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Abstract
We will show that for any noncompact arithmetic hyperbolicm-manifold with m> 3,
and any compact arithmetic hyperbolic m-manifold with m > 4 that is not a 7-
dimensional one defined by octonions, its fundamental group is not locally extended
residually finite (LERF). The main ingredient in the proof is a study on abelian amal-
gamations of hyperbolic 3-manifold groups. We will also show that a compact ori-
entable irreducible 3-manifold with empty or tori boundary supports a geometric
structure if and only if its fundamental group is LERF.

1. Introduction
For a group G and a subgroup H < G, we say that H is separable in G if for any
g 2G nH there exists a finite-index subgroup G0 <G such that H <G0 and g …G0.
Here, G is called LERF (locally extended residually finite) or subgroup separable if
all finitely generated subgroups of G are separable.

The LERFness of a group is a property closely related with low-dimensional
topology, especially the virtual Haken conjecture (settled in [3]). In this paper, we are
mostly interested in fundamental groups of some nice manifolds and graphs of groups
constructed from these groups.

Among fundamental groups of low-dimensional manifolds, the following groups
are known to be LERF: free groups (see [19]), surface groups (see [36]), Seifert man-
ifold groups (see [36]), and hyperbolic 3-manifolds groups (see [3] and [43]); while
the following groups are known to be non-LERF: groups of nontrivial graph mani-
folds (see [30]), and groups of fibered 3-manifolds whose monodromy is reducible
and satisfies some further condition (see [24]).

In this paper, we give more examples of non-LERF groups arising from topol-
ogy. These results imply that 3-manifolds with LERF fundamental groups support
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geometric structures, and it seems that hyperbolic manifolds with LERF fundamental
groups have dimension at most 3.

One main result of this paper is about high-dimensional arithmetic hyperbolic
manifolds (with dimension at least 4). Comparing to 3-dimensional case, there are
much fewer examples of hyperbolic manifolds with dimension at least 4. Many exam-
ples of high-dimensional hyperbolic manifolds are constructed by arithmetic methods,
and some other examples are constructed by doing cut-and-paste surgery on these
arithmetic examples. So the following results suggest that having a non-LERF funda-
mental group is a general phenomenon in a high-dimensional hyperbolic world.

THEOREM 1.1
LetMm be an arithmetic hyperbolic manifold withm� 5which is not a 7-dimensional
arithmetic hyperbolic manifold defined by octonions. Then its fundamental group is
not LERF.

Moreover, if M is closed, then there exists a nonseparable subgroup isomorphic
to a free product of surface groups and free groups. If M is not closed, there exists a
nonseparable subgroup that is isomorphic to either a free subgroup, or a free product
of surface groups and free groups.

Comparing with Theorem 1.1, it is shown in [6] that all geometrically finite sub-
groups of standard arithmetic hyperbolic manifold groups are separable. It will be
easy to see that nonseparable subgroups constructed in the proof of Theorem 1.1 are
not geometrically finite (see Remark 5.1).

Theorem 1.1 does not cover the case of arithmetic hyperbolic 4-manifolds. By
using a slightly different method in Theorem 1.2, we show that noncompact arithmetic
hyperbolic manifolds with dimension at least 4 have non-LERF fundamental groups.
Of course, the only case in Theorem 1.2 that is not covered by Theorem 1.1 is the
4-dimensional case.

Note that in the more recent work [38], it is proved that all closed arithmetic
hyperbolic 4-manifolds also have non-LERF fundamental groups. So, with possible
exceptions in 7-dimensional arithmetic hyperbolic manifolds defined by octonions,
all arithmetic hyperbolic manifolds with dimension at least 4 have non-LERF funda-
mental groups.

THEOREM 1.2
LetMm be a noncompact arithmetic hyperbolicm-manifold withm� 4. Then �1.M/

is not LERF.
Moreover, there exist a nonseparable subgroup isomorphic to a free group and

another nonseparable subgroup isomorphic to a surface group.
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Some examples of high-dimensional nonarithmetic hyperbolic manifolds are con-
structed in [2], [18], and [5]. These examples are constructed by cutting arithmetic
hyperbolic manifolds along codimension-1 totally geodesic submanifolds and then
pasting along isometric boundary components. Since all these nonarithmetic hyper-
bolic manifolds contain codimension-1 arithmetic hyperbolic submanifolds, Theo-
rem 1.1 implies Theorem 5.2, which claims that all nonarithmetic examples in [18]
and [5] (only 4-dimensional examples are constructed in [2]) with dimension at least
6 have non-LERF fundamental groups.

In Theorem 5.3, we also show that compact reflection hyperbolic manifolds with
dimension � 5 and noncompact reflection hyperbolic manifolds with dimension � 4
have non-LERF fundamental groups.

Another main result in this paper concerns compact orientable irreducible 3-
manifolds with empty or tori boundary. Thurston’s geometrization conjecture (con-
firmed by Perelman) implies that any compact orientable irreducible 3-manifold M
with empty or tori boundary has a minimal collection of incompressible tori, such
that each component of its complement supports one of Thurston’s eight geometries.
If this set of incompressible tori is empty, then we say that M is a geometric 3-
manifold.

The following theorem implies that a compact orientable irreducible 3-manifolds
with empty or tori boundary is geometric if and only if its fundamental group is LERF.
The author thinks that this result is very interesting, since it gives a surprising relation
between geometric structures on 3-manifolds and LERFness of 3-manifold groups,
and these two topics in 3-manifold topology have been very popular in the last two
decades. This result also confirms Conjecture 1.5 in [24].

THEOREM 1.3
For a compact orientable irreducible 3-manifold M with empty or tori boundary, M
supports one of Thurston’s eight geometries if and only if �1.M/ is LERF.

When �1.M/ is not LERF, there exists a nonseparable subgroup isomorphic to a
free group. If M is a closed mixed 3-manifold, then there also exists a nonseparable
subgroup isomorphic to a surface group.

The proof of Theorem 1.3 is enlightened by the construction in Section 8 of [24].
To prove this theorem, the main case we need to deal with is that M is a union of two
geometric 3-manifolds along one torus, with one of them being hyperbolic.

From a group theory point of view, the above group is a Z2-amalgamation of
two LERF groups. An even simpler case is a Z-amalgamation of two hyperbolic
3-manifold groups, that is, the fundamental group of a union of two hyperbolic 3-
manifolds along one essential circle.
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There have been a lot of works that study LERFness of Z-amalgamated groups
A�ZB , with both A and B being LERF. For instance, the first such non-LERF exam-
ple of A�ZB was constructed in [34]. It has been shown that if both A and B are free
groups (see [8]), or if A is free, B is LERF, and Z<A is a maximal cyclic subgroup
(see [17]), or if both A and B are surface groups (see [27]), then A �Z B is LERF.

Here, we give a family of non-LERF Z-amalgamations of 3-manifold groups.

THEOREM 1.4
Let M1, M2 be two finite-volume hyperbolic 3-manifolds, and let ik W S1 ! Mk ,
k D 1; 2 be two �1-injective embedded circles. Then the fundamental group of

X DM1 [S1 M2

is not LERF.
Moreover, if both M1 and M2 have cusps, then there exists a nonseparable sub-

group isomorphic to a free group. If at least one of Mk is closed, then there exists
a nonseparable subgroup isomorphic to a free product of surface groups and free
groups.

Theorem 1.4 is the main ingredient to prove Theorem 1.1. We will use the fact
that arithmetic hyperbolic manifolds have a lot of totally geodesic submanifolds of
smaller dimension. If an arithmetic hyperbolic manifold has dimension at least 5,
then there are two totally geodesic 3-dimensional submanifolds intersecting along a
closed geodesic, which gives a picture addressed in Theorem 1.4.

In dimension 4, such a picture does not show up by dimension reason, so The-
orem 1.4 does not help here. However, Theorem 1.3 implies that the double of any
cusped hyperbolic 3-manifold has non-LERF fundamental group, and groups of all
noncompact arithmetic hyperbolic manifolds with dimension at least 4 contain such
doubled 3-manifold groups (see [25]). So Theorem 1.2 is a consequence of Theo-
rem 1.3.

The organization of this paper is as follows. In Section 2, we review some back-
ground on group theory, 3-manifold topology, and arithmetic hyperbolic manifolds.
In Section 3, we prove Theorem 1.3, which is enlightened by the construction in [24].
In Section 4, we prove Theorem 1.4, whose proof is similar to the proof of Theo-
rem 1.3, with some modifications. In Section 5, we deduce Theorems 1.1 and 1.2
from Theorems 1.4 and 1.3, respectively. In Section 6, we ask some questions related
to the results in this paper.

2. Preliminaries
In this section, we review some basic concepts in group theory, 3-manifold topology,
and arithmetic hyperbolic manifolds.
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2.1. Locally extended residually finite
In this subsection, we review basic concepts and properties on LERF groups.

Definition 2.1
Let G be a group, and let H <G be a subgroup. We say that H is separable in G if,
for any g 2G nH , there exists a finite-index subgroup G0 <G such thatH <G0 and
g …G0.

An equivalent formulation is thatH is separable in G if and only ifH is a closed
subset under the profinite topology of G.

Definition 2.2
A group G is LERF or subgroup separable if all finitely generated subgroups of G
are separable in G.

A basic property on LERFness is that any subgroup of a LERF group is still
LERF. This property is basic and well known, while the proof is very simple. How-
ever, since this property is crucial for us, we give a proof here.

LEMMA 2.3
Let G be a group, and let � <G be a subgroup. For a further subgroup H <� , if H
is separable in G, then H is separable in � .

In particular, if � is not LERF, then G is not LERF.

Proof
If we take an arbitrary element � 2 � nH , then � 2G nH holds. SinceH is separable
in G, there exists a finite-index subgroup G0 <G such thatH <G0 and � …G0. Then
� 0 DG0\� is a finite-index subgroup of � , withH <G0\� D � 0 and � …G0\� D
� 0. So H is also separable in � .

If � is not LERF, then it contains a finitely generated subgroup H which is not
separable in � . Then the previous paragraph implies that H is not separable in G. So
G is not LERF.

In this paper, the main method to prove that a group G is not LERF is to find
a descending tower of subgroups of G until we get a subgroup which has a nice
structure such that a topological argument can be applied to prove its non-LERFness.
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2.2. Geometric decomposition of irreducible 3-manifolds
In this paper, we assume that all manifolds are connected and oriented and that all 3-
manifolds are compact and have empty or tori boundary. For any noncompact finite-
volume hyperbolic manifold M , we always truncate M by deleting a horocusp for
each cusp end of M . Then we can consider M as a compact 3-manifold with tori
boundary, and the boundary has an induced Euclidean structure.

Let M be an irreducible 3-manifold with empty or tori boundary. By the geome-
trization of 3-manifolds, which is achieved by Perelman and Thurston, exactly one of
the following hold:
� M is geometric; that is, M supports one of the following eight geometries:

E3, S3, S2 �E1, H2 �E1, Nil, Sol, ˜PSL2.R/, and H3.
� There is a nonempty minimal union TM �M of disjoint essential tori and

Klein bottles, unique up to isotopy, such that each component of M n TM is
either Seifert-fibered or atoroidal. In the Seifert-fibered case, the interior sup-

ports both the H2 �E1-geometry and the ˜PSL2.R/-geometry; in the atoroidal
case, the interior supports the H3-geometry.

If M has nontrivial geometric decomposition (as in the second case), we say
that M is a nongeometric 3-manifold and call components of M n TM Seifert pieces
or hyperbolic pieces, according to their geometry. If all components of M n TM are
Seifert pieces, thenM is called a graph manifold. Otherwise,M contains a hyperbolic
piece, and it is called a mixed manifold. Since we only consider virtual properties of
3-manifolds in this paper, we can pass to a double cover of the 3-manifold and assume
that all components of TM are tori.

The geometric decomposition is very closely related to, but slightly different
from, the more traditional Jaco–Shalen–Johannson (JSJ) decomposition. Since these
two decompositions agree with each other if M has no decomposing Klein bottle
(which can be achieved by a double cover), and we are studying virtual properties, we
will not make much of a difference between them.

2.3. Fibered structures of 3-manifolds
In the construction of nonseparable subgroups in Theorem 1.3 and Theorem 1.4, all
subgroups have a graph of group structures, and the vertex groups are fibered surface
subgroups in geometric pieces. We will briefly review the theory of the Thurston norm
and its relation with fibered structures on 3-manifolds.

If a 3-manifold M has a surface bundle over circle structure with b1.M/ > 1,
thenM has infinitely many different such structures (which works for all dimensions).
These fibered structures of the 3-manifold M are organized by the Thurston norm on
H2.M;@M IR/ (ŠH 1.M IR/ by duality) defined in [39].

For any ˛ 2H2.M;@M IZ/, its Thurston norm is defined by:
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k˛k D inf
®ˇ̌
�.T0/

ˇ̌ ˇ̌
.T; @T /� .M;@M/ represents ˛

¯
;

where T0 � T excludes S2 and D2 components of T . In [39], it is shown that
this norm can be extended to H2.M;@M IR/ homogeneously and continuously, and
the Thurston norm unit ball is a polyhedron whose faces are dual with elements in
H1.M IZ/=Tor . For a general 3-manifold, the Thurston norm is only a seminorm,
while it is a genuine norm for finite-volume hyperbolic 3-manifolds.

For a top-dimensional open face F of the Thurston norm unit ball, let C be the
open cone over F . In [39], Thurston showed that an integer point ˛ 2H2.M;@M IR/
corresponds to a surface bundle structure ofM if and only if ˛ is contained in an open
cone C as above, and all integer points in C correspond to surface bundle structures
of M . In this case, C is called a fibered cone, and the corresponding face F is called
a fibered face. Any point (which may not be an integer point) in a fibered cone we call
a fibered class.

Thurston’s theorem implies that the set of fibered classes of M is an open subset
of H2.M;@M IR/. In particular, for any fibered class ˛ 2 H2.M;@M IR/ and any
ˇ 2H2.M;@M IR/, there exists � > 0, such that ˛C cˇ 2H2.M;@M IR/ is a fibered
class for any c 2 .��; �/.

2.4. Virtual retractions of hyperbolic 3-manifold groups
In the proof of Theorem 1.3 and 1.4, we need to perturb a fibered class ˛ 2H2.M;
@M IR/ to get a new fibered class with some desired property. To make sure the
desired perturbation exists, we need the virtual retract property of geometrically finite
subgroups of hyperbolic 3-manifold groups.

Definition 2.4
For a group G and a subgroup H <G, we say that H is a virtual retraction of G if
there exists a finite-index subgroup G0 <G and a homomorphism � WG0!H , such
that H <G0 and �jH D idH .

For a finite-volume hyperbolic 3-manifold M , the following dichotomy for a
finitely generated infinite-index subgroup H <�1.M/ holds:
(1) H is a geometrically finite subgroup of �1.M/ from the Kleinian group point

of view. Equivalently,H is (relatively) quasiconvex in the (relative) hyperbolic
group �1.M/ from the geometric group theory point of view.

(2) H is a geometrically infinite subgroup of �1.M/. In this case, H is a virtual
fibered surface subgroup of M .

Here, we do not give the definition of geometrically finite and geometrically infinite
subgroups. Readers only need to know that if H is not a virtual fibered surface sub-
group, then it is a geometrically finite subgroup. An introduction of geometrically
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finite subgroups can be found in [7] and [26, Chapter VI]. The proof of the above
dichotomy relies on the covering theorem (see [10], [41]) and the Tameness theorem
(see [1], [9]) on open hyperbolic 3-manifolds.

In [11], it is shown that (relatively) quasiconvex subgroups of virtually compact
special (relative) hyperbolic groups are virtual retractions. The celebrated virtual com-
pact special theorem of Wise (see [43] for cusped case) and Agol (see [3] for closed
case) implies that groups of finite-volume hyperbolic 3-manifolds are virtually com-
pact special. These two results together give us the following theorem.

THEOREM 2.5
Let M be a finite-volume hyperbolic 3-manifold, and let H <�1.M/ be a geometri-
cally finite subgroup (i.e., H is not a virtual fibered surface subgroup). Then H is a
virtual retraction of �1.M/.

2.5. Arithmetic hyperbolic manifolds
In this subsection, we briefly review the definition of (standard) arithmetic hyperbolic
manifolds. Most material can be found in [42, Chapter 6].

Recall that the hyperboloid model of Hn is defined as the following. Equip RnC1

with a bilinear form B WRnC1 �RnC1!R with

B
�
.x1; : : : ; xn; xnC1/; .y1; : : : ; yn; ynC1/

�
D x1y1C � � � C xnyn � xnC1ynC1:

Then the hyperbolic space Hn is identified with

I n D
®
Ex D .x1; : : : ; xn; xnC1/

ˇ̌
B.Ex; Ex/D�1;xnC1 > 0

¯
:

The hyperbolic metric is given by the restriction of B.�; �/ on the tangent space of I n.
The isometry group of Hn consists of all linear transformations of RnC1 that

preserve B.�; �/ and fix I n. Let J D diag.1; : : : ; 1;�1/ be the .nC1/� .nC1/matrix
defining the bilinear form B.�; �/. Then the isometry group of Hn is given by

Isom.Hn/Š PO.n; 1IR/D
®
X 2GL.nC 1;R/

ˇ̌
X tJX D J

¯
=.X ��X/:

The orientation-preserving isometry group of Hn is given by

IsomC.H
n/Š SO0.n; 1IR/;

which is the component of

SO.n; 1IR/D
®
X 2 SL.nC 1;R/

ˇ̌
X tJX D J

¯

that contains the identity matrix.
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Now we give the definition of standard arithmetic hyperbolic manifolds; they are
also called arithmetic hyperbolic manifolds of simplest type.

LetK �R be a totally real number field, and let �1 D id; �2; : : : ; �k be all embed-
dings of K into R. Let

f .x/D

nC1X

i;jD1

aijxixj ; aij D aj i 2K

be a nondegenerate symmetric quadratic form defined over K with negative inertia
index 1 (as a quadratic form over R). We further suppose that, for any l > 1, the
quadratic form

f �l .x/D

nC1X

i;jD1

�l.aij /xixj

is positive definite. Then the information of K and f can be used to define an arith-
metic hyperbolic group.

Let OK be the ring of algebraic integers in K , and let A be the .nC 1/� .nC 1/
matrix defining f . Since the negative inertia index of A is 1, the special orthogonal
group of f ,

SO.f IR/D
®
X 2 SL.nC 1;R/

ˇ̌
X tAX DA

¯
;

is conjugate to SO.n; 1IR/ by a matrix P (satisfying P tAP D J ). Moreover, SO.f I
R/ has two components, and we let SO0.f IR/ be the component that contains the
identity matrix.

Then we form the set of algebraic integer points

SO.f IOK/D
®
X 2 SL.nC 1;OK/

ˇ̌
X tAX DA

¯

in SO.f IR/. The theory of arithmetic groups implies that

SO0.f IOK/D SO.f IOK/\ SO0.f IR/

is conjugate to a lattice of IsomC.Hn/ (by the matrix P ); that is, it has finite covol-
ume. For simplicity, we abuse notation and still use SO0.f IOK/ to denote its P -
conjugation in SO0.n; 1IR/Š IsomC.Hn/.

Here, SO0.f IOK/� IsomC.Hn/ is called the arithmetic group and is defined by
number fieldK and quadratic form f , and Hn=SO0.f IOK/ is a finite-volume hyper-
bolic arithmetic orbifold. A hyperbolic n-manifold (orbifold) M is called a standard
arithmetic hyperbolic manifold (orbifold) if M is commensurable with Hn=SO0.f I
OK/ for some K and f .
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The arithmetic orbifold Hn=SO0.f IOK/ is noncompact if and only if f .Ex/D 0
has a nontrivial solution in 2 KnC1, which happens only if K D Q (i.e., OK D Z).
When n� 4, Hn=SO0.f IOK/ is noncompact if and only if K DQ.

For this paper, the most important property of standard arithmetic hyperbolic
manifolds is that they contain a lot of finite-volume hyperbolic 3-manifolds as totally
geodesic submanifolds. This can be done by diagonalizing the matrix A (over K) and
taking an indefinite 4� 4 submatrix.

The above recipe using quadratic forms over number fields gives all even-
dimensional arithmetic hyperbolic manifolds (orbifolds). In any odd dimension, there
is another family of arithmetic hyperbolic manifolds (orbifolds) which are defined
by (skew-Hermitian) quadratic forms over quaternion algebras. We do not give the
definition of this family here; readers can find a detailed definition in [23].

This family of arithmetic hyperbolic manifolds defined over quaternions also has
many finite-volume hyperbolic 3-manifolds that are totally geodesic submanifolds.
This can be done by diagonalizing the quadratic form over quaternions and taking a
2� 2 submatrix. Note that this fact is also used in [22].

In dimension 7, there is a third way to construct arithmetic hyperbolic manifolds
by using octonions. Only sporadic examples exist, and the author does not know
whether these manifolds have totally geodesic (or �1-injective) 3-dimensional sub-
manifolds. All examples in this family are compact manifolds.

3. Non-LERFness of nongeometric 3-manifold groups
In this section, we prove that groups of nongeometric 3-manifolds are not LERF. The
construction of nonseparable (surface) subgroups is enlightened by the construction
in [24] (and also in [35]). The proof of nonseparability is essentially a computation
of the spirality character defined in [24]. Here, we modify the construction in [24]
and give an elementary proof of nonseparability without using the spirality character
explicitly.

3.1. Finite semicovers of nongeometric 3-manifolds
We first review the notion of finite semicovers of nongeometric 3-manifolds, which
was introduced in [32].

Definition 3.1
LetM be a nongeometric 3-manifold with tori or empty boundary. A finite semicover
of M is a compact 3-manifold N and a local embedding f W N !M , such that its
restriction on each boundary component of N is a finite cover to a decomposition
torus or a boundary component of M .
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For a finite semicover f W N !M , if M has no decomposing Klein bottle, the
decomposition tori of N is exactly f �1.TM / n @N , and the restriction of f on each
geometric piece of N is a finite cover of the corresponding geometric piece of M .

One important property of finite semicovers is given by the following lemma in
[24].

LEMMA 3.2 ([24, Lemma 6.2])
If N is a connected finite semicover of a nongeometric 3-manifold M with empty or
tori boundary, then N has an embedded lifting in a finite cover of M . In fact, the
semicovering map N !M is �1-injective, and �1.N / is separable in �1.M/.

Remark 3.3
In [24], this lemma is only stated in the case that M is a closed orientable irreducible
nongeometric 3-manifold, but it also clearly holds for irreducible nongeometric 3-
manifolds with nonempty boundary. This is because we can first take the double
D.M/ of M , apply the closed manifold version of Lemma 3.2 to N !D.M/, and
apply Lemma 2.3 to get separability of �1.N / in �1.M/.

3.2. Reduction to nongeometric 3-manifolds with very simple dual graph
To prove Theorem 1.3, we will reduce it to the case that the dual graph of M consists
of two vertices and two edges (a bigon), and M has at least one hyperbolic piece.

Let M be an orientable irreducible nongeometric 3-manifold with tori or empty
boundary. It is known that all graph manifolds have non-LERF fundamental groups
(see [30]), so we can assume that M has at least one hyperbolic piece; that is, M is a
mixed 3-manifold.

The dual graph of M is a graph with vertices corresponding to geometric pieces
of M and edges corresponding to decomposition tori. The following lemma is the
first step of our reduction of 3-manifolds, which reduces the non-LERFness of mixed
3-manifold groups to a very simple case: the dual graph of M has only two vertices
and one edge.

LEMMA 3.4
Let M be a mixed 3-manifold. Then there exists a 3-manifold N D N1 [T N2 such
that the following hold:
(1) N1 is a cusped hyperbolic 3-manifold, and N2 is a geometric 3-manifold.
(2) N1 \N2 D T is a single torus, and N DN1 [T N2 is a fibered 3-manifold.
(3) N is a finite semicover of M , so �1.N / is a subgroup of �1.M/.
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Proof
By [31], we take a finite cover of M such that it is a fibered 3-manifold; we still
denote it by M .

We first suppose that M has at least two geometric pieces. Take any hyperbolic
piece N1, and take another (distinct) geometric piece N2 adjacent to N1. It is possible
that N1 \ N2 consists of more than one tori, and let T be one of them. We cut M
along all decomposition tori in TM except T ; then the component containing N1 and
N2 is the desired N , which is clearly a finite semicover of M .

The fibered structure on M induces a fibered structure on N , since fibered struc-
tures of 3-manifolds are compatible with geometric decomposition. It is easy to see
that all other desired conditions hold for N .

It remains to consider the case that M has only one geometric piece, and we
denote it by N1. Since the geometric decomposition of M is nontrivial, there is a
decomposition torus T of M that is adjacent to N1 on both sides. Then we take a
double cover of M dual to T and reduce it to the previous case.

By Lemma 2.3, to prove non-LERFness of mixed 3-manifold groups, we only
need to consider the case M DM1 [T M2 as in Lemma 3.4 (we use M and Mi

instead of N and Ni since we will do further constructions). The dual graph ofM has
two vertices and one edge, which is not our desired model for constructing nonsep-
arable subgroups. Actually, we need a cycle in the dual graph of the 3-manifold. So
we use the following lemma to pass it to a further finite semicover, such that its dual
graph consists of two vertices and two edges (a bigon).

LEMMA 3.5
Let M DM1 [T M2 be a 3-manifold satisfying the conclusion of Lemma 3.4. Then
there exists a 3-manifold N D N1 [T[T 0 N2 with nonempty boundary such that the
following hold:
(1) N1 is a cusped hyperbolic 3-manifold, and N2 is a geometric 3-manifold.
(2) N1 \N2 D T [ T

0 is a union of two tori, and N DN1 [T[T 0 N2 is a fibered
3-manifold.

(3) The homomorphism H1.T [ T
0IZ/! H1.N1IZ/ induced by inclusion is

injective.
(4) N is a finite semicover of M , so �1.N / is a subgroup of �1.M/.
(5) There exists a fibered surface S of N , which is a union of two subsurfaces

S D S1 [c[c0 S2, such that Si D S \Ni , c D S \ T , and c0 D S \ T 0. Here,
both S and S 0 are connected, while both c and c0 are one single circle.
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Proof
Claim. There exists a 3-manifold N DN1 [T[T 0 N2 satisfying conditions (1)–(4).

We first prove this claim.
We take a basepoint of M1 on T . For Z2 Š �1.T / < �1.M1/ < IsomC.H3/, we

take any hyperbolic element g 2 �1.M1/ which maps the fixed point of �1.T / on S21
to a different point. By the Klein combination theorem (see [26, Section VII, Theo-
rem A.13]), for large-enough positive integer k, the subgroup of �1.M1/ generated
by �1.T / and gk�1.T /g�k is isomorphic to the free product of these two groups,
that is, isomorphic to Z2 �Z2, and we denote it by H .

SinceH <�1.M1/ is not a surface subgroup, it is geometrically finite. By Theo-
rem 2.5, there exists a finite cover N1 of M1, such that H <�1.N1/, and there exists
a retraction homomorphism �1.N1/!H . Since hyperbolic 3-manifolds have LERF
fundamental groups (see [3], [43]), by passing to a further finite cover (still denoted
by N1), we can assume that gk … �1.N1/ and that N1 has at least three boundary
components.

Since gk … �1.N1/, any (embedded) arc � in N1 (starting from the lifted base-
point) corresponding to gk 2 �1.M/ connects two different boundary components of
N1, and we denote them by T1 and T 01. Note that the restriction of covering mapN1!
M1 maps both T1 and T 01 to T by homeomorphisms. Then H <�1.N1/ corresponds
to the fundamental group of the union of T1, T 01, and � . Since H D �1.T1 [ T 01 [ �/
is a retraction of �1.N1/, H1.T1 [ T 01 [ � IZ/ Š H1.T1 [ T

0
1IZ/ is a retraction of

H1.N1IZ/. So condition (3) holds for N1.
If M2 is a cusped hyperbolic 3-manifold, by doing the same construction as M1,

we get a finite cover N2!M2 such that two boundary components T2 and T 02 of
N2 are mapped to T by homeomorphisms. By identifying T1 and T 01 with T2 and T 02,
respectively, we get a semifinite cover N DN1[T[T 0 N2 of M satisfying conditions
(1)–(4). Here, we use T to denote the image of T1 and T2, and we use T 0 to denote
the image of T 01 and T 02.

If M2 is a Seifert-fibered space, then we first do the following preparation before
doing the above construction for M1. Since M is a fibered 3-manifold, we have
M D S � I=�, where � W S ! S is a reducible homeomorphism on a surface S .
By taking some finite cyclic cover M 0 ofM along S , we can assume thatM 0 has two
adjacent geometric pieces, such that one of them is a cusped hyperbolic 3-manifold,
and another one is homeomorphic to †� S1 with �.†/ < 0.

We take the union of these two adjacent pieces along a common torus and get
our new M DM1 [T M2 with M2 D†� S

1. Then we do the same construction for
M1 as above to get a finite cover N1. For M2, let c be the boundary component of †
corresponding to the boundary component T � @M2. Since �.†/ < 0, there exists a
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double cover †0!† such that there are two boundary components c2; c02 � @†
0 that

are mapped to c by homeomorphisms.
Then N2 D †0 � S1 is a finite cover of M2. Let T2 and T 02 be the boundary

components of N2 corresponding to c2 � S1 and c02 � S
1, respectively; then they

are both mapped to T by homeomorphisms. We paste N1 and N2 together to get the
desired finite semicover N DN1 [T[T 0 N2.

This finishes the proof of the claim.
Now N D N1 [T[T 0 N2 satisfies conditions (1)–(4), so we need to work on

condition (5).
Since M is a fibered 3-manifold, the semicover N has an induced fibered struc-

ture. The corresponding fibered surface S might be more complicated than what we
want in condition (5), since S \Ni , S \ T , and S \ T 0 may not be connected.

We write N as N D S � I=�. Since N has nontrivial torus decomposition,
� W S ! S is a reducible self-homeomorphism of S . Let C be the set of reduction
circles such that �j W S n C ! S n C is either pseudo-Anosov or periodic on each
�-component (by [40]).

We first suppose that there are two components S1 and S2 of S n C such that
Si �Ni , and such that S1 \S2 contains two circles c and c0 with c � T and c0 � T 0.
Take a positive integer k, such that �k preserves each component of both S n C

and C . In this case, N 0 D ..S1 [c[c0 S2/ � I /=�k is a finite semicover of N . Let
NNi D Si � I=�

k , and let NT and NT 0 be the components of @ NN1 (also @ NN2) containing
c and c0, respectively. Then it is easy to check that NN D NN1 [ NT[ NT 0 NN2 satisfies all
desired conditions.

If there are not two components of S nC satisfying the above condition, we need
to modify the fibered surface S . The new fibered surface is the Haken sum of S and a
multiple of T1, and the detail is as follows.

We take a tubular neighborhood N.T1/ of T1 in N1 and give it a coordinate by
N.T1/D T1 � I D .S

1 � I /� S1 such that

S \N.T1/D
�
¹a1; a2; : : : ; akº � I

�
� S1;

with a1; : : : ; ak following a cyclic order on S1. The fibered structure on N.T1/ is
given by a fibered structure of S1 � I and then crossed with S1. For any integer
j , we modify the fibered structure on N.T1/ by modifying the fibered structure on
S1 � I . For each fixed integer j , a new fibered structure on S1 � I is given by a
union of disjoint embedded arcs Ii � S1�I , such that Ii connects .ai ; 0/ to .aiCj ; 1/
(modulo k), where i D 1; 2; : : : ; k. This fibered structure onN.T1/ can be pasted with
the original fibered structure of N nN.T1/ to get a new fibered structure of N .

If we start from one component S1 � S \N1, then take any component S2 � S \
N2 such that S1\S2\T 0 ¤;. Then S1\T1 and S2\T2 are two families of parallel
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circles on T , but it is possible any two circles in these two families are not identified
with each other. Then we apply the above modification of the fibered structure for
a proper chosen j , such that the new fibered surface satisfies the assumption of the
previous case.

Actually, condition (5) is not really necessary in the proof of Theorem 1.3, but it
will make the immersed �1-injective surface constructed in Proposition 3.6 a simple
shape.

3.3. Construction of nonseparable surface subgroups
In this subsection, we construct a �1-injective properly immersed subsurface in the
3-manifold N D N1 [T[T 0 N2 constructed in Lemma 3.5 and then prove that this
surface subgroup is not separable in �1.N /.

The following proposition constructs a �1-injective properly immersed subsur-
face in N , which is our candidate of nonseparable surface subgroup. Readers may
want to compare this construction with the construction in Section 8 of [24].

PROPOSITION 3.6
For the 3-manifold N DN1 [T[T 0 N2 and fibered subsurface S D S1 [c[c0 S2 con-
structed in Lemma 3.5, there exists a connected �1-injective properly immersed sur-
face i W†�N such that the following hold:
(1) † is a union of connected subsurfaces as †D .†1;1 [†1;2/[ .

S2n
kD1†2;k/,

with i.†1;j /�N1 and i.†2;k/�N2.
(2) The restrictions of i on †1;j and †2;k are embeddings, and their images are

fibered surfaces in N1 and N2, respectively.
(3) Each †2;k is a parallel copy of S2 in N2, so †2;k intersects with both T and

T 0 along exactly one circle.
(4) †1;1 \†2;1 consists of two circles s and s0, with i.s/� T and i.s0/� T 0.
(5) †1;1 \ T consists of A parallel copies of c, and †1;1 \ T 0 consists of B

parallel copies of c0, with A¤B .

Proof
When we cut N along T [ T 0 and cut S along c [ c0, we use Ti and T 0i to denote the
copies of T and T 0 in Ni , respectively, and use ci and c0i to denote the copies of c and
c0 in Si , respectively.

Let ˛ 2H 1.N IZ/ be the fibered class dual to S , and let ˛1 D ˛jN1 . Then ˛1jT1
is dual to c1 � T1, and ˛1jT 0

1
is dual to c01 � T

0
1.

Since H1.T1 [ T 01IZ/!H1.N1IZ/ is injective, there exists a direct summand
A < H1.N1IZ/ such that A Š Z4 and H1.T1 [ T 01IZ/ < A. Since Z4 Š H1.T1 [
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T 01IZ/ < AŠ Z4 is a finite-index subgroup, there exists a homomorphism 	 WA! Z
such that 	 jH1.T1IZ/ is equal to l˛1jT1 for some l 2 ZC, and 	 jH1.T 01IZ/ D 0.

Let � WH1.N1IZ/! A be a retraction given by the direct sum structure. Then
we get a cohomology class ˇ 2H 1.N1IZ/ defined by 	 ı� WH1.N1IZ/! Z. By the
construction of 	 , ˇjT1 D 	 ı �jT1 D 	 jT1 D l˛1jT1 for some l 2 ZC and ˇjT 0

1
D 0.

Since ˛1 is a fibered class on N1, for large-enough n 2 ZC, ˛1;1 D n˛1C ˇ and
˛1;2 D n˛1 �ˇ are both fibered classes in H 1.N1IZ/. Here, we can also assume that
n > l and gcd.n; l/D 1.

Since ˛1;1jT1 is dual to nC l copies of c1, ˛1;1jT 0
1

is dual to n copies of c01, and
gcd.n; l/D 1, ˛1;1 2H 1.N1IZ/ is a primitive class. Similarly, ˛1;2 2H 1.N1IZ/ is
also primitive.

Let †1;1 � N1 be the connected fibered surface dual to ˛1;1 2H 1.N1IZ/, and
let †1;2 �N1 be the connected fibered surface dual to ˛1;2. Then †1;1 \ T1 consists
of AD nC l copies of c1 (as oriented curves), †1;1\T 01 consists of B D n copies of
c01, †1;2 \ T1 consists of n� l copies of c1, and †1;2 \ T 01 consists of n copies of c01.
So .†1;1 [†1;2/\ T1 and .†1;1 [†1;2/\ T 01 consist of 2n (oriented) copies of c1
and c01, respectively.

Note that both S2 \ T2 and S2 \ T 02 are exactly one (oriented) copy of c2 and
c02, respectively. We take 2n copies of S2 in N2, and denote them by †2;k , with
k D 1; 2; : : : ; 2n. Then we identify parallel circles in .†1;1 [ †1;2/ \ T1 with
.
S2n
kD1†2;k/\T2 on T D T1 D T2 and identify parallel circles in .†1;1[†1;2/\T 01

with .
S2n
kD1†2;k/\ T

0
2 on T 0 D T 01 D T

0
2 to get an immersed surface †. In the iden-

tification process, we first identify one circle in†1;1\T1 with the circle in †2;1\T2
and identify one circle in †1;1 \ T 01 with the circle in †2;1 \ T 02. Then we identify
the remaining circles arbitrarily. There are actually many ways to do the identification
in the second step, since we can isotopy any †2;k0 such that its intersection with T2
slides over the other circles †2;k \ T2, while the other surfaces in ¹†2;kº are fixed.

It is easy to see that i W †� N is a properly immersed surface, and it satisfies
conditions (1)–(5) in the proposition by the construction.

Moreover, by conditions (3) and (5), there exists some †2;k0 such that both
†1;1 \ †2;k0 and †1;2 \ †2;k0 are not empty. So †1;1 and †1;2 lie in the same
connected component of †. Then † must be connected, since each †2;k intersects
with at least one of †1;1 and †1;2.

Now we show that i is �1-injective by using classical 3-manifold topology. Sup-
pose there is a map j W S1!† which is not null-homotopic in†, but i ıj W S1!N

is null-homotopic in N .
We can assume that i ı j is transverse with the decomposition tori T [ T 0, and

j minimizes the number of points in .i ı j /�1.T [ T 0/� S1 in the homotopy class
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of j . This number is not zero; otherwise it contradicts the �1-injectivity of fibered
surfaces.

Since i ı j is null-homotopic, it can be extended to a map k WD2!N such that
kjS1 D i ıj . We can homotopy k relative to S1 such that it is transverse with T [T 0,
and k�1.T [ T 0/ consists of disjoint simple arcs in D2.

Then there exists a subarc ˛ � S1 and an arc component ˇ in k�1.T [T 0/�D2,
such that ˛ and ˇ share endpoints and there are no other components of k�1.T [
T 0/ lying in the subdisk B �D2 bounded by ˛ [ ˇ. Without loss of generality, we
suppose that j.˛/ lies in †1;1 � N1, k.ˇ/ � T , and k.B/ � N1. Then it is easy to
see that the k-images of two endpoints of ˛ lie in the same component of †1;1 \ T
by considering the algebraic intersection number between †1;1 and ˛[ˇ. Moreover,
kjˇ W ˇ! T is homotopic to a map into †1;1 \ T , relative to the boundary of ˇ.

Then it is routine to check that j j˛ W ˛!†1;1 is homotopy to a map with image
in i�1.T /, relative to the boundary of ˛. After a further homotopy of j supporting on
a neighborhood of ˛, we get another j 0 W S1!† which is homotopy to j and has a
fewer number of points in .i ı j 0/�1.T [ T 0/� S1.

So we get a contradiction with the minimality of j , and i W†�N is �1-injective.

The following proposition proves the nonseparability of i�.�1.†// < �1.N /

constructed in Proposition 3.6. Essentially, the proof checks that the spirality char-
acter of †!N is nontrivial (defined in [24]), but we do not use the terminology of
the spirality character here, since the picture is relatively simple and we can give a
direct proof.

PROPOSITION 3.7
For the properly immersed subsurface i W †� N constructed in Proposition 3.6,
i�.�1.†// < �1.N / is a nonseparable subgroup.

Proof
Suppose that i�.�1.†// < �1.N / is separable; we will get a contradiction.

Let QN be the covering space of N corresponding to i�.�1.†//. Since each com-
ponent of †\ i�1.Nk/ is a fibered surface in Nk for k D 1; 2, it is easy to see that QN
is homeomorphic to †�R. So i W†�N lifts to an embedding † ,! QN .

Since i�.�1.†// < �1.N / is separable, by [36] there exists an intermediate finite
cover ON !N of QN !N such that i W†�N lifts to an embedding Oi W† ,! ON .

Since i W†�N is a proper immersion, Oi W† ,! ON is also a proper embedding.
So † defines a nontrivial cohomology class � 2H 1. ON IZ/.
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For each decomposition torus OTs � ON , suppose † \ OTs consists of ks parallel
circles. Let K be the least common multiple of all ks . By taking the K-sheet cyclic

cover of ON along † (corresponding to the kernel of H1. ON IZ/
�
�! Z! ZK ), we get

a further finite cover NN ! N . Then † embeds into NN , and it intersects with each
decomposition torus of NN exactly once.

Let NN1 and NN2 be the geometric pieces of NN containing †1;1 and †2;1, respec-
tively. Since †1;1\†2;1 D s[ s0, let NT and NT 0 be the decomposition tori in NN1\ NN2
containing s and s0, respectively. Then the finite cover NN !N induces finite covers:

NN1!N1; NN2!N2;

NT ! T; NT 0! T 0:

Since both NT ! T and NT 0! T 0 are induced by NN1!N1 and NN2!N2, we will
get two relations between deg. NT ! T / and deg. NT 0! T 0/ and then get a contradic-
tion.

Since †1;1 is an embedded fibered surface in both NN1 and N1, NN1 is a finite
cyclic cover of N1 along†1;1. Similarly, NN2 is a finite cyclic cover of N2 along†2;1.

Since †1;1\T consists of A parallel circles and †1;1\T 0 consists of B parallel
circles, while †1;1 \ NT and †1;1 \ NT 0 are both only one circle, NN1!N1 is a cyclic
cover whose degree is a multiple of lcm.A;B/, and

A � deg. NT ! T /D deg. NN1!N1/DB � deg. NT 0! T 0/: (1)

We also have that †2;1 is an embedded fibered surface in both NN2 and N2. Since
†2;1 \ T , †2;1 \ T 0, †2;1 \ NT , and †2;1 \ NT 0 are all just one circle, and NN2!N2

is a finite cyclic cover, we have

deg. NT ! T /D deg. NN2!N2/D deg. NT ! T 0/: (2)

Equations (1) and (2) imply that AD B , which contradicts with condition (5) in
Proposition 3.6. So i�.�1.†// must be a nonseparable subgroup of �1.N /.

Remark 3.8
From the proof of Proposition 3.7, readers can see that the main ingredient for prov-
ing the nonseparability of �1.†/ is the subsurface †1;1 [s[s0 †2;1. However, the
author cannot prove that �1.†1;1[s[s0 †2;1/ is nonseparable in �1.N / yet, although
it seems quite plausible.

In the proof of Proposition 3.7, we do need the properness of the immersed sub-
surface i W†�N so that we can take the finite cyclic cover of ON along † to get NN
and then get the contradiction. Actually, most of the proof can be translated to purely
group theoretical language, except that the author does not know how to interpret
“properly immersed subsurface” algebraically.
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3.4. Proof of Theorem 1.3
Now we are ready to prove Theorem 1.3.

Proof
Suppose that M supports one of Thurston’s eight geometries. Since the fundamen-
tal group is finite or virtually abelian, if M supports the S3- or S2 � E1-geometry,

then LERFness trivially holds. If M supports the E3-, Nil-, H2 � E1-, or ˜PSL2.R/-
geometry, then M is a Seifert manifold and LERFness is proved in [36]. If M sup-
ports the Sol-geometry, then M is virtually a torus bundle over circle, and a proof of
LERFness can be found in [30]. If M is a hyperbolic 3-manifold, then LERFness is
shown by the celebrated works of Wise (see [43] for the cusped case) and Agol (see
[3] for the closed case).

Now we need to show that nongeometric 3-manifolds have non-LERF fundamen-
tal groups. We first suppose thatM is a mixed 3-manifold; that is,M has a hyperbolic
piece.

IfM is not a closed manifold, then Lemmas 3.4 and 3.5 imply thatM has a finite
semicover N DN1 [T[T 0 N2 satisfying the conditions in Lemma 3.5. In particular,
�1.N / is a subgroup of �1.M/. Then Proposition 3.6 constructs a nonclosed surface
subgroup (free subgroup) �1.†/ < �1.N /, and Proposition 3.7 shows that �1.†/ is
not separable in �1.N /. Finally, Lemma 2.3 implies that �1.†/ is not separable in
�1.M/, and thus �1.M/ is not LERF.

IfM is a closed mixed 3-manifold, then the above proof also shows the existence
of a nonseparable free subgroup in �1.M/. We need also to construct a nonseparable
closed surface subgroup.

Let N !M be the finite semicover constructed in Lemma 3.5 (with @N ¤ ;),
and let †�N be the �1-injective properly immersed surface constructed in Propo-
sition 3.6. To make the geometric picture simpler, we apply Lemma 3.2 to construct
a finite cover M 0 of M such that N lifts to an embedded submanifold of M 0.

In this case, the induced map†�M 0 is an immersion but is not a proper immer-
sion. So we cannot use the proof of Proposition 3.7 for this †. Now we extend † to a
closed surface †0, with an immersion j W†0�M 0. Then we can apply the argument
in the proof of Proposition 3.7 to prove the nonseparability of �1.†0/ < �1.M 0/.

The construction of j W†0�M 0 is actually done in Section 8 of [24], so we only
give a sketch here.

Let the boundary components of † be s1; : : : ; sm, with each si lying on a decom-
position torus Ti �M 0. By Theorem 4.11 of [13], there exists an essentially immersed
subsurface Ri �M 0, such that @Ri consists of two components bi and Nbi , while bi
and Nbi are mapped to a positive and a negative multiple of si � Ti , respectively, with
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the same covering degree. Moreover, a neighborhood of @Ri in Ri is mapped to the
side of Ti that is not N , and Ri intersects with TM 0 minimally.

Then we take some finite cover of O†! † such that each boundary component
of O† that is mapped to si has covering degree deg.bi ! si /, and we take another
copy of O† with opposite orientation. Together with a proper number of copies of
Ri , i D 1; : : : ;m, they can be pasted together to get a �1-injective immersed closed
subsurface †0 � M 0. A similar argument as in Proposition 3.7 can be applied to
O†�†0 to show that �1.†0/ is not separable in �1.M 0/, and so it is not separable in
�1.M/.

If M is a graph manifold, it was already shown in [30] that �1.M/ is not LERF.
So we only sketch the construction of nonseparable surface subgroups.

The first step is to show that M has a finite semicover N D S � I=�, where S D
S1[c[c0 S2 and � is a composition of Dehn twists along c and c0. Then we perturb the
fibered structures on both N1 and N2 (since Seifert-fibered spaces have less flexible
fibered structures) to get a �1-injective properly immersed subsurface similar to what
we get in Proposition 3.6. Then a similar argument as in Proposition 3.7 shows that
this surface subgroup is not separable. Here, we do need to use the fact that two
adjacent Seifert pieces in a graph manifold have incompatible regular fibers on their
intersection torus.

However, in general, it does not seem easy to construct a nonseparable closed
surface subgroup in a closed graph manifold.

Remark 3.9
In [35], the authors constructed a �1-injective properly immersed subsurface †�
M for some graph manifold M . Then [29] proved that �1.†/ is not contained in
any finite-index subgroup of �1.M/ (not engulfed). In the proof of [29], only the
infinite plane property of the surfaces constructed in [35] is used. Since the surfaces
we constructed in the proof of Theorem 1.3 also have the infinite plane property,
for any mixed 3-manifold M , we can find a finite cover M 0!M and a �1-injective
properly immersed subsurface†�M 0 such that �1.†/ is not contained in any finite-
index subgroup of �1.M 0/.

In [30], it is shown that all graph manifold groups contain

LD hx;y; r; s j rxr�1 D x; ryr�1 D y; sxs�1 D xi

as a subgroup. Then the non-LERFness of L implies the non-LERFness of all graph
manifold groups. It is easy to see that some mixed manifolds (e.g., the double of any
cusped hyperbolic 3-manifold) do not contain L as a subgroup in their fundamental
groups. So L is not the source of the non-LERFness of these groups.
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Since any free product of LERF groups is still LERF, we have the following direct
corollary of Theorem 1.3.

COROLLARY 3.10
LetM be a compact orientable 3-manifold with empty or tori boundary. Then �1.M/

is LERF if and only if all prime factors of M support one of Thurston’s eight geome-
tries.

Knot complements in S3 also form a classical family of interesting 3-manifolds,
and each knot is a torus knot, a hyperbolic knot, or a satellite knot. We have the
following corollary for knot complements.

COROLLARY 3.11
Let M be the complement of a knot K � S3. Then �1.M/ is LERF if and only if K
is either a torus knot or a hyperbolic knot.

4. Union of two hyperbolic 3-manifolds along a circle
In this section, we will give the proof of Theorem 1.4. The proof is very similar to the
proof of Theorem 1.3. For some lemmas and propositions in this section, we will only
give a sketch of the proof; we point out necessary modifications of the corresponding
proofs in Section 3.

In the proof of the non-LERFness of �1.M1 [S1 M2/, we actually only use
machinery on hyperbolic 3-manifolds for M1 (the crucial ingredient is the virtual
retract property of its geometrically finite subgroups), and do not have much require-
ment for M2. So we will have some more general results on the non-LERFness of
Z-amalgamated groups in Section 4.2.

4.1. Non-LERFness of �1.M1 [S1 M2/ for hyperbolic 3-manifolds M1 and M2

Suppose thatM1 andM2 are two finite volume hyperbolic 3-manifolds (possibly with
cusps), and let ik W S1!Mk , k D 1; 2 be two essential circles. Here, we can assume
that both ik are embeddings into int.Mk/, and we denote the image of ik by �k . It is
possible that the element in �1.Mk/ corresponding to �k is a parabolic element or a
nonprimitive element. For simplicity, the readers can think of �k as a simple closed
geodesic in Mk most of the time.

Let X DM1 [� M2 be the space obtained by identifying �1 and �2 by a home-
omorphism; then we need to show that �1.X/ is not LERF. For a standard graph of
space, the edge space should be S1 � I . Here, we directly paste M1 and M2 together
along the circles, which makes the picture simpler. We also give orientations on �1
and �2 such that the pasting preserves orientations on these two circles.



22 HONGBIN SUN

For any point in X , either it has a neighborhood homeomorphic to B3 (the open
unit ball in R3) or B3C (the points in B3 with nonnegative z-coordinate), or it has a
neighborhood homeomorphic to a union of two B3’s along Iz D B3 \ .z-axis/; that
is, B3 [Iz B

3.
We first give a name for the spaces that locally look like B3, B3C, or B3 [I B3.

Definition 4.1
A compact Hausdorff space X is called a singular 3-manifold if, for any point x 2X ,
either it has a neighborhood homeomorphic to B3 or B3C, or it has a neighborhood
homeomorphic to B3 [Iz B

3 with x 2 Iz . We call points in the first class regular
points, and we call points in the second class singular points.

We can think of a singular 3-manifold X as a union of finitely many 3-manifolds
along disjoint simple closed curves, and we call each of these 3-manifolds a 3-manifold
piece of X .

In the proof of Theorem 1.3, the concept of a finite semicover played an important
role, so we need to define a corresponding concept for singular 3-manifolds. Here, the
set of singular points in singular 3-manifolds corresponds to the set of decomposition
tori in 3-manifolds.

Definition 4.2
Let Y , Z be two singular 3-manifolds. A map i W Y ! Z is called a singular finite
semicover if, for any point y 2 Y , one of the following holds:
(1) i maps a neighborhood of y to a neighborhood of i.y/ by homeomorphism.
(2) y is a regular point and i.y/ is a singular point, such that i maps a B3 neigh-

borhood of y to one of the B3’s in a B3 [Iz B
3 neighborhood of i.y/ by

homeomorphism.

Under a singular finite semicover, all singular points are mapped to singular
points, and all regular points not lying in a finite union of simple closed curves in
Y are mapped to regular points. It maps each 3-manifold piece of Y to a 3-manifold
piece of Z by a finite cover.

It is easy to see that a singular finite semicover i W Y ! Z induces an injective
homomorphism on fundamental groups. The author also believes that a singular finite
semicover gives a separable subgroup �1.Y / < �1.Z/, but we do not need this result
here.

The following lemma corresponds to Lemma 3.4.
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LEMMA 4.3
Let X DM1 [� M2 be a union of two finite volume hyperbolic 3-manifolds along an
essential circle. There then exists a singular 3-manifold Y DN1 [c N2 such that the
following hold:
(1) Y is a union of two hyperbolic 3-manifolds N1 and N2, where Nk is a finite

cover of Mk (k D 1; 2), and the set of singular points is one oriented circle.
(2) Each Nk is a fibered 3-manifold with a fixed fibered surface Sk such that the

algebraic intersection number ŒSk
\ Œc
D 1 for k D 1; 2.
(3) Y is a singular finite semicover of X , so �1.Y / is a subgroup of �1.X/.

Proof
By Agol’s virtual fibering theorem and virtual infinite Betti number theorem (see
[3]), there exists a finite cover M 01 of M1 such that M 01 is a fibered 3-manifold and
b1.M

0
1/ > 1. Let � 01 �M

0
1 be one oriented elevation (one component of the preimage)

of �1 �M1. If � 01 is null-homologous in M 01, we apply Theorem 2.5 to find a further
finite cover M 001 such that � 01 lifts to a non–null-homologous curve in M 001 .

Since the fibered cone is an open set inH 1.M 001 IR/, there exists a fibered surface
S1 in M 001 which has positive intersection number with � 01. So we have ŒS1
\ Œ� 01
D
a1 2 ZC and deg.� 01! �1/D b1.

By the same construction, we get a finite cover M 002 !M2 with a fibered sur-
face S2 such that, for some oriented elevation � 02 of �2, ŒS2
 \ Œ� 02
D a2 2 ZC and
deg.� 02! �2/D b2.

LetN1 be the a1b2-sheet cyclic cover ofM 001 along S1, and let c1 be one elevation
of � 01. Then ŒS1
\ Œc1
D 1 and deg.c1! �1/D b1b2. Similarly, let N2 be the a2b1-
sheet cyclic cover of M 002 along S2, and let c2 be one elevation of � 01. Then ŒS2
 \
Œc2
D 1 and deg.c2! �2/D b1b2.

Since c1! �1 and c2! �2 have the same degree, we can identify c1 and c2 (as
oriented curves) to get the desired singular finite semicover Y DN1 [c N2.

Remark 4.4
Actually, we may get a result as strong as Lemma 3.4; that is, Y D N1 [c N2 is an
S1 _ S2 bundle over S1. However, we did not state Lemma 4.3 in this way. One
reason is that we need to homotopy the curve ck in Nk to get this fibered structure.
Moreover, the closed curve ck may not (virtually) be a closed orbit of the pseudo-
Anosov suspension flow of a (virtual) fibered structure of Nk . So it is not a natural
object, from the dynamical point of view. Nevertheless, S1 _ S2 is a homotopy fiber
of Y DN1 [c N2, from a homotopy point of view.
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For simplicity, we still use X DM1 [� M2 to denote the singular 3-manifold
obtained in Lemma 4.3. Then we have the following lemma corresponding to Lem-
ma 3.5.

LEMMA 4.5
For the singular 3-manifold X DM1 [� M2 constructed in Lemma 4.3, there exists
a singular 3-manifold Y DN1 [c[c0 N2 such that the following hold:
(1) Y is a union of two hyperbolic 3-manifolds N1 and N2, where each Nk is a

finite cover of Mk (k D 1; 2), and the set of singular points consists of two
oriented circles.

(2) The homomorphismH1.c[c0IZ/!H1.N1IZ/ induced by inclusion is injec-
tive.

(3) For each Nk (k D 1; 2), there exists a fibered surface S 0
k
� Nk , such that

ŒS 0
k

\ Œc
D ŒS 0

k

\ Œc0
D 1 holds for the algebraic intersection number.

(4) Y is a singular finite semicover of X , so �1.Y / is a subgroup of �1.X/.

Proof
Let �i be the oriented copy of � in Mi .

By a similar argument as in the proof of Lemma 3.5, and using the virtual retract
property of a Z�ZD h�1.�/; gn�1.�/g�ni subgroup in �1.M1/, we can find a finite
cover N1 of M1 and two distinct homeomorphic liftings c1 and c01 of �1 �M1, such
that H1.c1 [ c01IZ/!H1.N1IZ/ is injective.

In the conclusion of Lemma 4.3, we fixed a fibered surface S1 in M1 whose
algebraic intersection number with �1 is 1. For an elevated fibered surface S 01 �N1,
the algebraic intersection numbers of S 01 with c1 and c01 are both equal to 1.

By doing a similar construction for M2 (actually, a simpler construction works
since we do not require condition (2) for N2), we get a finite cover N2 of M2, with
two homeomorphic liftings c2 and c02 of �2, and a fibered surface S 02 of N2 with
ŒS 02
\ Œc2
D ŒS

0
2
\ Œc

0
2
D 1.

Then we paste N1 and N2 together by identifying c1 with c2 (denoted by c) and
identifying c01 and c02 (denoted by c0) to get the desired singular finite semicover Y .

For singular 3-manifolds, we need a definition in this singular world that corre-
sponds to immersed surfaces in 3-manifolds.

We first define singular surfaces, which play the same role as surfaces in 3-
manifolds.
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Definition 4.6
A compact Hausdorff space K is called a singular surface if, for any point k 2 K ,
either it has a neighborhood homeomorphic to B2 or B2C, or it has a neighborhood
homeomorphic to B2 _B2, with k lying in the intersection of two disks. We call the
points in the first class regular points, and we call points in the second class singular
points.

We can think of a singular surface K as a union of finitely many compact sur-
faces, pasting along finitely many points in their interior. We call each of these sur-
faces a surface piece of K .

Now we define singular immersions from singular surfaces to singular 3-
manifolds.

Definition 4.7
Let i WK!X be a map from a singular surface to a singular 3-manifold. We say that
i is a singular immersion if the following conditions hold:
(1) i maps the singular set of K to the singular set of X .
(2) The restriction of i on each surface piece ofK is a proper immersion from the

surface to a 3-manifold piece of X .
(3) For any singular point k 2K , there exist a B2 _ B2 neighborhood of k and

a B3 [Iz B
3 neighborhood of i.k/, such that i maps the two B2s to distinct

B3s in B3 [Iz B
3, and each B2 is mapped to the intersection of B3 with the

xy-plane by homeomorphism.

Note that Definition 4.7 is not a good candidate for “proper singular immersion.”
Under Definition 4.7, some regular point ofK can be mapped to a singular point ofX .
If we consider the corresponding manifold picture, this corresponds to the case that a
boundary component of a surface is mapped to a JSJ torus of a 3-manifold, which is
not proper. In the following proposition, we construct a singular immersion that gets
rid of this picture in the algebraic topology sense, and the readers may compare it
with Proposition 3.6.

PROPOSITION 4.8
For the singular 3-manifold Y D N1 [c[c0 N2 and fibered surfaces S 0

k
� Nk con-

structed in Lemma 4.5, there exists a connected singular surfaceK and a �1-injective
singular immersion i WK� Y such that the following hold:
(1) K is a union of oriented connected subsurfaces as K D .†1;1 [ †1;2/ [

.
S2n
kD1†2;k/, with i.†1;j /�N1 and i.†2;k/�N2.
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(2) There are 4n singular points in K . Each singular point lies in †1;j \ †2;k
for some j 2 ¹1; 2º, k 2 ¹1; 2; : : : ; 2nº, and each †2;k contains exactly two
singular points.

(3) The restrictions of i on the †1;j ’s and †2;k’s are all embeddings, and their
images are fibered surfaces of N1 and N2, respectively.

(4) Each †2;k is a copy of S 02 in N2, and the two singular points in †2;k are
mapped to the intersection of †2;k with c and c0, respectively.

(5) †1;1\†2;1 consists of two singular points p and p0, with i.p/ 2 c and i.p0/ 2
c0.

(6) We have the algebraic intersection numbers Œ†1;1
 \ Œc1
 D A and Œ†1;1
 \
Œc01
DB , with A¤B , and Œ†1;2
\ Œc1
D 2n�A and Œ†1;2
\ Œc01
D 2n�B .
Here, c1 and c01 are the oriented copies of c and c0 in N1, respectively.

(7) The set ¹singular points in †1;1º \ i�1.c/ has cardinality A. Suppose this set
is ¹a1; : : : ; aAº; then †1;1 has positive local intersection number with c1 at
each al . The same statement holds for ¹singular points in †1;1º \ i�1.c0/
(with A replaced by B), ¹singular points in †1;2º \ i�1.c/, and ¹singular
points in †1;2º \ i�1.c0/ (with A replaced by 2n � A and 2n � B , respec-
tively).

(8) For each l 2 ¹1; : : : ;Aº, take the embedded oriented subarc of c from i.a1/ to
i.al/. Then slightly move it along the positive direction of c1 to get an oriented
arc �l with endpoints away from †1;1. Then the algebraic intersection num-
ber between †1;1 and �l is equal to l � 1. Similar statements also hold for
¹singular points in †1;1º \ i�1.c0/, ¹singular points in †1;2º \ i�1.c/, and
¹singular points in †1;2º \ i�1.c0/.

This proposition looks more complicated than Proposition 3.6, and we give some
remarks here.

Remark 4.9
The conditions (1)–(6) in Proposition 4.8 correspond to the conditions in Proposi-
tion 3.6, and conditions (7) and (8) in Proposition 4.8 correspond to the “properness”
of this singular immersion. Although we do not assume

i�1¹singular points in Y º D ¹singular points in Kº;

conditions (6) and (7) imply that the total algebraic intersection number between
†1;j and c1 at the points in .i�1.c/ \†1;j / n ¹singular points in †1;j º is zero, and
it also holds for c0. So it is a weak and algebraic version of i�1.c [ c0/ \ †1;j D
¹singular points in †1;j º.

Here, we use the algebraic intersection number instead of the geometric intersec-
tion number (or number of components in the intersection), as in Proposition 3.6. For
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a fibered surface and a closed orbit of the suspension flow (or a boundary component
of the 3-manifold), the algebraic intersection number is always equal to the geometric
intersection number (or the number of components in the intersection). However, the
circles c1 and c01 in N1 may not be (virtually) closed orbits of the suspension flow,
even up to homotopy. Although we can homotopy c1 and c01 such that their algebraic
intersection numbers with one fibered surface are equal to the corresponding geomet-
ric intersection numbers, here there are two fibered surfaces†1;1 and†1;2 in N1, and
we may not be able to do so simultaneously for both †1;1 and †1;2.

Proof
By the same argument as in the proof of Proposition 3.6, we can construct two fibered
surfaces †1;1 and †1;2 in N1 such that condition (6) holds. Take 2n copies of S 02 in
N2, and denote them by †2;1; : : : ;†2;2n.

First, suppose we choose any A, B , 2n � A, and 2n � B points in †1;1 \ c1,
†1;1\c

0
1,†1;2\c1, and†1;2\c01, respectively, such that the corresponding surfaces

and curves have positive local intersection numbers at these points. If we identify
these points with .

S2n
kD1†2;k/\ .c2 [ c

0
2/ in an arbitrary way, then we get a singular

surface K and a singular immersion satisfying conditions (1)–(4), (6), and (7).
So we need to choose these points carefully so that condition (8) holds, and then

do the correct pasting such that condition (5) holds.
The choice of these four families of points follows the same process, so we only

consider †1;1 \ c1. Although the algebraic intersection number between †1;1 and
c1 is A, there might be more geometric intersection points. So we assume that there
are A C 2m intersection points in †1;1 \ c1. Take any positive intersection point
a01 in †1;1 \ c1. By following the orientation of c1, we denote the other points of
†1;1\c1 by a02; : : : ; a

0
AC2m. For any l 2 ¹1; : : : ;AC2mº, take the embedded oriented

subarc in c1 from a01 to a0
l
, then move it slightly along the positive direction of c1,

and denote it by �0
l
. Whenever we move from a0

l
to a0

lC1
, the algebraic intersection

number Œ†1;1
\ Œ�0l 
 differs from Œ†1;1
\ Œ�
0
lC1

 by 1 or �1, depending on whether

†1;1 intersects with c1 positively or negatively at a0
lC1

. Since Œ†1;1
\ Œ�01
D 0 and
Œ†1;1
 \ Œ�

0
AC2m
 D A � 1, it is easy to find A points in ¹a01; a

0
2; : : : ; a

0
AC2mº (with

a1 D a
0
1), such that they are all positive intersection points and satisfy condition (8).

Then we can paste the 2n points in .†1;1 [†1;2/\ c1 (and .†1;1 [†1;2/\ c01)
chosen above with the 2n points in .

S2n
kD1†2;k/\ c2 (and .

S2n
kD1†2;k/\ c

0
2) to get

a connected singular immersed surface i WK� Y . By doing isotopy of †2;1 in N2,
we can make sure the pasting satisfies condition (5).

The �1-injectivity of i WK � Y follows from the same �1-injectivity argument
in Lemma 3.6. Note that we do need condition (8) here.
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Then we show that the above �1-injective singular immersion gives a nonsepara-
ble subgroup in �1.Y /. This proof is similar to the proof of Proposition 3.7.

PROPOSITION 4.10
For the singular immersion i WK� Y constructed in Proposition 4.8, i�.�1.K// <
�1.Y / is a nonseparable subgroup.

Proof
Suppose that i�.�1.K// < �1.Y / is separable; then we will get a contradiction.

Since each surface piece ofK is mapped to a fibered surface in the corresponding
3-manifold piece of Y , the covering space QY of Y corresponding to �1.K/ is home-
omorphic to a union of †1;j �R (with j D 1; 2) and †2;k �R (with k D 1; : : : ; 2n)
by pasting along the preimage of ci and c0i (with i D 1; 2). In particular, i WK � Y

lifts to an embedding in QY . By the separability of i�.�1.K//, [36] implies that there
exists an intermediate finite cover p W OY ! Y of QY ! Y such that i WK� Y lifts to
an embedding Oi WK ,! OY .

In Proposition 3.7, we took a finite cyclic cover of ON along †. It can be done
either geometrically, that is, by taking finitely many copies of ON n † and pasting
them together, or algebraically, that is, by taking a finite cyclic cover dual to the
cohomology class defined by †. Here, we will follow the algebraic process.

Now we show that K � OY defines a cohomology class � 2H 1.Y IZ/ by using
duality, that is, by taking the algebraic intersection number.

Since K intersects with all 3-manifold pieces of QY , it also intersects with all
3-manifold pieces of OY . For each 3-manifold piece ONs of OY , K \ ONs is a properly
embedded oriented surface in ONs , so it defines a cohomology class �s 2H 1. ONsIZ/.

For each component Oc of p�1.c [ c0/, suppose that it is adjacent to ON1 and ON2.
Then we need to show that �1j Oc D �2j Oc , that is, that the algebraic intersection numbers
Œ ON1 \K
\ Œ Oc
 and Œ ON2 \K
\ Œ Oc
 are equal to each other. Here, ON1 and ON2 are finite
covers of N1 and N2, respectively.

Since †1;1 and †1;2 are different fibered surfaces in N1, only one of them lies in
ON1. Without loss of generality, we suppose thatK\ ON1 D†1;1, and Oc is a component

of p�1.c/. All other cases follow from the same argument.
Since †1;1 is a fibered surface in both ON1 and N1, we have that ON1 ! N1 is

a finite cyclic cover dual to †1;1, and we let the covering degree be D. Recall that
Œ†1;1
\ Œc1
D A. Then p�1.c/\ ON1 has gcd.A;D/ many components ( Oc is one of
them), and each of them has algebraic intersection number A

gcd.A;D/ with †1;1.

So we have that h�1; Oci D A
gcd.A;D/ , and we need to show h�2; Oci D A

gcd.A;D/ .

We first show that, for Oi j†1;1 W †1;1! ON1, there are exactly A
gcd.A;D/ points in

¹a1; : : : ; aAº that are mapped to Oc. For two points as; at 2 ¹a1; : : : ; aAº, if Oi.as/ and



NONLERFNESS OF MIXED 3-MANIFOLD GROUPS 29

Oi.at / lie in the same component of p�1.c/ \ ON1, then there is an oriented subarc 	
of p�1.c/ from Oi.as/ to Oi.at /. Take an oriented path � in †1;1 form as to at . Then
	 � Oi.��1/ is a loop in ON1 and it projects to a loop ı in N1.

Since 	 � Oi.��1/ is a loop in ON1, the algebraic intersection number of †1;1 with
ı is a multiple of D. On the other hand, ı consists of the projection of 	 and Oi.��1/
in N1, which helps us to compute the algebraic intersection number by another way.
Since � lies in †1;1, its projection in N1 has algebraic intersection number 0 with
†1;1. Since p ı 	 is a path on c1 with initial point as and terminal point at , by condi-
tion (8) in Proposition 4.8, the algebraic intersection number between †1;1 and p ı 	
equals nAC .t � s/ for some n 2 Z. (Actually, we need to slightly push 	 and Oi.��1/
along the positive direction of the corresponding component of p�1.c/, such that their
endpoints are away from †1;1.)

From these two computations of the algebraic intersection number between †1;1
and ı, we get that mD D nAC .t � s/ holds for some integers m and n. So t � s is a
multiple of gcd.A;D/. It implies that, for each component of p�1.c/\ ON1, there are
exactly A

gcd.A;D/ points in ¹a1; : : : ; aAº mapped to it. In particular, it holds for Oc.

There are exactly A
gcd.A;D/ points in ¹a1; : : : ; aAº \ Oc. Each of them lies in a

fibered surface in K \ ON2, and the algebraic intersection number between the fibered
surface and Oc is 1. So we have h�2; Oci D A

gcd.A;D/ D h�1; Oci.

By a Mayer–Vietoris sequence argument, we get that Oi WK ,! OY defines a coho-
mology class � 2H 1.Y IZ/ by taking the algebraic intersection number of any 1-cycle
in Y with K .

As in Proposition 3.7, we take a finite cover of OY dual to � to get a further finite
cover q W NY ! Y such that K embedds in NY . We can further require that each com-
ponent of q�1.c [ c0/ intersects with exactly two surface pieces in K , with algebraic
intersection number 1. Let NN1 and NN2 be the 3-manifold pieces of NY containing †1;1
and †2;1, respectively, and let Nc; Nc0 � NN1 \ NN2 be the singular circles containing the
two points in†1;1\†1;2. Then we can compute the relation between deg. Nc! c/ and
deg. Nc0! c0/ from both deg. NN1! N1/ and deg. NN2! N2/, and get a contradiction
as in Proposition 3.7.

Now we are ready to prove Theorem 1.4.

Proof
For a singular 3-manifold X DM1 [� M2, Lemmas 4.3 and 4.5 imply that there
exists a singular finite semicover Y DN1 [c[c0 N2 of X such that the conditions in
Lemma 4.5 hold.

By Proposition 4.8, there exists a �1-injective singular immersion i WK� Y sat-
isfying the conditions in Proposition 4.8. Then Proposition 4.10 implies that
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i�.�1.K// is not separable in �1.Y /. Since �1.Y / is a subgroup of�1.X/, Lemma 2.3
implies that i�.�1.K// is not separable in �1.X/.

If both M1 and M2 are 3-manifolds with boundary, then K is a union of surfaces
with boundary along finitely many points, making �1.K/ a free group. If at least
one of M1 and M2 is a closed 3-manifold, then K is a union of closed surfaces and
(possibly empty set of) bounded surfaces along finitely many points, so �1.K/ is a
free product of free groups and surface groups.

The following direct corollary of Theorem 1.4 implies that any Higman–
Neumann–Neumann (HNN) extension of a hyperbolic 3-manifold group along cyclic
subgroups is not LERF.

The readers may compare this corollary with the result in [28], which gives a
sufficient and necessary condition for an HNN extension of a free group along cyclic
subgroups being LERF. Note that Niblo’s condition holds for a generic pair of cyclic
subgroups in a free group.

COROLLARY 4.11
LetM be a finite volume hyperbolic 3-manifold, and letA;B < �1.M/ be two infinite
cyclic subgroups with an isomorphism � WA!B . Then the HNN extension

�1.M/�AtDB D
˝
�1.M/; t

ˇ̌
tat�1 D �.a/;8a 2A

˛

is not LERF.

Proof
Let �1.M/AtDB! Z2 be the homomorphism which kills all elements in �1.M/ and
maps t to N1 2 Z2. Then the kernel H is an index-2 subgroup of �1.M/�AtDB .

The subgroupH has a graph of group structure such that the graph consists of two
vertices and two edges connecting these two vertices (a bigon). Both vertex groups
are isomorphic to �1.M/, and both edge groups are infinite cyclic. So H contains a
subgroup that is a Z-amalgamation of two copies of �1.M/. Then Theorem 1.4 and
Lemma 2.3 imply that �1.M/AtDB is not LERF.

4.2. More general cases
Actually, the proof of Theorem 1.4 only uses the machinery on hyperbolic 3-manifolds
forM1 (virtual retract property of geometrically finite subgroups), andM2 only needs
to satisfy some mild conditions. So we have the following generalization of Theo-
rem 1.4.

THEOREM 4.12
Let M1 be a finite-volume hyperbolic 3-manifold, and let M2 be a compact fibered
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manifold over the circle; that is,M2 DN �I=� for some orientation-preserving self-
homeomorphism � W N ! N on a compact n-manifold N (n > 0). We also suppose
that �1.N / has some nontrivial finite quotient.

Let S1!M1 be an essential circle in M1, and let S1!M2 be an essential cir-
cle that has nonzero algebraic intersection number withN . Then the Z-amalgamation

�1.M1 [S1 M2/

is not LERF.

We give a sketch of the proof which parallels the proof of Theorem 1.4. It is not
hard to see that the proof works even if we only assume that N is a CW complex and
M2 is a mapping torus of N (with �1.N / still in need of having a nontrivial finite
quotient), but we prefer to state only the result for the manifold case.

Proof
At first, we can find a singular finite semicover M 01 [� M

0
2 such that similar condi-

tions in Lemma 4.3 hold. For M1, we still use the virtual fibering theorem, the virtual
infinite Betti number theorem, and the virtual retract property to find a fibered struc-
ture in some finite cover of M1, such that conditions (1) and (2) in Lemma 4.3 hold.
ForM2, it already has a fibered structure, and we may only need to take a finite cyclic
cover of M2 along N .

Then we can find a further singular semicover N1 [c[c0 N2 such that similar
conditions in Lemma 4.5 hold. For M 01, we still use the virtual retract property and
LERFness to get a finite cover N 0 satisfying conditions (2) and (3) in Lemma 4.5. For
M 02, we use the fact that �1.N / admits a nontrivial finite quotient to find a finite cover
N2 of M 02, such that the preimage of � in N2 contains at least two components, and
they are mapped to � by homeomorphisms.

In the construction of the �1-injective immersed singular object (not a singular
surface if n¤ 2) in Proposition 4.8, we only perturb fibered structures in N1, do all
nontrivial works over there, and always use the original fibered structure of N2. So
the same construction gives a �1-injective immersed singular object in N1 [c[c0 N2,
which satisfies the conditions in Proposition 4.8.

The proof of Proposition 4.10 does not use any 3-manifold topology. It uses only
the fiber bundle over circle structures and counts covering degrees. So the same proof
shows that the above �1-injective immersed singular object gives a nonseparable sub-
group in �1.N1 [c[c0 N2/, which is also nonseparable in �1.M1 [S1 M2/.

The nonseparable subgroup constructed above is a free product of surface groups,
finite-index subgroups of �1.N /, and free groups.
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Since the perturbation of fiber bundle over circle structures works in any dimen-
sion, we have the following further corollary.

COROLLARY 4.13
Let M1 be a finite-volume hyperbolic 3-manifold, and let M2 be a compact manifold
with a fiber bundle over circle structure and b1.M2/� 2.

Let S1!M1 be an essential circle in M1, and let S1!M2 be a circle in M2

with nonzero image in H1.M2IQ/. Then the Z-amalgamation

�1.M1 [S1 M2/

is not LERF.

Proof
At first, b1.M2/ � 2 implies that, for any fiber bundle over circle structure M2 D

N �I=�, b1.N /� 1 holds. So for any suchN , �1.N / has a nontrivial finite quotient.
We take any fibered structure ofM2 and writeM2 asM2 DN �I=�. By perturb-

ing the fibered structure onM2, we can assume that ŒN 
 has a nonzero algebraic inter-
section number with ŒS1
 2H1.M2IZ/. So we are in the situation of Theorem 4.12,
and �1.M1 [S1 M2/ is not LERF.

5. Non-LERFness of arithmetic hyperbolic manifold groups
In this section, we give the proof of Theorems 1.1 and 1.2, as well as some fur-
ther results on non-LERFness of high-dimensional nonarithmetic hyperbolic man-
ifold groups. These results imply that most known examples of high-dimensional
hyperbolic manifolds have non-LERF fundamental groups.

For all proofs in this section, to prove that a group is not LERF, we only need
to show that it contains a subgroup isomorphic to one of the non-LERF groups in
Theorems 1.3 or 1.4.

We start with proving Theorem 1.2, which claims that all noncompact arithmetic
hyperbolic manifolds with dimension at least 4 have non-LERF fundamental groups.

Proof
We start with the case that M is a noncompact standard arithmetic hyperbolic mani-
fold.

We first show that M contains a (immersed) noncompact, totally geodesic 3-
dimensional submanifold N . This is well known for experts, but the author did not
find a reference on it, so we give a short proof here.

Since M is noncompact, it is defined by Q and a nondegenerate quadratic form
f WQmC1!Q with negative inertia index 1. Let the symmetric bilinear form defin-
ing f be denoted by B.�; �/.



NONLERFNESS OF MIXED 3-MANIFOLD GROUPS 33

Since M is not compact, f represents 0 nontrivially in QmC1, and thus there
exists Ew ¤ E0 2 QmC1 such that B. Ew; Ew/ D f . Ew/ D 0. Since f is nondegenerate,
there exists Ev ¤ 0 2 QmC1 such that B.Ev; Ew/¤ 0. Let V D spanQ.Ev; Ew/. Then it is

easy to check that V ? \ V D ¹E0º, and the restriction of B.�; �/ on V ? is positive
definite.

Let .Ev1; : : : ; Evm�1/ be a Q-basis of V ? such thatB.Evi ; Evj /D ıij for i; j 2 ¹1; : : : ;
m � 1º. Then W D spanQ. Ev1; Ev2; Ev; Ew/ is a 4-dimensional subspace of QmC1, such
that the restriction of f on W has negative inertia index 1, and f represents 0 non-
trivially in W .

So W and f jW define a (immersed) noncompact totally geodesic 3-dimensional
suborbifold in Hm=SO0.f;Z/, which gives a (immersed) noncompact, totally geo-
desic 3-dimensional submanifold N 3 in M .

Now we are ready to prove the theorem. Here, we considerM andN 3 as compact
manifolds by truncating their horocusps.

Each boundary component of M has a naturally induced Euclidean structure, so
it is finitely covered by Tm�1, and each boundary component of N is homeomorphic
to T 2. We first take two copies of N . For each T 2 component of @N , take a long-
enough immersed T 2 � I in the corresponding boundary component of M , which is
finitely covered by Tm�1 D .T 2 � S1/ � Tm�4, such that the T 2 factor of T 2 � I
is identified with .T 2 � �/� � � .T 2 � S1/� Tm�4, and the I factor wraps around
the S1 factor. This construction is the same with the Freedman tubing construction in
dimension 3 (see [16]). In [25], it is shown that as long as the I factor wraps around
S1 for sufficiently many times, this immersed N [ .@N � I /[N is �1-injective, and
so �1.N [ .@N � I /[N/ < �1.M/.

Topologically, N [ .@N � I / [N is just the double of N along @N . Since the
double of N is a closed mixed 3-manifold with nontrivial geometric decomposition,
Theorem 1.3 implies that �1.N [ .@N � I / [ N/ is not LERF. Then Lemma 2.3
implies that �1.M/ is not LERF.

Moreover, Theorem 1.3 implies the existence of nonseparable free subgroups and
nonseparable surface subgroups in �1.M/.

If M is a noncompact arithmetic hyperbolic manifold defined by quaternions,
then it also contains noncompact 3-dimensional totally geodesic submanifolds, by
doing the same process as above for quadratic forms over quaternions. So the above
proof also works in the quaternion case.

Since 7-dimensional arithmetic hyperbolic manifolds defined by octonions are
all compact, the proof is done.

Then we give the proof of Theorem 1.1, which claims that all arithmetic hyper-
bolic manifolds with dimension at least 5 which are not those sporadic examples in
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dimension 7 have non-LERF fundamental groups. In this proof, we use two totally
geodesic 3-dimensional submanifolds instead of just using one such submanifold as
in the proof of Theorem 1.2.

Proof
We first suppose that Mm is a standard arithmetic hyperbolic manifold, with m� 5.

By the definition of standard arithmetic hyperbolic manifolds, there exists a totally
real number field K , and a nondegenerate quadratic form f W KmC1! K defined
over K , such that the negative inertial index of f is 1 and f � is positive defi-
nite for all nonidentity embeddings � W K ! R. Moreover, �1.M/ is commensu-
rable with SO0.f IOK/. So to prove that �1.M/ is not LERF, we need only to show
SO0.f IOK/ is not LERF.

We first diagonalize the quadratic form f such that the symmetric matrix corre-
sponding to f is AD diag.k1; : : : ; km; kmC1/, with k1; : : : ; km > 0 and kmC1 < 0.

First suppose that there exists i 2 ¹1; : : : ;mº such that � ki
kmC1

is not a square
in K , and we can assume i D 1. Then f has two quadratic subforms defined by
diag.k1; k2; k3; kmC1/ and diag.k1; k4; k5; kmC1/, respectively. These two subforms
satisfy the conditions for defining arithmetic groups in IsomC.H3/, and we denote
these two subforms by f1 and f2.

Then SO0.f1IOK/ and SO0.f2IOK/ are both subgroups of SO0.f IOK/. Each
of them fix a 3-dimensional totally geodesic plane in Hm, and these two planes per-
pendicularly intersect with each other along a 1-dimensional bi-infinite geodesic.
(Here, we do use that m � 5.) We denote these two 3-dimensional planes by P1
and P2 with P1 \ P2 D L. Then Mi D Pi=SO0.fi IOK/ is a hyperbolic 3-orbifold
for each i D 1; 2. Moreover, it is easy to see that SO0.f1IOK/ \ SO0.f2IOK/ D
SO0.f3IOK/, where f3 is defined by diag.k1; kmC1/ and SO0.f3IOK/ fixes L. The
condition that � k1

kmC1
is not a square in K implies that f3 only represents 0 trivially

in K2, and so SO0.f3IOK/Š Z.
By a routine argument in hyperbolic geometry and using the LERFness of hyper-

bolic 3-manifold groups (see, e.g., [6, Lemma 7.1]), there exist torsion-free finite-
index subgroups ƒi < SO0.fi IOK/ with SO0.f3IOK/ < ƒi for i D 1; 2, and the
subgroup of SO0.f IOK/ generated by ƒ1 and ƒ2 is isomorphic to ƒ1 �Z ƒ2.

So SO0.f IOK/ contains a subgroup ƒ1 �Z ƒ2, which is the fundamental group
of M1 [� M2 for two hyperbolic 3-manifolds M1 and M2. By Theorem 1.4, SO0.f I
OK/ is not LERF and �1.M/ is not LERF.

If M is closed, then both M1 and M2 are closed, and the nonseparable subgroup
can be chosen to be a free product of closed surface groups and free groups. If M has
cusps, then the nonseparable subgroup might be a free group.
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If � ki
kmC1

is a square in K for all i 2 ¹1; : : : ;mº, then the quadratic form f is
equivalent to the diagonal form diag.1; : : : ; 1„ ƒ‚ …

m

;�1/ andK DQ. It is easy to check that

f is also equivalent to the diagonal form diag.2; 2; 1; : : : ; 1„ ƒ‚ …
m�2

;�1/, and we reduce to

the previous case.
If Mm is an arithmetic hyperbolic manifold defined by a quadratic form over

quaternions, then we can also find two totally geodesic 3-dimensional submanifolds
intersecting along one circle. This can be done by diagonalizing the (skew-Hermitian)
matrix with quaternion entries and taking two 2 � 2 submatrices with one common
entry, which contributes to the negative inertia index. Then the same proof as above
also works in this case.

Remark 5.1
Actually, the nonseparable subgroups constructed in this proof are not geometrically
finite, so it is consistent with the result in [6] (geometrically finite subgroups of stan-
dard arithmetic hyperbolic manifold groups are separable). For a cocompact lattice
ƒ< IsomC.Hn/ and a finitely generated subgroup H <� , H is geometrically finite
if and only if H is a quasiconvexity subgroup of ƒ (see [37]), which is equivalent to
saying that the inclusion H ,!ƒ is a quasi-isometric embedding ([4]).

In our construction, the nonseparable subgroup H < �1.M
m/ is a free prod-

uct H Š H1 � H2, where H1 is a fibered surface subgroup of a (immersed) 3-
dimensional totally geodesic submanifoldM1 ofMm. So, sinceH1 ,!H1�H2 ŠH

and �1.M1/ ,! �1.M
m/ are both quasi-isometric embeddings, if H ,! �1.M

m/

is a quasi-isometric embedding, then H1 ,! �1.M1/ must also be a quasi-isometric
embedding. However, this is impossible since fibered surface subgroups of hyperbolic
3-manifold groups have exponential distortion:

H1 !H ŠH1 �H2
# #

�1.M1/! �1.M
m/

In [2], [18], and [5], the authors did cut-and-paste surgery on standard arithmetic
hyperbolic manifolds along codimension-1 totally geodesic arithmetic submanifolds
and constructed many nonarithmetic hyperbolic manifolds.

In [18], the authors took two noncommensurable standard arithmetic hyperbolic
m-manifolds, cut them along isometric codimension-1 totally geodesic submanifolds,
and then glued them together in another way. This process is called “interbreeding.”
In [2] and [5], the authors cut one standard arithmetic hyperbolic m-manifold along
two isometric codimension-1 totally geodesic submanifolds and then glued it back in
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a different way. This process is called “inbreeding,” which was first carried out in [2]
for the 4-dimensional case and then generalized to higher dimensions in [5].

Since all manifolds constructed in [2], [18], and [5] contain codimension-1 totally
geodesic arithmetic submanifolds, we have the following direct corollary of Theo-
rem 1.1.

THEOREM 5.2
If Mm is a nonarithmetic hyperbolic m-manifold constructed in [18] or [5], with
m� 6, then �1.M/ is not LERF.

Moreover, if M is closed, then there exists a nonseparable subgroup isomorphic
to a free product of surface groups and free groups. If M is not closed, then there
exists a nonseparable subgroup isomorphic to either a free subgroup or a free product
of surface groups and free groups.

Another geometric way to construct hyperbolic m-manifolds is the reflection
group method. Suppose P is a finite-volume polyhedron in Hm such that any two
codimension-1 faces that intersect with each other have dihedral angle �

n
with integer

n � 2. Then the group generated by reflections along codimension-1 faces of P is a
discrete subgroup of Isom.Hm/ with finite covolume.

For any torsion-free finite-index subgroup of a reflection group consisting of
orientation-preserving isometries, the quotient of Hm is a finite-volume hyperbolic
m-manifold M . Here, M is a closed manifold if and only if P is compact. The
hyperbolic manifolds constructed by this method are not necessarily arithmetic, and
it is known that there exist closed nonarithmetic reflection hyperbolic manifolds with
dimension 	 5 and noncompact nonarithmetic reflection hyperbolic manifolds with
dimension 	 10 (see [42, Chapter 6.3.2]).

When m � 5, it is easy to see that M still contains two totally geodesic 3-
dimensional submanifolds intersecting along a closed geodesic. To get such a pic-
ture, we take two totally geodesic 3-dimensional planes in Hm that contain two 3-
dimensional faces of P and intersect with each other along one edge of P . Then
their images in M are two immersed totally geodesic 3-dimensional submanifolds.
Similarly, for any m � 4, noncompact reflection hyperbolic m-manifolds also have
noncompact totally geodesic 3-dimensional submanifolds.

So we get the following theorem for finite-volume hyperbolic manifolds that arise
from reflection groups. The proof is exactly the same as the proof of Theorems 1.1
and 1.2.

THEOREM 5.3
Let M be either a closed hyperbolic m-manifold, such that m� 5, or a noncompact
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finite-volume hyperbolic m-manifold with m � 4. If �1.M/ is commensurable with
the reflection group of some finite-volume polyhedron in Hm, then �1.M/ is not LERF.

Moreover, if M is closed, then there exists a nonseparable subgroup isomorphic
to a free product of surface groups and free groups. If M is noncompact, then there
exists a nonseparable subgroup isomorphic to a free group and another nonseparable
subgroup isomorphic to a surface subgroup.

By the dimension reason, there is no �1-injective M1 [� M2 submanifold in
a 4-dimensional (arithmetic) hyperbolic manifold, so Theorem 1.4 does not give us
any non-LERF fundamental group in dimension 4. Actually, the non-LERFness of
4-dimensional closed arithmetic hyperbolic manifold groups is proved in the author’s
more recent work [38].

6. Further questions
In this section, we raise a few questions related to the results in this paper.

(1) In Remark 3.9, we get that, for any mixed 3-manifold M , there exists a finite
cover M 0 of M and a �1-injective properly immersed subsurface †�M 0, such that
�1.†/ is not contained in any finite-index subgroup of �1.M 0/. We may ask whether
taking this finite cover is necessary.

Question 6.1
For any mixed 3-manifold M , does there exist a �1-injective (properly) immersed
subsurface †�M such that �1.†/ is not contained in any finite-index subgroup of
�1.M/?

(2) None of the results in this paper cover the case of compact (arithmetic) hyper-
bolic 4-manifolds, since they contain neither M1 [� M2 as a singular submanifold
nor a Z2 subgroup (or a mixed 3-manifold group as its subgroup).

One possible approach for compact (arithmetic) hyperbolic 4-manifolds is to
study the group of M1 [S M2, with M1 and M2 being compact arithmetic hyper-
bolic 3-manifolds and with S being a hyperbolic surface embedded in both M1 and
M2. In this case, the edge group is a closed surface group, which is much more com-
plicated than Z or Z2. The method in this paper seems to not work directly in this
case. Even if it works (under some clever modification), the nonseparable (finitely
generated) subgroup constructed by this method would be infinitely presented.

This question is actually solved in the author’s more recent work [38], which is
built on the constructions in this paper.
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(3) Given the non-LERFness results of high-dimensional (arithmetic) hyperbolic
manifolds in this paper, maybe it is not too ambitious to ask the following question
about general high-dimensional hyperbolic manifolds.

Question 6.2
Do all finite-volume hyperbolic manifolds with dimension at least 4 have non-LERF
fundamental groups?

The main difficulty is that we do not have many examples of finite-volume high-
dimensional hyperbolic manifolds. To the best of the author’s knowledge, the main
methods for constructing high-dimensional hyperbolic manifolds (with dimension at
least 4) are the arithmetic method, the interbreeding and inbreeding method, and the
reflection group method. In this paper, it is shown in Theorems 1.1, 1.2, 5.2, and 5.3
that these three constructions give non-LERF fundamental groups in dimensions at
least 5 (not 7-dimensional sporadic examples), at least 6, and at least 5, respectively.
Besides these methods, there are other constructions of high-dimensional hyperbolic
manifolds that invoke some specific right-angled hyperbolic polytopes (see, e.g., [12],
[14], [15], [21], [33]). The hyperbolic manifolds obtained by these constructions also
contain many totally geodesic 3-dimensional submanifolds. If the dimension is at
least 5, then Theorem 1.1 implies that these manifolds have non-LERF fundamental
groups, and [38] confirms the non-LERFness when the dimension equals 4.

However, it is difficult to understand a general high-dimensional hyperbolic man-
ifold if we do not assume that it lies in one of the above families. The author does
not know whether a general high-dimensional hyperbolic manifold group contains 3-
manifold subgroups. Maybe a generalization of [20] (which shows that each closed
hyperbolic 3-manifold admits a �1-injective immersed almost totally geodesic closed
subsurface) can do this job, but it seems to be very difficult.

(4) The author expects that the method in this paper can be used to prove that
more groups are not LERF. However, since the author does not have very broad
knowledge in group theory, we only consider groups of finite-volume hyperbolic man-
ifolds in this paper, which is one of the author’s favorite family of groups.

The author also expects that the method in this paper can be translated to a purely
algebraic proof instead of a geometric one. Actually, most parts of the proof are essen-
tially algebraic, except for one point. In Propositions 3.6 and 3.7 (also Propositions
4.8 and 4.10), although the essential part that gives the nonseparability is†1;1[†2;1,
we still need to take a bigger (singular) surface so that it defines a nontrivial 1-
dimensional cohomology class in some finite cover. Then we take a finite cyclic cover
dual to this cohomology class and get a contradiction. Although it seems that this pro-
cess can be done algebraically, the author does not know how to work it out.
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