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This paper proposes a neural network approach to efficiently solve nonlinear convex programs with the
second-order cone constraints. The neural network model is designed by the generalized Fischer–Bur-
meister function associated with second-order cone. We study the existence and convergence of the
trajectory for the considered neural network. Moreover, we also show stability properties for the con-

stability. Illustrative examples give a further demonstration for the effectiveness of the proposed neural
network. Numerical performance based on the parameter being perturbed and numerical comparison
with other neural network models are also provided. In overall, our model performs better than two
comparative methods.
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1. Introduction

The nonlinear convex programs with second-order cone con-
straints (we abbreviate it as SOCP in this paper) is given as below:

min f ðxÞ
s:t: Ax¼ b

�gðxÞAK ð1Þ

where AARm�n has full row rank, bARm, f : Rn-R is two-order
continuous differentiable and convex mapping, g ¼ ½g1;…; gl�T : Rn

-Rl is two-order continuous differentiable K-convex mapping
which means for every x; yARn and tA ½0;1� such that

tgðxÞþð1�tÞgðyÞ�g txþð1�tÞyð ÞAK;

and K is a Cartesian product of second-order cones (also called
Lorentz cones), expressed as

K¼Kn1 �Kn2 �…�KnN
,
w (C.-H. Ko).
onal Young Natural Science
nce Foundation of China (No.

of Science and Technology,
with N;n1;…;nNZ1;n1þ⋯þnN ¼ l and

Kni≔ xi1; xi2;…; xini

� �T
ARni j J ðxi2;…; xini ÞJrxi1

n o
:

Here J � J denotes the Euclidean norm and K1 means the set of
nonnegative reals Rþ .

It is well known that second-order cone programming problems
(SOCP) have wide of applications in engineering, control and man-
agement science [1,23,26]. For example, the grasping force optimiza-
tion problem for the multi-fingered robot hand can be recast as SOCP,
see [23, Example 5.3] for real application data. For solving SOCP (1),
there also exist many traditional optimization methods such as the
interior point method [24], the merit function method [7,18], Newton
method [21,31], and projection method [12] and so on. For a survey of
solution methods, refer to [4]. In this paper, we are interested in the
so-called neural network approach for solving SOCP (1), which is
substantially different from the traditional ones. The main motivation
to employ this approach arises from the following reason. In many
applications, for example, force analysis in robot grasping and control
applications, real-time solutions are usually imperative. For such
applications, traditional optimization methods may not be competent
due to the problem's stringent requirement on computational time.
Compared with the traditional optimization methods, the neural
network method has its advantage in dealing with real-time optimi-
zation problems. Hence, many continuous-time neural networks for
constrained optimization problems have been widely developed. At
present, there are many results on neural networks for solving real-
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time optimization problems, see [6,9,11,14,16,17,19,22,23,25,27,33,
35–39,41] and references therein.

Neural networks stemmed back from McCulloch and Pitts'
pioneering work half century ago, and these were first introduced
for optimization domain in the 1980s [15,20,34]. The essence of
neural network method for solving optimization problems [8] is to
establish a nonnegative Lyapunov function (or called energy
function) and a dynamic system which represents an artificial
neural network. Indeed, the dynamic system is usually in the form
of the first order ordinary differential equations. When utilizing
neural networks for solving optimization problems, we are usually
much more interested in the stability of networks starting from an
arbitrary point. It is expected that for an initial point, the neural
network will approach its equilibrium point which corresponds to
the solution for the considered optimization problem.

In fact, the neural network approach for solving SOCP has been
studied in [23,29]. More specifically, the SOCP studied in [23] is

min f ðxÞ
s:t: Ax¼ b

xAK ð2Þ

which is a special case of problem (1). Two kinds of neural net-
works were proposed in [23]. One is based on cone projection
function (also called NR function) with which only Lyapunov sta-
bility is guaranteed. The other is based on the Fischer–Burmeister
function (FB function) where Lyapunov stability and asymptotical
stability are proved. Moreover, when solving problem (2), it was
observed that the neural network based on the NR function has
better performance than the one based on the FB function in most
cases (except for some oscillating cases). However, compared to FB
function, the NR function has a remarkable drawback, i.e., the non-
differentiablity. In light of this phenomenon, the authors
employed a neural network model based on “smoothed” NR
function for solving more general SOCP (1), see [29]. In addition,
all three kinds of stabilities including Lyapunov stability, asymp-
totical stability, and exponential stability are proved for such
model in [29]. Moreover, the neural network based on generalized
FB function can be regulated appropriately by perturbing its
parameter p. Previous study [6] has demonstrated its efficiency for
solving the nonlinear complementarity problems, which also
motivates us to further explore its numerical performance for
solving the SOCP. In view of the above discussions and the existing
literature, we wish to keep tracking the performance of neural
networks based on “smoothed” FB function, which is the main
motivation of this paper. In particular, we consider a more general
function, which is called the generalized FB function. In other
words, we propose a neural network model based on the
“smoothed” generalized FB function including FB function as a
special case. With this function, we perturb the parameter p
associated with the generalized FB function to see how it affects
the numerical performance. In addition, all the aforementioned
three types of stabilities are guaranteed in our proposed neural
network. Numerical comparison between model based on
smoothed NR function and model based on smoothed generalized
FB function are provided.

The organization of this paper is as follows. In Section 2, we
introduce concepts about the stability, and recall some background
materials. In Section 3, based on the smoothed generalized FB
function, the neural network architecture is proposed for solving
the problem (1). In Section 4, we study the convergence and sta-
bility results of the proposed neural network. Simulation results of
the new method are reported in Section 5. Section 6 gives the
conclusion of this paper.
2. Preliminaries

For a given mapping H : Rn-Rn, the first order differential
equation (ODE) means

du
dt

¼HðuðtÞÞ; uðt0Þ ¼ u0ARn: ð3Þ

In general, the most concerned issues regarding ODE (3) are the
existence and uniqueness of the solution. Besides, the convergence
of solution trajectory is also concerned. To this end, concepts
regarding equilibrium point and stabilities are needed. As below,
we recall background materials about ODE (3) as well as stability
concepts about the solution to ODE (3). All these materials can be
found in usual ODE's textbook, e.g., [30].

Lemma 2.1 (The existence and uniqueness). Assume that H : Rn-

Rn is a continuous mapping. Then, for arbitrary t0Z0 and u0ARn,
there exists a local solution u(t), tA ½t0; τÞ to (3) for some τ4t0.
Furthermore, if H is locally Lipschitz continuous at u0, then the
solution is unique; and if H is Lipschitz continuous in Rn, then τ can
be extended to 1.

Proof. See [25, Theorem 2.5]. □

Remark 2.1. For Eq. (3), if a local solution defined on ½t0; τÞ cannot
be extended to a local solution on a larger interval ½t0; τ1Þ, where
τ14τ, then it is called a maximal solution, and this interval ½t0; τÞ is
the maximal interval of existence. It is obvious that an arbitrary
local solution has an extension to a maximal one.

Lemma 2.2. Let H : Rn-Rn is a continuous mapping. If u(t) is a
maximal solution, and ½t0; τÞ is the maximal interval of existence
associated with u0 and τoþ1, then limt↑τ JuðtÞJ ¼ þ1.

Proof. See [25, Theorem 2.6]. □

For ODE (3), a point unARn is called an equilibrium point of (3) if
HðunÞ ¼ 0. If there is a neighborhood ΩDRn of un such that HðunÞ
¼ 0 and HðuÞa0 for any uAΩ⧹fung, then un is called an isolated
equilibrium point. The following are definitions of various stabilities.
More related materials can be found in [25,30,33].

Definition 2.1. Let u(t) be a solution of ODE (3).

(a) An isolated equilibrium point un is Lyapunov stable (or
stability in the sense of Lyapunov) if for any u0 ¼ uðt0Þ and
ε40, there exists a δ40 such that

Ju0�un Joδ ⟹ JuðtÞ�un Joε for tZt0:

(b) Under the condition that an isolated equilibrium point un

is Lyapunov stable, un is said to be asymptotic stable if it
has the property that if Ju0�un Joδ, then uðtÞ-un as
t-1.

(c) An isolated equilibrium point un is exponentially stable
for (3) if there exist ωo0, κ40, δ40 such that arbitrary
solution u(t) of ODE (3) with the initial condition
uðt0Þ ¼ u0, Ju0�un Joδ is defined on ½0;1Þ and satisfies

JuðtÞ�un Jrκeωt Juðt0Þ�un J ; tZt0:

Definition 2.2 (Lyapunov function). Let ΩDRn be an open neigh-
borhood of u. A continuously differentiable function g : Rn-R is said
to be a Lyapunov function (or energy function) at the state u (over
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the set Ω) for Eq. (3) if

gðuÞ ¼ 0;
gðuÞ40 8uAΩ⧹fug;
dgðuðtÞÞ

dt
r0 8uAΩ:

8>>><
>>>:

From the above definition, it is obvious that exponentially
stable is asymptotically stable. The next results show the rela-
tionship between stabilities and a Lyapunov function, see
[5,10,40].

Lemma 2.3.

(a) An isolated equilibrium point un is Lyapunov stable if there
exists a Lyapunov function over some neighborhood Ω of un.

(b) An isolated equilibrium point un is asymptotically stable if
there exists a Lyapunov function over some neighborhood Ω
of un satisfying

dgðuðtÞÞ
dt

o0; 8uAΩ⧹ un
� �

:

To close this section, we briefly review some properties of the
spectral factorization with respect to second-order cone, which
will be used in the subsequent analysis. Spectral factorization is
one of the basic concepts in Jordan algebra. For more details, see
[7,13,31]. For any vector z¼ z1; z2ð ÞAR� Rl�1 ðlZ2Þ, its spectral
factorization with respect to second-order cone K is defined as

z¼ λ1ðzÞe1ðzÞþλ2ðzÞe2ðzÞ;
where λiðzÞ ¼ z1þ �1ð Þi Jz2 J ði¼ 1;2Þ are called the spectral values
of z, and

eiðzÞ ¼

1
2

1; �1ð Þi zi
Jzi J

� �
; z2a0

1
2
ð1; �1ð ÞiwÞ; z2 ¼ 0

8>>><
>>>:

with wARl�1 being an arbitrary element such that JwJ ¼ 1. Here
e1ðzÞ and e2ðzÞ are called the spectral vectors of z. It is well known
that for any zARl, we have λ1 zð Þrλ2ðzÞ and
λ1 zð ÞZ0⟺zAK:

Note that any closed convex cone can always yield a partial order.
Suppose that the partial order “≽K” is induced by K, i.e.,
z≽K03zAK. The following technical lemma is helpful towards
the subsequent analysis.

Lemma 2.4 (Pan et al. [32, Lemma 2.2]). For any 0rrr1 and
z≽Kw≽K0, we have zr≽Kwr.

For any x¼ x1; x2ð ÞAR� Rn�1 and y¼ y1; y2
� �

AR� Rn�1, Jor-
dan product of x○y is defined as

x○y¼
〈x; y〉

x1y2þy1x2

" #
:

According to Jordan product and spectral factorization with
respect to second-order cone K, we often employ the following
vector-valued functions (also called SOC-functions) associated
with j t j p ðtARÞ and ffiffi

tp
p ðtZ0Þ, respectively, which are expressed

as

jxj p ¼ jλ1ðxÞj pe1ðxÞþ jλ2ðxÞj pe2ðxÞ 8xARn;ffiffiffi
xp

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
λ1ðxÞp

q
e1ðxÞþ

ffiffiffiffiffiffiffiffiffiffiffi
λ1ðxÞp

q
e2ðxÞ 8xAK:

In light of the expressions of jxj p and
ffiffiffi
xp

p
as above, for any p41,

the generalized FB merit function ϕp : Rn � Rn-Rn associated
with second-order cone is defined in [32]:

ϕp x; yð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj pþjyj pp

p
�ðxþyÞ:

In particular, in [32] the authors have shown that ϕpðx; yÞ is an
SOC-complementarity function, i.e.,

ϕpðx; yÞ ¼ 0⟺xAK; yAK and 〈x; y〉¼ 0:

This also yields that the function Φp : Rn-Rn given by

Φp xð Þ≔1
2
Jϕpðx; FðxÞÞJ2

is a merit function for second-order cone complementarity pro-
blems. Moreover, the following conclusions are obtained in [32].

Lemma 2.5. For any p41, let w≔w x; yð Þ≔jxj pþjyj p, t ¼ t x; yð Þ≔ffiffiffiffi
wp

p
and denote gsoc xð Þ≔jxj p. Then, tðx; yÞ is continuously differenti-

able at (x,y) with wA intðKÞ, and
∇xtðx; yÞ ¼∇gsoc xð Þ∇gsoc tð Þ�1

and

∇ytðx; yÞ ¼∇gsoc yð Þ∇gsoc tð Þ�1

where

∇gsocðxÞ ¼
psignðx1Þjx1 j p�1I; x2 ¼ 0

bðxÞ c xð ÞxT2
c xð Þx2 aðxÞIþ bðxÞ�aðxÞð Þx2 xT2

" #
; x2a0

8>><
>>:

with x2 ¼ x2
Jx2 J

and

aðxÞ ¼ jλ2ðxÞj p�jλ1ðxÞj p
λ2ðxÞ�λ1ðxÞ

;

bðxÞ ¼ p
2
signðλ2ðxÞÞjλ2ðxÞj p�1þsignðλ1ðxÞÞjλ1ðxÞj p�1	 


;

cðxÞ ¼ p
2
signðλ2ðxÞÞjλ2ðxÞj p�1�signðλ1ðxÞÞjλ1ðxÞj p�1	 


:

Proof. See [32, Lemma 3.2].□

Lemma 2.6. Let Φp be defined as Φp x; yð Þ≔1
2Jϕpðx; yÞJ2 and denote

w x; yð Þ≔jxj pþjyj p, gsoc xð Þ≔jxj p. Then, the function Φp for pAð1;4Þ
is differentiable everywhere. Moreover, for any x; yARn,

(a) if wðx; yÞ ¼ 0, then ∇xΦpðx; yÞ ¼∇yΦpðx; yÞ ¼ 0;
(b) if wðx; yÞA intðKÞ, then

∇xΦp x; yð Þ ¼ ∇gsocðxÞ∇gsoc tð Þ�1� I
� �

ϕpðx; yÞ
¼ ∇gsocðxÞ�∇gsocðtÞ� �

∇gsoc tð Þ�1ϕpðx; yÞ;∇yΦp x; yð Þ
¼ ∇gsocðyÞ∇gsoc tð Þ�1� I
� �

ϕpðx; yÞ

¼ ∇gsocðyÞ�∇gsocðtÞ� �
∇gsoc tð Þ�1ϕpðx; yÞ:

(c) if wðx; yÞA∂K⧹f0g, where ∂K means the boundary of K, then

∇xΦpðx; yÞ ¼ signðx1Þj x1 j p�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx1 j pþjy1 j pq
p �1

 !
ϕpðx; yÞ;

∇yΦpðx; yÞ ¼
signðy1Þjy1 j p�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx1 j pþjy1 j pq
p �1

 !
ϕpðx; yÞ:

Proof. See [32, Proposition 3.1].□
3. Generalized FB neural network model

In this section, we will explain how we form the dynamic
system. As is mentioned earlier, the key points for neural network
method lie in constructing the dynamic system and Lyapunov
function. To this end, we first look into the KKT conditions of the
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problem (1) which are presented as below:

∇f ðxÞ�ATyþ∇gðxÞz¼ 0;
zAK; �g xð ÞAK; zTgðxÞ ¼ 0;
Ax�b¼ 0;

8><
>: ð4Þ

where yARm, ∇gðxÞ denotes the gradient matrix of g. According to
the KKT condition, it is well known that if the problem (1) satisfies
Slater's condition, which means there exists a strictly feasible
point for the problem (1), i.e., there exists an xARn such that �g
xð ÞA intðKÞ and Ax¼b. Then, for the nonlinear convex programs
(1), xn is a solution of the problem (1) if and only if there exist yn

and zn such that ðxn; yn; znÞ satisfying the KKT conditions (4), see
[2]. Hence, we assume that the problem (1) satisfies Slater's con-
dition in this paper.

Lemma 3.1. For z¼ z1; z2ð ÞAR� Rn�1 and x¼ ðx1; x2ÞAR� Rn�1

with z≽Kx, we have λi zð ÞZλiðxÞ for i¼1,2.

Proof. Since z≽Kx, we may express z¼ xþy where
x¼ x1; x2ð ÞAR� Rn�1, y¼ y1; y2

� �
AR� Rn�1 and y¼ z�x≽K0.

This implies y1Z Jy2 J and

λ1ðzÞ ¼ ðx1þy1Þ� Jx2þy2 J
Z ðx1þy1Þ� Jx2 J� Jy2 J
Zx1� Jx2 J ¼ λ1ðxÞ:

Thus, we have

λ2ðzÞ ¼ ðx1þy1Þþ Jx2þy2 JZ ðx1þy1Þþ j Jx2 J� Jy2 J j

¼
x1þy1þ Jx2 J� Jy2 J ; if Jx2 JZ Jy2 J
x1þy1� Jx2 Jþ Jy2 J ; if Jx2 Jo Jy2 J

(

Z
x1þ Jx2 J ; if Jx2 JZ Jy2 J
x1þy1; if Jx2 Jo Jy2 J

(

Zx1þ Jx2 J ¼ λ2ðxÞ

which is the desired result. □

Lemma 3.2. Let w≔wðx; yÞ ¼ jxj pþjyj p, t ¼ t x; yð Þ≔ ffiffiffiffi
wp

p
and

gsoc xð Þ≔j xj p. Then, the following three matrices

∇gsocðtÞ�∇gsocðxÞ;∇gsocðtÞ�∇gsocðyÞ;
∇gsocðtÞ�∇gsocðxÞ� �

∇gsocðtÞ�∇gsocðyÞ� �

are all positive semi-definite for p¼ n
2 with nAN.

Proof. From the expression of ∇gsocðxÞ in Lemma 2.5 and the proof
of [32, Lemma 3.2], we know that the eigenvalues of ∇gsocðxÞ for
x2a0 are

bðxÞ�cðxÞ; aðxÞ;…; aðxÞ; and bðxÞþcðxÞ:
Let w≔ w1;w2ð ÞAR� Rn�1. Then applying [32, Lemma 3.1] gives

w1 ¼
jλ2ðxÞj pþjλ1ðxÞj p

2
þjλ2ðyÞj pþjλ1ðyÞj p

2

w2 ¼
jλ2ðxÞj p�jλ1ðxÞj p

2
x2þ

jλ2ðyÞj p�jλ1ðyÞj p
2

y2;

where x2 ¼ x2
J x2 J

if x2a0, and otherwise x2 is an arbitrary vector in
Rn�1 satisfying Jx2 J ¼ 1. Similar situation applies for y2. Thus, we
will proceed the proof by discussing two cases: w2 ¼ 0 or w2a0.

Case 1: For w2 ¼ 0, we have ∇gsocðtÞ ¼ p
ffiffiffiffiffiffiffi
w1

q
p

I where

w1 ¼
jλ2ðxÞj pþjλ1ðxÞj p

2
þjλ2ðyÞj pþjλ1ðyÞj p

2
: ð5Þ

Under the condition of w2 ¼ 0, there are the following two
subcases.

(i) If x2 ¼ 0, then w1 ¼ j x1 j pþ j λ2ðyÞj p þ j λ1ðyÞj p
2 , which implies that

p
ffiffiffiffiffiffiffi
w1

q
p

Zpsignðx1Þjx1 j p�1. Hence, we see that the matrix ∇gsocðtÞ�
∇gsocðxÞ is positive semi-definite. Indeed, if xa0, ∇gsocðtÞ�∇gsocðxÞ
is positive definite.

(ii) If x2a0, it follows from w2 ¼ 0 that

jλ2ðxÞj p�jλ1ðxÞj p
2










¼ jλ2ðyÞj p�jλ1ðyÞj p

2










: ð6Þ

We want to prove that the matrix ∇gsocðtÞ�∇gsocðxÞ is positive
semi-definite. It is sufficient to show that

p
ffiffiffiffiffiffiffi
w1

q
p

Zmax bðxÞ�cðxÞ; aðxÞ; bðxÞþcðxÞ� �
:

It is obvious that p
ffiffiffiffiffiffiffi
w1

q
p �ðbðxÞ�cðxÞÞ40 when λ1ðxÞo0. When

λ1ðxÞZ0, using (5) and λ2 xð ÞZλ1ðxÞ, we have

p
ffiffiffiffiffiffiffi
w1

q
p �ðbðxÞ�cðxÞÞZp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ1ðxÞj pq

q
�psignðλ1ðxÞÞjλ1ðxÞj p�1

Z0:

Next, we verify that p
ffiffiffiffiffiffiffi
w1

q
p �aðxÞZ0. For jλ1ðxÞjZ jλ2ðxÞj , it is

clear that p
ffiffiffiffiffiffiffi
w1

q
p �aðxÞZ0. For jλ1ðxÞjo jλ2ðxÞj , it follows from λ2

xð ÞZλ1ðxÞ that x140, which yields

jλ2ðxÞj p�jλ1ðxÞj p
λ2ðxÞ�λ1ðxÞ

rλ2 xð Þp�jλ1ðxÞj p
λ2ðxÞ� jλ1ðxÞj

:

Let p¼ n
m ðn;mANÞ, a¼ λ2 xð Þ1m and b¼ jλ1ðxÞj 1

m. From p41, it fol-
lows that n4m. Then, we have 0rboa and

aðxÞ ¼ an�bn

am�bm
¼ an�1þan�2bþ…þabn�2þbn�1

am�1þam�2bþ…þabm�2þbm�1:

Now, letting f ðvÞ ¼ an �vn
am �vm with vA ½0; a�, we obtain

f 0ðvÞ ¼ �nvn�1ðam�vmÞþmvm�1ðan�vnÞ
am�vmð Þ2

:

In addition, it follows from f 0ðvÞ ¼ 0 that

an�vn

am�vm
¼ n
m
vn�m:

Since f ð0Þ ¼ an
am ¼ an�m with v¼0 and f ðaÞ ¼ n

ma
n�m with v¼a, it is

easy to verify that f bð Þr n
ma

n�m for 0rboa, i.e.,

jλ2ðxÞj p�jλ1ðxÞj p
λ2ðxÞ�λ1ðxÞ

rp jλ2ðxÞj p�1:

Hence, we have

p
ffiffiffiffiffiffiffi
w1

q
p �aðxÞZp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfjλ2ðxÞj p; jλ1ðxÞj pgþminfjλ2ðyÞj p; jλ1ðyÞj pgq

q

�jλ2ðxÞj p�jλ1ðxÞj p
λ2ðxÞ�λ1ðxÞ

Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 xð Þpq

q
�pjλ2ðxÞj p�1

Z0;

where the first inequality holds due to (6). Lastly, we also see that

p
ffiffiffiffiffiffiffi
w1

q
p �ðbðxÞþcðxÞÞZp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfjλ2ðxÞj p; jλ1ðxÞj pgþminfjλ2ðyÞj p; jλ1ðyÞj pgq

q

�psignðλ2ðxÞÞjλ2ðxÞj p�1

Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfjλ2ðxÞj p; jλ1ðxÞj pgq

q
�psignðλ2ðxÞÞjλ2ðxÞj p�1

Z0:

To sum up, under this case x2a0, we prove that the matrix ∇gsoc

ðtÞ�∇gsocðxÞ is positive semi-definite.
Case 2: For w2a0, from the expression of tðx; yÞ and the

properties of the spectral values of the vector-valued function jxj p
with p¼ n

2 for nAN, all the eigenvalues of the matrix ∇gsocðtÞ are
bðtÞ�cðtÞraðtÞrbðtÞþcðtÞ: ð7Þ
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When x2 ¼ 0, we note that

bðtÞ�cðtÞ�psignðx1Þjx1 j p�1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðwÞp

q� �p�1

�psignðx1Þjx1 j p�1

¼ p
jλ2ðxÞj pþjλ1ðxÞj p

2
þjλ2ðyÞj pþjλ1ðyÞj p

2

�

� J
jλ2ðxÞj p�jλ1ðxÞj p

2
x2þ

jλ2ðyÞj p�jλ1ðyÞj p
2

y2 J
�p� 1

p

�psignðx1Þjx1 j p�1

Zpjx1 j p�1�psignðx1Þjx1 j p�1

Z0;

where y2 denotes y2 ¼ y2
Jy2 J

when y2a0, and otherwise y2 is an
arbitrary vector in Rn�1 satisfying Jy2 J ¼ 1. Now, applying the
relation of the eigenvalues in (7), we have

bðtÞþcðtÞZaðtÞZpsignðx1Þjx1 j p�1;

which implies that the matrix ∇gsocðtÞ�∇gsocðxÞ is positive semi-
definite.

When x2a0, we also note that

bðtÞ�cðtÞ� bðxÞ�cðxÞð Þ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðwÞp

q� �p�1

�psignðλ1ðx1ÞÞjλ1ðx1Þj p�1:

For λ1ðxÞo0, it is clear that bðtÞ�cðtÞ�ðbðxÞ�cðxÞÞZ0. For
λ1 xð ÞZ0, we have λ2ðxÞZλ1 xð ÞZ0, which leads to

λ1ðwÞ ¼ jλ2ðxÞj pþjλ1ðxÞj p
2

þjλ2ðyÞj pþjλ1ðyÞj p
2

� jλ2ðxÞj p�jλ1ðxÞj p
2

x2þ
jλ2ðyÞj p�jλ1ðyÞj p

2
y2

����
����

Z
jλ2ðxÞj pþjλ1ðxÞj p

2
�jλ2ðxÞj p�jλ1ðxÞj p

2

þjλ2ðyÞj pþjλ1ðyÞj p
2

� jλ2ðyÞj p�jλ1ðyÞj p
2












Z jλ1ðxÞj p:
Thus, it follows that bðtÞ�cðtÞ�ðbðxÞ�cðxÞÞZ0. Moreover, since
t≽K jxj , by Lemma 3.1 and the eigenvalue of j xj being jλ1ðxÞj and
jλ2ðxÞj , we have

λ2ðtÞZmaxfjλ1ðxÞj ; jλ2ðxÞj g
andλ1ðtÞZminfjλ1ðxÞj ; jλ2ðxÞj g: ð8Þ

When p¼ n
2 with nAN, then, we have

aðtÞ�aðxÞ ¼ λ2 tð Þn2�λ1 tð Þn2
λ2ðtÞ�λ1ðtÞ

� jλ2ðxÞj n2�jλ1ðxÞj n2
λ2ðxÞ�λ1ðxÞ

:

If jλ2ðxÞjo jλ1ðxÞj , it is obvious that aðtÞ�aðxÞZ0. If
jλ2ðxÞjZ jλ1ðxÞj , in light of λ2 xð ÞZλ1ðxÞ, we obtain that x1Z0 and
λ2ðxÞZ0. Now, let

a≔λ2 tð Þ12; b≔λ1 tð Þ12; c≔λ2 xð Þ12 and d≔jλ1ðtÞj
1
2:

Then, we get that

aðtÞ�aðxÞ ¼ an�bn

a2�b2
�cn�dn

c2�d2

¼ ðan�1þan�2bþ…þabn�2þbn�1ÞðcþdÞ
ðaþbÞðcþdÞ

�ðaþbÞðcn�1þcn�2dþ…þcdn�2þdn�1Þ
ðaþbÞðcþdÞ

¼ an�1cþbcðan�2þan�3bþ…þabn�3þbn�2Þ
ðaþbÞðcþdÞ

þadðan�2þan�3bþ…þabn�3þbn�2Þþbn�1d
ðaþbÞðcþdÞ

�acn�1þadðcn�2þcn�3dþ…þcdn�3þdn�2Þ
ðaþbÞðcþdÞ
�bcðcn�2þcn�3dþ…þcdn�3þdn�2Þþbdn�1

ðaþbÞðcþdÞ ;

which together with (8) implies that

aZc; bZdZ0 and aðtÞ�a xð ÞZ0:

In addition, we also verity that

bðtÞþcðtÞ�ðbðxÞþcðxÞÞ ¼ p λ2ðtÞ
� �p�1�psignðλ2ðxÞÞjλ2ðxÞj p�1

Z0:

Therefore, for any xARn, we have

xT ð∇gsocðtÞ�∇gsocðxÞÞx¼ xT∇gsocðtÞx�xT∇gsocðxÞx
¼ bðtÞ�cðtÞþðn�2ÞaðtÞþbðtÞþcðtÞ	 


xTx

� bðxÞ�cðxÞþðn�2ÞaðxÞþbðxÞþcðxÞ	 

xTx

Z0;

which shows that the matrix ∇gsocðtÞ�∇gsocðxÞ is positive semi-
definite.

With the same arguments, we can verify that the matrix ∇gsoc

ðtÞ�∇gsocðyÞ is also positive semi-definite.
Finally, using the properties of eigenvalues of symmetric matrix

product, i.e.,

λiðABÞZλiðAÞλminðBÞ; i¼ 1;…;n; 8A;BASn�n;

where Sn�n denotes n order symmetric matrix, we easily obtain
that the matrix ð∇gsocðtÞ�∇gsocðxÞÞð∇gsocðtÞ�∇gsocðyÞÞ is also posi-
tive semi-definite.□

Remark 3.1. From the above proof of Lemma 3.2, when xa0 and
ya0, we have that the matrixes ∇gsocðtÞ�∇gsocðxÞ, ∇gsocðtÞ�∇gsoc

ðyÞ and ð∇gsocðtÞ�∇gsocðxÞÞð∇gsocðtÞ�∇gsocðyÞÞ are all positive
definite.

Now, we look into the KKT conditions (4) of the problem (1). Let

Lðx; y; zÞ ¼∇f ðxÞ�ATyþ∇gðxÞz;

HðuÞ≔
Ax�b
Lðx; y; zÞ

ϕpðz; �gðxÞÞ

2
64

3
75 ð9Þ

and

Ψ pðuÞ≔
1
2
JHðuÞJ2 ¼ 1

2
Jϕpðz; �gðxÞÞJ2þ1

2
JLðx; y; zÞJ2þ1

2
JAx�bJ2;

where u¼ xT ; yT ; zT
� �T

ARn � Rm � Rl. From Lemma 2.5 in [32], we
know that

ϕpðz; �gðxÞÞ ¼ 0⟺zAK; �gðxÞAK; �zTgðxÞ ¼ 0:

Hence, the KKT conditions (4) are equivalent to HðuÞ ¼ 0, i.e.,
Ψ pðuÞ ¼ 0. Then, it follows that the KKT conditions (4) are
equivalent to the following unconstrained minimization problem
with zero optimal value via the merit function approach:

min Ψ p uð Þ≔1
2
JHðuÞJ2: ð10Þ

However, the function ϕp is not K-convex and the merit function
Ψp is neither convex function for p¼2, which is showed in
Example 3.5 of [3].

Theorem 3.1. Let Ψp be defined as in (10).

(a) The matrix ∇gsocðxÞ is positive definite for all 0axAK.
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(b) The function Ψp for pA ð1;4Þ is continuously differentiable
everywhere. Moreover, ∇Ψ pðuÞ ¼∇HðuÞHðuÞ where

∇HðuÞ ¼
AT ∇xLðx; y; zÞ �∇gðxÞV1

0 �A 0
0 ∇g xð ÞT V2

2
64

3
75 ð11Þ

with

V1 ¼

0; wðz; �gðxÞÞ ¼ j zj pþj �gðxÞj p ¼ 0;
∇gsoc xð Þ∇gsoc tð Þ�1� I; w z; �gðxÞð ÞA intðKÞ;
signð�g1ðxÞÞj �g1ðxÞj p�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j �g1ðxÞj pþj z1 j pq
p �1; w z; �gðxÞð ÞA∂K⧹f0g

8>>>><
>>>>:

and

V2 ¼

0; wðz; �gðxÞÞ ¼ j zj pþj �gðxÞj p ¼ 0;
∇gsoc zð Þ∇gsoc tð Þ�1� I; w z; �gðxÞð ÞA intðKÞ;
signðz1Þj z1 j p�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j �g1ðxÞj pþj z1 j pq

p �1; w z; �gðxÞð ÞA∂K⧹f0g

8>>>><
>>>>:

with t≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðz; �gðxÞÞp

p
.

Proof. (a) For all 0axAK, if x2 ¼ 0, it is obvious that the matrix
∇gsocðxÞ ¼ psignðx1Þjx1 j p�1I is positive definite. If xa0, from the
expression of ∇gsocðxÞ in Lemma 2.5 and xAK, we have bðxÞ40. In
order to prove that the matrix ∇gsocðxÞ is positive definite, it suf-
fices to show that the Schur complement of b(x) in the matrix ∇
gsocðxÞ is positive definite. In fact, from the expression of ∇gsocðxÞ,
the Schur complement has the form

aðxÞIþðbðxÞ�aðxÞÞx2 xT2�
c2ðxÞ
bðxÞ x2 xT2 ¼ aðxÞðI�x2 xT2ÞþbðxÞ 1�c2ðxÞ

bðxÞ

� �
x2 xT2 :

Since xAK, we have λ2 xð ÞZλ1 xð ÞZ0, which implies that aðxÞ40
and bðxÞ4c xð ÞZ0. Note that the matrices I�x2 xT2 and x2 xT2 are
positive semi-definite. Thus, the Schur complement is positive
definite. Further, we get that ∇gsocðxÞ is positive definite for all
0axAK.

(b) From the proof of Proposition 3.1 and Lemma 3.2 of [32], we
know that the function Ψp for pAð1;4Þ is continuously differ-
entiable everywhere. Hence, in view of the definition of the
function Ψp and the chain rule, the expression of ∇Ψ pðuÞ is
obtained.□

In light of the main ideas for constructing artificial neural
networks (see [8] for details), we will establish a specific first order
ordinary differential equation, i.e., an artificial neural network.
Moreover, specifically, based on the gradient of the merit function
Ψp in minimization problem (10), we propose the neural network
for solving the KKT system (4) of nonlinear SOCP (1) with the
following differential equation:

duðtÞ
dt

¼ �ρ∇Ψ pðuÞ; uðt0Þ ¼ u0; ð12Þ

where ρ40 is a time scaling factor. In fact, if τ¼ ρt, then
duðtÞ
dt ¼ ρduðτÞ

dτ . Hence, it follows from (12) that duðτÞ
dτ ¼ �∇Ψ pðuÞ. For

simplicity and convenience, we set ρ¼ 1 in this paper.
4. Stability analysis

In this section, we are interested in the stability analysis about
the proposed neural network (12). By these theoretical analyses,
the desired optimal solution of SOCP (1) can always be obtained by
setting the initial state of the network of an arbitrary value. In
order to study the stability issues on the proposed neural network
(12) for solving SOCP (1), we first make an assumption which will
be needed in our subsequent analysis, in order to avoid the sin-
gularity of ∇HðuÞ.
Assumption 4.1.

(a) The SOCP problem (1) satisfies Slater's condition.
(b) The matrix ½AT ∇gðxÞ� is full column rank, and the matrix

∇xLðx; y; zÞ is positive definite on the null space ft j At ¼ 0g
of A.

Here we say a few words about Assumption 4.1(a) and (b).
Slater's condition is a standard condition which is widely used in
optimization field. When g is linear, Assumption 4.1(b) is indeed
equivalent to the well-used condition ∇2f ðxÞ is positive definite.

Lemma 4.1. Let p¼ n
2Að1;4Þ with nAN. Then, the following hold.

(a) Under the condition of Assumption 4.1, ∇HðuÞ is nonsingular
for u¼ x; y; zð ÞARn � Rm � Rl with z; �gðxÞð Þa0.

(b) Every stationary point of Ψp is a global minimizer of problem
(10) for z; �gðxÞð Þa0.

(c) Ψ pðuðtÞÞ is nonincreasing with respect to t.

Proof. (a) Suppose ξ¼ s; t; vð ÞARn � Rm � Rl. From the expression
(11) of ∇HðuÞ in Theorem 3.1, to show the nonsingularity of ∇HðuÞ,
it is enough to prove that

∇H uð Þξ¼ 0 ⟹ s¼ 0; t ¼ 0 and v¼ 0:

Indeed, by ∇H uð Þξ¼ 0, we have

�At ¼ 0; ATsþ∇xLðx; y; zÞ t�∇gðxÞV1v¼ 0 ð13Þ
and

∇g xð ÞT tþV2v¼ 0: ð14Þ
From (13), it follows that

tT∇xLðx; y; zÞt�tT∇gðxÞV1v¼ 0: ð15Þ
Moveover, by Eq. (14), we obtain

tT∇gðxÞ ¼ �vTVT
2 : ð16Þ

Then, combining (15) and (16), this yields that

tT∇xLðx; y; zÞtþvTVT
2V1v¼ 0:

By Lemma 3.2 and Assumption 4.1(b), it is not hard to see that
t¼0. In addition, from (13) and (14), we have

ATs�∇gðxÞV1v¼ 0 and V2v¼ 0:

By Assumption 4.1(b) again, we also get that

s¼ 0 and V1v¼ 0:

Thus, combining Lemma 3.2 with the expression V1 and V2 in
Theorem 3.1, we have v¼0. Therefore, ∇H uð ÞT is nonsingular.

(b) Suppose that un is a stationary point of Ψp. This says
∇Ψ pðunÞ ¼ 0, and from Theorem 3.1, we have ∇HðunÞHðunÞ ¼ 0.
According to part(a), ∇HðuÞ is nonsingular. Hence, it follows that
HðunÞ ¼ 0, i.e., Ψ pðunÞ ¼ 0, which says un is a global minimizer of
(10).

(c) By the definition of Ψ pðuðtÞÞ and (12), it is clear that

dΨ pðuðtÞÞ
dt

¼∇Ψ pðuðtÞÞduðtÞdt
¼ �ρ ∇Ψ pðuðtÞÞ

�� ��2r0:

Therefore, Ψ pðuðtÞÞ is nonincreasing with respect to t.□

Proposition 4.1. Assume that ∇HðuÞ is nonsingular for any uARn �
Rm � Rl and p¼ n

2Að1;4Þ with nAN. Then,

(a) ðxn; yn; znÞ satisfies the KKT conditions (4) if and only if ðxn;
yn; znÞ is an equilibrium point of the neural network (12);
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(b) under Slater's condition, xn is a solution of the problem (1) if
and only if ðxn; yn; znÞ is an equilibrium point of the neural
network (12).

Proof. (a) It is easy to prove that ðxn; yn; znÞ satisfies the KKT
conditions (4) if and only if HðunÞ ¼ 0 where un ¼ xn; yn; znð ÞT .
According to the condition that ∇HðuÞ is nonsingular, we have that
HðunÞ ¼ 0 if and only if ∇Ψ pðunÞ ¼∇H unð ÞTHðunÞ ¼ 0. Then the
desired result follows.

(b) Under Slater's condition, it is well known that xn is a solu-
tion of the problem (1) if and only if there exist yn and zn such that
ðxn; yn; znÞ satisfying the KKT conditions (4). Hence, by part (a), it
follows that ðxn; yn; znÞ is an equilibrium point of the neural net-
work (12).□

The next result addresses the existence and uniqueness of the
solution trajectory of the neural network (12).

Theorem 4.1. For any fixed p¼ n
2Að1;4Þ with nAN, the following

hold.

(a) For any initial point u0 ¼ uðt0Þ, there exists a unique con-
tinuously maximal solution u(t) with tA ½t0; τÞ for the neural
network (12), where ½t0; τÞ is the maximal interval of
existence.

(b) If the level set L u0ð Þ≔fu j Ψ p uð ÞrΨ pðu0Þg is bounded, then
τ can be extended to þ1.

Proof. This proof is exactly the same as the proof of [33, Propo-
sition 3.4]. Hence, we omit it here.□

Theorem 4.2. Assume that ∇HðuÞ is nonsingular and un is an iso-
lated equilibrium point of the neural network (12). Then, the solution
of the neural network (12) with any initial point u0 is Lyapunov
stable.

Proof. From Lemma 2.3, we only need to argue that there exists a
Lyapunov function over some neighborhood Ω of un. To this end,
we consider the smoothed merit function for p¼ n

2A ð1;4Þ with
nAN

Ψ pðuÞ ¼
1
2
JHðuÞJ2:

Since un is an isolated equilibrium point of (12), there is a neigh-
borhood Ω of un such that

∇Ψ pðunÞ ¼ 0 and ∇Ψ p uðtÞð Þa0; 8u tð ÞAΩ⧹fung:

By the nonsingularity of ∇HðuÞ and the definition ofΨp, it is easy to
obtain that Ψ pðunÞ ¼ 0. From the definition of Ψp, we claim that
Ψ pðuðtÞÞ40 for any u tð ÞAΩ⧹fung, where Ω is a neighborhood of
un. If not, that is, Ψ pðuðtÞÞ ¼ 0, it follows that HðuðtÞÞ ¼ 0. Then, we
have ∇Ψ pðuðtÞÞ ¼ 0, which contradicts with the assumption that un

is an isolated equilibrium point of (12). Thus, Ψ pðuðtÞÞ40 for any
u tð ÞAΩ⧹fung. Moreover, by the proof of Lemma 4.1(c), we know
that for any u tð ÞAΩ

dΨ pðuðtÞÞ
dt

¼∇Ψ pðuðtÞÞ
duðtÞ
dt

¼ �ρJ∇Ψ pðuðtÞÞJ2r0: ð17Þ

Therefore, the function Ψp is a Lyapunov function over Ω. This
implies that un is Lyapunov stable for the neural network (12).□

Theorem 4.3. Assume that ∇HðuÞ is nonsingular and un is an iso-
lated equilibrium point of the neural network (12). Then, un is
asymptotically stable for neural network (12).

Proof. From the proof of Theorem 4.2, we consider again the
Lyapunov function Ψp for p¼ n

2A ð1;4Þ with nAN. By Lemma 2.3
again, we only need to verify that the Lyapunov function Ψp over
some neighborhood Ω of un satisfies

dΨ pðuðtÞÞ
dt

o0; 8u tð ÞAΩ⧹ un
� �

: ð18Þ

In fact, by using (17) and the definition of the isolated equilibrium
point, it is not hard to check that Eq. (18) is true. Hence, un is
asymptotically stable.□

Theorem 4.4. Assume that un is an isolated equilibrium point of the
neural network (12). If ∇H uð ÞT is nonsingular for any
u¼ x; y; zð ÞARn � Rm � Rl, then un is exponentially stable for the
neural network (12).

Proof. From the definition of H(u) and Lemma 2.6, we have

HðuÞ ¼HðunÞþ∇H uðtÞð ÞT ðu�unÞþoðJu�un J Þ; 8uAΩ⧹fung; ð19Þ
where ∇H uðtÞð ÞT A∂HðuðtÞÞ and Ω is the neighborhood of un. Now,
letting

gðuðtÞÞ ¼ JuðtÞ�un J2; tA ½t0;1Þ;
we have

dgðuðtÞÞ
dt

¼ 2 uðtÞ�un
� �TduðtÞ

dt
¼ �2ρ uðtÞ�un

� �T∇Ψ pðuðtÞÞ
¼ �2ρ uðtÞ�un

� �T∇HðuÞHðuÞ: ð20Þ
Substituting (19) into (20) yields

dgðuðtÞÞ
dt

¼ �2ρ uðtÞ�un
� �T∇HðuðtÞÞo ðH un

� �
þ∇H uðtÞð ÞT ðuðtÞ�unÞþoðJuðtÞ�un J ÞÞ

¼ �2ρ uðtÞ�un
� �T∇HðuðtÞÞ∇H uðtÞð ÞT uðtÞ�un

� �
þoðJuðtÞ�un J2Þ:

Since ∇HðuÞ and ∇H uð ÞT are nonsingular, we claim that there exists
an κ40 such that

uðtÞ�un
� �T∇H uð Þ∇H uð ÞT uðtÞ�un

� �
Zκ JuðtÞ�un J2: ð21Þ

Otherwise, if uðtÞ�unð ÞT∇H uðtÞð Þ∇H uðtÞð ÞT ðuðtÞ�unÞ ¼ 0, it implies
that

∇H uðtÞð ÞT ðuðtÞ�unÞ ¼ 0:

Indeed, from the nonsingularity of H(u), we have uðtÞ�un ¼ 0, i.e.,
uðtÞ ¼ un, which contradicts with the assumption of un that is an
isolated equilibrium point. Therefore, there exists an κ40 such
that (21) holds. Moreover, for oðJuðtÞ�un J2Þ, there is ε40 such
that oðJuðtÞ�un J2ÞrεJuðtÞ�un J2. Hence,

dgðuðtÞÞ
dt

r ð�2ρκþεÞJuðtÞ�un J2 ¼ ð�2ρκþεÞgðuðtÞÞ:

This implies

g uðtÞð Þreð�2ρκþεÞtgðuðt0ÞÞ;
which means

JuðtÞ�un Jre�ρκþ ε
2 Juðt0Þ�un J :

Thus, un is exponentially stable for the neural network (12).□
5. Numerical examples

In order to demonstrate the effectiveness of the proposed
neural network, we test several examples for our neural network
(12) in this section. The numerical implementation is coded by
Matlab 7.0 and the ordinary differential equation solver adopted
here is ode23, which uses Ruge–Kutta ð2;3Þ formula. As mentioned
earlier, the parameter ρ is set to be 1. How is μ chosen initially?
From Theorem 4.2 in last section, we know the solution will



Fig. 1. Transient behavior of the neural network with the generalized FB function
(p¼7) in Example 5.1.

Fig. 2. Convergence comparison for Example 5.1.
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converge with any initial point, we set initial μ¼ 1 in the codes
(and of course μ-0, as seen in the trajectory behavior).

To implement the proposed neural network (12), the calcula-
tion of ∇Ψ pðuÞ is required. As below, we describe the step-by-step
scheme for computing ∇Ψ pðuÞ.

Step 1. With u¼ x; y; zð ÞT , we first calculate g(x), ∇gðxÞ, ∇f ðxÞ,
Lðx; y; zÞ, and ∇xLðx; y; zÞ.

Step 2. Compute ϕpðz; �gðxÞÞ and its gradient.
Step 3. Compute H(u) and ∇HðuÞ given as in (9) and (11),

respectively.
Step 4. Next, ∇Ψ pðuÞ can be obtained by ∇HðuÞHðuÞ. Then, the

ordinary differential equation solver Matlab ode23, which
uses Runge–Kutta formula, is adopted for the numerical
simulations.

Example 5.1. Consider the following nonlinear convex program-
ming problem:

min e x1 �3ð Þ2 þ x22 þ x3 �1ð Þ2 þ x4 �2ð Þ2 þ x5 þ1ð Þ2

s:t: xAK5

Here we denote

f xð Þ≔e x1 �3ð Þ2 þ x22 þ x3 �1ð Þ2 þ x4 �2ð Þ2 þ x5 þ1ð Þ2

and gðxÞ ¼ �x. Hence, we compute that

Lðx; zÞ ¼∇f ðxÞþ∇gðxÞz

¼ 2f ðxÞ

x1�3
x2

x3�1
x4�2
x5þ1

2
6666664

3
7777775
�

z1
z2
z3
z4
z5

2
6666664

3
7777775
:

This problem has an optimal solution xn ¼ ð3;0;1;2; �1ÞT . We use
the proposed neural network to solve the above problem whose
trajectories are depicted in Fig. 1. All simulation results show that
the state trajectories with any initial point are always convergent
to an optimal solution of the above problem xn. From Fig. 2, we see
that the performance in “good order” is the model based on
smoothed NR function used in [29], the current model based on
smoothed generalized FB function with p¼7, the current model
based on smoothed generalized FB function with p¼4, the current
model based on smoothed generalized FB function with p¼3, the
current model based on smoothed generalized FB function with
p¼2. The LPNN approach solves this problem, but its performance
is not good.

Example 5.2. Consider the following nonlinear second-order cone
programming problem:

min f ðxÞ ¼ x21þ2x22þ2x1x2�10x1�12x2

s:t: gðxÞ ¼
8�x1þ3x2

3�x21�2x1þ2x2�x22

" #
AK2:

For this example, we compute that

Lðx; zÞ ¼∇f ðxÞþ∇gðxÞz

¼
2x1þ2x2�10
4x2þ2x1�12

" #
�

�z1�2ðx1þ1Þz2
3z1þ2ð1�x2Þz2

" #
:

This problem has an approximate solution xn ¼ ð2:8308;1:6375ÞT .
Note that the objective function is convex and the Hessian matrix
∇2f ðxÞ is positive definite. Using the proposed neural network in
this paper, we can easily obtain the approximate solution xn of the
above problem, see Fig. 3. From Fig. 4, we see that the performance
in “good order” is the current model based on smoothed gen-
eralized FB function with p¼2, the current model based on
smoothed generalized FB function with p¼3, the current model
based on smoothed generalized FB function with p¼4, the model
based on smoothed NR function used in [29], the current model
based on smoothed generalized FB function with p¼7. Again, the
LPNN approach solves this problem, but its performance is not
good.

Example 5.3. Consider the following nonlinear convex program
with second-order cone constraints [21]:

min eðx1 � x3Þ þ3 2x1�x2ð Þ4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2þ5x3ð Þ2

q
s:t: AxþbAK2

6xAK3



Fig. 5. Transient behavior of the neural network with the generalized FB function
(p¼4) in Example 5.3.

Fig. 6. Convergence comparison for Example 5.3.

Fig. 3. Transient behavior of the neural network with the generalized FB function
(p¼3) in Example 5.2.

Fig. 4. Convergence comparison for Example 5.2.
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where

A : ¼ 4 6 3
�1 7 �5

� �
; b : ¼ �1

2

� �
:

For this example, f xð Þ≔eðx1 � x3Þ þ3 2x1�x2ð Þ4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2þ5x3ð Þ2

q
,

from which we have

Lðx; y; zÞ ¼∇f ðxÞþ∇gðxÞy�6∇xz

¼

eðx1 � x3Þ þ24 2x1�x2ð Þ3

�12 2x1�x2ð Þ3þ 3ð3x2þ5x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2þ5x3ð Þ2

q
�eðx1 � x3Þ þ 5ð3x2þ5x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3x2þ5x3ð Þ2
q

2
666666664

3
777777775

�
4y1�y2
6y1þ7y2
3y1�5y2

2
64

3
75�6

z1
z2
z3

2
64

3
75:

The approximate solution of this problem is xn ¼ ð0:2324;
�0:07309;0:2206ÞT , see Fig. 5. From Fig. 6, there is no marginal
difference for all models. Note that the LPNN approach cannot
solve this problem.

Example 5.4. Consider the following nonlinear second-order cone
programming problem:

min f ðxÞ ¼ ex1x3 þ3 x1þx2ð Þ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x2�x3ð Þ2

q
þ1

2x
2
4þ1

2x
2
5

s:t: hðxÞ ¼ �24:51x1þ58x2�16:67x3�x4�3x5þ11¼ 0

�g1ðxÞ ¼
3x31þ2x2�x3þ5x23

�5x31þ4x2�2x3þ10x33
x3

2
64

3
75AK3

�g2ðxÞ ¼
x4
3x5

" #
AK2

For this example, we compute

Lðx; y; zÞ ¼∇f ðxÞþ
∇g1ðxÞy
∇g2ðxÞz

" #



Fig. 7. Transient behavior of the neural network with the generalized FB function
(p¼3) in Example 5.4. Fig. 8. Convergence comparison for Example 5.4.
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¼

x3eðx1x3Þ þ6ðx1þx2Þ
6ðx1þx2Þ�

2ð2x2�x3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x2�x3ð Þ2

q
x1eðx1x3Þ þ

2x2�x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x2�x3ð Þ2

q
x4
x5

2
6666666666664

3
7777777777775

�

9x21y1�15x21y2
2y1þ4y2

ð10x3�1Þy1þð30x23�2Þy2þy3
z1
3z2

2
6666664

3
7777775
:

This problem has an approximate solution xn ¼
ð�0:0903; �0:0449;0:6366;0:0001;0ÞT and Fig. 7 displays the
trajectories obtained by using the proposed new neural network.
All simulation results show that the state trajectory with any
initial point are always convergent to the solution xn. As observed
in Fig. 8, the neural network with the smoothed NR function has a
better convergence rate, and it is hard to see the effect when p is
perturbed. Note that the LPNN approach cannot solve this
problem.

In our numerical implementations, we test p¼ 2;3;4;7 to see
how it affects the numerical performance when it is perturbed. We
also compare with the neural network model used in [29], which
is based on “smoothed” NR function. In general, there is no big
difference between our model based on “smoothed” generalized
FB function and the one in [29]. Only slight better performance for
the one used in [29] in Example 5.1, 5.3, 5.4 are observed. Another
observation is that there is no regular change for numerical per-
formance when p is perturbed. For Example 5.1, when p is
increased, its performance becomes better. However, for Example
5.2, when p is increased, its performance becomes less better.
These two phenomena do not occur in other two examples.
Moreover, as suggested by one referee, we also have a comparison
with the standard Lagrange programming neural networks
(LPNN), which is studied in [42]. The LPNN for Example 5.1 and 5.2
has bad convergence shown as in Figs. 2 and 4 compared to other
methods. For other examples, the LPNN does not even solve them
successfully so that it is not depicted in other figures. The
numerical comparisons verify the effectiveness of our proposed
neural networks. To sum up, based on the numerical results, we
can conclude that the proposed neural network model is definitely
better than the standard LPNN model. In addition, although the
difference between the proposed neural network model and the
one based on “smoothed” NR function in [29] is very slight, it is
generally true that our model is better than the aforementioned
one when an appropriate p is chosen. How to determine an sui-
table p is a good topic for future study.
6. Concluding remarks

In this paper, we have studied a neural network approach for
solving general nonlinear convex programs with second-order
cone constraints. The neural network is based on the gradient of
the merit function derived from the generalized FB merit function,
which involves parameter pA ð1;4Þ. For such neural network, the
Lyapunov stability, the asymptotic stability and the exponential
stability are proved, which indicates its effectiveness. Moreover,
numerical performance based on the parameter p being perturbed
and numerical comparison with other neural network model are
also provided. There is limited value of p ðp¼ n

2Að1;4ÞÞ that could
be perturbed because Ψp is theoretically shown to be smooth only
in pAð1;4Þ under SOC case, so far. Can we extend the above results
to the case of general p? In other words, whether p¼ n

2A ð1;4Þ can
be relaxed to more general real value? This is one of our future
directions. Moreover, we will try to show the smoothness of Ψp

associated with SOC in a wider interval in the future. Recently,
some other discrete types of complementarity functions asso-
ciated with SOC have been proposed in [28]. Another direction is
to design neural network based on “discrete” types of com-
plementarity functions. Of course, it will be very interesting to see
the comparisons of neural networks based on continuous type of
complementarity functions (like the NR function and FB function)
and discrete types of complementarity functions.
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