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1. Introduction

We consider the following convex second-order cone programming problem (CSOCP):

inf f(x) (1)
st.Ax=b, x>40,

where f: R" — R U {400} is a closed proper convex function, A is an m x n matrix with full row rank m, b is a vector in
R™, x =5 0 means x € X, and X is the Cartesian product of some second-order cones (SOCs), also called Lorentz cones [1].
In other words,

K=XK"xK?2x --x K" (2)
wherer,nq,...,n, > 1withn; +---+n, =n,and

KM= {4, %) € R X R X > x|}

with || - || being the Euclidean norm. When f reduces to a linear function, i.e. f(x) = c'x for some ¢ € R", (1) becomes
the standard SOCP. Throughout this paper, we denote by X, the optimal set of (1), and let V := {x € R" | Ax = b}. The
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CSOCP, as an extension of the standard SOCP, has a wide range of applications from engineering, control, and finance to
robust optimization and combinatorial optimization; see [2,3] and references therein.

There have proposed various methods for solving the CSOCP, which include the interior point methods [4-6], the
smoothing Newton methods [7,8], the smoothing-regularization method [9], the semismooth Newton method [10], and the
merit function method [11]. These methods are all developed by reformulating the KKT optimality conditions as a system of
equations or an unconstrained minimization problem. This paper will focus on an iterative scheme which is proximal based
and handles directly the CSOCP itself. Specifically, the proximal-type algorithm consists of generating a sequence {x*} via

X = argmin {Af ) +Hx, ¥ ) [xe XNV}, k=1,2,... (3)

where {A,} is a sequence of positive parameters, and H: R" x R" — R U {400} is a proximal distance with respect to int X
(see Definition 3.1) which plays the same role as the Euclidean distance ||x — y||? in the classical proximal algorithms (see,
e.g., [12,13]), but possesses certain more desirable properties for forcing the iterates to stay in X N V, thus eliminating
the constraints automatically. As will be shown in Section 4, such proximal distances can be produced with an appropriate
closed proper univariate function.

In this paper, under mild assumptions like those used in interior proximal methods for convex programs over nonnegative
orthant cones (see, e.g., [14-20]), we show that the sequence {x*} is bounded with all limit points, being a solution of (1),
and obtain global rates of convergence in terms of objective values. But, unlike for interior proximal methods for convex
programs over nonnegative orthant cones, the global convergence of {x*} to an optimal solution can be guaranteed for the
class of proximal distances F1(X) or ¥, (X) under a very restrictive assumption for X, (see Theorem 3.2(a)), or for their
subclasses #;(K™) or %5 (X") under mild assumptions for X, (see Theorem 3.2(b)), or for the smallest subclass % (K™).
These results are illustrated with some examples.

Just like proximal point methods with generalized distances, the central paths derived from barrier functions have
been the object of intensive study. Recently, the central paths for semidefinite programming were under active study
(see, e.g., [21-24]). For example, da Cruz Neto et al. [21] established relations among the central paths in semidefinite
programming, generalized proximal point methods, and Cauchy trajectories in Riemannian manifolds, extending the results
of lusem et al. [25] for monotone variational inequality problems. Motivated by this, we also investigate the properties of the
central paths of (1) with respect to (w.r.t.) the distance-like functions used by interior proximal methods (see Propositions 5.2
and 5.3). For the linear SOCP, we discuss the relations between the central paths and the sequences generated by the interior
proximal methods, and show that the sequence generated by interior proximal methods will converge under the usual
assumptions if the proximal distance satisfies a certain continuity at the boundary of second-order cones (see Theorem 5.2).

Auslender and Teboulle [15] provided a unified technique for analyzing and designing interior proximal methods for
convex and conic optimization. However, for the CSOCP, we notice that it seems hard to find a proximal distance example for
the class ., (KX™) such that global convergence results similar to those for [ 15, Theorem 2.2] can apply for it. In this paper, we
extend their unified analysis technique to interior proximal methods using a proximal distance which can be produced with
an appropriate univariate function in three ways, and establish the global convergence results for the smallest class Fo(K™M),
and the class %, (K™) with some mild assumptions of X,. The examples from the two classes of proximal distances are easy
to find. In particular, for the linear SOCP, we obtain improved convergence results for these interior proximal methods, by
exploring the relations between the sequence generated by the interior proximal methods and the central path associated
with the corresponding proximal distances. In view of these contexts, this paper can be regarded as a refinement of [15] for
the second-order cone optimization.

Throughout this paper, I denotes an identity matrix of suitable dimension and R" denotes the space of n-dimensional real
column vectors. For any x, y € R", we write x > 4n y if x —y € K"; and we write x > 4n y if x — y € int X". Given a matrix
E, Im(E) means the subspace generated by the columns of E. A function is closed if and only if it is lower semicontinuous
(Isc), and a function is proper if f (x) < oo for at least one x € R" and f(x) > —oo for all x € R". For a Isc proper convex
function f : R" — R U {400}, we denote its domain by domf := {x € R" | f(x) < oo} and the e-subdifferential of f at x by
0f(X) :={w e R" | f(x) = f(X)+ (w,x—Xx) — €, Vx € R"}.If f is differentiable at x, Vf (x) means the gradient of f at x. For
a differentiable h on R, h’ and h” denote its first and second derivatives. For any closed set S, int S denotes the interior of S.

In the rest of this paper, we focus on the case where X = X", and all the analysis can be carried over to the case where
K has the direct product structure as in (2). Unless otherwise stated, we make the following minimal assumption for the
CSOCP (1):

(A1) domf N (V Nint X") # P and f, .= inf{f(x) | x € VN X"} > —o0.
2. Preliminaries

This section recalls some preliminary results that will be used in the subsequent sections. For any x = (x1, %),y =
(y1,y2) € R x R*! their Jordan product [1] is defined as

xoy = ({x,y), yixa + X1¥2). (4)

It is easy to verify that the identity element under the Jordan productise = (1,0, ...,0)T € R" ie,eox = xforallx € R".
Note that the Jordan product is not associative, but it is power associated, i.e., xo (x o x) = (x ox) o x for all x € R". Thus, we
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may without fear of ambiguity write x™ for the product of m copies of x and ™™ = x™ o x" for all positive integers m and
n.n We stipulate X = e. For eachx = (x1, x;) € R x R let

det(x) := x> — |[x|I* and tr(x) == 2x,. (5)

These are called the determinant and the trace of x, respectively. A vector x is said to be invertible if det(x) # 0.1fx € R" is
invertible, there is a unique y € R" satisfying x o y = y o x = e. We call this y the inverse of x and denote it by x 1.
We recall from [1] that each x admits a spectral factorization associated with K™:

x =) u + 1) u?, (6)
where A;(x) and uff) fori = 1,2 are the spectral values of x = (x1,x;) € R x R""! and the associated spectral vectors,
defined by

) ) 1 -

L =x+ Dl w) =2 (1, (D%), (7)

withx, = %2 if x, # 0, otherwise being any vector in R"~! such that ||X, || = 1.Ifx, # 0, then the factorization is unique.

x|l
The followinzg lemma is direct by formula (6).

Lemma 2.1. Forany x = (x1,%3),y = (y1,¥2) € R x R", the following results hold:
(a) det(x) = A1(x)A2(x), tr(x) = A1 (%) + A2 (x) and [|x[|> = 3 [(A1(x))? + (R2(x))?].
(b)x € K" <= A1(x) > 0andx € int X" <= A1(x) > 0.
(6 M) A2(0) + 22011 () < tr(xoy) < M)A (Y) + A2(X)A2 (D).
With the spectral factorization above, one may define a vector-valued function using a univariate function. For any given
h:Ig — Rwith Iz C R, define h*°: S — R" by

B (%) := h(A(0) - ul + h(A(0) - ul?, Vxes. (8)

The definition is unambiguous whether x, # 0 or x, = 0. For example, let h(t) = t~! for any t > 0; then using formulas
(6) and (8) we can compute that
tr(x)e — x

(x1, —x) = ———— forx € int X". (9)

X Ti=h%) = ———
X = 1%z det(x)

Moreover, by Lemma 2.2 of [26], S is open whenever I is open, and S is closed whenever Iy is closed. The following lemma
shows that some favorable properties of h can be transmitted to h%°, whose proofs were given in Proposition 5.1 of [8] and
Lemma 2.2 of [27].

Lemma 2.2. Given h:lr — Rwithlz C R, let h*°“:S — R" be the vector-valued function induced by h via (8), where S C R".
Then, the following results hold:

(a) If h is continuously differentiable on int I, then h*°° is continuously differentiable on int S, and for any x € int S with
X = (x1,X%) € R x R,

' (x))I if x, =0,
X
soc J—
Vh*(x) = lIx2 ] otherwise
Cxiz al + (b —a) 2%
12l %212

_ hGa(x)=hG1(x) _ W) +h @) —
wherea = 00 b= 5 ,C=

(b) If h is continuously differentiable on int I, then tr(h*°(x)) is continuously differentiable on int S with Vtr(h**‘(x)) =
2Vh©c(x)e = 2(h")%°¢(x).
(c) If his (strictly) convex on I, then tr(h*°°(x)) is (strictly) convex on S.

h (o (0)—h' (k1 (%)
5 .

Lemma 2.3. (a) The real-valued function In(det(x)) is strictly concave on int X".
(b) Forany x,y € int K" with x # y, it holds that

det(ax + (1 — a)y) > (det(x))*(det(y))' ™, Va € (0, 1).

Proof. Clearly, part (b) is a direct consequence of part (a). The proof of part (a) was given in [28, Prop. 2.4(a)] by computing
the Hessian matrix of In(det(x)). Here, we give a simpler proof. Let In x be the vector-valued function induced by In t via
(8). From Lemma 2.1(a), In(det(x)) = In(A;(x)) + In(A(x)) = tr(Inx) for any x € int X". The result is then direct by
Lemma 2.2(c) and the strict concavity of Int (t > 0). O
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To close this section, we review the definition of SOC-convexity and SOC-monotonicity. The two concepts, like matrix-
convexity and the matrix-monotonicity in semidefinite programming, play an important role in the solution methods of
SOCPs.

Definition 2.1 ([28]). Given h: [ — R with Iz C R. Let h**“:S — R" with S C R" be the vector-valued function induced
by h via formula (8). Then,

(a) his said to be SOC-convex of order non Iy if foranyx,y € Sand0 < g < 1,

RS (Bx + (1 = B)y) Zgen BR*(x) + (1 = BIR*(y). (10)
(b) his said to be SOC-monotone of order n on I, if for any x, y € S,

X2z gen y == B°°(x) =5 ().

We say that h is SOC-convex (respectively, SOC-monotone) on I if h is SOC-convex of all orders n (respectively, SOC-
monotone of all orders n) on Ig. A function h is said to be SOC-concave on Iz whenever —h is SOC-convex on Ir. When h
is continuous on Ig, the condition in (10) can be replaced by a more special condition:

1
e (%) <gon 5 (P00 + B (7)), (11)

Obviously, the set of SOC-monotone functions and the set of SOC-convex functions are both closed under positive linear
combinations and under pointwise limits.

For the characterizations of SOC-convexity and SOC-monotonicity, the interested reader may refer to [28,29]. The
following lemma collects some common SOC-concave functions whose proofs can be found in [27] or are direct by Lemma
3.2 of [27].

Lemma 2.4. (a) For any fixed u € R, the function h(t) = (t + u)" withr € [0, 1] is SOC-concave and SOC-monotone on
[—u, +00).

(b) For any fixed u € R, the function h(t) = —(t +u)~" withr € [0, 1] is SOC-concave and SOC-monotone on (—u, +00).

(c) Forany fixed o > 0, In(« + t) is SOC-concave and SOC-monotone on [—a, +00).

c
(d) For any fixed u > 0, uiﬂ is SOC-concave and SOC-monotone on (—u, +00).

3. Interior proximal methods
First of all, we present the definition of a proximal distance w.r.t. the open cone int X".

Definition 3.1. An extended-valued function H: R" x R" — R U {+o00} is called a proximal distance with respect to int X"
if it satisfies the following properties:

(P1) domH¢(-, -) = C1 x G withint X" x int X" C €1 X G, € K" x K"

(P2) For each giveny € int X", H(-,y) is continuous and strictly convex on €y, and it is continuously differentiable on
int X" with domV{H(-,y) = int X".

(P3) H(x,y) > O0forallx,y € R",and H(y, y) = O forall y € int X".

(P4) For each fixed y € G,, the sets {x € C; : H(x,y) < y} are bounded for all y € R.

Definition 3.1 has a little difference from Definition 2.1 of [ 15] for a proximal distance w.r.t. int K", since here H(:, y) is
required to be strictly convex over € for any fixed y € int X". We denote by D (int .KX") the family of functions H satisfying
Definition 3.1. With a given H € D(int K"), we have the following basic iterative algorithm for (1).

Interior Proximal Algorithm (IPA). Given H € D(int X") and x’ € V Nint X", fork = 1,2,...,with Ay > Oand ¢, > 0,
generate a sequence {x‘} C V N int X" with g* € 9, f (x) via the following iterative scheme:

X == argmin {Af (1) + Hx, ¥71) | x € V} (12)
such that
Mgk + ViHGEE X1 = ATuF for some uf € R™. (13)

The following proposition implies that the IPA is well-defined, and moreover, from its proof we see that the iterative
formula (12) is equivalent to the iterative scheme (3). When €, > 0 for any k € N (the set of natural numbers), the IPA can
be viewed as an approximate interior proximal method, and it becomes exact if ¢, = 0 for all k € N.
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Proposition 3.1. For any given H € D (int X") and y € int X", consider the problem
fiy,7) = inf{zf(x) + H(x,y) | x € V} witht > 0. (14)
Then, for each € > 0, there exist x(y, ) € V Nint X" and g € d.f (x(y, t)) such that

tg+ ViH(x(y. 1),y) = A'u (15)
for some u € R™. Moreover, for such x(y, t), we have

f(x(, 1) +H&XY, 1),y) = fi(y, 1) + €.

Proof. SetF(x, t) := tf (x) + H(x, y) + 8ynxn (X), where §ynxn (%) is the indicator function defined on the set VN K", Since
domH(-,y) = €1 C K", itis clear that

fiy,r) =inf{F(x,7) | x € R"}. (16)
Since f, > —o0, it is easy to verify that for any y € R the following relation holds:

[xeR"[Fx,7) <y} C {xeVNX" |Hxy) <y —tfi}

C{xeCi|Hx Y <y —1fi},

which together with (P4) implies that F (-, t) has bounded level sets. In addition, by (P1)-(P3), F(-, ) is a closed proper and
strictly convex function. Hence, the problem (16) has a unique solution, say x(y, t). From the optimality conditions of (16),
we get

0 € F(x(y, 7)) = Taf (x(¥, 7)) + ViHx(Y, T), ¥) + 38vnxn (XY, T))

where the equality is due to Theorem 23.8 of [30] and domf N (V N int X") # (. Notice that dom V,H(:, y) = int X" and
dom d8ynxn(-) = V N K" Therefore, the last equation implies x(y, ) € V Nint K", and there exists g € df (x(y, 7)) such
that

—18 — ViHX(Y, 1), ¥) € 38vynxn(x(y, T)).
On the other hand, by the definition of §ynyn (+), it is not hard to derive that
38y () = Im(AT) Vx € YV Nint X".

The last two equations imply that (15) holds fore = 0. When e > 0, (15) also holds for such x(y, t) and g since df (x(y, 7)) C
d.f (x(y, T)). Finally, since for each y € int X" the function H(-, y) is strictly convex, and since g € d.f (x(y, t)), we have

f () +HX,y) > tf(x(y, 1)) + Hx(Y, 1),y) + (tg + VIHX(Y, 1), ), x —x(y, 7)) — €
= tf(x(y, 7)) + Hx(y. 1), y) + (ATu, x —x(y, 7)) — €
= tf(x(y, 7)) + H(x(y, 7),y) —€ forallx eV,

where the first equality is from (15) and the last one is by x, x(y, t) € V. Thus, f,(y, ) = inf{tf(x) + Hx,y) | x € V} >
of(x(, 7)) + Hx(y, 7),y) —€. O

In the rest of this section, we focus on the convergence behaviors of the IPA with H from several subclasses of £ (int X™),
which also satisfy one of the following properties.

(P5) Forany x,y € int X"andz € G, H(z,y) — H(z,x) > (V1H(x,y),z — X).
(P5') Foranyx,y € int X"andz € G, H(y,z) — H(x,z) > (ViH(x,y),z — X).
(P6) For eachx € €y, thelevel sets {y € G, : H(x,y) < y} are bounded for all y € R.

Specifically, we denote as F;(int X") and %, (int X™) the families of functions H € D (int KX") satisfying (P5) and (P5'),
respectively. If ©¢; = K", we denote as F1(K") the family of functions H € D (int X") satisfying (P5) and (P6). If &, = K",
we write F, (int X") as F (K™). It is easy to see that the class of proximal distance # (int X") (respectively, £ (KX"))in [15]
subsumes the (H, H) with H € #(int X™") (respectively, £1(K")), but it does not include any (H, H) with H € % (int X")
(respectively, % (K")).

Theorem 3.1. Let {x*} be the sequence generated by the IPAwith H € #(int X™) or H € %, (int X™). Set o, = Z;é:1 k. Then,
the following results hold:

@) f&) —f(®) < o, THX,X%) + 0,1 > i okex forany x € VN €1 if H € Fi(int X™); f(x") —f(x) < o, "HK’, x) +
o, 'Y _ okecforanyx € VN Gy if H € F(int X").

(b) If 0, &> +o0 and €, — 0, then liminf,_, o, f (X") = f..

(c) The sequence {f (x*)} converges to f, whenever Z;’il € < 00.
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(d) If X, # @, then {x*} is bounded with all limit points in X, under (d1) or (d2) :
(d1) X, is bounded and )_;° | €k < 00;
(d2) Z;iil M€ < ooand H € F; (JC”) (orH e ?2(:7(“)).

Proof. The proofs are similar to those of [ 15, Theorem 4.1]. For completeness, we here take H € % (int X") for example to
prove the results.
(a) Since g* € 9, f (x*), from the definition of the subdifferential, it follows that

fX) = f(x + (g x—x") —e VxeR"
This, together with Eq. (13), implies that

(X = () < (VIHE X1, x =¥ + ;e Vxe v e
Using (P5') withx = x*, y = x**"Tand z = x € 'V N @y, it then follows that

MEE) —f®) <HE ', %) —HE, X) + e Vxe VN ECy. (17)
Summing over k = 1, 2, ..., v in this inequality yields that
v v
—ouf () + D Mf () SHE, %) — HEK', X) + Y M. (18)

k=1 k=1
On the other hand, setting x = x*~1in (17), we obtain
FE —fED) <M HEL XD = HE D] + & < e (19)

Multiplying the inequality by o_; (with oy = 0) and summing overk = 1, ..., v, we get

U v v
I k-1
Zakflf(x{) - Zkalf(X ) < Zak—lek-
=1 =1 =1

Noting that o, = A, + oy_1 with og = 0, the above inequality can reduce to

af () = D Mf () <Y o e (20)
k=1 k=1
Adding the inequalities (18) and (20) and recalling that oy, = Ay + o}_1, it follows that

v
F&) =f@) <o, [HE. 0 —HE. 0]+ 0,7 ) o ¥xe VN ey,
k=1
which immediately implies the desired result due to the nonnegativity of H(x", x).
(b) If 6, — +o0 and ¢ — 0, then applying Lemma 2.2(ii) of [15] with @y = €, and b, = o, ' Y ,_; Ak yields
o;l Z,‘;l M€ — 0. From part (a), it then follows that

linl}')rolff(x") <inf{f(x) |xevnintX"}.

This together with f(x”) > inf{f(x) | x € VY N K"} implies that
liminff(x") = inf{f(x) | x € V Nint X"} = f,.
V—> 00

(c) From (19),0 < f(x) — f, < f(x* 1) — f, + €. Using Lemma 2.1 of [15] with ¥, = 0 and v, = f(x*) — f,, we have that
{f (x)} converges to f, whenever Y .- € < oo.
(d) If the condition (d1) holds, then the sets {x € VN K" | f(x) < y} are bounded for all y € R, since f is closed proper

convexand X, = {x € VN.X" | f(x) < f.}. Note that (19) implies {x*} C {x € VN K" | f(x) < f(x°) +Zj’f:1 €j}. Combining
with Z;:OZ] €x < 00, clearly we have that {x} is bounded. Since {f (x*)} converges to f, and f is Isc, passing to the limit and

recalling that {x*} C 'V N X" yields that each limit point of {x*} is a solution of (1).
Suppose that the condition (d2) holds. If H € % (X™), then inequality (17) holds for each x € Vv N X", and particularly
for x, € X,. Consequently,

HE %) < HEU %) 4 e VX, € X, (21)

Summing over k = 1, 2, ..., v for the last inequality, we obtain

HO', %) < HOO %) + ) her
k=1
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This, by (P4) and Zzil Ak€x < oo, implies that {x*} is bounded, and hence has an accumulation point. Without loss of

generality, letX € X" be an accumulation point of {x*}. Then there exists a subsequence {x} such thatxX — Xasj — 4oo.
From the lower semicontinuity of f and part (c), we get f (X) < limj_>+oof(x"i) = f,, which means that X is a solution of (1).
IfH € #(K"), then the last inequality becomes

H(, X') < H®o X)) + ) here
k=1

By (P6) and Z,f; k€ < 00, we also have that {x*} is bounded, and hence has an accumulation point. Using the same
arguments as above, we get the desired result. O

An immediate by-product of the above analysis yields the following global rate of convergence estimate for the IPA with
He Fi(KX")orH € F(K™M).

Corollary 3.1. Let {x*} be the sequence given by the IPA with H € F1(X") or F(X"). If X, # @ and Y o €k < 00, then
f(&') —f. = 0(0,).

Proof. The result is direct on setting x = x* for some x* € X, in the inequalities of Theorem 3.1(a), and noting that
0< :—’: <1forallk=1,2,...,v. O

To establish the global convergence of {x*} to an optimal solution of (1), we need to make further assumptions on X, or the
proximal distances in #7(X") and F,(X"). We denote as #1(X") the family of functions H € #;(KX") satisfying (P7)-(P8),
as 5 (KX™) the family of functions H € F,(KX") satisfying (P7")-(P8’), and as £ (K") the family of functions H € % (X")
satisfying (P7")-(P9’):

(P7) For any {y*} C int X" converging to y* € X", we have H(y*, y*) — 0.
(P8) For any bounded sequence {y*} € int X" and any y* € X" with H(y*,y*) — 0, it holds that A;(y*) — A;(y*) for
i=1,2.
(P7’) For any {y*} C int X" converging to y* € X", we have H(y*, y*) — 0.
(P8’) For any bounded sequence {y*} C int X" and any y* € X" with H(y*, y*) — 0, it holds that 1;(y*) — A;(y*) for
i=1,2.
(PY') For any bounded sequence {y*} C int X" and any y* € X" with H(y*, y*) — 0, it holds that y* — y*.
It is easy to see that all previous subclasses of D (int KX™) have the following relations:

FIXK") C F1(X) C Fnt XY,  F(K") C F(KY C FH(K") C F(int X).

Theorem 3.2. Let {x*} be generated by the IPAwith H € F;(int X™) or % (int X™). Suppose that X, is nonempty, ZE‘;] A€r <
ooand Y o2, € < o0.

(@) If X, is a single point set, then {x*} converges to an optimal solution of (1).

(b) If X, includes at least two elements and for any x* = (X, x3), X* = (X}, X3) € X, withx* # X*, it holds that x] # X} or
IX51l # 11x5 I, then {xX} converges to an optimal solution of (1) whenever H fl(JC”) (orH € S%(JC”)).

(c) If H € F5(X™), then {x*} converges to an optimal solution of (1).

Proof. Part (a) is direct by Theorem 3.1(d1). We next consider part (b). Assume that H € J’%(J{”). Since Z;f; M€ < 00,
from (21) and Lemma 2.1 of [15], it follows that the sequence {H (x, x)} is convergent for any x € X,. Let X be the limit of
a subsequence {x"}. By Theorem 3.1(d2), ¥ € X,. Consequently, {H(x¥, X)} is convergent. By (P7"), H(x",x) — 0, and so
H(x*, X) — 0.Combining with (P8), we have 1;(x*) — 1;(X) fori =1, 2, i.e,,

k k S S k K S S
x; — %51 — X1 — %]l and x; + [Ix3] = X1 + [|X2]] ask — oo.

This implies that x’{ — X7 and ||x’§ | = X2 |l. Combining this with the given assumption for X, we have that xX* — X. Suppose
that H € #1(K"). The inequality (21) becomes

H(Xe, X) < H(x, X1 + M Vx4 € X,

and using (P7)-(P8) and the same arguments as above then yields the result. Part (¢) is direct by the arguments above and
the property (P9'). O

When all points in the nonempty X, lie on the boundary of X", we must have xj # Xj or ||X5|| # |Ix;] for any
X = (x],x5), X" = (x],X5) € X, with x* # x* and the assumption for X, in (b) is automatically satisfied. Since the
solutions of (1) are generally on the boundary of X", the assumption for X, in (b) is much weaker than the one in (a).

Up to now, we have studied two kinds of convergence results for the IPA using the class in which the proximal distance
H lies. Theorem 3.1 and Corollary 3.1 show that the largest, and least demanding, classes #1(int X") and #(int KX")
provide reasonable convergence properties for the IPA under minimal assumptions on the problem’s data. This coincides



3090 S. Pan, J.-S. Chen / Nonlinear Analysis 73 (2010) 3083-3100

with interior proximal methods for convex programming over nonnegative orthant cones; see [15]. The smallest subclass
TZ(JC ™) of % (int K™) guarantees that {x*} converges to an optimal solution provided that X, is nonempty. The smaller class
fz(JC ™) may guarantee the global convergence of the sequence {x*} to an optimal solution under an additional assumption
besides X, being nonempty. Moreover, we illustrate in the next section that there are indeed examples for the class Fr(K™).
For the smallest subclass 7 (K™) of 1 (int K"), the analysis in the next section shows that it seems hard to find an example,
although it guarantees the convergence of {x} to an optimal solution by Theorem 3.2(b).

4. Proximal distances over SOCs

In this section, we provide three kinds of ways to construct a proximal distance w.r.t. int /" and analyze their advantages
and disadvantages. All of these ways exploit a Isc proper univariate function to produce such a proximal distance. In addition,
with such a proximal distance and the Euclidean distance, we obtain the regularized ones.

The first way produces the proximal distances for the class #1(int X™). This approach is based on the compound of a
univariate function ¢ and the determinant function det(-), where ¢ : R — R U {400} is a Isc proper function satisfying the
following conditions:

(B1) dom¢ C [0, +00), int(dom¢) = (0, +00), and ¢ is continuous on its domain;
(B2) for any tq, t; € domg, it holds that
¢ty ) < 1(t) + (1=1)g(t), Vre [0, 1]; (22)

(B3) ¢ is continuously differentiable on int(dom¢) with dom¢’ = (0, +00);
(B4) ¢/(t) < Oforallt € (0, +-00), lim,_ ¢+ ¢(t) = 400, and lim;_, 4o, t~'@(t?) > 0.

With such a univariate ¢, we define the function H: R" x R" — R U {400} by

H(x,y) = {qb(det(x)) — ¢(det(y)) — (Vo(det(y)),x —y) Vx,y € int(K");
e +00 otherwise.

By the conditions (B1)-(B4), we may prove that H has the following properties.

(23)

Proposition 4.1. Let H be defined as in (23) with ¢ satisfying (B1)-(B4). Then,

(a) forany fixed y € int X", H(-, y) is strictly convex over int KX".
(b) For any fixedy € int X", H(-, y) is continuously differentiable on int K" with

vwmw=wﬁww(ﬁ)—wmwm<“) (24)
—X2 -2

forallx € int X", where x = (x1,X2),y = (¥1,¥2) € R x R 1,
(c) Hx,y) > 0forallx,y € R",and H(y,y) = O forally € int X".
(d) Foranyy € int K", the sets {x € int X": H(x,y) < y} are bounded for all y € R.
(e) Foranyx,y € int X" and z € int K", the following three-point identity holds:

H(Z,y):H(Z,X)+H(X,y)+(V]H(X,y),z—x>. (25)

Proof. (a) It suffices to prove that ¢(det(x)) is strictly convex on int X". By Lemma 2.3(b),
det(ax + (1 — )2) > (det(x))*(det(z))"™* Va € (0, 1)

forallx, z € int X™ and x # z. Since ¢/(t) < Oforallt € (0, +00), we have that ¢ is decreasing on (0, +00). This, together
with the condition (B2), yields that
¢ [det(ax + (1 — @)2)] < ¢ [(det(x))* (det(2))' ]
< a¢ldet(x)] + (1 — @)p[det(z)] Va € (0, 1)
forall x, z € int X" and x # z. This means that ¢(det(x)) is strictly convex on int K.
(b) Since det(x) is continuously differentiable on R" and ¢ is continuously differentiable on (0, +00), we have that ¢ (det(x))
is continuously differentiable on int JX". This means that for any fixed y € int X", H(-, y) is continuously differentiable on

int X". By a simple computation, we immediately obtain the formula in (24).
(c) Since ¢ (det(x)) is strictly convex and continuously differentiable on int X", we have

o(det(x)) > ¢(det(y)) — (Vo(det(y)),x —y) Vx,y € int X" withx £y

for any x, y € int X" with x # y. This implies that H(y, y) = 0 for all y € int X". In addition, from the inequality and the
continuity of ¢ on its domain, it follows that

¢(det(x)) = ¢(det(y)) — (Vo(det(y)),x —y)
for any x, y € int K". By the definition of H, we have H(x, y) > 0 forallx, y € R".



S. Pan, J.-S. Chen / Nonlinear Analysis 73 (2010) 3083-3100 3091

(d) Let {x*} C int X" be a sequence with ||x*|| — oc. For any fixed y = (y1, y>) € int X", we next prove that the sequence
{H(x*, y)} is unbounded for three cases, and then the desired result follows. For convenience, we write x* = (x%, x’g) for
each k.

Case 1: the sequence {det(x*)} has a zero limit point. Without loss of generality, we assume that det(x*) — 0ask — oo.
Combining with lim,_ ¢+ ¢(t) = 400, it readily follows that limy_, o ¢(det(x¥)) — +o0. In addition, for each k we have
that

26/ (det@)) ¥y — (%5)7y2)
24 (det(y))y:1 (xk — IX5]) < 0 (26)

where the first inequality uses ¢’(t) < 0 for all t > 0, the Schwartz inequality, and y € int X". Now from (23), it then
follows that limy_, oo H(xX, y) = 4o00.

(Vo (det(y)), x*)

IA

Case 2: the sequence {det(x*)} is unbounded. Noting that det(x*) > 0 for each k, we must have det(x*) — 400 as k — oo.
Since ¢ is decreasing on its domain, we have that

$(det) _ V2O Pl
[lxk]| VOGN + 0ux))2 T hak)

Note that A,(x*) — oo in this case, and from the last equation and (B4) it follows that

k ky\2
lim ¢ (det(x")) > lim PL(A2(x)"] .
k—00 [l | k=00 Ap(xk)

In addition, since {H%ll} is bounded, we without loss of generality assume that ”i—iu — X = (},%) € R x R""!. Then,
xe€ X" ||IX|l = 1,and X; > 0(if not, X = 0), and hence
. X . . .
klingo <V¢(det(y)), ||xk||> = (Vo (det(y)), X) = 2¢'(det(y)) (R1y1 — X3y2)
< 2¢/(det(y))X; (y1 — lly21) < 0.

HGXy)
[

Case 3: the sequence {det(x*)} has some limit point @ with 0 < @ < -+oco. Without loss of generality, we assume that
det(x*) — w as k — oo. Since {x*} is unbounded and {x*} C int X", we must have x’{ — 400. In addition, by (26) and
¢'(t) < Ofort > 0,

—(Vo(det(y)), x*) > —2¢/(det) X,y — [IX51| y2]]) = —2¢ (det())x} (v1 — lly2 1)

This along with y € int X" implies that —(V¢(det(y)), xX¥) — +oo as k — oo. Noting that ¢ (det(x¥)) is bounded, from
(23) it follows that lim_, oo H(X*, y) — 400.
(e)Foranyx,y € int X" and z € int X", from the definition of H it follows that

H(z,y) —H(z,x) —H(x,y) = (V¢(det(x)) — Vo (det(y)),z — x)
= (VlH(X’y)vz - X)

The two sides show that lim_, > 0, and consequently lim_, o H(x, y) = +o00.

where the last equality is by part (b). The proof is thus completed. O

Proposition 4.1 shows that the function H defined by (23) with ¢ satisfying (B1)-(B4) is a proximal distance w.r.t. int X"
and dom H = int X" x int X". Also, H € F(int KX"). The conditions (B1) and (B3)-(B4) are easy to check, whereas by
Lemma 2.2 of [31] we have the following important characterizations for the condition (B2).

Lemma 4.1 ([31, Lemma 2.2]). A function ¢: (0, +00) — R satisfies (B2) if and only if one of the following conditions holds:

(a) The function ¢ (exp(-)) is convex on R.
(b) (t1t) < 1 (¢(t3) + ¢(t3)) forany t;, t; > 0.
(c) ¢'(t) + td” (t) > 0if ¢ is twice differentiable.

Example 4.1. Take ¢(t) = —Int if t > 0, and otherwise ¢(t) = +o0. It is easy to verify that ¢ satisfies (B1)-(B4). By
formula (23), the induced proximal distance is
det(x) 2x"J.y

Hxy) =1 " dety) T det(y)
+o00 otherwise

Vx,y € int(X")
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where J, is a diagonal matrix with the first entry being 1 and the rest of the (n — 1) entries being —1. This is exactly the
proximal distance given by [15]. Since H € #(int K"), we have the results of Theorem 3.1(a)-(d1) if the proximal distance
is used for the IPA.

Example 4.2. Take ¢(t) =t'"9/(q — 1) (g > 1) if t > 0, and otherwise ¢(t) = +oo0. It is not hard to check that ¢ satisfies
(B1)-(B4). By (23), we compute that

(det()'™* — (det(¢y)'™ 2}y - int(xc"
HEy) = g—1 etgyr ~ SO Vay € Int(AT)

+o00 otherwise

where J, is the same diagonal matrix as in Example 4.1. Since H € ¥ (int .K"), when using the proximal distance for the IPA,
the results of Theorem 3.1(a)-(d1) hold.

__ We should emphasize that using the first approach cannot produce the proximal distances of the class #;(X"), and so
F1(K™), since the condition lim;_, o+ ¢ (t) = +o00 is necessary for guaranteeing that H has the property (P4), but it implies
that the domain of H(-, y) for any y € int X" cannot be continuously extended to KX". Thus, when choosing such proximal
distances for the IPA, we cannot apply Theorem 3.1(d2) and Theorem 3.2.

The other two ways are both based on the compound of the trace function tr(-) and a vector-valued function induced
by a univariate ¢ via (8). For convenience, in the sequel, for any Isc proper function ¢ : R — R U {+00}, we write
d:RxR— RU{4+00}as

des. t) = {¢(s) — @) — @' (t)(s—1t) ifs e domg, t € domg’, 27)

+00 otherwise.

The second approach also produces the proximal distances for the class #1(int X"), which requires ¢ : R — R U {400}
to be a Isc proper function satisfying the conditions:

(C1) dom¢ C [0, +o0) and int(dom¢) = (0, +00);

(C2) ¢ is continuous and strictly convex on its domain;

(C3) ¢ is continuously differentiable on int(dom¢) with dom¢’ = (0, +00);

(C4) for any fixed t > O, the sets {s € dom¢ | d(s,t) < y} are bounded with all y € R; for any fixed s € dom¢, the sets
{t >0]d(s,t) <y}arebounded withall y € R.

Let ¢*°° be the vector-valued function induced by ¢ via (8) and write dom¢*°° = €. Clearly, ¢; € X" and int G¢; = int X".
Define the function H: R" x R" — R U {+o0} by

_ @) — (@™ () — (V@™ (1), x —y) VX € Cr,y € int X",
H(x,y) = { oo otherw]ise. (28)

By Lemmas 2.1 and 2.2, the conditions (C1)-(C4), and arguments similar to those of [32, Prop. 3.1], it is not difficult to argue
that H has the following favorable properties.

Proposition 4.2. Let H be defined by (28) with ¢ satisfying (C1)-(C4). Then:

(a) Forany fixedy € int X", H(-, y) is continuous and strictly convex on C;.
(b) For any fixedy € int X", H(-, y) is continuously differentiable on int X" with

ViH(x,y) = Vir(@* (x)) — V(@™ () = 2 [(¢)*° ) — ()] .
(c) Hx,y) = 0forallx,y € R",and H(y,y) = O foranyy € int X".
(d) Hx,y) > Zle d(2i(x), Ai(y)) > 0forany x € C; and y € int X".
(e) For any fixed y € int K", the sets {x € C1:H(x,y) < y} are bounded for all y € R; for any fixed x € €, the sets
{y € int X": H(x,y) < y} are bounded forall y € R.
(f) Forany x,y € int X" and z € G4, the following three-point identity holds:

H(Zvy) = H(Z,X) +H(X’y) + (VlH(X7y)sZ _X>'

Proposition 4.2 shows that the function H defined by (28) with ¢ satisfying (C1)-(C4) is a proximal distance w.r.t. int X"
with dom H = ¢; x int X", and furthermore, such proximal distances belong to the class #;(int X"). In particular, when
dom¢ = [0, +00), they also belong to the class 1 (:K"). We next present some specific examples.

Example 4.3. Take ¢(t) = tInt — t if t > 0, and otherwise ¢(t) = +00, where we stipulate 0In 0 = 0. It is easy to verify
that ¢ satisfies (C1)-(C4) with dom¢ = [0, +o0). By formulas (8) and (28), we compute that H has the following expression:

tr(xolnx —xolny+y—x) Vxe X" ycint(X"),

Hkx,y) = { +00 otherwise. 29
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Example 4.4. Take ¢(t) = tP — t9if t > 0, and otherwise ¢(t) = +00, wherep > 1and 0 < q < 1. We can show that ¢
satisfies the conditions (C1)-(C4) with dom¢ = [0, +00). When p = 1 and q = 1/2, from formulas (8) and (28), we derive
that

1 1
11 (tr(y2)e—y2)o(x—y) .
tr{yz —x2 + Vx e X",y € int X",
H(x.y) = [y 2J/det(y) Y
+o0 otherwise.
Example 4.5. Take ¢(t) = —t?ift > 0, and otherwise ¢(t) = +00, where 0 < q < 1. We can show that ¢ satisfies the

conditions (C1)-(C4) with dom¢ = [0, +00). Now

1—tr(y?) — tr(x?) + tr(gy? ' ox) Vxe X",y €int X",
400 otherwise.

H(x,y) = {(

Example 4.6. Take ¢(t) = —Int 4+t — 1ift > 0, and otherwise ¢(t) = +o0. It is easy to check that ¢ satisfies (C1)-(C4)
with dom¢ = (0, +00). The induced proximal distance is

tr(lny) — tr(Inx) + 2(y"',x) —2 Vx,y € int X",
+o00 otherwise.

Hkx,y) = {
By a simple computation, we have that the proximal distance is the same as the one given by Example 4.1, and the one
induced by ¢(t) = —Int (t > 0) via formula (28).

Clearly, the proximal distances in Examples 4.3-4.5 belong to the class #;(X"). Also, by Proposition 4.3, the proximal
distances in Examples 4.3 and 4.4 also satisfy (P8) since the corresponding ¢ also satisfies the following condition (C5):

(C5) For any bounded sequence {a*} C int(dom¢) and a € dom¢ such that limy_, o d(a,a*) = 0, it holds that a =
limy_, oo a*, where d is defined as in (27).
Proposition 4.3. Let H be defined as in (28) with ¢ satisfying (C1)-(C5) and dom¢ = [0, 4+-00). Then, for any bounded sequence
{y*} C int X" and y* € X" such that H(y*, y*) — 0, we have A;(y*) — A;(y*) fori =1, 2.
Proof. From Proposition 4.2(d) and the nonnegativity of d, for each k we have
H™ Y = doi™), w0M) = 0, i=1,2.
This, together with the given assumption H(y*, y*) — 0, implies that
A", 1) =0, i=1,2,

Notice that {X;(¥*)} C int(dom¢) and A;(y*) € X" fori = 1, 2 by Lemma 2.1(b). From the condition (C5), we immediately
obtain A;(y*) — Ay fori=1,2. O

Nevertheless, we should point out that the proximal distance H given by (28) with ¢ satisfying (C1)-(C4) and dom¢ =
[0, +00) generally does not have the property (P7), even if ¢ satisfies the condition (C6). This fact will be illustrated by
Example 4.7.

(C6) For any {a*} c (0, +00) converging to a € [0, +00), limy_, » d(a*, a¥) — 0.
Example 4.7. Let H be the proximal distance induced by the entropy function ¢ in Example 4.3. It is easy to verify that ¢

satisfies the conditions (C1)-(C6). Here we shall present a sequence {y*} C int(X>) which converges to y* € X3, but where
Hy*, y*) — oo. Let

J2(1 4+ e ) V2
Y=|Vitk1 _ewr|eint(x® and y*=[ 1 |ex’
Vick e !

By the expression for H(y*, y*), i.e., Hy*, y*) = tr(y* o Iny*) — tr(y* o Iny*) + tr(y* — y*), it suffices to prove that
limp_ oo —tr(y* o Iny¥) = 400 since limy_ o tr(y* — y*) = 0 and tr(y* o Iny*) = A,(y*) In(A2(y*)) < +o00. By the
definition of In y¥, we have

tr(y* o Iny") = G (v — 03)795) + G20/ (vF + 03)795) (30)
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fory* = (v, ¥3), Y = 0%, ¥%) € R x R? with y% = y%/|ly%|l. By computing,
In(A (%) = Inv2 —1In (1 +v14 e*k3> ey
- 1 —k e ¥ -1 _ ek
y>1k - (V;)Tylz‘ = - + ).
Wl \ 1+ Vi —e®  14V/1—k T e*

The last two equalities imply that lim_, o In(A1 (/%)) (v; — (v3)"7%) = —oo. In addition, by noting that y5 5 0 for each k,
we compute that

5
lly; |l

From the last two equations, we immediately have limy_, oo —tr(y* o Iny*) = +o0.

Jim In(G2(/) (vi = 03)73) = In(20") (J/T + 03" ) =220/ In(A2(y").

Thus, when the proximal distance in the IPA is chosen as the one given by (28) with ¢ satisfying (C1)-(C6) and dom¢ =
[0, +00), Theorem 3.2(b) may not apply, i.e. the global convergence to an optimal solution may not be guaranteed. This is
different from the case for interior proximal methods for convex programming over nonnegative orthant cones as we see by
noting that ¢ is now a univariate Bregman function. Similarly, it seems hard to find examples for the class , (KX") in [15]
such that Theorem 2.2 can apply, since it also requires (P7).

The third approach will produce the proximal distances for the class % (int K"), which needs a Isc proper function
¢ : R - R U {400} satisfying the following conditions:

(D1) ¢ is strictly convex and continuous on dom¢, and ¢ is continuously differentiable on a subset of dom¢, where
dom¢’ € dom¢ C [0, +o0) and int(domg¢’) = (0, +00);

(D2) ¢ is twice continuously differentiable on int(dom¢) and lim,_, g+ ¢” (t) = 400;

(D3) ¢'(t)t — ¢(t) is convex on dom¢’, and ¢’ is strictly concave on dom¢’;

(D4) ¢’ is SOC-concave on domg’.

With such a univariate ¢, we define the proximal distance H: R" x R" — R U {400} by

_ Ju@W) — (@™ (%) — (Vir(¢**(x)),y —x) VxeCryee
Hx,y) = { o0 otherwlise ’ GV

where @; and C, are the domains of ¢*°° and (¢')*°¢, respectively. By the relation between dom¢ and dom¢’, obviously,
G, C G € XK"and int ¢; = int G, = int X".
Lemma 4.2. Let ¢: R — R U {+00} be a Isc proper function satisfying (D1)-(D4). Then:

(a) tr [((17/)5"c (X) ox — d)s"c(x)] is convex in G and continuously differentiable on int C;.
(b) For any fixedy € R", ((¢')*°°(x),y) is continuously differentiable on int G, and moreover, it is strictly concave over G,
whenever y € int X"

Proof. (a) Let ¢ (t) := ¢'(t)t — ¢(t). Then, by (D2) and (D3), ¥ (t) is convex on dom¢’ and continuously differentiable on
int(dom¢’) = (0, +00). Since tr [(¢’)S°C(x) ox — ¢S°°(x)] = tr[y°°°(x)], using Lemma 2.2(b) and (c) immediately yields
part (a).

(b) From (D2) and Lemma 2.2(a), (¢/)*°°(-) is continuously differentiable on int @;. This implies that (y, (¢")*°°(x)) for any
fixed y is continuously differentiable on int G;. We next show that it is also strictly concave in ¢; whenever y € int X".
Note that tr[(¢')*°¢(-)] is strictly concave on C; since ¢’ is strictly concave on dom¢’. Consequently,

tr[(¢)*(Bx+ (1 = B)z)] > Btrl(¢)** (0] + (1 — PHtr[(@)*(2)] YO < B <1
for any x, z € G and x # z. This implies that
(@) (Bx+ (1= B)z) — B(9)**(x) — (1 = B)(¢)**(2) # 0.
In addition, since ¢’ is SOC-concave on dom¢’, from Definition 2.1 it follows that
(@) *[Bx + (1 = )zl — B() () — (1 = BY(@)**(2) =4 0.
Thus, for any fixed y € int K", the last two equations imply that
W, @) [Bx + (1= )zl — B(#)**(x) — (1 = B)(@)**(2)) > 0.
This shows that (y, (¢')*°“(x)) for any fixed y € int X" is strictly convexon ¢;. O

Using the conditions (D1)-(D4) and Lemma 4.2, and following the same arguments as for Propositions 4.1 and 4.2 of [27],
we may prove the following proposition.
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Proposition 4.4. Let H be defined as in (31) with ¢ satisfying (D1)-(D4). Then:

(a) H(x,y) > 0foranyx,y € R", and H(y,y) = 0 foranyy € int X".
(b) For any fixedy € Gy, H(-, y) is continuous in C1, and it is strictly convex on G, whenever y € int X".
(c) Forany fixedy € C,, H(-, y) is continuously differentiable on int X" with

ViH(x,y) =2V (¢")** () (x — ¥). (32)
Moreover, domVH(-, y) = int X" whenever y € int X".
(d) H(x. ) = Y7, d(3i(y), A(x)) > 0foranyx € € andy € Cy.
(e) Forany fixedy € C,, the sets {x € C1: H(x,y) < y} are bounded forall y € R.
(f) Forallx,y € int X"andz € Gy, H(x,z) — H(y,z) > 2(ViH({y,X), z — y).

Proposition 4.4 demonstrates that the function H defined by (31) with ¢ satisfying (D1)-(D4) is a proximal distance
w.r.t. the cone int X" and possesses the property (P5'), and therefore belongs to the class %;(int X™"). If, in addition,
dom¢ = [0, +00), then H belongs to the class #,(:X"). The conditions (D1)-(D3) are easy to check, and for the condition
(D4), we can employ the characterizations in [28,29] to verify whether ¢’ is SOC-concave or not. Some examples are
presented as follows.

Example 4.8. Let ¢(t) = tInt —t + 1if t > 0, and otherwise ¢(t) = +oo0. It is easy to verify that ¢ satisfies (D1)-(D3)
with dom¢ = [0, +00) and dom¢’ = (0, +00). By Lemma 2.4(c), ¢’ is SOC-concave on (0, +00). Using formulas (8) and
(31), we have

_Jtryolny—yolnx+x—y) VxeintX",y e X";
Hix.y) = { ~+o00 otherwise. (33)
¢a+1

Example 4.9. Take ¢(t) = ey if t > 0, and otherwise ¢(t) = +00, where 0 < q < 1. It is easy to show that ¢ satisfies

(D1)-(D3) with dom¢ = [0, +00) and dom¢’ = [0, +00). By Lemma 2.4(a), ¢’ is also SOC-concave on [0, +-00). By (8) and
(31), we compute that
1 q
— tr(y9t! 4+ ——tr xIT1Y — tr(xd Vxeint X",y e X";
Hoxy) =1g31 o) i1 ) —tr(x*oy) y
400 otherwise.

Example 4.10. Take ¢(t) = (1 +¢t)In(14+¢t) + tqq% ift > 0, and otherwise ¢(t) = 400, where 0 < g < 1. We can verify
that ¢ satisfies (D1)-(D3) with dom¢ = dom¢’ = [0, +00). From Lemma 2.4(a) and (c), ¢’ is also SOC-concave on [0, +00).
Using (8) and (31), it is not hard to compute that for any x, y € X",

1

H(x,y) =tr[(e+y) o (In(e+y) —In(e +x))] — tr(y — x) + p—

) + — (3T — tr(x o0 y).
q+1

Note that the proximal distances in Examples 4.9 and 4.10 belong to the class #,(X"). By Proposition 4.5, the ones in
Examples 4.9 and 4.10 also belong to the class %, (K").

Proposition 4.5. Let H be defined as in (31) with ¢ satisfying (D1)-(D4). Suppose that dom¢ = dom¢’ = [0, +0o0). Then, H
possesses the properties (P7") and (P8).

Proof. By the given assumption, ¢; = G, = X". From Proposition 4.4 (b), the function H(-, y*) is continuous on X".
Consequently, limy_, o H(*, y*) = Hy*, y*) = 0.

From Proposition 4.4(d), HY*, y*) = d(A;(y*), A;(¥*)) = 0fori = 1, 2. This together with the assumption H (y*, y*) — 0
implies d(A;(y*), 2;(y*)) — 0 fori = 1, 2. From this, we necessarily have 1;(y*) — A;(y*) fori = 1, 2. Suppose not; then
the bounded sequence {;(y*)} must have another limit point vf > 0such that v}* # A;(y*). Without loss of generality, we
assume that limgeg (-0 A9 = v;". Then, we have

dvf, L") = lim d(vf, %) = lim  d}, L(Y) =d,v) =0
k—o0 keK ,k— oo
where the first equality is due to the continuity of d(s, -) for any fixed s € [0, +00), and the second one is due to
the convergence of {d(v}, Ai(y*))} implied by the first equality. This contradicts the fact that d(v}, Ai(y*)) > 0 since

VE# M. O
As illustrated by the following example, the proximal distance generated by (31) with ¢ satisfying (D1)-(D4) generally
does not belong to the class %, (K").
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Example 4.11. Let H be the proximal distance in Example 4.8. Let

V2
o |t . [Y?
V= k+1 foreachk and y*=| 1
Dk k 1
(=1 P

It is not hard to check that the sequence {y*} C int(X?) satisfies H(y*, y*) — 0. Clearly, the sequence y* - y* as k — oo,
but 21(y¥) = A1 () = 0and A, (*) = A (y*) = 24/2.

Finally, let H; be a proximal distance produced via one of the approaches above, and define

o
Hy(x,y) = Hi(x,y) + EIIX —yl? (34)
where @ > 0 is a fixed parameter. Then, by Propositions 4.1, 4.2 and 4.4 and the identity
lz=xI?=llz=yl*+ 1y —xI*>+2(z—-y.y—x), Vx,y,z€R"

it is easily shown that H,, is also a proximal distance w.r.t. int X". In particular, when H; is given by (31) with ¢ satisfying
(D1)-(D4) and dom¢ = dom¢’ = [0, 4-00) (for example the distances in Examples 4.9 and 4.10), the regularized proximal
distance H,, satisfies (P7") and (P9’), and hence H, € F,(.X"). With such a regularized proximal distance, the sequence
generated by the IPA converges to an optimal solution of (1) if X, # @.

To sum up, we may construct a proximal distance w.r.t. the cone int X" in three ways with an appropriate univariate
function. The first approach in (23) can only produce a proximal distance belonging to #;(int X™"), the second approach in
(28) produces a proximal distance of #1(X") if dom¢ = [0, +00), whereas the third approach in (31) produces a proximal
distance of the class # (X") if dom¢ = dom¢’ = [0, +00). In particular, the regularized proximal distances H, in (34) with
H; given by (31) with dom¢ = dom¢’ = [0, +00) belong to the smallest class F,(X™). With such regularized proximal
distances, we have the convergence result of Theorem 3.2(c) for the general convex SOCP with X, # @.

5. Central paths and interior proximal methods

In this section, for the linear SOCP, we will obtain some improved convergence results for the IPA by exploring the
relations between the sequence generated by the IPA and the central path associated with the corresponding proximal
distances.

Given a Isc proper strictly convex function @ with dom@® < X" and int(dom®) = int X", the central path of (1)
associated with @ is the set {x(7): T > 0} defined by

x(t) := argmin{tf (x) + ®(x) | x € VN X"} fort > 0. (35)

In what follows, we will focus on the central path of (1) w.r.t. a distance-like function H € D (int X"). From Definition 3.1
and Proposition 3.1, we immediately have the following result.

Proposition 5.1. For any given H € D(int X") and x € int K", the central path {x(t): T > 0} associated with H(-, X) is
well-defined and is in 'V Nint X". For each T > 0, there exists g, € 93f (x(t)) such that g, + V{H(x(z), X) = ATy(t) for some
y(tr) € R™.

We next study the favorable properties of the central path associated with H € D (int X").

Proposition 5.2. For any given H € D(int X") and x € int X", let {x(t): T > 0} be the central path associated with H(-, X).
Then, the following results hold:

(a) The function H(x(t), X) is nondecreasing in .

(b) The set {x(t):T < t < T} is bounded for any given0 < 7 < 7.

(c) x(t) is continuous at any t > 0.

(d) The set {x(t):t > 7} is bounded for any T > 0if X, # ¢ and domH(-,X) = K"
(e) All cluster points of {x(t): T > 0} are solutions of (1) if X, # 0.

Proof. The proofs are similar to those of Propositions 3-5 of [25].
(a)Take 71, » > Oand letx' = x(t;) fori = 1, 2. Then, from Proposition 5.1,x', x¥*> € VNint X" and there existg! € 3f (x')
and g2 € 9f (x?) such that

ViHG&, %) = —1ig' + ATy and ViH(GE, %) = —1og% + AT)? (36)
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for some y', y> € R™. This together with the convexity of H(-, X) yields that

7 (H&,®) —HE,®) < 1y (Vi HE, R), %" =) = (g1, —«),

7, (HE, %) —HE', %) < 1, (VIH(E, %), 8 —x') = (g%, x' = X). (37)
Adding the two inequalities and using the convexity of f, we obtain

(7' -5 ) (H& %) —HE. X)) < (g' =g ¥ —x") <0.
Thus, H(x', x) < H(x?, X) whenever t; < T,. In particular, from the last two equations,

0<7 ' [HX.®) —HE. D] < 17 (ViHEL %), %' —¥°) < (g%, %* —x)

<5 '[Hx'. %) -H®.,%»], Vn>15>0. (38)

(b) By part (a), H(x(t), Xx) < H(x(7), x) for any t < T, which implies that

()t <7} CLi={xeint X" |Hx % < Hx(?),%}.
Noting that {x(7): T <t < T} C {x(7): T < T} C L4, the desired result follows by (P4).
(c)Fix T > 0.To prove that x(t) is continuous at 7, it suffices to prove that lim,_, ., x(t;) = x(7) for any sequence {7y} such
that limy_, o, Tx = 7. Given such a sequence {}}, take 7, T suchthat? > 7 > 7.Then, {x(1): T < t < 7} is bounded by part
(b), and 7 € (7, T) for sufficiently large k. Consequently, the sequence {x(zx)} is bounded. Let y be a cluster point of {x(zy)},

and without loss of generality assume that limy_, o, X(7x) = y. Let Ky := {k : 7y < T} and take k € K;. Then, from (38) with

Ti=7tand 5, = 1,
0 <7 '[Hx(T),X) —Hx(w), ®)] < T (ViHX(T), %), x(T) — X(1))
7, [HX(T), X) — HX (%), X)].

=
=

If K, is infinite, taking the limit k — oo with k € K; in the last inequality and using the continuity of H(-, X) on int X" yields
that

Hx(T), %) —H@, %) = (ViHx(7), %), x(T) — ¥).
This together with the strict convexity of H(-, x) implies x(7) = y. If K; is finite, then K; := {k : 7, > 7} must be infinite.
Using the same arguments, we also have x(7) = y.
(d) By (P3) and Proposition 5.1, there exists g; € df (x(t)) such that foranyz € vV N X",

H(x(1), %) —H(z,%) <t~ (ViH(x(7), %), (x) — 2) = (g, 2 — x(1)). (39)
In particular, taking z = x* € X, in the last equality and using the fact that

0> f(x*) = f(x()) = (g, x" —x(7)),

we have H(x(t), X) —H(x*, X) < 0.Hence, {x(t):t > T} C {x € int X" | H(X, X) < H(x*, x)}. By (P4), the latter is bounded,
and the desired result then follows.

(e) Let X be a cluster point of {x(7)} and {r;} be a sequence such that limy_, ., tx = +00 and limy_, o, x(1y) = X. Write
x* := x(ty) and take x* € X, and z € V N int X". Then, for any € > 0, we have x(¢) := (1 — €)x* 4+ €z € V Nint X" From
the property (P3),

(ViH(x(e), %) — ViH(*, %), X — x(€)) < 0.

On the other hand, taking z = x(¢) in (39), we readily have
o (VIH( %), X = x(€)) = (8", x(e) —x)

with gk € 3f (x*). Combining the last two equations, we obtain
T (ViH(x(€), %), X — x(€)) =< (g, x(e) — X").

Since the subdifferential set df (x*) for each k is compact and g¥ € 3f (x*), the sequence {g*} is bounded. Taking the limit in
the last inequality yields 0 < (g, x(¢) — &), where § is a limit point of {g¥}, and by Theorem 24.4 of [30], § € 3f (%). Taking
the limit e — 0 in the inequality, we get 0 < (g, x* — X). This implies that f(X) < f(x*) since x* € X, and g € df (X).
Consequently, X is a solution of the CSOCP (1). O

In particular, from the following theorem, we also have that the central path is convergent if H € D(int K") satisfies
domH(-, X) = K", where X € int X" is a given point. Notice that H(-, X) is continuous on domH (-, X) by (P2), and hence the
assumption for H is equivalent to saying that H(-, X) is continuous at the boundary of the cone K.
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Theorem 5.1. For any given X € int X" and H € D(int X") with domH(-,X) = X", let {x(t): t > 0} be the central path
associated with H(-, X). If X, is nonempty, then lim,_, , », x(t) exists and is the unique solution of min{H (x, X) | x € X,}.

Proof. Let x be a cluster point of {x(t)} and {z;} be such that lim_, o, Tx = 400 and lim_, », X(tx) = . Then, for any x € X,,
using (38) with x' = x(t;) and x*> = x, we get

[Hx(1), %) — H(x, )] < 1(8", x — x(1)) < 1 [f %) — f (x(1))] < 0

where the second inequality holds since g¥ € df (x(ty)), and the last one is due to x € X,.. Taking the limit k — oo in the last
inequality and using the continuity of H(-, x), we have H(x, x) < H(x, ) for all x € X,. Since X € X, by Proposition 5.2(e),
this shows that any cluster point of {x(t): T > 0} is a solution of min{H (x, x) | x € X,.}. By the uniqueness of the solution of
min{H(x, X) | x € X,.}, we have lim,_, o x(t) =x*. O

For the linear SOCP, we may establish the relations between the sequence generated by the IPA and the central path
associated with the corresponding distance-like functions.

Proposition 5.3. For the linear SOCP, let {x*} be the sequence generated by the IPAwith H € D(int X™), x° € V Nint X" and
€ = 0, and {x(t): T > 0} be the central path associated with H(-, x°). Then, xX* = x(t}) for k = 1, 2, ... under either of the
following conditions:

(a) H is constructed via (23) or (28), and {ty} is given by 7, = Z]’-‘:O Aifork=1,2,...;

(b) H is constructed via (31), the mapping V (¢")*°°(-) defined on int X" maps any vector R" into ImA’, and the sequence {t;}
isgivenby tp = A fork=1,2,....

Moreover, for any positive increasing sequence {t}, there exists a positive sequence {1} with Zf:il Ax = o0 such that the
proximal sequence {x*} satisfies x, = x(ty).

Proof. (a) Suppose that H is constructed via (23). From (13) and Proposition 4.1(b),
Ajc + Vo(det(¥)) — Vo(det(¥ 1) = AT forj=0,1,2,.... (40)

Summing the equality from j = 0 to k and taking 7, = Zf:o Aj, yk = Zjl;o W, we get

7 + Vo (det(x¥)) — Vo (det(x?)) = ATy,
This means that x* satisfies the optimal conditions of the problem
min {7 f (x) + H(x,x°) | x € V Nint X"}, (41)

and so x* = x(ty). Now let {x(t): T > 0} be the central path. Take a positive increasing sequence {r;} and let xX* = x(zy).
Then from Propositions 4.1 and 5.1(b), it follows that

7¢ + Vo (det(x¥)) — Vo(det(x’)) = ATy* for some y* € R™.
Setting Ay = 1% — t¢_1 and u¥ = y¥ — y*=1 from the last equality it follows that
i€ + Vo(det(x¥)) — Vo (det(x*~1)) = ATuk.

This shows that {x*} is the sequence generated by the IPA with ¢, = 0.If H is given by (28), using Proposition 4.2(b) and the
same arguments, we also have that the result holds.
(b) For this case, by Proposition 4.4(c), the above (40) becomes

Ae+ V(@) W) - ¥ =¥ ) =AY forj=0,1,2,....

Since ¢”(t) > Oforallt € (0, +00) by (D1) and (D2), from Proposition 5.2 of [8] it follows that V(¢')°“(x) is positive
definite on int X". Thus, the last equality is equivalent to

[V@)*0)] he+ & =¥ = [V(@)* )] AT forj=0,1,2,.... (42)
Summing the equality (42) from j = 0 to k and making a suitable arrangement, we get
k—1
h€ + V(@) @) — 1) = ATUE + V(@) () D [V oh] T AT - o),
j=0
which, using the given assumptions and setting t, = A, reduces to

7€ + V(@) () (¢ — x°) = AT§*  for some j* € R™.
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This means that x* is the unique solution of (41), and hence x* = x(z}) for any k. Let {x(7): T > 0} be the central path. Take
a positive increasing sequence {t;} and define the sequence x* = x(ty). Then, from Propositions 4.4 and 5.1(c),

e + V(@) (x) (x — x%) = ATy¥  for some y* € R™,
which, by the positive definiteness of V(¢")5°°(-) on int X", implies that

[V(@)* @] (me — ATY) + V(@) WD (morc —ATYTH + & =¥ = 0.
Consequently,

wC + V(@) W) =X = V(@) KOV (@)@ DAY — te0).
Using the given assumptions and setting Ay = t;, we have

A€ + V(@) (X (xk — x1) = ATu*  for some u* € R™

for some u* € R™. This implies that {x*} is the sequence generated by the IPA and the sequence {A;} satisfies Z,fil A = +00
since {ti} is a positive increasing sequence. [

From Theorem 5.1 and Proposition 5.3, we readily have the following improved convergence results for the sequence
generated by the IPA for the linear SOCP.

Theorem 5.2. For the linear SOCP, let {x} be the sequence generated by the IPA with H € D(int X™),x° € V N int X" and
€x = 0. If one of the following conditions is satisfied:

() H is constructed via (28) with domH (-, x°) = X" and ) ;2 A = +00;
(b) H is constructed via (31) with domH (-, x°) = K™, the mapping V (¢')*°(-) defined on int K™ maps any vector in R" into
ImAT, and limy_ o0 A = +00;

and X, # 9, then {x*} converges to the unique solution of min{H (x, x°) | x € X,}.

6. Conclusions

We have extended the unified analysis technique given in [ 15] for interior proximal methods for solving the convex SOCP
and presented three simple and effective ways to construct a proximal distance w.r.t. the cone int X". The advantages and
disadvantages of the corresponding proximal distances were analyzed and illustrated with some examples. In particular,
a class of regularized proximal distances was constructed, for which the global convergence result of Theorem 3.2(c) can
apply. However, for the class of proximal distances #, (.KX") in [15], as illustrated in Section 4, it seems hard to find examples
such that global

convergence results similar to those for [ 15, Theorem 2.2] can apply for them.

In addition, we have also made investigations for the central paths of (1) associated with these proximal-like functions,
and for the linear SOCP, established the relations between the central paths and the sequence generated by the interior
proximal methods, from which we, in particular, obtain the global convergence of the sequence under the usual assumptions
and the continuity of H(-, x°) at the boundary of second-order cones.
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