2 and the continuous F-differentiability of T ,

it follows that f : H → IR+ is continuously F-differentiable on H. By the chain rule of

differential, we have for any v ∈ H,

f ′(x)v = Ψ′
t(x, T (x))(v, 0) + Ψ′

t(x, T (x)) (0, T
′(x)v)

= ⟨D1Ψt(x, T (x)), v⟩+ ⟨D2Ψt(x, T (x)), T
′(x)v⟩,

which means that

f ′(x) = D1Ψt(x, T (x)) + (T ′(x))TD2Ψt(x, T (x)).

Suppose that f ′(x) = 0. Then the last equation implies that

⟨D1Ψt(x, T (x)), D2Ψt(x, T (x))⟩ = −⟨D2Ψt(x, T (x)), T
′(x)D2Ψt(x, T (x))⟩.
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Since T is continuously F-differentiable and monotone, the right hand side is nonpositive,

and consequently, ⟨D1Ψt(x, T (x)), D2Ψt(x, T (x))⟩ ≤ 0. Together with Lemma 5.2, it

then follows that f(x) = Ψt(x, T (x)) = 0.

Suppose that f ′(x) ̸= 0. Then, from the expression of d(x), it follows that

⟨d(x), f ′(x)⟩ = −⟨D2Ψt(x, T (x)), D1Ψt(x, T (x)) + (T ′(x))TD2Ψt(x, T (x))⟩
= −⟨D2Ψt(x, T (x)), D1Ψt(x, T (x))⟩

−
⟨
D2Ψt(x, T (x)), (T

′(x))TD2Ψt(x, T (x))
⟩

≤ −⟨D2Ψt(x, T (x)), D1Ψt(x, T (x))⟩ .

where the first inequality is using the monotonicity of T . By Lemma 5.2 (a), the right

hand side is nonpositive and equals zero if and only if Ψt(x, T (x)) = 0, i.e., x is a solution

of the minimization problem (37). However, the latter can not be true since f ′(x) ̸= 0,

and consequently, ⟨d(x), f ′(x)⟩ < 0. The proof is completed. 2

Theorem 5.1 states that if x ∈ H is not a solution of CP(IK, T ), then we can always

find a descent direction d(x) at this point. Based on this, an iterative descent algorithm

can be designed for the self-dual conic complementarity problem CP(IK, T ).

6 Conclusions

We have developed a merit function method for the infinitely dimensional SOCCP

CP(IK, T ) by extending Kanzow and Kleinmichel NCP-function to the Hilbert space.

We believe that the merit functions given in this paper will be useful in other contexts,

and further research work will be given to the specific applications of the merit function

method. Using the techniques in this paper, other well-known merit functions, for ex-

ample, the Yamashita-Fukushima merit function [15] can be also extended analogously.

Specifically, we can define the Yamashita-Fukushima merit function in Hilbert space as

ψ
YF
(x, y) := ψ0(⟨x, y⟩) + ψ

FB
(x, y) ∀x, y ∈ H ×H,

where ψ0 : IR → IR+ is any smoothing function satisfying

ψ0(t) = 0 ∀t ≤ 0 and ψ′
0(t) > 0 ∀t > 0.

In addition, although the spectral factorization of vectors is not used in the analysis of

this paper, we want to point out that, by the Jordan product associated with IK, every

x = x′ + λe ∈ H can be written as x = λ1(x)u
(1)
x + λ2(x)u

(2)
x with

λj(x) = λ+ (−1)j∥x′∥ and u(j)x =
1

2

(
e+ (−1)jx̄′

)
, j = 1, 2
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where x̄′ = x′

∥x′∥ if x′ ̸= 0, and otherwise x̄′ is an arbitrary unit vector in ⟨e⟩⊥.
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