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Abstract Motivated by the study of collapsing Calabi–Yau 3-folds with a
Lefschetz K3 fibration, we construct a complete Calabi–Yaumetric onC

3 with
maximal volume growth, which in the appropriate scale is expected to model
the collapsing metric near the nodal point. This new Calabi–Yau metric has
singular tangent cone at infinity C

2/Z2 ×C, and its Riemannian geometry has
certain non-standard features near the singularity of the tangent cone, which
are more typical of adiabatic limit problems. The proof uses an existence result
in H-J. Hein’s Ph.D. thesis to perturb an asymptotic approximate solution into
an actual solution, and themain difficulty lies in correcting the slowly decaying
error terms.

1 Motivations

This work grows out of the attempt to model the collapsing behaviour of
Calabi–Yau metrics on a K3 fibred compact Calabi–Yau manifold (i.e. Kähler
Ricci-flat with parallel nonvanishing holomorphic volume form) over a Rie-
mann surface, where the Kähler class has very small volume on the K3 fibres.
Assuming the only singularities in the fibration are nodal, we wish to under-
stand the metric near the critical points of the fibration, in the standard local
model of the Lefschetz fibration f : C

3 → C with f = z21 + z22 + z23 . Knowl-
edge of the model metric is often useful in gluing constructions. The prototype
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2 Y. Li

examples are the Kummer construction [3] and the Gross-Wilson construction
[4] of CY metrics on K3 surfaces, modelled on the Eguchi-Hanson metric and
the Ooguri-Vafa metric, respectively.

The main result of this paper is:

Theorem 1.1 There is a complete Calabi–Yau metric of maximal volume
growth on C

3 with the standard Euclidean holomorphic volume form, whose
tangent cone at infinity is the singular cone C

2/Z2 × C.

Remark The leading order asymptote and the error estimate will be given in
the course of proof (cf. (14) and proposition 6.8).

We briefly summarize the method. It is natural to write down the so called
semi-Ricci flat metric as a first approximation, which restricts to the Stenzel
metrics on the quadric fibres of f = z21 + z22 + z23 : C

3 → C. This is a singular
metric admitting a large symmetry group, suggesting that the construction of
Calabi–Yaumetric is a cohomogeneity two problem. After appropriate scaling
and somemodifications to the ansatz,we construct ametricwhose volume form
is asymptotic to a multiple of the standard Euclidean volume form on C

3. We
carefully examine the error terms involved in the approximate metric, and then
apply standard techniques for the Monge–Ampère equation on noncompact
manifolds to perturb this into a genuine Calabi–Yau metric.

This Calabi–Yau metric is interesting from several other viewpoints. One
context is Gromov-Hausdorff convergence theory in Riemannian geometry.
Ourmetric is a nontrivial Ricci-flatmetric onC

3 withmaximal volume growth,
whose tangent cone at infinity is the singular variety C

2/Z2 × C; this falsifies
a conjecture [14] in the field. The neighbourhood of vanishing cycles in the
Lefschetz fibration are asymptotically collapsed to the nodal line, similar to the
picture in the unpublished work of Hein and Naber on Ak-type singularities.
From the viewpoints of Euclidean geometry this is counterintuitive as the
collapsed region apparently carries a large amount of Lebesgue measure. The
behaviour of the Laplacian is likewise non-standard in this region; in fact the
cohomogeneity two problem of inverting the Laplacian effectively reduces to
solving ODEs, in contrast to the Euclidean intuition, which suggests a genuine
dependence of the Laplacian on both variables.

Another context in which our metric is expected to arise is related to Joyce’s
construction of G2 manifolds [7]. This typically involves a G2 orbifold with
singularities along an associative submanifold, whose normal direction is
modelled on C

2/Z2. Joyce and Karigiannis [8] consider desingularising the
orbifold, using a family of Eguchi-Hanson metrics to replace C

2/Z2. A more
subtle question then is to understand what happens if some Eguchi-Hanson
fibres are allowed to be singular. In the dimensionally reduced case where
the associative submanifold is just the product of S1 with a complex curve, it
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seems plausible that our metric with suitable scaling conventions will model
this situation.

It should be pointed out that this work overlaps to some extent with the
substantial literature on Calabi–Yau metrics on non-compact manifolds, due
to many authors, notably Yau, Tian, Hein, Joyce, Kovalev, Haskins and Nord-
ström, among others. One closely related work is Joyce’s construction of
Quasi-ALECalabi–Yaumetrics [7], since our asymptotic cone is a finite group
quotient ofC3. Joyce’s construction ismore general and combinatorial in spirit,
but the decay rate to the asymptotic flat metric is much faster in his case, and
we do not use his result in a direct way. The announced work of Hein and
Naber about Ak-type singularities contains many common geometric features,
and may use similar strategies. In our construction of Calabi–Yau metric, the
work we use substantially is Hein’s PhD thesis [6], which gives a criterion for
perturbing an approximate Calabi–Yau metric into a genuine one.

This work has since been generalised to higher dimensions by the recent
independent work of R. Conlon and F. Rochon [1], and G. Székelyhidi [12],
where the fibration f is replaced by more complicated fibrations C

n → C

defined using a large class of weighted homogenous polynomials. The diffi-
culty comes from the computational complexity of precisely understanding
the main error terms in the ansatz, and developing the linear theory to correct
these errors which tend to have very slow decay rate near infinity. Some infor-
mal discussions on the moduli question of classifying complete Calabi–Yau
metrics on C

n with maximal volume growth will be given at the end.

2 The Stenzel metric

We review the Stenzel construction of Ricci-flat metrics on the smoothings
of ordinary double point (‘ODP’) singularities [11], to set up some notations
and to derive some useful formulae. Let n ≥ 3. We start with the standard
quadratic function

f =
n∑

1

z2i : C
n → C,

and consider the fibres X y = {∑ z2i = y}. For later reference, let us
establish a few conventions. The standard Euclidean metric on C

n is ωE =
1
2

√−1
∑

dzi ∧ dz̄i ; we will sometimes also denote by ωE its restriction to

fibres. The volume form is volE = 1
n!ω

n
E = 1

2n ṽolE , where the normalised

volume form is ṽolE = ∏
i (

√−1dzi ∧ dz̄i ). The pullback of the standard
metric from the base C is ω0 = 1

2

√−1d f ∧ d f̄ . The norm-squared function
on C

n is H = ∑ |zi |2. The holomorphic n-form on C
n is � = dz1 . . . dzn .
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4 Y. Li

We consider the ansatz φ = F(H) for the Kähler potential on X y , where F
is locally smooth; this amounts to imposing SO(n, R) symmetry.We compute
the metric

∂̄φ = F ′(H)∂̄ H,√−1∂∂̄φ = F ′√−1∂∂̄ H + F ′′√−1∂ H ∧ ∂̄ H.

Using the binomial theorem, we have

(
√−1∂∂̄φ)n−1 = F ′n−1(

√−1∂∂̄ H)n−1

+(n − 1)F ′n−2F ′′(
√−1∂∂̄ H)n−2 ∧ (

√−1∂ H ∂̄ H).

To understand the terms, we compute the forms over C
n:

(
√−1∂∂̄ H)n−1 = (n − 1)!

n∑

i=1

∏

j �=i

(
√−1dz j ∧ dz̄ j ),

√−1d f ∧ d f̄ = 4
∑

i, j

√−1zi z̄ j dzi ∧ dz̄ j ,

√−1∂ H ∧ ∂̄ H = √−1
∑

i, j

z j z̄i dzi ∧ dz̄ j ,

1

4
(
√−1∂∂̄ H)n−1 ∧ (

√−1d f ∧ d f̄ ) = (n − 1)!H ṽolE .

1

4
(
√−1∂∂̄ H)n−2 ∧ (

√−1∂ H ∧ ∂̄ H) ∧ (
√−1d f ∧ d f̄ )

= (n − 2)!(H2 − |y|2)ṽolE .

Thus

1

4
(
√−1∂∂̄φ)n−1 ∧ (

√−1d f ∧ d f̄ ) = (n − 1)!ṽolE {H F ′n−1

+(H2 − |y|2)F ′n−2F ′′}. (1)

By the adjunction formula the quadric fibres also have trivial canonical
bundles, and we can write down the holomorphic volume form �y on X y by
� = d f ∧ �y . This gives

ṽolE = √−1
n2

� ∧ � = √−1d f ∧ d f̄ ∧ (
√−1

(n−1)2
�y ∧ �y). (2)
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2.1 The homogeneous Monge–Ampère equation

The homogeneous Monge–Ampère equation on a fixed fibre X y with y �= 0
is

(
√−1∂∂̄φ)n−1 = 0. (3)

By (1), this can be written as

H F ′n−1 + (H2 − |y|2)F ′n−2F ′′ = 0

We can integrate this to obtain

F ′ = Const

(H2 − |y|2)1/2 .

By a change of variable H = | f | cosh τ,we obtain the solution up to an affine
transformation

φ = F(H) = τ.

This is well defined away from the locus {H = |y|}.

2.2 The inhomogeneous Monge–Ampère equation

The equation defining the Calabi–Yau metric on X y is

(
√−1∂∂̄φ)n−1 = √−1

(n−1)2
�y ∧ �y . (4)

We can wedge both sides by
√−1d f ∧ d f̄ , and use (1) with (2) to see the

following identity holds in �
n,n
Cn |X y :

4(n − 1)!{H F ′n−1 + (H2 − |y|2)F ′n−2F ′′} = 1.

We can simplify the equation further by a scaling observation: let F =
|y| n−2

n−1 F̃( H
|y|), then F̃ satisfies the ODE

x

(
d F̃

dx

)n−1

+ (x2 − 1)

(
d F̃

dx

)n−2
d2 F̃

dx2
= 1

4(n − 1)! .
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6 Y. Li

Now make the change of variable x = H
|y| = cosh τ . Then the equation

becomes

d

dτ

⎡

⎣
(

d F̃

dτ

)n−1
⎤

⎦ = 1

4(n − 2)! sinh
n−2 τ.

If we impose the initial condition d F̃
dτ

(0) = 0 (to ensure smooth extension of
the potential across the locus {H = |y|}), then the solution defines up to a
numerical factor the Stenzel metric.

Example 2.1 For n = 3, the above equation implies d F̃
dτ

= 1√
2
sinh( τ

2 ),

F̃ = √
2 cosh( τ

2 ) =
√

H
|y| + 1. Thus the Kähler potential is φ = F(H) =√

H + |y|. The Stenzel metric in this special case is also known as the Eguchi-
Hanson metric.

3 A general symmetric ansatz

WeconsiderKähler potentials onC
n of the formφ = F(H, η)whereη = | f |2.

This amounts to imposing the symmetry under SO(n, R) × U (1). Notice
that this is not a cohomogeneity-one problem, so it may be hard to write
down explicit solutions to interesting equations. We shall nevertheless exhibit
solutions whose asymptotic behaviour resembles a Calabi–Yau metric. This
symmetry reduction technique is very common, and in particular used by Hein
and Naber in their work on Ak-type singularities.

We imitate the computations about the Stenzel metric, but now we need to
keep track of all partial derivatives, because we are now working on the entire
C

n instead of quadric fibres. Using that f is holomorphic,

∂̄φ = FH ∂̄ H + Fη f d f̄ ,√−1∂∂̄φ = FH
√−1∂∂̄ H + FH H

√−1∂ H ∧ ∂̄ H

+√−1FHη( f̄ d f ∧ ∂̄ H + f ∂ H ∧ d f̄ )

+(ηFηη + Fη)
√−1d f ∧ d f̄ .

Now using the binomial theorem, one can expand

(
√−1∂∂̄φ)n = (FH

√−1∂∂̄ H + FH H
√−1∂ H ∧ ∂̄ H)n

+n(FH
√−1∂∂̄ H + FH H

√−1∂ H ∧ ∂̄ H)n−1 ∧
{(ηFηη + Fη)

√−1d f ∧ d f̄

+√−1FHη( f̄ d f ∧ ∂̄ H + f ∂ H ∧ d f̄ )}
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+
(

n

2

)
(FH

√−1∂∂̄ H + FH H
√−1∂ H ∧ ∂̄ H)n−2

∧(2ηF2
Hηd f d f̄ ∧ ∂ H ∂̄ H).

Now we compute individual terms

(FH
√−1∂∂̄ H + FH H

√−1∂ H ∧ ∂̄ H)n

= Fn
H n!ṽolE + nFn−1

H FH H H(n − 1)!ṽolE

= n!ṽolE {Fn
H + Fn−1

H FH H H}.
(FH

√−1∂∂̄ H + FH H
√−1∂ H ∧ ∂̄ H)n−1

∧√−1d f ∧ d f̄ = 4(n − 1)!ṽolE

{H Fn−1
H + (H2 − η)Fn−2

H FH H }.
(FH

√−1∂∂̄ H + FH H
√−1∂ H ∧ ∂̄ H)n−1

∧√−1( f̄ d f ∧ ∂̄ H + f ∂ H ∧ d f̄ )

= Fn−1
H (

√−1∂∂̄ H)n−1
√−1( f̄ d f ∧ ∂̄ H + f ∂ H ∧ d f̄ )

= 4ηFn−1
H (n − 1)!ṽolE .

(FH
√−1∂∂̄ H + FH H

√−1∂ H ∧ ∂̄ H)n−2

∧d f ∧ d f̄ ∧ ∂ H ∧ ∂̄ H

= Fn−2
H (

√−1∂∂̄ H)n−2d f ∧ d f̄ ∧ ∂ H ∧ ∂̄ H

= −4(n − 2)!Fn−2
H (H2 − η)ṽolE .

Combining these computations, we arrive at a formula for the volume form:

Proposition 3.1 For a symmetric Kähler potential φ = F(H, η), we have a
formula

(
√−1∂∂̄φ)n =n!ṽolE {{Fn

H + Fn−1
H FH H H}

+ 4(ηFηη + Fη){H Fn−1
H + (H2 − η)Fn−2

H FH H }
+ 4FHηηFn−1

H − 4F2
HηηFn−2

H (H2 − η)}.
(5)

Example 3.2 If the potential does not depend on η, then

(
√−1∂∂̄φ)n = n!ṽolE {Fn

H + Fn−1
H FH H H}.

For example, for F = 1
2 H , one recovers the Euclidean metric and its volume

form. For F = log H , one recovers a solution to the homogeneous Monge–
Ampère equation.
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8 Y. Li

Example 3.3 Let n = 3. Let us specialise the ansatz to the form

φ = F(H, η) = 1

2
η + √

H + a(η) (6)

defined by a non-negative smooth function a(η), with the property that√−1∂∂̄φ is positive, and a(η) is asymptotic to η1/2 for large η up to higher
orders, so in particular a′ ∼ 1

2η
−1/2, a′′ ∼ −1

4η
−3/2, etc. An example of this

is a(η) = √
η + 1.

We compute the various quantities involved in the general formula (5).

FH = 1

2

1√
H + a

, FH H = −1

4

1

(
√

H + a)3
,

H F2
H + (H2 − a2)FH FH H = 1

8
, (a2 − η)FH FH H = −1

8

1

(H + a)2
(a2 − η),

F3
H + F2

H H FH H = H + 2a

16

1

(
√

H + a)5
,

Fη = 1

2
+ 1

2
√

H + a
a′, Fηη = a′′

2(
√

H + a)
− a′2

4(
√

H + a)3
,

Fη + ηFηη = 1

2
+ a′ + ηa′′

2(
√

H + a)
− ηa′2

4(
√

H + a)3
, FHη = −1

4

a′

(
√

H + a)3
.

Combining the computations, we get the volume form of the ansatz

(
√−1∂∂̄φ)3

= 3

2
ṽolE

{
1 + (a′ + ηa′′) 1√

H + a
+ O

(
1

(
√

H + a)3

)}
, H → ∞.

(7)

We comment that a′ + ηa′′ ∼ 1
4η1/2

for large η. In particular, to the leading
order the volume measure is a constant multiple of the Lebesgue measure. But
the leading order error is quite large.

Main Ansatz 3.4 We modify the above ansatz to the form

φ = F(H, η) = 1

2
η + √

H + a(η, H), a(η, H) =
√

η + √
H + 1. (8)

This is the main ansatz we shall use in the rest of the paper, and some moti-
vations will be discussed in the next section. The computation follows very
similar lines, and can be viewed as a perturbation of the previous example.
The technical complication comes from incorporating the partial derivatives
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of a(η, H) with respect to H , which has some minor effects on the secondary
asymptotes. We give some intermediate steps:

aη = 1

2a
, aηη = − 1

4a3 , aηH = − 1

8a3
√

H + 1
,

aH = 1

4a
√

H + 1
, aH H = − 1

16a3(H + 1)
− 1

8a(H + 1)3/2
,

FH = 1

2
√

H + 1
(1 + aH ), FH H = − 1

4(H + a)3/2
(1 + aH )2 + aH H

2
√

H + a
,

Fη = 1

2
+ 1

2
√

H + a
aη, Fηη = 1

2
√

H + a
aηη − 1

4(H + a)3/2
a2
η,

FHη = 1

2
√

H + a
aHη − 1

4(H + a)3/2
aη(1 + aH ).

To aid computation, let us introduce the quantities

Q1 = F3
H + F2

H H FH H , Q2 = ηFηη + Fη,

Q3 = H F2
H + (H2 − η)FH FH H , Q4 = FHη F2

Hη − F2
HηηFH (H2 − η).

Our general formula (5) for the volume form reads

(
√−1∂∂̄φ)3

6ṽolE

= Q1 + 4Q2Q3 + 4Q4.

We are interested in the asymptote as H → ∞. It is elementary but useful
to notice the basic inequalities for a, H, η, such as H ≥ η1/2, a ≥ η1/2,
a ≥ H1/4, and a = O(H) for H > 1. After substituting in the expressions
for derivatives, and extracting leading order terms,

Q1 = − H

16(H + a)5/2
+ 1

8(H + a)3/2
+ O

(
1

H2a

)
,

Q2 = 1

2
+ 1

8a
√

H + a
− 1

16(H + a)3/2
+ O

(
1

a3

)
,

Q3 = 1

8
+ H

32(H + a)a
√

H + 1
−

√
H + 1

8(H + a)2

+ 3

32(H + a)
√

H + 1
− H − a

32a(H + 1)3/2
+ O

(
1

a3

)

= 1

8
+ H1/2

32a(H + a)
− H1/2

8(H + a)2
+ 3

32(H + a)
√

H
− H − a

32aH3/2

+2H3 − 5a H2 − 6a2H − 3a3

64(H + a)2H5/2a
+ O

(
1

a3

)
,
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10 Y. Li

Q4 = − 1

32

a

(H + a)5/2
− H − a

128(H + a)5/2
+ O

(
1

a3

)
.

Combining these computations, we see that

Lemma 3.5 The volume form of the metric given by the ansatz (8) is

(
√−1∂∂̄φ)3

ṽolE

= 3

2

{
1 + 1

4a(H + a)1/2
+ H1/2

4a(H + a)

− H1/2

(H + a)2
+ 3

4(H + a)
√

H

− H − a

4a H3/2 + 2H3 − 5a H2 − 6a2H − 3a3

8(H + a)2H5/2a

}
+ O

(
1

a3

)
.

(9)

It is worth pointing out for later purposes that the terms we are discarding
also have higher order bounds, which can be obtained inductively using the
following principle: write all contributions in terms of products of power law
expressions in H + a, H , a etc; each H -derivative picks up a multiplicative
factor O( 1

H ) (the factor coming from aH are further suppressed); each η-
derivative involves differentiating an expression of a, so the derviative picks
up a multiplicative factor O( 1

a2
). The result is that the error term E = O( 1

a3
)

in formula (9) has higher order bounds

∣∣∣∣
∂ i+ j

∂ Hi∂η j
E

∣∣∣∣ = O

(
1

Hi a3+2 j

)
.

.
A cruder version of the asymptotic formula as H → ∞ is:

(
√−1∂∂̄φ)3 = 3

2
ṽolE

{
1 + 1

4H1/2a
+ E ′

}
,

∂ i+ j

∂ Hi∂η j
E ′ = O

(
1

H3/2+i a2 j

)
+ O

(
1

Hi a3+2 j

)
.

(10)

For small values of η, the O( 1
H1/2a

) decay rate at infinity is an improvement

compared to the O(
a′+ηa′′√

H+a
) decay in the previous Example (7).

To take two extreme cases, in the region where η1/2 ∼ H1/4 
 1 then
a ∼ H1/4, and O( 1

H3/2 ) = O( 1
a6

) is insignificantly small. In the region where

η1/2 ∼ H 
 1, then a ∼ H , and O( 1
H3/2 ) = O( 1

a3/2
) is the dominating error

term.
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4 Relation to the collapsing metric problem

We shall now informally explain the origin of the main ansatz (8).
Motivating questionConsider aCalabi–Yau3-foldwhich admits aLefschetz

fibration over a Riemann surface, namely the singularity in the fibration is
complex analytically modelled by the standard quadric fibration on C

3. If we
vary the Kähler class so that the fibres have area of order t � 1, we obtain
some highly collapsed Calabi–Yau metric on the total space. Can we construct
a local model on C

3 describing what happens near the ODP points in the
fibration?

Let n = 3. A ‘semi-Ricci flat form’ is a closed (1,1) form
√−1∂∂̄φ whose

restriction to each fibre agrees with the Calabi–Yau metric on the fibre. This
involves some ambiguity because one can always adjust φ by a potential pulled
back from the base. Motivated by the above question, we can naïvely write
down the following ansatz, as a first approximation to the collapsed Calabi–
Yaumetric, in the local region described by the standardmodel of the Lefschetz
fibration:

φ = F(H, η) = 1

2
η + t

√
H + η1/2. (11)

Here 1
2η gives ω0, the pullback of the standard metric on the base, and the

fibrewise restriction is just the Stenzel metric for n = 3, rescaled to size
t � 1.

This naïve ansatz is not smooth at the central fibre η = 0. But at least we
know φ is PSH. To see this, recall the elementary fact that if ψ , ψ ′ are PSH,
then log(eψ + eψ ′

) is PSH. Apply this to ψ = log H and ψ ′ = 1
2 log η, we get

log(H + η1/2) is PSH, so φ is then easily seen to be PSH.
We shall use the formula (5) as a test for the validity of this naïve ansatz as

an approximate model for a Calabi–Yau metric. The semi-Ricci flat condition
gives

H F2
H + (H2 − η)FH FH H = 1

8
t2.

To leading order, we expect ηFηη + Fη ∼ 1
2 , by ignoring all terms with t

dependence. We notice that all terms with H dependence necessarily also
carry a t factor, so the correction terms F3

H + F2
H FH H H and 4FHηηF2

H −
4F2

HηηFH (H2 − η) are both of order t3. This means the leading order term

is (
√−1∂∂̄φ)3 ∼ 3

2 t2ṽolE , so this metric is approximately Calabi–Yau at the
scale where both H and η are comparable to 1, and the relative error of the
volume form is of order O(t).
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Now FH ∼ t
H1/2 , so at the scale H ∼ t2/3, we have FH

3 ∼ t2, which is
comparable to the leading order volume form, and the approximation breaks
down.

Similarly Fη − 1
2 ∼ t

H1/2η1/2
, so if Hη ∼ t2, the approximation fails.

The source of the first failure has an interesting geometric interpretation.
Think about the fibred Calabi–Yau 3-fold with the collapsing CYmetric which
we are trying to model. At the nodal point, i.e. the origin, the CY metric
should be locally Euclidean, but the volume form has order t2. Therefore it
seems reasonable to expect that near the origin, this collapsing CY metric is
uniformly equivalent to t2/3ωE . This uniform equivalence is expected to hold
up to the scale H ∼ t2/3, at which the Calabi–Yau metric matches up with
the semi-Ricci flat approximation ansatz. We may call the scale H ∼ t2/3 the
‘quantisation scale’. The reason for choosing this terminology is that, when H
is larger than this scale, the CYmetric approximates a rescaled semi-Ricci flat
metric. This picture is formally similar to the semiclassical limit in quantum
mechanics. The quantisation scale is where this approximation breaks down,
which can be imagined as quantum fluctuation effects.

The second failure due to the smallness of η seems to be an artefact of our
non-smooth choice of ansatz. There is no canonical choice for a smoothing.
We make the following choice to achieve good decay properties:

φ = 1

2
η + t

√
H + (η + t

√
H + t2/3)1/2. (12)

This is still PSH by similar arguments. The previous discussions essentially
apply to the modified situation, with Hη ∼ t2 replaced by H(η + t4/3) ∼ t2,
and now the sole source of failure is due to H ∼ t2/3.

We zoom in to the quantisation scale. This amounts to using the coordinates
1

t1/3
zi instead of zi , and scale the metric by a factor t−4/3. Starting from (12),

we get

φ = 1

2
η +

√
H + (η + √

H + 1)1/2. (13)

which is our main ansatz.

5 Riemannian geometry of the main ansatz (8)

We study the asymptotic properties of the metric ansatz (8). As a preliminary
remark, the volume form of the metric (8) is asymptotic to the volume form
of the Euclidean metric. At one stage we will make use of a non-holomorphic
parametrisation, so we shall distinguish the Kähler form ω and the associated
Riemannian metric tensor g.
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5.1 Asymptotic metric

Now we study the properties of the metric for H >> 1, only to the leading
order. The asymptotic expression is

ω = √−1∂∂̄φ ∼ 1

2

√−1d f ∧ d f̄ +
√−1

2
√

H + a
∂∂̄ H

−
√−1

4(
√

H + a)3
∂ H ∧ ∂̄ H

∼ 1

2

√−1d f ∧ d f̄ +
√−1

2
√

H + η1/2
∂∂̄ H

−
√−1

4(
√

H + η1/2)3
∂ H ∧ ∂̄ H (14)

This follows readily from differentiating (8), and discarding the terms coming
from differentiating a since these do not affect the leading asymptote.

We want to understand the qualitative features of the distance function.

Lemma 5.1 For P in the region {H > 1}, there is a uniform equivalence

C(η1/2 + H1/4) ≤ d(0, P) ≤ C ′(η1/2 + H1/4). (15)

In other words, d(0, P) is uniformly equivalent to the function a for
P ∈ {H > 1}.
Proof Using the asymptotic formula, one seesCω ≥ √−1d f ∧d f̄ , so η1/2 =
| f | ≤ Cd(0, P). Similarly one sees for H > 1, Cω ≥

√−1√
H

∂∂̄ H , so along
any path parametrised by the arclength,

d|z|
ds

≤ C |z|1/2,

which integrates to give H1/4 ≤ Cd(0, P).
Now for the reverse direction, we take the radial path joining the origin and

the point P , and compute the length. This gives d(0, P) ≤ C(η1/2 + H1/4). ��
Lemma 5.2 Let r >> 1. We have the maximal volume growth condition:

Cr6 ≤ V ol(Bg(0, r)) ≤ C ′r6. (16)

Proof The description of the distance function implies that

{H1/4 ≤ Cr} ∩ {η1/2 ≤ Cr} ⊂ Bg(0, r) ⊂ {H1/4 ≤ C ′r} ∩ {η1/2 ≤ C ′r}
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14 Y. Li

for some appropriate constants C and C ′. Thus we can consider instead the set
{H ≤ r4} ∩ {η ≤ r2} and estimate its volume. This is an exercise in Lebesgue
integration theory.

Since the asymptotic volume measure is comparable to the Lebesgue mea-
sure,

V olω({H ≤ r4} ∩ {η ≤ r2}) ∼ V olLebesgue({H ≤ r4} ∩ {η ≤ r2}).
By the homogeneity of the Lebesgue measure, the RHS is

r12V olLebesgue({H ≤ 1} ∩ {η ≤ r−6}).
Now for very large r , the set {H ≤ 1} ∩ {η ≤ r−6} is approximately the
product of {H ≤ 1} ∩ X0 with the disc {η ≤ r−6} ⊂ C where X0 is the nodal
central fibre, so the above

∼ r12Area({H ≤ 1} ∩ X0)Area({η ≤ r−6} ⊂ C) ∼ r6.

Here the area of {H ≤ 1}∩ X0 is induced from the restriction of the Euclidean
metric. The claimed result follows. ��

We define a family of cones in C
3 by Eε = {η1/2 ≥ εH}, for 0 < ε < 1. In

practice ε is a fixed small number. Our next result says these cones are highly
squashed in the metric g.

Lemma 5.3 Take r > 1. Let P ∈ Bg(r) ∩ Eε , then the distance of P to the
complement of Eε has an upper bound

dg(P, C
3\Eε) ≤ C

ε1/4
r1/4. (17)

Proof Westart by observing that on the affine quadric { f = 1}with the Stenzel
metric (cf. Sect. 2), there is a uniform diameter bound diam({H ≤ 1

ε
}) ≤ C

ε1/4

for 0 < ε < 1, because at large distance the Stenzel metric is asymptotic to
the orbifold metric on X0, and the distance to the origin on the flat orbifold X0
is

√
2H1/4. By scaling, on the fibre X f with the Stenzel metric, the diameter

bound reads

diam

({
H ≤ η1/2

ε

}
⊂ X f

)
≤ C

ε1/4
η1/8.

Now if η ≥ 1, then the metric g restricted to the fibre X f is uniformly
equivalent to the Stenzel metric, because g is by construction essentially the
semi-Ricci flat approximation, for large values of η. Thus if P ∈ X f ∩ Eε ,
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we can move the point inside X f and exit the region Eε within distance
C

ε1/4
(η1/8 + 1) ≤ C

ε1/4
(r1/4 + 1). Here we add in the constant 1 to make the

argument work also for η ≤ 1. This means d(P, C
3\Eε) ≤ C

ε1/4
(r1/4 + 1) ≤

C
ε1/4

r1/4. ��
Remark If we normalise the metric by a factor 1

r2
, then P ∈ B 1

r2
g(1), and this

estimate says d 1
r2

g(P, C
3\Eε) ≤ C

ε1/4r3/4
. Intuitively, for large r and fixed ε,

this means the region Eε has very small solid angle.

Now we concentrate on the region (C3\Eε) ∩ {H 
 1}, with ε a fixed
small number. In this region, up to O(ε) error, the asymptote of ω as H → ∞
simplifies further to

ω ∼ 1

2

√−1d f ∧ d f̄ +
√−1

2
√

H
∂∂̄ H −

√−1

4(
√

H)3
∂ H ∧ ∂̄ H.

Ehresmann’s theorem (cf. Theorem 9.3 [15]) suggests the fibration f
restricted to the region (C3\Eε) ∩ {H 
 1} is a smooth fibration over C.
For example, if we calculate the monodromy (namely integrating the vector
field

∑
i

z̄i
|z|2

∂
∂zi

on C
3) along the standard vanishing paths, we can obtain an

explicit trivialisation:

Lemma 5.4 We have a diffeomorphism C
3\{H = η1/2} � (X0\{0})×C over

C, given by

z ∈ C
3\{H = η1/2} �→ (w, f ) ∈ (X0\{0}) × C,

w = 1

2

{(
H − η1/2

H + η1/2

)1/4

+
(

H + η1/2

H − η1/2

)1/4
}

z

+1

2

{(
H − η1/2

H + η1/2

)1/4

−
(

H + η1/2

H − η1/2

)1/4
}

f z̄

η1/2
. (18)

When f = 0, then it is understood that w = z. The inverse map can be
described as follows:

z = 1

2
(es + e−s)w + 1

2

(
2

es + e−s

)
f w̄

|w|2 , e−2s − e2s = 2η1/2

|w|2 .

The above formulae are quite tedious toworkwith. But in the region {η1/2 ≤
εH}, where ε is small, then s is almost zero, and the above formulae are well
approximated by a much simpler parametrisation over the base C:
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16 Y. Li

χ : X0 × C → C
3, z = w + f w̄

2|w|2 . (19)

The region {η1/2 ≤ εH, H 
 1} corresponds roughly to {η1/2 ≤
ε|w|2, |w|2 
 1}. We notice χ is not exactly holomorphic, but only approxi-
mately so up to an error of order ∂z

∂w̄
= O(ε). Another caveat is that w ∈ X0,

so in coordinates
∑

w2
i = 0.

We now study the asymptotic formula of the metric tensor associated to ω

via the parametrisation χ . The base term 1
2

√−1d f ∧ d f̄ pulls back exactly
to 1

2

√−1d f ∧ d f̄ , because χ is defined over the base. The function H pulls
back to |w|2(1 + O(ε)). To calculate the other terms we need to be careful
about the failure of holomorphicity. This means we need to directly pull back
the Riemmanian metric tensor.

The term
√−1∂∂̄ H defines a two-tensor

∑
dzi ⊗ dz̄i = ∑

dz̄i ⊗ dzi ,
where to save writing we have passed to the symmetrization. The Riemannian
metric tensor is two times its real part. Via χ , we can write dzi = dwi +
d f w̄i

2|w|2 + f
2|w|2 dw̄i − f w̄i

2|w|4 d|w|2. We compute

Re

(
∑

i

dzi ⊗ dz̄i

)
= Re

{(∑
dwi ⊗ dw̄i

) (
1 + η

4|w|4
)

+
∑

i

f̄

|w|2 dwi ⊗ dwi

−
∑

i

f

2|w|4 d f̄ ⊗ w̄i dwi + d f ⊗ d f̄

4|w|2
}

.

Up to O(ε) relative error, this can be simplified as

Re

{∑
dwi ⊗ dw̄i −

∑ f

2|w|4 d f̄ ⊗ w̄i dwi + d f ⊗ d f̄

4|w|2
}

.

Since the metric includes the pullback of the base metric Re(d f ⊗ d f̄ ), we
have |d f | ∼ 1, so in the region {η1/2 ≤ εH} where | f | � |w|2, we can drop
more terms to get the asymptote up to O(ε) error:

H−1/2Re
∑

dzi ⊗ dz̄i ∼ |w|−1Re
∑

dwi ⊗ dw̄i .

Similarly the term
√−1∂ H ∧ ∂̄ H defines a symmetric two-tensor

∑
z̄i dzi ⊗

z j d z̄ j . We have the asymptote up to O(ε) error
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H−3/2Re
∑

z̄i dzi ⊗ z j d z̄ j ∼ |w|−3Re
∑

w̄i dwi ⊗ w j dw̄ j .

To summarize,

Lemma 5.5 The Riemmanian metric g associated to ω admits the approximate
formula in the region {η1/2 ≤ εH, H 
 1}:

χ∗g = Re
(

d f ⊗ d f̄ + |w|−1
∑

dwi ⊗ dw̄i

−1

2
|w|−3

∑
w̄i dwi ⊗ w j dw̄ j

)
(1 + O(ε)) (20)

i.e. up to relative error of order O(ε), the metric g is asymptotic to the product
metric gproduct on X0 × C, where the X0 factor is equipped with the Stenzel
metric.

The information at our disposal now allows us to identify the tangent cone
at infinity for the metric g associated to ω.

Proposition 5.6 The tangent cone of (C3, g) at infinity is isometrically X0×C

with the product metric.

Proof Clearly only asymptotic properties of themetric are relevant. Fix a small
number ε. Consider large values of r , and apply the scaling factor 1

r2
to the

metric g. In the ball B 1
r2

g(0, D) of fixed radius D, if there is a point P in the

region Eε , then by the lemma 5.3, its distance to C
3\Eε is controlled above

by C D1/4

ε1/4r3/4
< Cε for large r . Thus the only important contribution comes from

the region (C3\Eε) ∩ {H ≥ C}. Up to O(ε) error, (C3\Eε) ∩ B 1
r2

g(0, D) is

Gromov-Hausdorff close to the metric space

(Br−2gproduct
(0, D) ∩ {η1/2 ≤ ε|w|2}, 1

r2
gproduct ) ⊂ X0 × C.

Nowwe observe that X0×Cwith the productmetric is conical, and scaling fea-
tures imply that for large r the region {η1/2 ≥ ε|w|2} is unimportant. Thus the
metric space is Gromov-Hausdorff close to (Br−2gproduct

(0, D), 1
r2

gproduct ),
which is the same as (Bgproduct (0, r D), gproduct ). From this we see that as r →
∞, B 1

r2
g(0, D) Gromov-Hausdorff converges to (Bgproduct (0, D), gproduct ),

for any fixed D, so the tangent cone is indeed X0 ×C with the product metric.
��

Remark (Jumping of complex structure) The complex structure on the tangent
cone differs from the original manifold C

3. This can be explained by the flat
family of subvarieties of Cy × C

3
z1,z2,z3 , defined as
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18 Y. Li

{(y, z1, z2, z3)|t y = z21 + z22 + z23},

whose generic fibre is just a graph over C
3, and the central fibre is C× X0; the

computation of Gromov Hausdorff limit involves a scaling procedure, which
is reflected here by the parameter t .

Remark (Measure theoretic paradox) The link of the tangent cone is singular.
The singularity corresponds to the node in X0, and the cone Eε collapses
to the nodal line in X0 × C. This behaviour is counterintuitive as Eε seems
to carry a large amount of Lebesgue measure, which disappears in the limit,
but general theory of noncollapsing Gromov-Hausdorff convergence implies
measure theoretic convergence. But this is not a contradiction because in a
large ball with respect to the metric g, the set Eε only occupies a very small
portion of the measure.

H-J. Hein pointed out an analogywith the Taub-NUTmetricwhichmay help
to understand this measure theoretic picture. By a well known observation of
LeBrun [9], the Taub-NUT space is biholomorphic to C

2 with the standard
holomorphic volume form. In fact the holomorphic symplectic moment map
makesC

2 into a fibration of affine quadrics, exactly analogous to our situation.
The counterintuitive fact then is that the Taub-NUT metric has cubic volume
growth. The explanation again lies in the large distortion of distance. The
distinctive feature of n = 2 is that the quadric fibres are isomorphic to C

∗,
whose natural cylindrical metric has linear growth rate, which is not maximal.
TheTaub-NUTmetric is asymptotically described by the semi-Ricci flatmetric
coming from the quadric fibration; the growth rate is quadratic in the base
direction and linear in the fibre direction, thus the overall growth is cubic.

5.2 Topological discussions

The topological situation is related to the general story of Milnor fibrations
associated to hypersurface singularities. Let us dispense with themetric geom-
etry for a moment. In the ODP context, the sphere S5 = {H = 1} intersects
C
3\X0 in an open set, which is just the complement of the link X0 ∩ S5 of X0.

We have a fibration over the circle

S5 ∩ (C3\X0) → S1, z �→ f

| f | .

The fibre is topologically identified with the Milnor fibre X1. This is because
via the radial projection map z �→ z

| f |1/2 , this fibration is identified with

f : f −1(S1) ⊂ C
3 → S1.
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The monodromy around the circle is described by the standard Picard-
Lefschetz formula (cf. Theorem 3.16 [16]).

The analogous picture on the tangent cone X0 × C is the following. We
have a fibration

{|w| + | f |2 = 1} ∩ (X0 × C\X0 × {0}) → S1, (w, f ) �→ f

| f | .

(We write the sphere {|w| + | f |2 = 1} here because the radial distance on
X0 × C is uniformly equivalent to

√|w| + | f |2.) The fibre is homeomorphic
to X0 � C

2/Z2. The effect of the metric geometry is to collapse the vanishing
cycle to a point, thereby changing X1 to X0.

More explicitly, in our metric g, the vanishing cycle {H = η1/2} on X f for
largeη has diameter proportional toη1/8, but the distance of the vanishing cycle
to the origin is of order η1/2. The tangent cone only sees the regions whose
diameter has at least linear growth rate, so the vanishing cycle disappears in
the limit. This phenomenon also appears in the announced work of Hein and
Naber on Ak type singularities.

The link S(C2/Z2 × C) of the tangent cone X0 × C � C
2/Z2 × C is

singular along a circle S1. The appearance of the circle is explained by theU (1)
symmetry of the whole setup. Metrically, the points on the circle correspond
to the Gromov Hausdorff limit of the vanishing cycles.

It is also interesting to make some comparisons of our situation with Joyce’s
QALE spaces (cf. [7], and the subsequent generalisation into QAC spaces
[2]). The main common feature is that the tangent cone at infinity is a finite
group quotient C

n/G = C
3/Z2, where the main complication comes from

the non-free action of Z2. However, our setup does not seem to fit naturally
into Joyce’s framework, not even at the topological level. Joyce requires the
ambientmanifold to be a resolution of the quotientCn/G, which is not a natural
structure on C

3. Joyce understands C
n/G in terms of a stratification by fixed

point sets of subgroups of G, and describes the structure of his resolution in
a stratified manner in terms of what he calls the local product resolution; the
simplest local picture looks like

Y × C
m → C

n−m/H × C
m,

where Y is a resolution of C
n−m/H and H is a subgroup of G. Here Y plays

a similar role as X1. His framework does not typically incorporate the Picard-
Lefschetzmonodromy behaviour, as his product structures are usually globally
trivial over stratified pieces. At themetric level, on the local piece Y ×C, Joyce
requires asymptotic convergence of the metric to the product metric (this type
of phenomenon also happens for QAC spaces [2]). In our case the vanishing
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cycles do not have constant size, but instead grow slowly as O(a1/4) with the
distance to the origin, so the metric in Eε cannot converge to a product metric.

5.3 The Ricci curvature

Having examined the leading order behaviour of the metric, let us compute
the Ricci tensor for H 
 1. The formula for the Ricci form is

Ric = −√−1∂∂̄log det(gi j̄ ).

Suppose we write v = det(gi j̄ ) for the volume density function. Then

Ric =
√−1∂v ∧ ∂̄v

v2
−

√−1∂∂̄v

v
.

The nature of our ansatz means v depends only on H, η. We have

√−1∂∂̄v = vH
√−1∂∂̄ H + vH H

√−1∂ H ∧ ∂̄ H

+√−1vHη

(
f̄ d f ∧ ∂̄ H + f ∂ H ∧ d f̄

)

+ (
ηvηη + vη

) √−1d f d f̄ .√−1∂v ∧ ∂̄v = v2H

√−1∂ H ∧ ∂̄ H + √−1vHvη

(
∂ H ∧ f d f̄ + f̄ d f ∧ ∂̄ H

)

+v2ηη
√−1d f ∧ d f̄ .

The asymptotic expression for v is given by (10). To leading order, v is a
constant. The worst term in (10) is 1

H1/2a
. It is clear by computation that the

terms showing up in the quadratic expression
√−1∂v ∧ ∂̄v are much smaller

than the terms in the second derivative
√−1∂∂̄v. This reflects the fact that the

approximation is good enough for nonlinear effect to be insignificant in the
asymptotic regime. Comparing the computation with the asymptotic formula

ω ∼ 1

2

√−1d f ∧ d f̄ +
√−1

2
√

H + a
∂∂̄ H −

√−1

4(
√

H + a)3
∂ H ∧ ∂̄ H,

we see − C
aH ω ≤ Ric ≤ C

aH ω. Thus the Ricci tensor is controlled by the
metric:

|Ricci tensor| ≤ C

a H
g.

This indicates several features of the approximate ansatz. First, recall the dis-
tance to the origin is comparable to a. In the metric g, a typical point has
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H ∼ a4, so the Ricci tensor decays as O( 1
a5

), which is quite fast. Second, in
the worst region Eε , H is comparable to a, so this ansatz only gives quadratic
decay of the Ricci curvature. The scalar curvature likewise decays as O( 1

a2
)

in the region Eε .
The last observation links this discussion to thework ofHein [5] onweighted

Sobolev inequalities, and their applications to Monge–Ampère equations (cf.
also Hein’s PhD thesis [6]). The main technical condition there is

Definition 5.7 Acomplete noncompactRiemannianmanifold (M, g) is called
SO B(β) if there is a point x0 ∈ M , a fixed small number δ > 0, and C ≥
1, such that any two points p, q ∈ M with d(p, x0) = d(q, x0) = s are
connected within the annulus A(x0, (1 − δ)s, (1 + δ)s) whenever s > C .
Morever |B(x0, s)| ≤ Csβ for all s ≥ C , and |B(x, (1− 1

C )r(x))| ≥ 1
C r(x)β ,

and Ricci ≥ −Cr(x)−2 if r(x) = d(x0, x) ≥ C .

Remark The definition of SO B(β) used in [6] requires also the connectedness
of the annulus A(s, t) for any t > s > C , but this stronger condition is not
needed for his weighted Sobolev inequality and his main theorem 6.1 below.

Proposition 5.8 The metric ansatz ( 8) satisifies the condition SO B(6).

Proof The main point is that we know the maximal volume growth and the
at worst quadratic Ricci curvature decay. The completeness property is clear
from the asymptotic formula.

The connectedness property in our definition of SO B(6) is implied by the
connectedness of the link of the tangent cone at infinity. ��

We take the opportunity to explain another technical condition in Hein’s
work.

Definition 5.9 (cf. [6],Definition 4.2)ACk,α quasi-atlas on a completeKähler
manifold (M, ω) is a collection {�x : x ∈ A}, A ⊂ M of holomorphic local
diffeomorphisms �x : B → M, �x (0) = x, from B = B(0, 1) ⊂ C

n into
M which extend smoothly to the closure B̄, and such that there exists C ≥ 1
with inj(�∗

x g) ≥ 1/C , 1
C gCn ≤ �∗

x g ≤ CgCn , and
∥∥�∗

x g
∥∥

Ck,α(B,gCn )
≤ C for

all x ∈ A, and such that for all y ∈ M there exists x ∈ A with y ∈ �x (B) and
distg(y, ∂�x (B)) ≥ 1/C .

Lemma 5.10 Our metric ansatz (8) has a Ck,α quasi-atlas for any k.

Proof It is enough to consider H 
 1. For any such point x = (x1, x2, x3) ∈
C
3, without loss of generality |x1| = max |xi |. Then we take the local coordi-

nates z′
1 = f − f (x), z′

2 = 1
H(x)1/4

(z2 − x2), z′
3 = 1

H(x)1/4
(z3 − x3). Using the

asymptotic formula (14) for the metric g, we see that in a coordinate ball the
metric g is uniformly equivalent to the Euclidean metric. In fact the uniform
equivalence holds up to distance scale O(H1/4). The higher order behaviour
is clear. ��

123



22 Y. Li

5.4 The asymptotic Laplacian

It is important in the study of the Monge–Ampère equation to have a well
controlled linear theory of the Laplace operator. We want a formula for the
main terms in the Laplacian of a general locally smooth function b(H, η)

depending only on H, η.

Lemma 5.11 For the metric (8), the formula for the Laplacian is

(√−1∂∂̄b
) (√−1∂∂̄φ

)2

= ṽolE

{(
3H + a√

H + a
+ O

(
1

a

))
bH

+
(
2

(
H2 − a2

)
√

H + a
+ O

(
H

a

))
bH H

+
(

O
(η

a

))
bHη +

(
1 + O

(
1

a H1/2

)) (
ηbηη + bη

)}
.

(21)

Proof We take the first variation of our formula for the volume form (5),
namely to change φ to φ + tb, and differentiate with respect to t at t = 0.
The LHS becomes 3(

√−1∂∂̄φ)2 ∧ (
√−1∂∂̄b). The RHS becomes a linear

combination of bH , bH H , bHη, bηη, bη. For example, the coefficient of bH H
is

6ṽolE
{

F2
H H + 4(ηFηη + Fη)(H2 − η)FH

}

= 6ṽolE

{(
(H2 − a2)√

H + a

)
+ O

(
H

a

)}
,

which after cancelling the factor 3 gives a term in (21). The other contributions
are similar. ��

The interesting feature of this expression is its inhomogeneity. Think about
the region Eε , where η1/2 and H are comparable. If we take a homogeneous
expression b, such as (η1/2 + H)α , and recall that H and η are homogeneous
in zi of degree 2 and 4 respectively, then each H differentiation brings down
the degree by 2, and each η differentiation brings down the degree by 4. Then
purely on the ground of dimensional analysis, only the terms with bH and bH H
dominate. There is an additional subtlety that H2 − a2 can have zeros. If we
ignore this issue, then the insight we gain from this formula is that if we just
want to invert the Laplacian approximately in the region Eε ∩ {H 
 1}, then
we only need to solve a second order ODE rather than a PDE. The fact that
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the η derivative is suppressed, can be interpreted as saying the fibres behave
as if they were independent in the region Eε . This phenomenon is typical in
adiabatic limit problems, where the metric ansatz ultimately comes from.

One explanation for this phenomenon is that in the intrinsic geometry of the
metric g, one should trade η for H1/2. With this new homogeneity convention,
in the region where η ∼ H1/2, the quantity H1/2bH should be comparable to
bη, so the Laplacian genuinely depends on two variables in that region. The
nonclassical nature of the Laplacian in the region Eε testifies to the singular-
ity of the tangent cone, which breaks down most of the intuitions based on
Euclidean geometry.

Lemma 5.12 The function a is comparable to the distance to the origin for
H > 1, and globally satisfies the estimate

|da| + a|√−1∂∂̄a| ≤ C.

Proof The gradient bound is easy. To see the bound on ∂∂̄a, we notice that a
is PSH, so it suffices to prove a|�a| ≤ C . This follows from applying formula
(21) and the partial derivative computations leading to (9). ��

6 Calabi–Yau metric

Weaim to improve the approximate solution into a genuineCalabi–Yaumetric.
Our strategy to achieve this relies on the following existence result for the
Monge–Ampère equation on noncompact manifolds, taken from Hein’s PhD
thesis [6], which builds on previous work of Tian and Yau [13].

Theorem 6.1 ([6], proposition 4.1) Let (M, ω) be a complete noncompact
Kähler manifold with a C3,α atlas, which satisfies the condition SO B(β),
where β > 2. Let f ∈ C2,α(M) satisfy | f | ≤ Cr−μ on {r > 1} for some
μ > 2. Then there exists ᾱ ∈ (0, α] and u ∈ C4,ᾱ(M), such that (ω +√−1∂∂̄u)n = e f ωn. If in addition f ∈ Ck,ᾱ(M) for some k ≥ 3, then all
such solutions u belong to Ck+2,ᾱ

loc (M).

Remark The proof considers a family of viscosity equations of the shape

(ω + √−1∂∂̄uε)
n = e f +εuεωn,

and derives uniform L∞ estimate for all small ε > 0. The desired solution
follows by taking a subsequential limit, which is not a priori known to be
unique.

The condition SO B(β) is chiefly used in the application of certain weighted
Sobolev inequalities. The condition β > 2 reflects a basic distinction between
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parabolic and non-parabolic manifolds. The reason to imposeμ > 2 is that the
method typically only allows us to construct solutions with decaying poten-
tial, and if the solution decays with some power law O(r2−μ), then standard
potential theory on Euclidean spaces makes us expect the Laplacian to decay
with order O(r−μ). As a side remark, since the distance function in our ansatz
involves two competing factors η1/2 and H1/4, the intuition from standard
Euclidean behaviour is not always very effective.

6.1 Approximately inverting the Laplacian

The problem with applying Hein’s result to construct a genuine Calabi–Yau
metric is that the error terms to the volume form (cf. (9)) have slower than
quadratic decay. More precisely, in the region where H is comparable to a4,
all error terms are of order at most O( 1

a3
), so the approximation is already good

enough. But in the region Eε , the worst error term has order O( 1
aH1/2 ). Notice

also its square is of order O( 1
a2H

) = O( 1
a3

) and in particular decays faster
than quadratically, which indicates that nonlinear effects are asymptotically
unimportant.

We shall attempt to remove the leading errors by explicitly inverting the
Laplacian up to an admissible amount of error. The result is

Lemma 6.2 There exists a function b = 1
a b̃( H

a ) defined for H 
 1, where b̃
is smooth with growth control

b̃(x) = O(log x),
dkb̃

dxk
= O(x−k), ∀k ≥ 1,

such that
(√−1∂∂̄b

)
∧

(√−1∂∂̄φ
)2

= 1

2
ṽolE

{
1

4a (H + a)1/2
+ H1/2

4a (H + a)
− H1/2

(H + a)2

+ 3

4 (H + a)
√

H
− H − a

4a H3/2 + O

(
log(2H/a)

a3

)}
.

Lemma 6.3 There exists a function b = 1
a2
b̃( H

a ) defined for H 
 1, where b̃
is smooth with growth control

b̃(x) = O(x−1/2),
dk b̃

dxk
= O(x−k), ∀k ≥ 1,
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such that
(√−1∂∂̄b

)
∧

(√−1∂∂̄φ
)2

= 1

2
ṽolE

{
2H3 − 5a H2 − 6a2H − 3a3

8 (H + a)2 H5/2a
+ O

(
1

a4

)}
.

We begin with examples of treating individual terms before describing the
general algorithm.

Example 6.4 We treat the error term 1
4a(H+a)1/2

in detail. The leading order
terms for the Laplacian of a function b(H, η) is

(√−1∂∂̄b
) (√−1∂∂̄φ

)2 ∼ ṽolE

{
3H + a√

H + a
bH + 2

(
H2 − a2

)
√

H + a
bH H

}

As an intuitive guideline, although a and H are not independent variables, in
the region Eε they behave as if they are, because a is η1/2 up to lower order
corrections. Now we solve a related ODE with variable x :

3x + y√
x + y

h′ + 2(x2 − y2)√
x + y

h′′ = 1

4y(x + y)1/2
.

We can rewrite the ODE as

d

dx

{
2(x − y)

√
x + y

dh

dx

}
= 1

4y(x + y)1/2
.

Thus the ODE is reducible to elementary integration. The first integration
gives

dh

dx
= 1

4y(x − y)
√

x + y
(
√

x + y − √
2y),

where we choose the normalisation that for x = y the derivative dh
dx remains

bounded. This is to ensure the smooth dependence of h on x . Integrate further
to get

h (x) = 1

2y
log

(√
x + y + √

2y√
y

)
.

Here the normalisation is chosen to display homogeneity behaviour.
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We then substitute H for x and a for y. This gives an approximate solution

b(1)(H, η) = 1

2a
log

(√
H + a + √

2a√
a

)
.

By construction, the expression

3H + a√
H + a

b(1)
H + 2(H2 − a2)√

H + a
b(1)

H H = 1

4a(H + a)1/2
+ O

(
log(2H

a )

a3

)

The error term O(
log( 2H

a )

a3
) appears because a also depends on H , but the

relative error is quite small, so the situation is improved. Now we use the
formula (21) to see that in fact

(
√−1∂∂̄b(1))(

√−1∂∂̄φ)2 = ṽolE

{
1

4a(H + a)1/2
+ O

(
log(2H/a)

a3

)}
.

This means we can invert the Laplacian on this error term approximately, as
desired.

Remark In Euclidean potential theory, if the forcing term decays slower than
quadratically near infinity, then in general the solution to the Poisson equation
will grow at infinity. One explanation that we obtain a decaying potential in
our context, is that our forcing term is O( 1

a3
) in the region where H ∼ η2, and

the slow decay occurs only in a very small solid angle.

Example 6.5 As a second example, we treat the term 1
4H3/2 . We first write

down the associated ODE:

d

dx

{
2(x − y)

√
x + y

dh

dx

}
= 3x + y√

x + y
h′ + 2(x2 − y2)√

x + y
h′′ = 1

4x3/2
.

The first integration gives

dh

dx
= 1

4(x − y)
√

x + y

(
1

y1/2
− 1

x1/2

)
,

where the normalisation is chosen to make dh
dx bounded at y = x . The RHS

clearly exhibits homogeneity features, so we can find an integral in the form

h(x, y) = 1

y
h̃

(
x

y

)
,
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where

dh̃

dx
= 1

4(x − 1)
√

x + 1

(
1 − 1

x1/2

)
.

The detailed expression of the RHS is less important than its qualitative fea-
tures, namely that it is a smooth expression in x , and its asymptotic growth at
large x is O( 1

x3/2
). This implies h̃(x) = O( 1

x1/2
). We then define

b(2)(H, η) = 1

a
h̃

(
H

a

)
,

so by construction

3H + a√
H + a

b(2)
H + 2(H2 − a2)√

H + a
b(2)

H H = 1

4H3/2 + O

(
1

a5/2H1/2

)
.

Using the Laplacian formula (21), one can see further that

(
√−1∂∂̄b(2))(

√−1∂∂̄φ)2 = ṽolE

{
1

4H3/2 + O

(
1

a5/2H1/2

)}
.

This means the singular term can be approximately cancelled in this example.

The features of these examples mostly carry over to the other error terms
in (9) with minor changes. We can write down with obvious modifications
an ODE for each error term. Explicit integrals in most other cases are more
difficult to compute. However, by the homogeneity of the ODE, in the case of
Lemma 6.2 we can always write

h(x, y) = 1

y
h̃

(
x

y

)
,

where h̃ solves the ODE with parameter y = 1. The algorithm is that we

perform the first integral with the requirement that dh̃
dx stays bounded near

x = 1, integrate to find h, substitute H for x and a for y. It is clear that in each
case the result is a smooth function b(H, η) for H 
 1.

It remains to control the behaviour of the function h̃(x) for large x , in order
to estimate all the errors. For the terms

1

4a(H + a)1/2
,

H1/2

4a(H + a)
, − 1

4aH1/2 ,
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the relevant h̃ has leading order growth (up to constant factors) h̃ ∼
log x, dh̃

dx ∼ x−1. For the terms

− H1/2

(H + a)2
,

3

4(H + a)
√

H
,

1

4H3/2 ,

h̃ has leading order growth (up to constant factors) h̃ ∼ x−1/2, dh̃
dx ∼ x−3/2.

It follows that in the first three cases, we can cancel the error terms up to
O(

log(H/a)

a3
), and in the last three cases, we can cancel the error terms up to

O( 1
H1/2a5/2

). In summary, we have the lemma 6.2.
The situation of Lemma 6.3 is analogous. The main modification is that the

homogeneity behaviour is slightly different, so we should instead write

h(x, y) = 1

y2
h̃

(
x

y

)
.

Remark It should be pointed out that this ODEmethod improves the error only
in the bad region with η 
 H1/2, i.e. the region collapsing to the singularity of
the tangent cone. It is typical in adiabatic problems involving a local fibration
structure, that one can improve an approximate solution by solving a related
equation along the fibres. This is indeed what happens here.

In the region where η is comparable to H1/2, the Laplacian genuinely
depends on both H and η derivatives, so ODE reduction is not possible in
general, but the error there is already acceptably small.

Remark The form
√−1∂∂̄(b + b) compared to

√−1∂∂̄φ is of order O( 1
aH1/2 )

+ O(
log(2H/a)

a3
), so its square has order O( 1

a3
). This again confirms the fact

that the nonlinear effect is asymptotically weak.

6.2 Perturbation into the Calabi–Yau metric

We improve the metric ansatz to allow for the application of Hein’s existence
result. For this we define a metric

ω′ = √−1∂∂̄(φ − (b + b)χ). (22)

where b is defined in Lemma 6.2 and b in Lemma 6.3, 0 ≤ χ ≤ 1 is a cutoff
function, vanishes in the ball {H ≤ R2}, and equals to 1 outside {H ≤ 4R2}.
If we choose the parameter R large enough, we can ensure ω′ is a genuine
Kähler metric.
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For H 
 1, the volume form of this modified ansatz is

ω′3 =
(√−1∂∂̄φ

)3 − 3(
√−1∂∂̄φ)2 ∧ √−1∂∂̄(b + b) + O(

1

a3 )

= 3

2
ṽolE

{
1 + O

(
log(2H/a)

a3

)}
.

Crudely speaking, the error is now at most O( 1
a3−ε ) for any small ε > 0.

Now since ω′ deviates from
√−1∂∂̄φ by only a small smooth perturbation

of order O( 1
aH1/2 )+ O(

log(2H/a)

a3
), the condition SO B(6) and the existence of

Ck,α quasi-atlas still hold for ω′ (compare with Sect. 5.3). So Hein’s theorem
gives us

Theorem 6.6 There is a smooth bounded potential ψ on C
3 with bounded

derivatives to all orders, solving the Monge–Ampère equation

(ω′ + √−1∂∂̄ψ)3 = 3

2
ṽolE . (23)

In particular the metric ωCY = ω′+√−1∂∂̄ψ is Calabi–Yau, and is uniformly
equivalent to ω′.

Since our setup is symmetric under the action of SO(3, R) × U (1), and
Hein’s method works equivariantly with respect to the group action, we can
assume the solution is symmetric.

6.3 Decay estimates

We now improve the decay rate of the potential ψ . This can be extracted from
Hein’s work, and the method is standard. We observe first

Proposition 6.7 The potential ψ decays as O( 1
a1−ε ) for any ε > 0.

Proof This follows from Hein’s thesis [6], the proof of proposition 3.16 (ii),
and his comments on non-parabolic manifolds in his Sect. 4.5, where the
reader can find more details. The main idea is weighted Moser iteration. The
lemma 5.12 is technically required in his argument. The general conclusion is
that if the forcing term decays as O(a−μ), for 2 < μ < 6, then the potential
decays as O(a2−μ+ε). ��
Remark We think the decay rate estimate is not far from optimal because our
correction term to the potential is b = O(

log(2H/a)
a ). It may be of interest to

compare this with Joyce’s work [7]. As discussed in Sect. 5.2, our setup does
not technically fit into Joyce’s definition of QALE manifolds. So we shall just
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make the crude remark that for Joyce’s ALE manifold of real dimension 2n,
the decay rate of the metric is O(a−2n), and the decay rate of the potential
is O(a2−2n), which in our context is O(a−4). In any case it is clear that our
decay rate is much slower.

Proposition 6.8 The potential ψ satisfies the decay bound

∥∥∥∇(k)

ω′ ψ

∥∥∥
L∞ ≤ C(k)

a1−ε(H + 1)k/4 . (24)

Proof By the smooth estimates inHein’s result, it is enough to consider H 
 1
and prove the decay property. Recall in our proof of the existence of the Ck,α

quasi-atlas, we introduced a set of coordinates z′
1, z′

2, z′
3 around the point x

(see lemma 5.10), which displays that the metric is smoothly equivalent to the
standard Euclidean metric on a ball of size cH1/4(x), for some small fixed c.

Now we scale both the coordinates and the metric, writing z′′
j = z′

j

cH(x)1/4
, so

1
H(x)1/2

ω′ and 1
H(x)1/2

ωCY are uniformly equivalent to the standard Euclidean
metric in the unit coordinate ball. The Calabi–Yau condition reads

(
1

H(x)1/2
ω′ + 1

H(x)1/2

√−1∂∂̄ψ

)3

−
(

1

H(x)1/2
ω′

)3

= 1

H(x)3/2

(
ω3

CY − ω′3) .

The k−th derivatives of the forcing function
ω′3−ω3

CY
ω3

CY
is of order O(

log(2H/a)

a3
) =

O( 1
a1−ε H1/2 ), for any k ≥ 0. The potential ψ

H(x)1/2
= O( 1

a1−ε H1/2 ). By ellip-

tic bootstrap, we obtain that the k−th derivative of ψ

H(x)1/2
is estimated by

O( 1
a1−ε H1/2 ). Reverting back to the z′

i coordinates, this implies the claim. ��
Remark In the region where η1/2 is comparable to H1/4, the k = 2 case of
this estimate implies ωCY −ω = O( 1

a3−ε ), where we recall ω is the ansatz (8).
The decay estimates are much slower in Eε , which can be expected from the
singularity of the tangent cone at infinity.

As a consequence of the decay estimate 6.8 on the metric, the leading order
asymptote of ω agrees with that of ωCY , hence

Corollary 6.9 The asymptotic properties of ω, including maximal volume
growth and the tangent cone at infinity, are also true for ωCY .

Remark This CY metric is a counterexample to a previous conjecture, which
says any complete CY metric on C

n with maximal growth is flat (cf. [14],
Remark 5.3).
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6.4 Riemannian submersion property

We consider the trace TrωCY ω0, where ω0 = 1
2

√−1d f ∧ d f̄ is the standard
Euclidean metric on C. We notice that for H 
 1, the asymptotic behaviour
of ωCY implies f is almost a Riemannian submersion, or equivalently by
considering the pointwise simultaneous diagonalisation of ωCY and ω0,

TrωCY ω0 ∼ 1.

For the region H � 1, this is no longer true due to quantising effects. But
quite remarkably we have a one sided global estimate:

Proposition 6.10 TrωCY ω0 ≤ 1.

Proof We use the Chern-Lu formula for the fibration f (cf. [10] proposition
7.1), which in this case essentially reduces to the Bochner formula. Notice
ωCY is Ricci flat and ω0 is flat, so

�ωCY log TrωCY ω0 ≥ 0.

The subharmonic function log TrωCY ω0 tends to limiting value zero at infinity,
hence the maximum principle gives the claim. ��
Remark It may be noticed that this argument only depends on the Calabi–
Yau condition and the leading asymptote. Establishing a priori properties of
the metric may have some bearing on the open question whether the leading
asymptote uniquely determines the Calabi–Yau metric.

7 Remarks on moduli questions

7.1 Moduli questions and possible generalisations

Our Calabi–Yau metric ωCY is a nontrivial Ricci flat metric on C
3. This is

interesting in relation to the following fundamental question: on a given non-
compact complex manifold with a global holomorphic volume form, can we
classify the complete Calabi–Yaumetrics?What if we imposemaximal growth
condition? How about the case of C

n?
For instance, one may ask if we can build other examples using more com-

plicated fibrations on C
n , starting from some ansatz which desingularises a

semi-Ricci flat metric; optimistically this gives an abundant supply of nontriv-
ial Ricci flat metrics on C

n . Existence results in this direction have now been
obtained independently by [12] and [1], shortly after the appearance of the
present paper on arXiv. The difficulty for this question is more severe, because
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we lose both the explicit nature of the Stenzel metric and the cohomogeneity-
two property.

This question is also very relevant for understanding what happens near the
(isolated) critical points of a very collapsed Calabi–Yau manifold fibred over
some Riemann surface, assuming the singular fibre is a normal Calabi–Yau
variety. The expectation is that there should be a complete Calabi–Yau metric
on a model space fibred over C, possibly biholomorphic to C

n , whose asymp-
totic behaviour is a semi-Ricci flat metric, such that after appropriate scaling
it describes the collapsing metric near the critical points on the total space of
the fibration. (The normality condition is imposed for the fibrewise Calabi–
Yau metric to make sense; if we drop this condition, a prototype example is
the Ooguri-Vafa metric, which is an incomplete metric modelling the collaps-
ing elliptically fibred K3 surface near a singular fibre (cf. Gross and Wilson
[4]), and whose local behaviour near the node is modelled on the Taub-NUT
metric which does not have maximal growth.) A description of the tangent
cone at infinity is likely to involve stability issues, as understood for Ak-type
singularities by Hein and Naber.

On the negative side, any meaningful classification program must deal with
singular tangent cones, which can be a major source of difficulty.

7.2 Deformation and uniqueness questions

We can also ask the weaker question of classifying Calabi–Yau metrics arising
as deformations of a given one, which I believe is more tractable. This depends
on the class of deformations, which in turn depends on the function spaces in
which one sets up the Monge–Ampère equation. Hein’s viscosity solution
method surprisingly does not give any suggestion on the appropriate function
space, nor does it make any uniqueness assertions. Let us formulate a number
of more concrete questions:

Question 7.1 Canwe classify all Calabi–Yaumetrics with the given holomor-
phic volume form which are uniformly equivalent to our example?

Instead of giving a complete answer, we remark that SL(3, C) gives auto-
morphisms ofC

3 as a complex manifold. But the uniform equivalence forces a
compatibility condition with the fibration structure, so reduces this symmetry
to SO(3, C)×〈e2π i/3〉. Clearly SO(3, R)×〈e2π i/3〉 is a subgroup preserving
also the metric structure. So the moduli space contains at least the homoge-
neous space SO(3, C)/SO(3, R) � SL(2, C)/SU (2). These examples are
different as Calabi–Yau metrics on the fixed complex manifold C

3, but they
are isometric as Riemannian manifolds by a linear change of coordinates.

A more subtle deformation of our metric can be obtained by a simultane-
ous scaling of our metric and the coordinates, such that the volume form is
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preserved. Viewed alternatively, if we start from the ansatz

φ = 1

2λ2/3
η + λ1/3

√
H + (η + λ

√
H + λ2/3)1/2,

where λ > 0, and solve the Monge–Ampère equation as before, we would get
a new Calabi–Yau metric with the same volume form. This deformation can
be anticipated from our discussions in Sect. 4.

Question 7.2 Given the leading order asymptote for the Kähler form, then is
our Calabi–Yau metric unique?

The uniqueness is clear once we assume sufficient decay of the perturbation
term, and the question is about the optimal decay condition we need.

Question 7.3 What are the formal deformations of our example?

This involves linearising the Calabi–Yau equation. We obtain formally an
equation on a closed (1, 1) form β:

ω2
CY ∧ β = 0. (25)

This says β is primitive. On the space C
3, closedness and exactness are the

same. It is clear from the Hodge identities that β is harmonic. For example,
the nontrivial deformations discussed above provide particular solutions. The
answer in general depends on the function space. In particular, we may ask
what are the bounded solutions, and how they relate to moduli questions.

Question 7.4 (Rigidity) If ω′
CY is a Calabi–Yau metric on a large ball {|z| ≤

R} with the same volume form as ωCY , and near the boundary (1− ε)ωCY ≤
ω′

CY ≤ (1 + ε)ωCY for sufficiently small ε, then can we deduce effective
estimates of the shape (1 − Cε)ωCY ≤ ω′

CY ≤ (1 + Cε)ωCY on the whole
ball, where C is independent of R?
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