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In this paper, we illustrate a new concept regarding unitary 
elements defined on Lorentz cone, and establish some basic 
properties under the so-called unitary transformation associ-
ated with Lorentz cone. As an application of unitary transfor-
mation, we achieve a weaker version of the triangle inequality 
and several (weak) majorizations defined on Lorentz cone.
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1. Introduction

A complex square matrix U is called unitary if its conjugate transpose U∗ is also its 
inverse, that is,

U∗U = UU∗ = I,
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where I is the identity matrix. In fact, unitary matrices play an important role on 
many algorithms in numerical matrix analysis and computing eigenvalues. They can be 
regarded as a bridge of “change of basis operators”. No matter from computational or 
theoretical aspect, it is usually helpful and convenient to transform a given matrix by 
unitary congruence into another matrix with a special form. For example, let f be a 
real-valued function defined on an interval I ⊆ R. If A is a Hermitian matrix whose 
eigenvalues are λj ∈ I, we may choose a unitary matrix U such that A = UDU∗, where 
D is a diagonal matrix. Then, one can define the associated matrix-valued function by 
f(A) = Uf(D)U∗, which is heavily used in matrix analysis and designing solutions 
methods. For more details about usages and properties of unitary matrices, please refers 
to [3,4,10,14,15].

It is known that both positive semidefinite cone and Lorentz cone are special cases of 
symmetric cones [8]. It is interesting to know whether there is a similar role like U in the 
setting of Lorentz cone. In other words, a natural question arises: what is the concept 
of unitary looks like in the setting of Lorentz cone? In this paper, we try to answer 
this question. More specifically, we try to extend the concept of unitary to the setting 
of Lorentz cone (also called second-order cone) by observing the role and properties of 
unitary matrices. With the observations, we illustrate how we define the unitary elements 
associated with Lorentz cone. Accordingly, the so-called unitary transformation is defined 
as well. Then, we establish some properties under the unitary transformation in Section 3. 
Moreover, using the unitary transformation, we derive a weak SOC triangular inequality, 
which is a parallel version to the matrix case given by Thompson in [14]. Several (weak) 
majorizations of the eigenvalues are deduced and some SOC inequalities are achieved as 
well.

2. Preliminary

In this section, we review some basic concepts and properties concerning Jordan al-
gebras from the book [8] on symmetric cones and Lorentz cones (second-order cones) 
[5–7], which are needed in the subsequent analysis.

A Euclidean Jordan algebra is a finite dimensional inner product space (V, 〈·, ·〉) (V for 
short) over the field of real numbers R equipped with a bilinear map (x, y) �→ x ◦ y :
V × V → V, which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V;
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ V,

where x2 := x ◦ x, and x ◦ y is called the Jordan product of x and y. If a Jordan product 
only satisfies the conditions (i) and (ii) in the above definition, the algebra V is said to 
be a Jordan algebra. Moreover, if there is an (unique) element e ∈ V such that x ◦ e = x

for all x ∈ V, the element e is called the Jordan identity in V. Note that a Jordan algebra 
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does not necessarily have an identity element. Throughout this paper, we assume that 
V is a Euclidean Jordan algebra with an identity element e.

In a given Euclidean Jordan algebra V, the set of squares K := {x2 : x ∈ V} is a 
symmetric cone [8, Theorem III.2.1]. This means that K is a self-dual closed convex cone 
and, for any two elements x, y ∈ int(K), there exists an invertible linear transformation 
Γ : V → V such that Γ(x) = y and Γ(K) = K. The Lorentz cone, also called second-order 
cone, in Rn is an important example of symmetric cones, which is defined as follows:

Kn =
{
x = (x1, x2) ∈ R× R

n−1 |x1 ≥ ‖x2‖
}
.

For n = 1, Kn denotes the set of nonnegative real number R+. Since Kn is a pointed 
closed convex cone, for any x, y in Rn, we can define a partial order on it:

x �Kn y ⇐⇒ y − x ∈ Kn;

x ≺Kn y ⇐⇒ y − x ∈ int(Kn).

Note that the relation �Kn (or ≺Kn) is only a partial ordering, not a linear ordering 
in Kn. To see this, a counterexample occurs by taking x = (1, 1) and y = (1, 0) in R2. It 
is clear to see that x − y = (0, 1) /∈ K2, y − x = (0, −1) /∈ K2.

For any x = (x1, x2) ∈ R × R
n−1 and y = (y1, y2) ∈ R × R

n−1, we define the Jordan 
product as

x ◦ y =
(
xT y, y1x2 + x1y2

)
.

We note that e = (1, 0) ∈ R × R
n−1 acts as the Jordan identity. Besides, the Jordan 

product is not associative in general. However, it is power associative, i.e., x ◦ (x ◦ x) =
(x ◦ x) ◦ x for all x ∈ R

n. Without loss of ambiguity, we may denote xm for the product 
of m copies of x and xm+n = xm ◦ xn for any positive integers m and n. Here, we set 
x0 = e. In addition, Kn is not closed under Jordan product.

Given any x ∈ Kn, it is known that there exists a unique vector in Kn denoted by x
1
2

such that (x 1
2 )2 = x

1
2 ◦ x 1

2 = x. Indeed,

x
1
2 =

(
s,

x2

2s

)
, where s =

√
1
2

(
x1 +

√
x2

1 − ‖x2‖2
)
.

In the above formula, the term x2/s is defined to be the zero vector if s = 0, i.e., x = 0. 
For any x ∈ R

n, we always have x2 ∈ Kn, i.e., x2 �Kn 0. Hence, there exists a unique 
vector (x2) 1

2 ∈ Kn denoted by |x|. It is easy to verify that |x| �Kn 0 and x2 = |x|2 for 
any x ∈ R

n. It is also known that |x| �Kn x. For more details, please refer to [8,9].
In a Euclidean Jordan algebra V, an element e(i) ∈ V is an idempotent if (e(i))2 = e(i), 

and it is a primitive idempotent if it is nonzero and cannot be written as a sum of 
two nonzero idempotents. The idempotents e(i) and e(j) are said to be orthogonal if 
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e(i) ◦ e(j) = 0. In addition, we say that a finite set {e(1), e(2), · · · , e(r)} of primitive 
idempotents in V is a Jordan frame if

e(i) ◦ e(j) = 0 for i �= j, and
r∑

i=1
e(i) = e.

Note that 〈e(i), e(j)〉 = 〈e(i) ◦ e(j), e〉 = 0 whenever i �= j.
With the above, there have the spectral decomposition of an element x in V.

Theorem 2.1. (The Spectral Decomposition Theorem) [8, Theorem III.1.2] Let V be a 
Euclidean Jordan algebra. Then there is a number r such that, for every x ∈ V, there 
exists a Jordan frame {e(1), · · · , e(r)} and real numbers λ1(x), · · · , λr(x) with

x = λ1(x)e(1) + · · · + λr(x)e(r).

Here, the numbers λi(x) (i = 1, · · · , r) are called the eigenvalues of x, the expression 
λ1(x)e(1) + · · · + λr(x)e(r) is called the spectral decomposition of x. Moreover, tr(x) :=∑r

i=1 λi(x) is called the trace of x, and det(x) := λ1(x)λ2(x) · · ·λr(x) is called the 
determinant of x.

In the setting of Lorentz cone in Rn, the vector x = (x1, x2) ∈ R × R
n−1 can be 

decomposed as

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (1)

where λ1(x), λ2(x) and u(1)
x , u(2)

x are the spectral values and the associated spectral 
vectors of x, respectively, given by

λi(x) = x1 + (−1)i‖x2‖, (2)

u(i)
x =

{
1
2

(
1, (−1)i x2

‖x2‖

)
if x2 �= 0,

1
2
(
1, (−1)iv̄

)
if x2 = 0,

(3)

for i = 1, 2 with v̄ being any vector in Rn−1 satisfying ‖v̄‖ = 1. If x2 �= 0, the decompo-
sition is unique. Accordingly, the determinant, the trace, and the Euclidean norm of x
can all be represented in terms of λ1(x) and λ2(x):

det(x) = λ1(x)λ2(x) = x2
1 − ‖x2‖2,

tr(x) = λ1(x) + λ2(x) = 2x1,

‖x‖2 = 1
2
(
λ1(x)2 + λ2(x)2

)
.

For any function f : R → R, the following vector-valued function associated with Kn

(n ≥ 1) was considered in [5,6]:
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f soc(x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x , ∀x = (x1, x2) ∈ R× R
n−1. (4)

If f is defined only on a subset of R, then f soc is defined on the corresponding subset 
of Rn. The definition (4) is unambiguous whether x2 �= 0 or x2 = 0. The cases of 
f soc(x) = x

1
2 , x2, exp(x) are discussed in [8].

In a Euclidean Jordan algebras V, for any x ∈ V, the linear transformation L(x) :
V → V is called Lyapunov transformation, which is defined as L(x)y := x ◦ y for all 
y ∈ V. The so-called quadratic representation P (x) is defined by

P (x) := 2L2(x) − L(x2). (5)

For any x ∈ V, the endomorphisms L(x) and P (x) are self-adjoint. For the quadratic 
representation P (x), if x is invertible, then P (x) is invertible with P (x)−1 = P (x−1) and

P (x)K = K and P (x)int(K) = int(K).

For subsequent analysis, we list some properties of the trace and determinant concern-
ing the mapping P whose proofs can be found in Proposition II.4.3 and Proposition III.4.2 
of [8].

Lemma 2.2. Let V be a simple Euclidean Jordan algebra and x, y, z ∈ V.

(a) tr(x ◦ (y ◦ z)) = tr((x ◦ y) ◦ z).
(b) det(P (x)y) = det(x)2 det(y).

In addition, by the definition of P and Lemma 2.2(a), we also have

tr(P (x)y) = tr(2x ◦ (x ◦ y) − x2 ◦ y)
= 2tr(x ◦ (x ◦ y)) − tr(x2 ◦ y)
= 2tr((x ◦ x) ◦ y) − tr(x2 ◦ y)
= tr(x2 ◦ y)

which is often used in the following section. To close this section, we recall some basic 
properties as listed in the following text. We omit the proofs since they can be found in 
[5,8,9].

Lemma 2.3. For any x, y ∈ R
n with spectral decomposition given as in (1)–(3), the 

following hold.

(a) x
1
2 =

√
λ1(x)u(1)

x +
√
λ2(x)u(2)

x whenever x ∈ Kn.
(b) |x| = |λ1(x)|u(1)

x + |λ2(x)|u(2)
x ;

(c) If x �Kn y, then λi(x) ≤ λi(y) for all i = 1, 2.
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3. Unitary elements

Note that the nonnegative orthant, the cone of positive semidefinite matrices, and 
the Lorentz cone are special cases of symmetric cones. In fact, the space Sym(n; R) of 
n × n real symmetric matrices with the Jordan product X ◦ Y = 1

2 (XY + Y X) and the 
bilinear map tr(XY ) forms a Euclidean Jordan algebra. In this case, its corresponding 
symmetric cone K is exactly the cone of positive definite matrices, and the quadratic 
representation is

P (X)Y = XYX, ∀ X,Y ∈ Sym(n;R).

As an example of Euclidean Jordan algebra, we notice that

U∗ ◦ U = 1
2(U∗U + UU∗) = I.

In addition, for any matrix A ∈ R
n×n, we shall write A = UP for the polar decomposition 

of A, where U is a unitary and P is a positive semidefinite matrix. We note that P =
(A∗A) 1

2 is the so-called absolute value of A and is denoted by |A|. Combining with 
the definition of absolute value associated with Lorentz cone in the previous section, it 
motivates us to define the unitary element w on Lorentz cone, even though there is no 
concept of conjugate associated with Lorentz cone yet.

Definition 3.1. Let Kn be the Lorentz cone. An element w in Rn is called a unitary 
element defined on Kn if it satisfies

w2 = w ◦ w = e.

After simple calculation, we obtain that for w = (w1, w2) ∈ R × R
n−1,

w2 = (w2
1 + ‖w2‖2, 2w1w2) = (1, 0),

which says w1 = 0 or w2 = 0. Hence, we conclude that any unitary element w associated 
with Lorentz cone only has three types:

w =

⎧⎪⎨
⎪⎩

e;
−e;
(0, w̄) with ‖w̄‖ = 1.

(6)

We recall that transformation from one orthonormal basis to another one is ac-
complished by unitary matrix. The matrix of unitary transformation relative to an 
orthonormal basis is also a unitary matrix. In other words, the unitary matrix plays 
significant importance on the decomposition of matrix. In the setting of Lorentz cone, 
let P (·) be fined as in (5), we call P (w) is the unitary transformation associated with 
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Lorentz cone whenever w is a unitary element defined on Lorentz cone. With this defini-
tion, it is desired to see the role of the unitary transformation in the setting of Lorentz 
cone. All the propositions are devoted to answer this.

Proposition 3.2. For any unitary element w ∈ R
n defined on Lorentz cone given as in (6), 

there holds | det(w)| = 1.

Proof. According to the spectral decomposition (1)–(3) and the form of unitary w, it is 
obvious the spectral values of w is either 1 or −1, which implies | det(w)| = 1. �

We note that for any x = (x1, x2) ∈ R × R
n−1, y = (y1, y2) ∈ R × R

n−1, if x2 = 0
or y2 = 0, then x, y may have the same Jordan frame via appropriately choosing in the 
spectral decomposition. Otherwise, x, y have the same Jordan frame if there exists α ∈ R

such that x2 = αy2. Furthermore, x, y have the same ordered Jordan frame whenever 
α > 0 and the reversely ordered Jordan frame whenever α < 0.

In the sequel, given any z = (z1, z2) ∈ R × R
n−1, we shall denote z̄ := z2

‖z2‖ for the 
simplicity of notation.

Proposition 3.3. For any x, y ∈ R
n, there exists a unitary element w ∈ R

n defined on 
Lorentz cone such that L(w)y and x have the same Jordan frame. Moreover, w can be 
chosen such that L(w)y have the desired ordered Jordan frame.

Proof. For any x = (x1, x2) ∈ R × R
n−1, y = (y1, y2) ∈ R × R

n−1, it is clear that the 
assertion holds by choosing w = e whenever x2 = 0 or y2 = 0. Suppose that x2 �= 0 and 
y2 �= 0. For any w = (0, w̄) with ‖w̄‖ = 1, we have

L(w)y = w ◦ y =
(
yT2 w̄, y1w̄

)
.

According to the spectral decomposition (1)–(3), we can choose a unitary element

w =

⎧⎪⎨
⎪⎩

(0, x̄), if y1 > 0
(0,−x̄), if y1 < 0
(0, w̄) with ‖w̄‖ = 1, if y1 = 0

(7)

so that L(w)y have the same ordered Jordan frame with respect to x. On the other hand, 
choosing w′ = −w leads L(w′)y to have the reversely ordered Jordan frame with respect 
to x. �
Remark 3.4. In Proposition 3.3, the Lyapunov transformation L(·) could lead two ele-
ments into the same Jordan frame. However, it does not keep the spectral values after 
this transforming. Indeed, from (7), we notice that for i = 1, 2
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λi(L(w)y) = yT2 w̄ + (−1)i‖y1w̄‖ = yT2 w̄ + (−1)i|y1|

may not always coincide with λi(y) = y1 + (−1)i‖y2‖, in general.

What kind of transformation will make any two elements x, y ∈ R
n to share the same 

Jordan frame and keep the spectral values? The question will be answered gradually 
from the following propositions.

Proposition 3.5. Let w ∈ R
n be a unitary element defined on Lorentz cone given as in 

(6) and P (w) be the unitary transformation. Then, for any y ∈ R
n, the spectral values 

of P (w)y coincide with the ones of y.

Proof. From Lemma 2.2, we have

tr(P (w)y) = tr(w2 ◦ y) = tr(y),

det(P (w)y) = det(w2) det(y) = det(y),

which imply that the spectral values of P (w)y and y satisfy the same quadratic equation. 
Hence, P (w)y and y have the same spectral values. �
Proposition 3.6. Let w ∈ R

n be a unitary element defined on Lorentz cone given as in 
(6) and P (w) be the unitary transformation. Then, for any y ∈ R

n, there holds

‖P (w)y‖ = ‖y‖,

that is, the norm of y is invariant under the unitary transformation P (w).

Proof. For any z ∈ R
n, we note that ‖z‖2 = 1

2 (λ1(z)2 + λ2(z)2). Applying Proposi-
tion 3.5, we know that the spectral values of P (w)x coincide with the ones of y, and 
hence we obtain ‖P (w)y‖ = ‖y‖. �

In Proposition 3.5, we already know the spectral values is invariant under the trans-
formation P (w) with any unitary element w. It is natural to ask if P (w) is able to change 
the Jordan frame to another one by suitable w. The answer is affirmative. To see this, we 
recall a theorem that Faraut and Korányi [8] established by the Peirce decomposition.

Theorem 3.7. [8, Theorem IV.2.5] Let V be a simple Euclidean Jordan algebra. If 
{c(1), . . . , c(r)} and {d(1), . . . , d(r)} are two Jordan frames, then there exists an auto-
morphism A such that

Ac(j) = d(j) (1 ≤ j ≤ r),

where A = P (w) for some w with w2 = e.
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Fig. 1. The geometric view of P (w)y.

In the setting of Lorentz cone, we offer another approach via the geometric view 
of P (w)y and figure out the exact form of the suitable unitary element w. Given any 
y = (y1, y2) ∈ R × R

n−1 and unitary element w = (0, w̄), we observe that

P (w)y = 2w ◦ (w ◦ y) − w2 ◦ y

= 2 (0, w̄) ◦
(
yT2 w̄, y1w̄

)
− e ◦ (y1, y2)

= 2
(
y1, (yT2 w̄)w̄

)
− (y1, y2) (8)

=
(
y1, 2(yT2 w̄)w̄ − y2

)
.

The geometric meaning of P (w)y is depicted in Fig. 1. In fact, it not only supports the 
conclusion of Proposition 3.6, but also tells us how to choose a suitable unitary element 
w defined on Lorentz cone.

Proposition 3.8. For any x, y ∈ R
n, there exists a unitary element w ∈ R

n defined on 
Lorentz cone such that P (w)y and x have the same Jordan frame. Moreover, w can be 
chosen such that P (w)y have the desired ordered Jordan frame.

Proof. For any x = (x1, x2) ∈ R × R
n−1 and y = (y1, y2) ∈ R × R

n−1, if x2 = 0 or 
y2 = 0, then x, y may have the same Jordan frame with desired ordering via appropriately 
choosing in the spectral decomposition. Thus, we assume that x2 �= 0 and y2 �= 0.

(i) For x, y with the same Jordan frame, we may choose w = e to keep the same ordered 
Jordan frame. On the other hand, if we choose any w = (0, w̄) such that yT2 w̄ = 0, then 
it follows from (8) that P (w)y = (y1, −y2) and hence P (w)y and y have the reversely 
ordered Jordan frame. In other words, P (w) change the order of Jordan frame.

(ii) For x, y with the different Jordan frame, we choose w =
(
0, x̄+ȳ

‖x̄+ȳ‖

)
, and then 

applying (8) again yields

P (w)y =
(
y1, 2

yT2 (x̄ + ȳ)
‖x̄ + ȳ‖2 (x̄ + ȳ) − y2

)

=
(
y1, 2

‖y2‖(ȳT x̄ + 1)
T

(x̄ + ȳ) − y2

)

2 + 2ȳ x̄
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= (y1, ‖y2‖(x̄ + ȳ) − y2)

= (y1, ‖y2‖x̄).

Hence, P (w)y and x have the same ordered Jordan frame. On the other hand, while 

choosing w =
(
0, −x̄+ȳ

‖−x̄+ȳ‖

)
, it will lead P (w)y and x to have the reversely ordered 

Jordan frame. �
Remark 3.9. Proposition 3.8 illustrates that we can change the Jordan frame to the 
desired one via P (w) with suitable unitary element w. Conversely, for any Jordan frame 
{e(1), e(2)} and any unitary element w, the set {P (w)e(1), P (w)e(2)} still forms a Jordan 
frame. Indeed, we notice that for any i = 1, 2,

tr(P (w)e(i)) = tr(e(i)) = 1,

det(P (w)e(i)) = det(e(i)) = 0,

which tell us that P (w)e(i) is of the form 
(1

2 ,
1
2 v̄

(i)) with ‖v̄(i)‖ = 1 since P (w)e(i) ∈ Kn. 
In addition,

P (w)e(1) + P (w)e(2) = P (w)e = w2 = e,

which implies v̄(1) + v̄(2) = 0. Thus, the set {P (w)e(1), P (w)e(2)} actually forms a Jordan 
frame. Furthermore, for any pair of unitary elements w, w′, there must have a unitary 
element ŵ such that P (ŵ) = P (w)P (w′).

Proposition 3.10. Let w ∈ R
n be a unitary element defined on Lorentz cone given as in 

(6) and P (w) be the unitary transformation. Then, for any x ∈ R
n, there holds

|P (w)x| = P (w)|x|.

Proof. Denote x = λ1(x)u(1)
x + λ2(x)u(2)

x by the spectral decomposition (1)–(3). Then, 
from Propositions 3.5–3.8 and Remark 3.9, there exists a Jordan frame {v(1), v(2)} such 
that

|P (w)x| =
∣∣∣λ1(x)v(1) + λ2(x)v(2)

∣∣∣
= |λ1(x)|v(1) + |λ2(x)|v(2)

= P (w)|x|.

Thus, the desired result is deduced. �
Proposition 3.11. For any x, y ∈ Kn, P (x 1

2 )y and P (y 1
2 )x have the same spectral values. 

Moreover, there exists a unitary element w defined on Lorentz cone such that
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P (x 1
2 )y = P (w)(P (y 1

2 )x).

Proof. By Lemma 2.2, we have

tr(P (x 1
2 )y) = tr(x ◦ y) = tr(P (y 1

2 )x),

det(P (x 1
2 )y) = det(x) det(y) = det(P (y 1

2 )x),

which says that the spectral values of P (x 1
2 )y and P (y 1

2 )x satisfy the same quadratic 
equation, and hence they have the same spectral values. Moreover, the desired equality 
also holds by similar arguments as in Proposition 3.8. �
4. Applications

In this section, we provide two applications of unitary elements associated with 
Lorentz cone. First application is about an extended version of triangular inequality. 
To this end, we begin with recalling the triangle inequality

|a + b| ≤ |a| + |b|

for any real or complex numbers a, b. Moreover, in the Euclidean space Rn or normed 
linear spaces V , the triangle inequality is a property about distances, and it is written 
as

‖x + y‖ ≤ ‖x‖ + ‖y‖

for any given x, y ∈ R
n (or V ). However, the prospective triangle inequality for symmetric 

matrices X, Y

|X + Y | � |X| + |Y |

may not be true in general. The notation X � Y means Y −X is a positive semidefinite 
matrix. In fact, Thompson [14] established a weaker version of triangle inequality for 
two matrices: for any two matrices X and Y , there exist unitaries V and W such that

|X + Y | � V |X|V ∗ + W |Y |W ∗. (9)

Recently, Huang et al. [11] also discuss the triangle inequality on Lorentz cone and give 
a counterexample to illustrate the SOC triangular inequality

|x + y| �Kn |x| + |y|

does not hold. Nevertheless, Huang et al. build up another SOC trace version of trian-
gular inequality. We notice that the unitary matrix plays a crucial role in the proof of 
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Thompson’s theorem [14]. Here, we try to derive a parallel inequality in the setting of 
Lorentz cone by applying the concept of the unitary transformation discussed in Sec-
tion 3.

Theorem 4.1. For any x, y ∈ R
n, there exist unitary elements w, w′ ∈ R

n defined on 
Lorentz cone such that

|x + y| �Kn P (w)|x| + P (w′)|y|. (10)

Proof. Let x = (x1, x2) ∈ R × R
n−1 and y = (y1, y2) ∈ R × R

n−1. It is clear that 
inequality (10) holds if x + y ∈ Kn ∪ (−Kn) by choosing w = w′ = e. Suppose that 
x + y /∈ Kn ∪ (−Kn), it says that λ1(x + y) < 0 < λ2(x + y) which implies

|λ1(x + y)| = ‖x2 + y2‖ − x1 − y1 ≤ ‖x2‖ + ‖y2‖ − x1 − y1 = −λ1(x) − λ1(y),

|λ2(x + y)| = x1 + y1 + ‖x2 + y2‖ ≤ x1 + y1 + ‖x2‖ + ‖y2‖ = λ2(x) + λ2(y).

(i) For x, y with the same Jordan frame, we assume that x = λ1(x)e(1) + λ2(x)e(2). 
Then, we discuss two subcases. If y = λ1(y)e(1) + λ2(y)e(2), we have

|x + y| =
∣∣∣(λ1(x) + λ1(y))e(1) + (λ2(x) + λ2(y))e(2)

∣∣∣
=

∣∣∣λ1(x) + λ1(y)|e(1) + |λ2(x) + λ2(y)
∣∣∣ e(2)

�Kn (|λ1(x)| + |λ1(y)|)e(1) + (|λ2(x)| + |λ2(y)|)e(2)

= |λ1(x)|e(1) + |λ2(x)|e(2) + |λ1(y)|e(1) + |λ2(y)|e(2)

= |x| + |y|.

Similarly, if y = λ1(y)e(2) +λ2(y)e(1), we can also derive |x + y| �Kn |x| + |y|. Hence, we 
have the desired inequality by choosing w = w′ = e.

(ii) For x, y with the different Jordan frame, we notice that x̄ + ȳ �= 0, and

|x + y| = |λ1(x + y)|u(1)
x+y + |λ2(x + y)|u(2)

x+y

�Kn −λ1(x)u(1)
x+y − λ1(y)u(1)

x+y + λ2(x)u(2)
x+y + λ2(y)u(2)

x+y

�Kn |λ1(x)|u(1)
x+y + |λ2(x)|u(2)

x+y + |λ1(y)|u(1)
x+y + |λ2(y)|u(2)

x+y.

Applying Proposition 3.8, there exist unitary elements w, w′ defined on Lorentz cone 
such that

P (w)|x| = |λ1(x)|u(1)
x+y + |λ2(x)|u(2)

x+y,

P (w′)|y| = |λ1(y)|u(1)
x+y + |λ2(y)|u(2)

x+y.

Thus, the desired inequality follows from all the above expressions. �
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Another application is devoted to the majorizations of the eigenvalues. In particular, 
we derive several majorizations of the eigenvalues parallel to those for matrix case. In [1,
2], the authors give many matrix versions of inequalities for convex (or concave) function. 
In light of these concepts, we achieve their parallel inequalities in the setting of Lorentz 
cone. For convenience, we introduce some notations. For any x ∈ R

n, we use λ(x) to 
mean the vector (λ1(x), λ2(x)). For any x, y ∈ R

n, we denote

(i) (spectral value inequalities)

λ(x) � λ(y) ⇐⇒ λi(x) ≤ λi(y) (i = 1, 2),

(ii) (weak majorization)

λ(x) ≺w λ(y) ⇐⇒ λ2(x) ≤ λ2(y) and
2∑

i=1
λi(x) ≤

2∑
i=1

λi(y),

λ(x) ≺w′ λ(y) ⇐⇒ λ1(x) ≤ λ1(y) and
2∑

i=1
λi(x) ≤

2∑
i=1

λi(y).

We note that

x �Kn y =⇒ λ(x) � λ(y) =⇒ λ(x) ≺w λ(y) and λ(x) ≺w′ λ(y).

Together with Proposition 3.8 and the proof of Theorem 4.1, we further have the following 
implication :

λ(x) � λ(y) =⇒ x �Kn P (w)y for some unitary element w.

Lemma 4.2. Suppose that x ∈ R
n has spectral values in I ⊆ R. Let f be a convex function 

on I. Then, for every unit vector v ∈ R
n (‖v‖ = 1), we have

f(〈x ◦ v, v〉) ≤ 〈f soc(x) ◦ v, v〉.

In particular, for any vector ṽ = (ṽ1, ̃v2) ∈ Kn with ṽ1 = 1, there holds

f(〈x, ṽ〉) ≤ 〈f soc(x), ṽ〉. (11)

In addition, if 0 ∈ I and f(0) ≤ 0, then for any arbitrary Jordan frame {e(1), e(2)} in 
Kn and for all i = 1, 2, there holds

f(〈x, e(i)〉) ≤ 〈f soc(x), e(i)〉.
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Proof. First, we write x = λ1u
(1)
x + λ2u

(2)
x . Then, we have

f(〈x ◦ v, v〉) = f
(
〈(λ1u

(1)
x + λ2u

(2)
x ) ◦ v, v〉

)
= f

(
〈λ1u

(1)
x + λ2u

(2)
x , v2〉

)
= f

(
λ1〈u(1)

x , v2〉 + λ2〈u(2)
x , v2〉

)
,

where the second equality holds by the condition (iii) of Euclidean Jordan algebra. We 
note that

〈u(i)
x , v2〉 ≥ 0 for all i = 1, 2

since u(i)
x , v2 ∈ Kn and

〈u(2)
x , v2〉 + 〈u(2)

x , v2〉 = 〈e, v2〉 = ‖v‖2 = 1.

By the convexity of f , we have

f(〈x ◦ v, v〉) = f
(
λ1〈u(1)

x , v2〉 + λ2〈u(2)
x , v2〉

)
≤ 〈u(1)

x , v2〉f (λ1) + 〈u(2)
x , v2〉f (λ2)

= 〈f (λ1)u(1)
x , v2〉 + 〈f (λ2)u(2)

x , v2〉

= 〈f soc(x), v2〉

= 〈f soc(x) ◦ v, v〉.

This proves the first assertion. In particular, for any vector ṽ ∈ Kn with ṽ1 = 1, there 
has a vector v ∈ R

n such that v2 = ṽ. Moreover, the condition ṽ1 = 1 implies ‖v‖ = 1
by the definition of Jordan product. Thus, the second assertion is obtained.

If further 0 ∈ I and f(0) ≤ 0, we obtain

f(t) = f

(
1
2 · 0 + 1

2 · 2t
)

≤ 1
2f (0) + 1

2f (2t) ≤ 1
2f (2t) ,

which implies

f(〈x, e(i)〉) = f

(
λ1

2 〈u(1)
x , 2e(i)〉 + λ2

2 〈u(2)
x , 2e(i)〉

)

≤ 〈u(1)
x , 2e(i)〉f

(
λ1

2

)
+ 〈u(2)

x , 2e(i)〉f
(
λ2

2

)

= 〈u(1)
x , e(i)〉2f

(
λ1

)
+ 〈u(2)

x , e(i)〉2f
(
λ2

)

2 2
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≤ 〈u(1)
x , e(i)〉f (λ1) + 〈u(2)

x , e(i)〉f (λ2)

= 〈f (λ1)u(1)
x , e(i)〉 + 〈f (λ2)u(2)

x , e(i)〉

= 〈f soc(x), e(i)〉,

for all i = 1, 2. Hence, we conclude the third assertion. �
Lemma 4.3. For any x ∈ R

n with spectral values λ1(x) and λ2(x). Then, we have

λ1(x) = min〈x ◦ v, v〉 and λ2(x) = max〈x ◦ v, v〉,

where the minimum and maximum are taken over all choices of unit vector v. Moreover, 
for any arbitrary Jordan frame {e(1), e(2)} in Kn, there holds

λ1(x) + λ2(x) =
2∑

i=1
〈x ◦

√
2e(i),

√
2e(i)〉 =

2∑
i=1

〈x, 2e(i)〉

Proof. Denote x = λ1(x)u(1)
x + λ2(x)u(2)

x by the spectral decomposition (1)–(3). Then, 
for any unit vector v ∈ R

n, we have

〈x ◦ v, v〉 = 〈
(
λ1(x)u(1)

x + λ2(x)u(2)
x

)
◦ v, v〉

= 〈λ1(x)u(1)
x , v2〉 + 〈λ2(x)u(2)

x , v2〉

= λ1(x)〈u(1)
x , v2〉 + λ2(x)〈u(2)

x , v2〉.

For i = 1, 2, we notice 〈u(i)
x , v2〉 ≥ 0 since u(i)

x , v2 ∈ Kn, and 〈u(2)
x , v2〉 + 〈u(2)

x , v2〉 = 1. 
This together the above yields

λ1(x) ≤ 〈x ◦ v, v〉 ≤ λ2(x),

and the minimum and maximum occur whenever v = ±
√

2u(1)
x and v = ±

√
2u(2)

x , re-
spectively.

In addition, for any arbitrary Jordan frame {e(1), e(2)} in Kn, it can be verified that

2∑
i=1

〈x ◦
√

2e(i),
√

2e(i)〉 =
2∑

i=1
〈x, 2e(i)〉 = 〈x, 2e〉 = 2x1 = λ1(x) + λ2(x).

Hence, the proof is complete. �
We point out that Lemma 4.2–4.3 are the SOC versions of results as in [1, 

Lemma 2.1–2.2] (also see [4]). We use these two lemmas to deduce a series of inequalities 
like the ones in [1] accordingly.



16 C.-H. Huang, J.-S. Chen / Linear Algebra and its Applications 565 (2019) 1–24
Theorem 4.4. Let f be a convex real-valued function on I ⊆ R. Then, for all x, y with 
spectral values in I and 0 ≤ α ≤ 1, there holds

λ(f soc(αx + (1 − α)y)) ≺w λ(αf soc(x) + (1 − α)f soc(y)).

If further 0 ∈ I and f(0) ≤ 0, then

λ(f soc(P (s)x)) ≺w λ(P (s)f soc(x))

for all x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Proof. For any x, y ∈ R
n with x �= y, we have

λ1(αx + (1 − α)y) = αx1 + (1 − α)y1 − ‖αx2 + (1 − α)y2‖ ≥ αλ1(x) + (1 − α)λ1(y),

λ2(αx + (1 − α)y) = αx1 + (1 − α)y1 + ‖αx2 + (1 − α)y2‖ ≤ αλ2(x) + (1 − α)λ2(y),

which imply that

αλ1(x)+(1−α)λ1(y) ≤ λ1(αx+(1−α)y) ≤ λ2(αx+(1−α)y) ≤ αλ2(x)+(1−α)λ2(y).

Hence, the spectral values of αx + (1 − α)y are also in I. For the simplicity of notation, 
we let λ̂1, λ̂2 be the spectral values of αx +(1 −α)y and {e(1), e(2)} be the Jordan frame 
arranged such that f(λ̂1) ≤ f(λ̂2). Then, we have

λ2(f soc(αx + (1 − α)y)) = f
(
〈αx + (1 − α)y, 2e(2)〉

)
= f

(
α〈x, 2e(2)〉 + (1 − α)〈y, 2e(2)〉

)
≤

[
αf

(
〈x, 2e(2)〉

)
+ (1 − α)f

(
〈y, 2e(2)〉

)]
≤

[
α〈f soc(x), 2e(2)〉 + (1 − α)〈f soc(y), 2e(2)〉

]
= 〈αf soc(x) + (1 − α)f soc(y), 2e(2)〉
≤ λ2(αf soc(x) + (1 − α)f soc(y)),

where the three inequalities hold by the convexity of f , inequality (11) and Lemma 4.3, 
respectively. Similarly, we have

2∑
i=1

λi(f soc(αx + (1 − α)y)) =
2∑

i=1
f
(
α〈x, 2e(i)〉 + (1 − α)〈y, 2e(i)〉

)

≤
2∑[

αf
(
〈x, 2e(i)〉

)
+ (1 − α)f

(
〈y, 2e(i)〉

)]

i=1
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≤
2∑

i=1

[
α〈f soc(x), 2e(i)〉 + (1 − α)〈f soc(y), 2e(i)〉

]

=
2∑

i=1
〈αf soc(x) + (1 − α)f soc(y), 2e(i)〉

=
2∑

i=1
λi(f soc(x) + (1 − α)f soc(y)).

This proves the first assertion.
To prove the second assertion, let λ̄1, λ̄2 be the spectral values of P (s)x and {d(1), d(2)}

be the Jordan frame arranged such that f(λ̄1) ≤ f(λ̄2). Since f(0) ≤ 0, to prove the 
desired inequality we can assume that P (s)d(i) �= 0 for i = 1, 2. Moreover, we note that 
s2 �Kn e if and only if P (s2) � P (e) by [13, Lemma 2.3], which gives P (s)2 � I. Thus, 
we have

‖P (s)d(i)‖2 = d(i)TP (s)TP (s)d(i) ≤ d(i)T d(i) = 1
2 ,

which says 
√

2‖P (s)d(i)‖ ≤ 1. In addition, we note that d(i) is on the boundary of Kn, 
which says det(d(i)) = 0. Furthermore, it also implies det(P (s)d(i)) = 0 by Lemma 2.2. 
Since the quadratic representation P (s) is invariant on Kn, we conclude P (s)d(i) is on the 
boundary of Kn as well. In particular, the first component of P (s)d(i) is 1√

2‖P (s)d(i)‖. 
On the other hand, the quadratic representation P (s) can be expressed as

P (s) = 2ssT − det(s)J,

where J :=
[

1 0T
0 −In−1

]
with In−1 being the identity matrix in R(n−1)×(n−1) (see [8,

12]), which says P (s) is a symmetric transformation. Thus, for i = 1, 2, there holds

λi(f soc(P (s)x)) = f
(
〈P (s)x, 2d(i)〉

)
= f

(
〈x, 2P (s)d(i)〉

)
.

Hence, we have

λ2(f soc(P (s)x))

= f

(√
2‖P (s)d(2)‖ ·

〈
x,

√
2P (s)d(2)

‖P (s)d(2)‖

〉
+ (1 −

√
2‖P (s)d(2)‖) · 0

)

≤
[√

2‖P (s)d(2)‖ · f
(〈

x,

√
2P (s)d(2)

‖P (s)d(2)‖

〉)
+ (1 −

√
2‖P (s)d(2)‖) · f(0)

]

≤
√

2‖P (s)d(2)‖ ·
〈
f soc(x),

√
2P (s)d(2)

‖P (s)d(2)‖

〉

= 〈f soc(x), 2P (s)d(2)〉



18 C.-H. Huang, J.-S. Chen / Linear Algebra and its Applications 565 (2019) 1–24
= 〈P (s)f soc(x), 2d(2)〉
≤ λ2(P (s)f soc(x)),

by the convexity of f , the condition f(0) ≤ 0, inequality (11) and Lemma 4.3, respec-
tively. Similarly, we can verify that

2∑
i=1

λi(f soc(P (s)x))

=
2∑

i=1
f

(√
2‖P (s)d(i)‖ ·

〈
x,

√
2P (s)d(i)

‖P (s)d(i)‖

〉
+

(
1 −

√
2‖P (s)d(i)‖

)
· 0
)

≤
2∑

i=1

[√
2‖P (s)d(i)‖ · f

(〈
x,

√
2P (s)d(i)

‖P (s)d(i)‖

〉)
+

(
1 −

√
2‖P (s)d(i)‖

)
· f(0)

]

≤
2∑

i=1

√
2‖P (s)d(i)‖ ·

〈
f soc(x),

√
2P (s)d(i)

‖P (s)d(i)‖

〉

=
2∑

i=1
〈P (s)f soc(x), 2d(i)〉

=
2∑

i=1
λi(P (s)f soc(x)).

This completes the proof. �
Remark 4.5. According to the argument of Theorem 4.4, we similarly have the following 
weak majorization for concave real-valued function g defined on I ⊂ R:

λ(αgsoc(x) + (1 − α)gsoc(y)) ≺w′ λ(gsoc(αx + (1 − α)y))

for all x, y with spectral values in I and 0 ≤ α ≤ 1. If further 0 ∈ I and g(0) ≥ 0, then

λ(P (s)gsoc(x)) ≺w′ λ(gsoc(P (s)x))

for all x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Corollary 4.6. Let f be a nonnegative decreasing convex function on [0, ∞). Then, for 
any x, y ∈ Kn, there holds

λ (f soc(x + y)) ≺w λ (f soc(x) + f soc(y)) .

Proof. Note that every nonnegative decreasing function f on [0, ∞) satisfies

f(2t) ≤ 2f(t), ∀t ∈ [0,∞).
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This further implies that f soc(2x) ≤ 2f soc(x) and f soc(2y) ≤ 2f soc(y). Using this fact 
and applying Theorem 4.4, we have

λ (f soc (x + y)) ≺w λ

(
f soc(2x) + f soc(2y)

2

)
≺w λ (f soc(x) + f soc(y)) ,

which says the desired result. �
Corollary 4.7. Let f be a nonnegative convex function on I ⊆ R. Then,

‖f soc(αx + (1 − α)y)‖ ≤ ‖αf soc(x) + (1 − α)f soc(y)‖

for any x, y with spectral values in I and 0 ≤ α ≤ 1. If further 0 ∈ I and f(0) = 0, then

‖f soc(P (s)x)‖ ≤ ‖P (s)f soc(x)‖

for any x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Proof. We define a function Φ : R2 → [0, ∞) by

Φ(a, b) =
[
1
2(a2 + b2)

] 1
2

.

For any z ∈ R
n, we notice that ‖z‖ = Φ(λ1(z), λ2(z)). Then, the results follow from 

Theorem 4.4 and Problem II.5.12(iv) [4, page 53]. �
Theorem 4.8. Let f be a monotone convex function on I ⊆ R. Then, for any x, y with 
spectral values in I and 0 ≤ α ≤ 1, there holds

λ (f soc(αx + (1 − α)y)) � λ (αf soc(x) + (1 − α)f soc(y)) .

If further 0 ∈ I and f(0) ≤ 0, then

λ (f soc(P (s)x)) � λ (P (s)f soc(x))

for all x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Proof. According to the proof of Theorem 4.4, it remains to show that

λ1(f soc(αx + (1 − α)y)) ≤ λ1(αf soc(x) + (1 − α)f soc(y)).

If f is increasing (or decreasing), then
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λ1(f soc(z)) = f(λ1(z)) = f (min{〈z ◦ v, v〉 | ‖v‖ = 1})
(or f(λ2(z)) = f (max{〈z ◦ v, v〉 | ‖v‖ = 1}))
= min{f(〈z ◦ v, v〉) | ‖v‖ = 1}.

In light of the convexity of f and Lemma 4.2, we obtain

f (〈(αx + (1 − α)y) ◦ v, v〉) = f (α〈x ◦ v, v〉 + (1 − α)〈y ◦ v, v〉)
≤ αf (〈x ◦ v, v〉) + (1 − α)f (〈y ◦ v, v〉)
≤ 〈(αf soc(x) + (1 − α)f soc(y)) ◦ v, v〉, (‖v2‖ = 1)

Then, applying Lemma 4.3 yields the desired inequality after taking the minimum over 
all choices of unit vector v. This completes the first assertion. The arguments for the 
second assertion are similar and are omitted. �
Remark 4.9. Suppose that C : Rn → R

n is a contraction and composite of invertible 
quadratic representations. According to the proof of Theorem 4.4, we note the contraction 
of C implies ‖CT d(i)‖2 ≤ 1

2 . Applying Lemma 2.2(b), we obtain det(CT d(i)) = 0 since 
C is composite of invertible quadratic representations, and hence the first component of 
CT d(i) is 1√

2‖C
Td(i)‖. Therefore, for a convex real-valued function f on I with 0 ∈ I

and f(0) ≤ 0, we can conclude

λ (f soc(Cx)) ≺w λ (Cf soc(x))

by following the same arguments of Theorem 4.4. If further f is monotone, then

λ (f soc(Cx)) � λ (Cf soc(x)) .

Remark 4.10. Following the argument of Theorem 4.8, we can obtain the majorization 
for monotone concave real-valued function g defined on I ⊆ R:

λ(αgsoc(x) + (1 − α)gsoc(y)) � λ(gsoc(αx + (1 − α)y))

for all x, y with spectral values in I and 0 ≤ α ≤ 1. If further 0 ∈ I and g(0) ≥ 0, then

λ(P (s)gsoc(x)) � λ(gsoc(P (s)x))

for all x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Theorem 4.11. Let f be a monotone convex function on I ⊆ R. Then, for any x, y with 
spectral values in I and 0 ≤ α ≤ 1, there exists a unitary element w such that

f soc (αx + (1 − α)y)) �Kn P (w) (αf soc(x) + (1 − α)f soc(y)) .
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If further 0 ∈ I and f(0) ≤ 0, then

f soc(P (s)x) �Kn P (w) (P (s)f soc(x))

for all x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Proof. The inequalities hold by Proposition 3.8 and Theorem 4.8. �
Remark 4.12. For monotone concave real-valued function g defined on I ⊆ R, we also 
get the SOC inequality as below:

P (w) (αgsoc(x) + (1 − α)gsoc(y)) �Kn gsoc (αx + (1 − α)y))

for all x, y with spectral values in I and 0 ≤ α ≤ 1. If further 0 ∈ I and g(0) ≥ 0, then

P (w) (P (s)gsoc(x)) �Kn gsoc(P (s)x)

for all x ∈ R
n with spectral values in I and 0 ≺Kn s2 �Kn e.

Theorem 4.13. Let f be a nonnegative increasing convex function on [0, ∞) with f(0) = 0
and x �Kn 0, y �Kn 0. Then, there exist unitary elements w, w′ such that

P (w)f soc(x) + P (w′)f soc(y) �Kn f soc(x + y).

Proof. Suppose that x �Kn 0 and y �Kn 0. Since x �Kn x +y, we have x
1
2 �Kn (x +y) 1

2

by [5, Property 2.3(b)], and hence P (x 1
2 ) � P ((x +y) 1

2 ) by [13, Lemma 2.3]. This together 
with [3, Lemma V.1.7] implies ‖P (x 1

2 )P ((x +y)− 1
2 )‖ ≤ 1, which says P (x 1

2 )P ((x +y)− 1
2 )

is a contraction. We note that all x, y, and x + y are invertible. Then, we have

x = P (x 1
2 )P ((x + y)− 1

2 )(x + y)

=⇒ f soc(x) = f soc
(
P (x 1

2 )P ((x + y)− 1
2 )(x + y)

)
=⇒ f soc(x) �Kn P (w̃)P (x 1

2 )P ((x + y)− 1
2 )f soc(x + y)

⇐⇒ P (w̃)f soc(x) �Kn P (x 1
2 )((x + y)−1 ◦ f soc(x + y))

=⇒ P (w̃)f soc(x) �Kn P (ŵ)P
(
((x + y)−1 ◦ f soc(x + y)) 1

2

)
x

⇐⇒ P (ŵ)P (w̃)f soc(x) �Kn P
(
((x + y)−1 ◦ f soc(x + y)) 1

2

)
x

by Remark 4.9 and Proposition 3.11 with some unitary elements ŵ, w̃. Hence by Re-
mark 3.9, there exists a unitary element w such that

P (w)f soc(x) �Kn P
(
((x + y)−1 ◦ f soc(x + y)) 1

2

)
x. (12)
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Similarly, there exists a unitary element w′ such that

P (w′)f soc(y) �Kn P
(
((x + y)−1 ◦ f soc(x + y)) 1

2

)
y. (13)

Adding inequalities (12) and (13) yields

P (w)f soc(x) + P (w′)f soc(y) �Kn P
(
((x + y)−1 ◦ f soc(x + y)) 1

2

)
(x + y)

= (x + y)−1 ◦ f soc(x + y) ◦ (x + y)

= f soc(x + y)

since x + y, (x + y)−1, and f soc(x + y) share the same Jordan frame. �
Similarly, if f is a nonnegative increasing concave function on [0, ∞) with f(0) ≥ 0

and x, y ∈ Kn, then there exist unitary elements w, w′ such that

f soc(x + y) �Kn P (w)f soc(x) + P (w′)f soc(y).

This inequality can be viewed as a generalization of (10) in Theorem 4.1. Furthermore, 
we may obtain the following norm inequality.

Theorem 4.14. Let f be a nonnegative increasing concave function on [0, ∞) with f(0) ≥
0 and x �Kn 0, y �Kn 0. Then, there holds

‖f soc(x + y)‖ ≤ ‖f soc(x)‖ + ‖f soc(y)‖.

Proof. Following the arguments of Corollary 4.7, we have

‖f soc(x + y)‖ ≤ ‖P (w)f soc(x) + P (w′)f soc(y)‖
≤ ‖P (w)f soc(x)‖ + ‖P (w′)f soc(y)‖
= ‖f soc(x)‖ + ‖f soc(y)‖,

where the equality holds by Proposition 3.6. �
5. Concluding remarks

In this paper, we discuss the concept of unitary elements associated with Lorentz 
cone, and derive several properties under the unitary transformation P (w) for suitable 
unitary element w. We believe that these new concepts will be helpful for designing 
algorithm on second-order cone programming, in which it always needs the inequalities 
or majorizations to analyze the convergence. Our new discovery just steps out and there 
are some other directions to be clarified in the future. We raise two of them as below.
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Recall that a function f : R → R is said to be SOC-monotone if

x �Kn y =⇒ f soc(x) �Kn f soc(y),

and is said to be SOC-convex if

f soc((1 − λ)x + λy) �Kn (1 − λ)f soc(x) + λf soc(y)

for any given x, y and 0 ≤ λ ≤ 1. Thinking about the convexity of f being replaced by 
SOC-monotonicity or SOC-convexity, it raises the following two questions.

Question 5.1. If the function f : [0, ∞) → R is SOC-monotone and x ∈ Kn and 0 ≺Kn

s2 �Kn e, then

P (s)f soc(x) �Kn f soc(P (s)x)?

Question 5.2. The function f : [0, ∞) → R is SOC-convex and f(0) ≤ 0 if and only if for 
any x ∈ Kn and 0 ≺Kn s2 �Kn e

f soc(P (s)x) �Kn P (s)f soc(x)?
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