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This paper proposes a neural network approach to efficiently solve nonlinear convex programs with the
second-order cone constraints. The neural network model is designed by the generalized Fischer-Bur-
meister function associated with second-order cone. We study the existence and convergence of the
trajectory for the considered neural network. Moreover, we also show stability properties for the con-
sidered neural network, including the Lyapunov stability, the asymptotic stability and the exponential
stability. Illustrative examples give a further demonstration for the effectiveness of the proposed neural
network. Numerical performance based on the parameter being perturbed and numerical comparison
with other neural network models are also provided. In overall, our model performs better than two
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1. Introduction

The nonlinear convex programs with second-order cone con-
straints (we abbreviate it as SOCP in this paper) is given as below:

min f(x)
st. Ax=b
—gx) ek QY]

where A e R™" has full row rank, beR™, f : R" >R is two-order
continuous differentiable and convex mapping, g =[g,...,g]" : R
—R! is two-order continuous differentiable K-convex mapping
which means for every x,y e R" and t € [0, 1] such that

tgX)+(1-0gy)—gtx+(1-ty) e K,

and K is a Cartesian product of second-order cones (also called
Lorentz cones), expressed as

K=K" x K" x ... x K™
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with N.nq,...,ny>1,n;+--4+ny=1and
. T .
/C"‘=={(Xf1,Xi2,---,Xin,-) eR™ | (X2, ..., Xin) | Sxil}-

Here | - I denotes the Euclidean norm and X! means the set of
nonnegative reals R ;..

It is well known that second-order cone programming problems
(SOCP) have wide of applications in engineering, control and man-
agement science [1,23,26]. For example, the grasping force optimiza-
tion problem for the multi-fingered robot hand can be recast as SOCP,
see [23, Example 5.3] for real application data. For solving SOCP (1),
there also exist many traditional optimization methods such as the
interior point method [24], the merit function method [7,18], Newton
method [21,31], and projection method [12] and so on. For a survey of
solution methods, refer to [4]. In this paper, we are interested in the
so-called neural network approach for solving SOCP (1), which is
substantially different from the traditional ones. The main motivation
to employ this approach arises from the following reason. In many
applications, for example, force analysis in robot grasping and control
applications, real-time solutions are usually imperative. For such
applications, traditional optimization methods may not be competent
due to the problem's stringent requirement on computational time.
Compared with the traditional optimization methods, the neural
network method has its advantage in dealing with real-time optimi-
zation problems. Hence, many continuous-time neural networks for
constrained optimization problems have been widely developed. At
present, there are many results on neural networks for solving real-
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time optimization problems, see [6,9,11,14,16,17,19,22,23,25,27,33,
35-39,41] and references therein.

Neural networks stemmed back from McCulloch and Pitts'
pioneering work half century ago, and these were first introduced
for optimization domain in the 1980s [15,20,34]. The essence of
neural network method for solving optimization problems [8] is to
establish a nonnegative Lyapunov function (or called energy
function) and a dynamic system which represents an artificial
neural network. Indeed, the dynamic system is usually in the form
of the first order ordinary differential equations. When utilizing
neural networks for solving optimization problems, we are usually
much more interested in the stability of networks starting from an
arbitrary point. It is expected that for an initial point, the neural
network will approach its equilibrium point which corresponds to
the solution for the considered optimization problem.

In fact, the neural network approach for solving SOCP has been
studied in [23,29]. More specifically, the SOCP studied in [23] is

min f(x)
st. Ax=b
xek (2)

which is a special case of problem (1). Two kinds of neural net-
works were proposed in [23]. One is based on cone projection
function (also called NR function) with which only Lyapunov sta-
bility is guaranteed. The other is based on the Fischer-Burmeister
function (FB function) where Lyapunov stability and asymptotical
stability are proved. Moreover, when solving problem (2), it was
observed that the neural network based on the NR function has
better performance than the one based on the FB function in most
cases (except for some oscillating cases). However, compared to FB
function, the NR function has a remarkable drawback, i.e., the non-
differentiablity. In light of this phenomenon, the authors
employed a neural network model based on “smoothed” NR
function for solving more general SOCP (1), see [29]. In addition,
all three kinds of stabilities including Lyapunov stability, asymp-
totical stability, and exponential stability are proved for such
model in [29]. Moreover, the neural network based on generalized
FB function can be regulated appropriately by perturbing its
parameter p. Previous study [6] has demonstrated its efficiency for
solving the nonlinear complementarity problems, which also
motivates us to further explore its numerical performance for
solving the SOCP. In view of the above discussions and the existing
literature, we wish to keep tracking the performance of neural
networks based on “smoothed” FB function, which is the main
motivation of this paper. In particular, we consider a more general
function, which is called the generalized FB function. In other
words, we propose a neural network model based on the
“smoothed” generalized FB function including FB function as a
special case. With this function, we perturb the parameter p
associated with the generalized FB function to see how it affects
the numerical performance. In addition, all the aforementioned
three types of stabilities are guaranteed in our proposed neural
network. Numerical comparison between model based on
smoothed NR function and model based on smoothed generalized
FB function are provided.

The organization of this paper is as follows. In Section 2, we
introduce concepts about the stability, and recall some background
materials. In Section 3, based on the smoothed generalized FB
function, the neural network architecture is proposed for solving
the problem (1). In Section 4, we study the convergence and sta-
bility results of the proposed neural network. Simulation results of
the new method are reported in Section 5. Section 6 gives the
conclusion of this paper.

2. Preliminaries

For a given mapping H:R"—R", the first order differential
equation (ODE) means

du_y (u()),

= u(tg) =g € R™. 3)

In general, the most concerned issues regarding ODE (3) are the
existence and uniqueness of the solution. Besides, the convergence
of solution trajectory is also concerned. To this end, concepts
regarding equilibrium point and stabilities are needed. As below,
we recall background materials about ODE (3) as well as stability
concepts about the solution to ODE (3). All these materials can be
found in usual ODE's textbook, e.g., [30].

Lemma 2.1 (The existence and uniqueness). Assume that H : R" —
R" is a continuous mapping. Then, for arbitrary to >0 and up e R",
there exists a local solution u(t), te[tg,7) to (3) for some 7> to.
Furthermore, if H is locally Lipschitz continuous at uo, then the
solution is unique; and if H is Lipschitz continuous in R", then 7 can
be extended to oc.

Proof. See [25, Theorem 2.5]. 0

Remark 2.1. For Eq. (3), if a local solution defined on [ty, 7) cannot
be extended to a local solution on a larger interval [to, 71), where
71 > 7, then it is called a maximal solution, and this interval [to, 7) is
the maximal interval of existence. It is obvious that an arbitrary
local solution has an extension to a maximal one.

Lemma 2.2. Let H:R"—R" is a continuous mapping. If u(t) is a
maximal solution, and [ty,7) is the maximal interval of existence
associated with up and t < + oo, then limgy llu(t)ll = +oco.

Proof. See [25, Theorem 2.6]. 0

For ODE (3), a point u* e R" is called an equilibrium point of (3) if
H(u*) = 0. If there is a neighborhood £ = RrR" of u™* such that H(u*)
=0 and H(u) # 0 for any u e Q\{u*}, then u* is called an isolated
equilibrium point. The following are definitions of various stabilities.
More related materials can be found in [25,30,33].

Definition 2.1. Let u(t) be a solution of ODE (3).

(a) An isolated equilibrium point u* is Lyapunov stable (or
stability in the sense of Lyapunov) if for any ug = u(to) and
e > 0, there exists a 0 > 0 such that

lug—u*ll <6 = llu@t)—u*ll <e fort>ty.

(b) Under the condition that an isolated equilibrium point u*
is Lyapunov stable, u* is said to be asymptotic stable if it
has the property that if llug—u*ll <9, then u(t)—u* as
t—o0.

(c) An isolated equilibrium point u* is exponentially stable
for (3) if there exist w <0, k > 0, § > 0 such that arbitrary
solution u(t) of ODE (3) with the initial condition
u(to) =Ug, llug—u*ll <& is defined on [0, c0) and satisfies

lut)—u* Il < ke® lu(ty) —u*ll, t=>to.

Definition 2.2 (Lyapunov function). Let £2 < R" be an open neigh-
borhood of &1. A continuously differentiable function g : R" - R is said
to be a Lyapunov function (or energy function) at the state u (over
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the set £2) for Eq. (3) if

gw) =0,
guw) >0 Vue\{u},
B o o

From the above definition, it is obvious that exponentially
stable is asymptotically stable. The next results show the rela-
tionship between stabilities and a Lyapunov function, see
[5,10,40].

Lemma 2.3.

(a) An isolated equilibrium point u* is Lyapunov stable if there
exists a Lyapunov function over some neighborhood £2 of u*.

(b) An isolated equilibrium point u* is asymptotically stable if
there exists a Lyapunov function over some neighborhood €2
of u™* satisfying

dg(u())
dt

<0, VYue\{u*}.

To close this section, we briefly review some properties of the
spectral factorization with respect to second-order cone, which
will be used in the subsequent analysis. Spectral factorization is
one of the basic concepts in Jordan algebra. For more details, see
[7,13,31]. For any vector z=(z1,23) e R x R'~1 (1> 2), its spectral
factorization with respect to second-order cone K is defined as

z=M0(2)e1(2)+ A2 (2)ex(2),

where 4i(z) =z1 +(—1)lizo | (i=1,2) are called the spectral values
of z, and

T2, z-0
2 llz;
ei(2)=

JALCDw,  2=0
with w e R!~1 being an arbitrary element such that llwll = 1. Here
e1(z) and e,(z) are called the spectral vectors of z. It is well known
that for any z € R!, we have 1;(2) < A»(z) and

(@) =20=zek.

Note that any closed convex cone can always yield a partial order.
Suppose that the partial order “>(” is induced by K, ie,
zzx0 < ze K. The following technical lemma is helpful towards
the subsequent analysis.

Lemma 2.4 (Pan et al. [32, Lemma 2.2]). For any 0<r <1 and
z=xwWi=c0, we have z'=cw'.

For any x=(X1,X;) eR x R"~! and y= (y;,¥,) eR x R*"!, Jor-
dan product of xoy is defined as
*x.y) }

XOy =
Al PROERPS

According to Jordan product and spectral factorization with
respect to second-order cone &, we often employ the following
vector-valued functions (also called SOC-functions) associated
with [t|P (t eR) and ¥/t (t > 0), respectively, which are expressed
as

[XIP = 41(%)|Pe1 () + | A2 (x)|Pea(x) VXxeR",
Yx={/(xe1(x)+{/ A (xexx) Vxek.

In light of the expressions of |x|? and ¥/x as above, for any p > 1,
the generalized FB merit function ¢,:R" x R"—>R" associated

with second-order cone is defined in [32]:

DpXY)=Y 1 X7 +1 Y|P —(X+Y).

In particular, in [32] the authors have shown that q_’)p(x, y) is an
SOC-complementarity function, i.e.,

¢,x,y)=0=xek, ye K and (x,y)=0.

This also yields that the function @, : R" >R" given by

qﬁp(x):% I, (x, F(x)) 112

is a merit function for second-order cone complementarity pro-
blems. Moreover, the following conclusions are obtained in [32].

Lemma 2.5. For any p > 1, let w==w(x,y):=|x|P+|y|P, t =t(X,y)=
Yw and denote g%°°(x):=| x|P. Then, t(x,y) is continuously differenti-
able at (x,y) with w € int(K), and

Vxt(X,y) = Vg (x)Vg(t) !

and
Vyt(x,y) = Vg (y)VeT ()~
where
psign(xy)|x; [P~ 11, X =0
Clx) — b(x c)x}
VgSol(x) = (x) (X)X X #0

)Xy  aX)I+(bX)—aX)xy X5 |’

with X = 32y and

[A2(X)|P — | A1 ()| P
@) -

b(x) =5 [sign(120)| 12017~ "+ sign(h (x) | A1)~ 1],

ax) =

cx) = g [sign(A2(x)) A2(x) P~ —sign(; (x)| A1 (x) [P~ 1].
Proof. See [32, Lemma 3.2].0

Lemma 2.6. Let @, be defined as ®,(x, y):=%\|¢p(x, y) 11?2 and denote
WX, y):=|X|P+|y|P, g%°(x):=| x|P. Then, the function @, for p e (1,4)
is differentiable everywhere. Moreover, for any x,y e R",

(a) if wx,y)=0, then V@, (x,y) =V, Pp(x,y)=0;
(b) if w(x,y) e int(K), then
Vxy(x.) = (VECOVEL W)~ 1) fyp(x.)
= (V&%) — Vg (1) V& ()~ ' hp(x.¥). Vy Dp(x.y)
= (Ve Ve © ' ~1)dyx.y)
= (Vg™ (y)— Vg (1)) VE™ (1)~ (X, ).
(©) if w(x,y) € 0K\ {0}, where oK means the boundary of K, then

signx)x [P~ 1

VIX1IP+1y11P

sign(y;)|y; P!
Vy@p(x,)) = | =————1 X,¥).
yPp(X,¥) <q RIEAL )¢p( y)

VxDp(x,y) = ( 1) Dp(x.Y),

Proof. See [32, Proposition 3.1].0

3. Generalized FB neural network model

In this section, we will explain how we form the dynamic
system. As is mentioned earlier, the key points for neural network
method lie in constructing the dynamic system and Lyapunov
function. To this end, we first look into the KKT conditions of the
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problem (1) which are presented as below:

Vf(x)—Ay+Vgx)z=0,
zek, —-gxek, zZ'gx)=0, C))
Ax—b=0,

where y e R™, Vg(x) denotes the gradient matrix of g. According to
the KKT condition, it is well known that if the problem (1) satisfies
Slater's condition, which means there exists a strictly feasible
point for the problem (1), i.e., there exists an x e R" such that —g
(x) eint(X) and Ax=b. Then, for the nonlinear convex programs
(1), x* is a solution of the problem (1) if and only if there exist y*
and z* such that (x*,y*, z*) satisfying the KKT conditions (4), see
[2]. Hence, we assume that the problem (1) satisfies Slater's con-
dition in this paper.

Lemma 3.1. For z=(z1,22)eR x R""! and x=(X1,X3) eR x R"~ !
with zzxx, we have Ai(2) > Ai(x) for i=1,2.

Proof. Since z>cx, we may express z=x+y Wwhere
X=(X1,X2)eR xR, y=(y;,y,) eR xR""! and y=2z-—x=.0.
This implies y; > lly, I and
M@ =x1+y1) = Ix2+y, |

> (X1 +y7)— 1% 11— Iy,

>x1— x|l le(x).
Thus, we have

A2@) = X1 +Y)+ X2+ 11 =  +y)+ | Ixa | = Iy, 11|

X14+Y1+HIx =1y, I, if x>y, |l
= X1+y1 = Ixa L+ Ny, 11, if lixa 1l <y,
X1+ lxall, if x> Ny, |l
> .
X1+Y1, it lxall <Ny,

> X1+ x|l :)«2(){)

which is the desired result. ©

Lemma 3.2. Let w:=w(x,y)=|x|P+|y|P, t=tx,y)=Iw and
25°¢(x):=| x| P. Then, the following three matrices

VE(t) — Vg (x), VE (D) — VET (V).
(Vg (1) — Vg™ (X)) (V& (1) — VE™* (V)

are all positive semi-definite for p=2 with neN.

Proof. From the expression of Vg*¢(x) in Lemma 2.5 and the proof
of [32, Lemma 3.2], we know that the eigenvalues of Vgs‘(x) for
X # 0 are

b(x)—c(x),a(x),...,a(x), and b(x)+c(x).

Let w:=(wq,W;) e R x R"~1. Then applying [32, Lemma 3.1] gives

1 A@IP+H1 AP WP+ 1A4O)IP
w1 = 2 * 2

A P—|A P A P4 P_
_ AP =1 A& x2+| 201P =14 W) 7.,

2 2

where X, = Hﬁﬁ if x; # 0, and otherwise X, is an arbitrary vector in
R"~ 1 satisfying IIX, Il = 1. Similar situation applies for y,. Thus, we
will proceed the proof by discussing two cases: w, =0 or w, # 0.

Case 1: For w, = 0, we have vg*(t) = p yw;l where

1 A@IP+H1 AP WP+ AP
wp = —+ .
2 2
Under the condition of w, =0, there are the following two
subcases.
(i) If X, = 0, then wy = |x; [P +-2WEILWIP which implies that
pYWq > psign(x1)|x1|P~ 1. Hence, we see that the matrix Vgsc(t)—

W)

)

Vg (x) is positive semi-definite. Indeed, if x # 0, Vg5°¢(t) — Vg*°¢(x)
is positive definite.
(ii) If x5 # 0, it follows from w, =0 that

Iliz(x)\p—l/h(x)lp _ [P -14WIP .

- | - (©6)

We want to prove that the matrix Vgs(t)—Vg(x) is positive
semi-definite. It is sufficient to show that

pYwy > max{b(x)—c(x), a(x), b(x)+c(x)}.
It is obvious that p.¥w; —(b(x)—c(x)) >0 when A;(x) <0. When
A1(x) = 0, using (5) and A,(x) > A;(x), we have

PYWy —(b(x)—c(x)) > py/ | A1(x)| P — psign(A; (x))| A1 (x)| P~

>0.

Next, we verify that p.yw; —a(x) > 0. For |A;(X)| > |12(X)|, it is
clear that pywy; —a(x) > 0. For | 11(x)| <|A2(%)], it follows from A,
(%) > A1(x) that x; > 0, which yields

|/12(x)|1’—|/11(x)|1’</12(x)f’—|ﬂl(x)|1’
AX®)—-1x) T L@-1A®|

Let p=L (n,meN), a:ﬂz(x)# and b= |A;(x)|#. From p > 1, it fol-
lows that n > m. Then, we have 0 <b < a and

a—b" @ V4a"2b+.. +ab" 2 4p !

ax) = = .
®) am—b" gm-1yam-2h4 .. +ab™ > 4p""!

Now, letting f(v) = £=Y" with v € [0, a], we obtain

am —ym

—nvt= (@ — v+ mvm-1(a" —v")
(@m—vmy? '

fw=

In addition, it follows from f'(v) =0 that

an—vt non-m
am—vm T m '

Since f(0) = & =a"~™ with v=0 and f(a) = Za"~™ with v=aq, it is
easy to verify that f(b)<Za"~™ forO<b<a, i,

| 2()|P — |1 (%)|P
A2(%)—A1(%)

<p lh®P L

Hence, we have

pywi—a) sz/maX{Mz(X)ll’, | 11(0)|P}+min{| ()[P, | 1(¥)| P}

1 A®)IP—1Ah®)|P
A2(0) = ()

> py/ AP —plA2(x) P!
>0,

where the first inequality holds due to (6). Lastly, we also see that

P«’*/VW—(b(x)H(x))zpf/max{lﬂz(X)lp, [A1(%)|P}+min{| L) P, | L (V)| P}
—psign(Ax(x))| A2(x)| P!
Zp{‘/max{llz(X)lp, [A1(x)|P}

—psign(Ax(x)| Ao (x)| P!
>0.

To sum up, under this case x, # 0, we prove that the matrix vgs°¢
(t)—Vgsc(x) is positive semi-definite.

Case 2: For w, #0, from the expression of t(x,y) and the
properties of the spectral values of the vector-valued function |x|P
with p =2 for n e N, all the eigenvalues of the matrix vgsc(t) are

b(t)— c(t) < a(t) < b(t)+c(t). (7)
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When x, =0, we note that

p—1
b(t)—c(t)—psign(x) | x1 1P~ =p {{’/ﬂl(m} —psign(x;)|x;|P~!

_ [1A®IP+HIA@P  [L])P+1A4WIP
=P 2 * 2

I [ A2(%)|P — |/11(X)|p)—( [P — A ()P
2 2
—psign(xy)|x[P~!
> plx11P~ 1 —psign(x1)|x; P~
>0,

i
p

5

where y, denotes y, :% when y, #0, and otherwise y, is an
arbitrary vector in rR"~1 satisfying 11y, =1. Now, applying the
relation of the eigenvalues in (7), we have

b(t)+c(t) > a(t) > psign(xy)|x1 1P~ 1,

which implies that the matrix vg®c(t)— vg®c(x) is positive semi-
definite.
When x; # 0, we also note that

p
b(t) — () (b(X)— c(x) = p {{’/ P (w)]

For A4(x)<0, it is clear that b(t)—c(t)—(b(x)—c(x))>0. For
A1(x) = 0, we have A,(x) > A1(x) = 0, which leads to
|/12(X)|"+|/11(X)Ip+|/120’)|p+|/11(y)\"

2 2
|/12(X)|p;Ml(x)lpifrl}vz()’)lp;|/110’)|py2H

-1

—psign(A (X)) A1 (x1)1P 1.

A(w) =

LN R®P AP [ A®)P -4
= 2 2

+|12(V)|p+|/110’)|p_ | A20)1P = A @)IP
2 2

> [P,

Thus, it follows that b(t)—c(t)—(b(x) —c(x)) > 0. Moreover, since
t=r|x|, by Lemma 3.1 and the eigenvalue of | x| being | A;(x)| and
| A2(x)|, we have

A2(t) = max{| 1 (X)], | A2(x)| }
andA; (t) > min{| 4;(X)|, | 2(x)| }. ®

When p =4 with neN, then, we have

MO A (F X1 - k@]

AO-l) X -l®)

If |2(x)| <|A(x)|, it 1is obvious that a(t)—a(x)>0. If
[ A2(%)| = |41(X)], in light of A,(x) > 11(x), we obtain that x; > 0 and
A2(x) = 0. Now, let

aty—ax)=

a=ly(t)2, b=Ai(t), c=lx)? and di=|A(0)|%.

Then, we get that
an—p" " —d"
@-b -
@ '+a"2b+...+ab" 2 +b" NYc+d)
(a+Db)(c+d)
(@+byc*-1+c"2d+...+cd" " 24+d" 1
B (a+b)(c+d)
a'lc+bo(@ =2 +a3b+...+ab" 3 +b"7?)
- (@+b)c+d)
+ad(an—2+an—3b+.4.+ab"—3+b”—2)+b"—1d
(a+b)(c+d)
_ac"*l+ad(c”*2+c"*3d+...+cd"’3+d"’2)
(a+b)(c+d)

alty—ax)=

_be(c 24" 3d+...+cd" +d" ) +bd" !
(a+Db)(c+d) ’

which together with (8) implies that

a>c, b>d>0 and a(t)—a(x)>0.

In addition, we also verity that

b(t)+c(t)— (b@)+c(x) = p(A2(D)" " —psign(A2(x)| L2 (x)| P!
>0.

Therefore, for any x e R", we have
xT(VE%C(t) — Vg (x))x = xT Vg™ (t)x — xT Vg*¢ (x)x
= [b(t)—c(t)+(n—2)a(t)+b(t)+c(t)] X x
— [b(x)— c(x)+(n—2)a(x)+b(x) +c(x)]x"x

>0,

which shows that the matrix Vg®c(t)—Vvgsc(x) is positive semi-
definite.

With the same arguments, we can verify that the matrix vgc
(t)— Vgc(y) is also positive semi-definite.

Finally, using the properties of eigenvalues of symmetric matrix
product, i.e.,

Ai(AB) = (A Amin(B), i=1,....n, VA,BeS™",

where S™" denotes n order symmetric matrix, we easily obtain
that the matrix (Vg5°¢(t) — Vg*oc(x))(Vgsoc(t) — Vgsc(y)) is also posi-
tive semi-definite.o

Remark 3.1. From the above proof of Lemma 3.2, when x # 0 and
y # 0, we have that the matrixes Vgsc(t) — Vgs°¢(x), Vgsoc(t) — Vg*oc
(y) and (Vg%c(t)— Vgsoc(x))(Vgs(t)— vg*c(y)) are all positive
definite.

Now, we look into the KKT conditions (4) of the problem (1). Let

L(x,y,2) = Vf(x) - ATy +Vg(x)z,

Ax—b
Hu)=| L&xy.2 9)
&p(z, —g(Xx))
and

Y/p(u):%nH(u) 112 =%n bz, —gx)I? +%\IL(x,y,z) 112 +%HAx—bIIZ,

where u= (xT,yT,zT)T eR" x R™ x RL From Lemma 2.5 in [32], we
know that

¢p(z. —gX) =0e=zek, —gx)ek, —z'gx)=0.

Hence, the KKT conditions (4) are equivalent to H(u)=0, i.e.,
¥,(u)=0. Then, it follows that the KKT conditions (4) are
equivalent to the following unconstrained minimization problem
with zero optimal value via the merit function approach:

min Y’,,(u)::%HH(u) 112, (10)
However, the function ¢, is not X-convex and the merit function

¥, is neither convex function for p=2, which is showed in
Example 3.5 of [3].

Theorem 3.1. Let ¥, be defined as in (10).

(a) The matrix Vg*°‘(x) is positive definite for all 0 # x € K.
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(b) The function ¥, for p e (1,4) is continuously differentiable
everywhere. Moreover, V¥ (u) = VH(u)H(u) where

AT Vil(xy.z) —VEXV;
VHw)=| 0 —A 0 a1
0 Vg’ V)
with
0, w(z, —gx)) = |z|P+| —gx)|P =0,
y Vg (x)Vgsoe(t) 1 -1, w(z, —g(x)) € int(K),
1=

sign(-g10)| —g®I1P
Y-8 +1[21]P

Wz, —g(x) € oK\ {0}

and

0, w(z, —g(x))=1z|P+| —gx)|P =0,
VL@V -1, w(z, —g(x)) e int(K),
sign(z1)|z117~"!

VI—81X)IP+]z11P
with t:=¢/w(z, —g(X)).

Proof. (a) For all 0 #x e K, if x, =0, it is obvious that the matrix
Vg%¢(x) = psign(x;)| x1 [P~ I is positive definite. If x # 0, from the
expression of Vg*¢(x) in Lemma 2.5 and x € K, we have b(x) > 0. In
order to prove that the matrix Vgs°‘(x) is positive definite, it suf-
fices to show that the Schur complement of b(x) in the matrix vV
g%°¢(x) is positive definite. In fact, from the expression of Vg*¢(x),
the Schur complement has the form

2(x)

V2 =
-1, w(z, —g(x)) € oL\ {0}

c2(x)

a()l+(b(x)— a(x)X, X5 ————X, X5 = a(x)(I —X, X5)+b(x) (1 7—) X, X5.

C
b(x) b(x)

Since x € K, we have A,(x) > A;(x) > 0, which implies that a(x) >0
and b(x) > c(x) > 0. Note that the matrices I—Xx» Xg and X, Xg are
positive semi-definite. Thus, the Schur complement is positive
definite. Further, we get that Vg*c(x) is positive definite for all
O0#£xek.

(b) From the proof of Proposition 3.1 and Lemma 3.2 of [32], we
know that the function ¥, for pe(1,4) is continuously differ-
entiable everywhere. Hence, in view of the definition of the
function ¥, and the chain rule, the expression of V¥,(u) is
obtained.o

In light of the main ideas for constructing artificial neural
networks (see [8] for details), we will establish a specific first order
ordinary differential equation, i.e., an artificial neural network.
Moreover, specifically, based on the gradient of the merit function
¥, in minimization problem (10), we propose the neural network
for solving the KKT system (4) of nonlinear SOCP (1) with the
following differential equation:

du(t

WO_ _pvwyw), utto)= o, (12)
where p>0 is a time scaling factor. In fact, if 7=pt, then
b _ p2UO Hence, it follows from (12) that 42 = — v¥,(u). For

simplicity and convenience, we set p =1 in this paper.

4. Stability analysis

In this section, we are interested in the stability analysis about
the proposed neural network (12). By these theoretical analyses,
the desired optimal solution of SOCP (1) can always be obtained by
setting the initial state of the network of an arbitrary value. In
order to study the stability issues on the proposed neural network
(12) for solving SOCP (1), we first make an assumption which will
be needed in our subsequent analysis, in order to avoid the sin-
gularity of VH(u).

Assumption 4.1.

(a) The SOCP problem (1) satisfies Slater's condition.

(b) The matrix [AT Vg(x)] is full column rank, and the matrix
VxL(X,y,z) is positive definite on the null space {t | At =0}
of A.

Here we say a few words about Assumption 4.1(a) and (b).
Slater's condition is a standard condition which is widely used in
optimization field. When g is linear, Assumption 4.1(b) is indeed
equivalent to the well-used condition V2f(x) is positive definite.

Lemma 4.1. Let p =14 (1,4) with n e N. Then, the following hold.

(a) Under the condition of Assumption 4.1, VH(u) is nonsingular
foru=(x,y,2) e R" x R™ x R! with (z, —g(x)) # 0.

(b) Every stationary point of ¥, is a global minimizer of problem
(10) for (z, —g(x)) # 0.

(c) ¥, (u(t)) is nonincreasing with respect to t.

Proof. (a) Suppose &= (s,t,v) e R" x R™ x R!. From the expression
(11) of VH(u) in Theorem 3.1, to show the nonsingularity of VH(u),
it is enough to prove that

VHuwé=0 = s=0,t=0and v=0.
Indeed, by VH(u)£ =0, we have

—At=0, ATs+V.L(x,y,2) t—VgXx)Viv=0 (13)
and
vgx) t+V,v=0. (14)

From (13), it follows that

tTVL(x,y, 2t —tTVg(x)V1v=0. (15)
Moveover, by Eq. (14), we obtain

tTvgx) = —v'vL. (16)
Then, combining (15) and (16), this yields that

TV L(x,y, 2)t+V VIV v =0.

By Lemma 3.2 and Assumption 4.1(b), it is not hard to see that
t=0. In addition, from (13) and (14), we have

ATs—vgx)Viv=0 and V,v=0.
By Assumption 4.1(b) again, we also get that
s=0 and V;v=0.

Thus, combining Lemma 3.2 with the expression V; and V, in
Theorem 3.1, we have v=0. Therefore, VH(u)" is nonsingular.

(b) Suppose that u* is a stationary point of ¥),. This says
V¥,w*)=0, and from Theorem 3.1, we have VH(u*)H(u*)=0.
According to part(a), VH(u) is nonsingular. Hence, it follows that
H@u*) =0, ie., ¥,(u*) =0, which says u* is a global minimizer of
(10).

(c) By the definition of ¥p(u(t)) and (12), it is clear that

d¥,(u(t)) du(t)
dt dt

Therefore, ¥, (u(t)) is nonincreasing with respect to t.0

= V¥, u(t)) —p|| V¥’ <o.

Proposition 4.1. Assume that VH(u) is nonsingular for any u e R" x
R™ x R and p="1¢ (1,4) with neN. Then,

(a) (x*,y*, z*) satisfies the KKT conditions (4) if and only if (x*,
y*,z%) is an equilibrium point of the neural network (12);
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(b) under Slater's condition, x* is a solution of the problem (1) if
and only if (x*,y*,z¥) is an equilibrium point of the neural
network (12).

Proof. (a) It is easy to prove that (x*,y* z*) satisfies the KKT
conditions (4) if and only if Hw*) =0 where u*=(x*y*, z%)".
According to the condition that VH(u) is nonsingular, we have that
Hw*)=0 if and only if V¥,u*) = VHu*)TH(u*)=0. Then the
desired result follows.

(b) Under Slater's condition, it is well known that x* is a solu-
tion of the problem (1) if and only if there exist y* and z* such that
(x*,y*,z%) satisfying the KKT conditions (4). Hence, by part (a), it
follows that (x*,y*,z*) is an equilibrium point of the neural net-
work (12).0

The next result addresses the existence and uniqueness of the
solution trajectory of the neural network (12).

Theorem 4.1. For any fixed p=>54e(1,4) with neN, the following
hold.

(a) For any initial point ug = u(ty), there exists a unique con-
tinuously maximal solution u(t) with t e [to, ) for the neural
network (12), where [to,7) is the maximal interval of
existence.

(b) If the level set L(ug)=={u | ¥p(u) < ¥y,(up)} is bounded, then
T can be extended to + oco.

Proof. This proof is exactly the same as the proof of [33, Propo-
sition 3.4]. Hence, we omit it here.0

Theorem 4.2. Assume that VH(u) is nonsingular and u™* is an iso-
lated equilibrium point of the neural network (12). Then, the solution
of the neural network (12) with any initial point uy is Lyapunov
stable.

Proof. From Lemma 2.3, we only need to argue that there exists a
Lyapunov function over some neighborhood £2 of u*. To this end,
we consider the smoothed merit function for p=25e(1,4) with
nenN

¥o(u) :%I\H(u)HZ.

Since u* is an isolated equilibrium point of (12), there is a neigh-
borhood £2 of u* such that

V¥, =0 and V¥,u) 0, vu(t)e2\{u*}.

By the nonsingularity of VH(u) and the definition of ), it is easy to
obtain that ¥,(u*)=0. From the definition of ¥,, we claim that
¥p(u(t)) > 0 for any u(t) e 2\ {u*}, where £ is a neighborhood of
u*, If not, that is, ¥p(u(t)) =0, it follows that H(u(t)) = 0. Then, we
have V¥ ,(u(t)) = 0, which contradicts with the assumption that u™*
is an isolated equilibrium point of (12). Thus, ¥, (u(t)) > 0 for any
u(t) e 2\ {u*}. Moreover, by the proof of Lemma 4.1(c), we know
that for any u(t) e 2

w d’;(tt) — _pIV¥,ut)l? <0. A7)

Therefore, the function ¥, is a Lyapunov function over £2. This
implies that u™ is Lyapunov stable for the neural network (12).0

= V¥, (u(t)

Theorem 4.3. Assume that VH(u) is nonsingular and u™® is an iso-
lated equilibrium point of the neural network (12). Then, u* is
asymptotically stable for neural network (12).

Proof. From the proof of Theorem 4.2, we consider again the
Lyapunov function ¥, for p=2%¢(1,4) with neN. By Lemma 2.3
again, we only need to verify that the Lyapunov function ¥, over

some neighborhood €2 of u™* satisfies

d¥p(u(0)
dt

In fact, by using (17) and the definition of the isolated equilibrium

point, it is not hard to check that Eq. (18) is true. Hence, u* is
asymptotically stable.o

<0, Vvu(t)ye\{u*}. (18)

Theorem 4.4. Assume that u* is an isolated equilibrium point of the
neural network (12). If VH(u)' is nonsingular for any
u=(x,y,2) eR" x R™ x R/, then u* is exponentially stable for the
neural network (12).

Proof. From the definition of H(u) and Lemma 2.6, we have
Hu) = HW*)+ VHu®) u—u*)+o(lu—u*ll), Vue O\{u*}, 19

where VH(u(t))" € oH(u(t)) and £2 is the neighborhood of u*. Now,
letting

gu(t)) = llu(t)—u*12, telty,o0),
we have
dg(u(t)) wTau)
GO i
= —2p(ut)—u*) V¥ )
= —2p(u(t)—u*)" VHW)H (). (20)

Substituting (19) into (20) yields

dg(;t(t)) = —2p(u(t)—u*)" VH(u(b) < (H (u*)

+ VHu(t) () — u*)+o(llu(t) —u*1))
= —2p(u(t)—u*)" VH(u(t) VHu()" (u(t)—u*)
+o(llu(t)—u*11?).

Since VH(u) and VH(u)" are nonsingular, we claim that there exists
an k > 0 such that

(u(t)— u*)TvH(u)vH(u)T(u(t) —u*) = K llu(t) —u* 2. 21)
Otherwise, if (u(t)—u*)T VH(u(t))VHu(t)) (u(t)—u*) = 0, it implies
that

VH(u(®)"(ut)—u*)=0.

Indeed, from the nonsingularity of H(u), we have u(t)—u* =0, i.e.,
u(t) = u*, which contradicts with the assumption of u™ that is an
isolated equilibrium point. Therefore, there exists an x>0 such
that (21) holds. Moreover, for o(llu(t)—u*1?), there is € >0 such
that o(llu(t) —u* %) < ellu(t)—u* 1%, Hence,

dg(u(t))
dt

This implies
gu(t)) < e~ * Ol g(u(ty)),

which means

< (=2pk+e)lut)—u*lI% = (= 2px+£)g(u(t)).

lu(t)—u* Il <e P53 lu(ty) —u*ll.

Thus, u* is exponentially stable for the neural network (12).0

5. Numerical examples

In order to demonstrate the effectiveness of the proposed
neural network, we test several examples for our neural network
(12) in this section. The numerical implementation is coded by
Matlab 7.0 and the ordinary differential equation solver adopted
here is ode23, which uses Ruge-Kutta (2; 3) formula. As mentioned
earlier, the parameter p is set to be 1. How is u chosen initially?
From Theorem 4.2 in last section, we know the solution will
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Fig. 1. Transient behavior of the neural network with the generalized FB function
(p=7) in Example 5.1.

converge with any initial point, we set initial =1 in the codes
(and of course y—0, as seen in the trajectory behavior).

To implement the proposed neural network (12), the calcula-
tion of V¥, (u) is required. As below, we describe the step-by-step
scheme for computing V¥ p(u).

Step 1. With u=(x,y,z)", we first calculate g(x), Vg(x), Vf(x),
L(x,y,2), and ViL(X,y,2).

Step 2. Compute (/)p(z, —g(x)) and its gradient.

Step 3. Compute H(u) and VH(u) given as in (9) and (11),
respectively.

Step 4. Next, V¥,(u) can be obtained by VH(u)H(u). Then, the
ordinary differential equation solver Matlab ode23, which
uses Runge-Kutta formula, is adopted for the numerical
simulations.

Example 5.1. Consider the following nonlinear convex program-
ming problem:

min  e® =3+ +05 - 17 + (= 2" + (x5 + 1)

st. xek’

Here we denote

f(x)=e® =3P 422+ (03— 1) + (x4 — 2% + (x5 + 1)

and g(x) = —x. Hence, we compute that
L(x,2) = Vf(x)+ Vgx)z

X1 —3 Z1

X2 22
=2fx)|x3—1|— |23
X4 -2 Z4

X5 +1 Zs5

This problem has an optimal solution x* = (3,0, 1,2, — 1)". We use
the proposed neural network to solve the above problem whose
trajectories are depicted in Fig. 1. All simulation results show that
the state trajectories with any initial point are always convergent
to an optimal solution of the above problem x*. From Fig. 2, we see
that the performance in “good order” is the model based on
smoothed NR function used in [29], the current model based on
smoothed generalized FB function with p=7, the current model

Norm of error

10 — — — smoothed NR N 3
standard Lagrange
10_6 1 1 1
0 5 10 15 20

Time (ms)

Fig. 2. Convergence comparison for Example 5.1.

based on smoothed generalized FB function with p=4, the current
model based on smoothed generalized FB function with p=3, the
current model based on smoothed generalized FB function with
p=2. The LPNN approach solves this problem, but its performance
is not good.

Example 5.2. Consider the following nonlinear second-order cone
programming problem:

min  f(x) = X3 +2x2 4+ 2x1x, — 10x1 — 12x,
8—x1+3x;

2
3 —x3 —2x1 +2x; — X3 en”.

s.t. g(x)= [

For this example, we compute that

L(x,z) = Vf(x)+ Vg(X)z

4xy+2x1—12 3z1+2(1—X2)zy

2x1+2x2—10} [—21 —2(x1+1)zz]

This problem has an approximate solution x* = (2.8308,1.6375)".
Note that the objective function is convex and the Hessian matrix
V2f(x) is positive definite. Using the proposed neural network in
this paper, we can easily obtain the approximate solution x* of the
above problem, see Fig. 3. From Fig. 4, we see that the performance
in “good order” is the current model based on smoothed gen-
eralized FB function with p=2, the current model based on
smoothed generalized FB function with p=3, the current model
based on smoothed generalized FB function with p=4, the model
based on smoothed NR function used in [29], the current model
based on smoothed generalized FB function with p=7. Again, the
LPNN approach solves this problem, but its performance is not
good.

Example 5.3. Consider the following nonlinear convex program
with second-order cone constraints [21]:

min  e® =%) 4 3(2x; —x2)* + 1/ 1+ (3%, +5x3)?

s.t. Ax+b e K?
6x e k3
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Fig. 5. Transient behavior of the neural network with the generalized FB function

Fig. 3. Transient behavior of the neural network with the generalized FB function (p—4) in Example 5.3.

(p=3) in Example 5.2.
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Fig. 4. Convergence comparison for Example 5.2. Fig. 6. Convergence comparison for Example 5.3.
difference for all models. Note that the LPNN approach cannot
where .
solve this problem.
A 4 6 3 b -1
T l-1 7 =5]) Tl 2] Example 5.4. Consider the following nonlinear second-order cone

programming problem:

For this example, f(x):=e®1 =*) 4 3(2x; —x2)* + /14 (3%2 4+ 5%3)%, min - f(x)=e"% +3(x; +x3)° =/ 1+ (2% —x3)°

from which we have +1x2 +1x2
L(x,y,2) = Vf(X)+ Vg(x)y —6Vxz s.t. h(x) = —24.51x; +58x, —16.67x3 —x4—3x5+11=0
et %) 4 24(2%; —x,)3 3x3 +2x; — x3+5x3
120 -3 + 3(3x, +5x3) —g ()= | —5x3+4x; —2x3+10x3 | e K3
_ B S I ik LA
= \/1+(3%3 +5x3)? X3
X
I € T = o] <
1+ (3, +5x3)°
4y1-y2 Z
- (;y 1 +Zy 2| =62 For this example, we compute
Y1 —9Y2 Z3
. . . . Vg (x)y
The approximate solution of this problem is x*=(0.2324, L(x,y,2) = Vf(x)+ Ve, (X)z
—0.07309,0.2206)", see Fig. 5. From Fig. 6, there is no marginal &
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Fig. 7. Transient behavior of the neural network with the generalized FB function
(p=3) in Example 5.4.

x36%1%) +6(x1 +x2)

6(x; +X2)_72(2x2 —%5)
1+(2% —x3)
= X1 e(’<1>‘3)+%
1+(2x —X3)°
X4
X5

9x2y; —15x3y,
2y;+4y,
— | (10x3 —1)y; +(30x3 - 2)y, +y3
Z1
3z,

This problem has an  approximate solution x*=
(—0.0903, —0.0449,0.6366,0.0001,0)" and Fig. 7 displays the
trajectories obtained by using the proposed new neural network.
All simulation results show that the state trajectory with any
initial point are always convergent to the solution x*. As observed
in Fig. 8, the neural network with the smoothed NR function has a
better convergence rate, and it is hard to see the effect when p is
perturbed. Note that the LPNN approach cannot solve this
problem.

In our numerical implementations, we test p=2,3,4,7 to see
how it affects the numerical performance when it is perturbed. We
also compare with the neural network model used in [29], which
is based on “smoothed” NR function. In general, there is no big
difference between our model based on “smoothed” generalized
FB function and the one in [29]. Only slight better performance for
the one used in [29] in Example 5.1, 5.3, 5.4 are observed. Another
observation is that there is no regular change for numerical per-
formance when p is perturbed. For Example 5.1, when p is
increased, its performance becomes better. However, for Example
5.2, when p is increased, its performance becomes less better.
These two phenomena do not occur in other two examples.
Moreover, as suggested by one referee, we also have a comparison
with the standard Lagrange programming neural networks
(LPNN), which is studied in [42]. The LPNN for Example 5.1 and 5.2
has bad convergence shown as in Figs. 2 and 4 compared to other
methods. For other examples, the LPNN does not even solve them
successfully so that it is not depicted in other figures. The
numerical comparisons verify the effectiveness of our proposed
neural networks. To sum up, based on the numerical results, we

10° . :

— — —smoothed NR

Norm of error

10_6_ \\\ i

10_8 L L
0 50 100 150

Time (ms)

Fig. 8. Convergence comparison for Example 5.4.

can conclude that the proposed neural network model is definitely
better than the standard LPNN model. In addition, although the
difference between the proposed neural network model and the
one based on “smoothed” NR function in [29] is very slight, it is
generally true that our model is better than the aforementioned
one when an appropriate p is chosen. How to determine an sui-
table p is a good topic for future study.

6. Concluding remarks

In this paper, we have studied a neural network approach for
solving general nonlinear convex programs with second-order
cone constraints. The neural network is based on the gradient of
the merit function derived from the generalized FB merit function,
which involves parameter p € (1,4). For such neural network, the
Lyapunov stability, the asymptotic stability and the exponential
stability are proved, which indicates its effectiveness. Moreover,
numerical performance based on the parameter p being perturbed
and numerical comparison with other neural network model are
also provided. There is limited value of p (p =5 € (1,4)) that could
be perturbed because ¥, is theoretically shown to be smooth only
in p € (1,4) under SOC case, so far. Can we extend the above results
to the case of general p? In other words, whether p=%¢(1,4) can
be relaxed to more general real value? This is one of our future
directions. Moreover, we will try to show the smoothness of ¥,
associated with SOC in a wider interval in the future. Recently,
some other discrete types of complementarity functions asso-
ciated with SOC have been proposed in [28]. Another direction is
to design neural network based on “discrete” types of com-
plementarity functions. Of course, it will be very interesting to see
the comparisons of neural networks based on continuous type of
complementarity functions (like the NR function and FB function)
and discrete types of complementarity functions.
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