
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3157-1
Commun. Math. Phys. 363, 561–578 (2018) Communications in

Mathematical
Physics

A Robust Proof of the Instability of Naked Singularities
of a Scalar Field in Spherical Symmetry

Jue Liu, Junbin Li

Department of Mathematics, Sun Yat-sen University, Guangzhou, China.
E-mail: liuj337@mail2.sysu.edu.cn; lijunbin@mail.sysu.edu.cn

Received: 12 October 2017 / Accepted: 9 March 2018
Published online: 1 June 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: Published in 1999,Christodoulou proved that the naked singularities of a self-
gravitating scalar field are not stable in spherical symmetry and therefore the cosmic
censorship conjecture is true in this context. The original proof is by contradiction and
sharp estimates are obtained strictly depending on spherical symmetry. In this paper,
appropriate a priori estimates for the solution are obtained. These estimates are more
relaxed but sufficient for giving another robust argument in proving the instability, in
particular not by contradiction. In a companion paper, we are able to prove certain
instability theorems of the spherically symmetric naked singularities of a scalar field
under gravitational perturbations without symmetries. The argument given in this paper
plays a central role.

1. Introduction

In the paper [4], Christodoulou proved both the weak cosmic censorship conjecture
and the strong cosmic censorship conjecture for spherically symmetric solutions of the
Einstein equations coupled with a massless scalar field. The coupled system reads

Ricαβ − 1

2
Rgαβ = 2Tαβ

where

Tαβ = ∇αφ∇βφ − 1

2
gαβg

μν∇μφ∇νφ,

which we call the Einstein-scalar field equations. The proof, which is by contradiction,
contains sharp estimates which may not be easily obtained beyond spherical symmetry.
In this paper, we will provide a robust proof which is not by contradiction, and contains
only relaxed estimates. The main advantage of this proof is that it has the potential to be
extended beyond spherical symmetry.
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1.1. The work of Christodoulou. Consider the characteristic initial value problem of
the Einstein-scalar field equations in spherical symmetry. The initial data is given on a
null cone Co issuing from a fixed point o of the symmetry group SO(3), and consists
of a function α0 = ∂

∂r (rφ)
∣
∣
Co

defined on [0,+∞), where r is area radius of the orbit
spherical sections ofCo, and φ is the scalar field function. Then what was exactly proved
by Christodoulou is the following theorem.

Theorem 1 (Christodoulou, Theorem 4.1 in [4]). Let E be the complement of the col-
lection of functions α0 ∈ BV whose maximal future development is either complete, or
possesses a complete future null infinity and a strictly spacelike singular future boundary.
Then there exist two functions f1, f2 ∈ BV , such that α0 +λ1 f1 +λ2 f2 /∈ E and has non-
complete maximal future development for all λ1, λ2 with λ1 �= 0 or λ2 �= 0. Moreover,
if α0 + λ1 f1 + λ2 f2 ≡ α′

0 + λ′
1 f

′
1 + λ′

2 f
′
2, then α0 ≡ α′

0, f1 ≡ f ′
1, f2 ≡ f ′

2 and λ1 = λ′
1,

λ2 = λ′
2. We may therefore say that the exceptional set E is of codimension at least 2.

Remark 1. In the proof of the above theorem in [4], f2 is shown to be absolutely con-
tinuous, and therefore the conclusion that the exceptional set is of codimension at least
1, still positive but not 2, holds for α0 being absolutely continuous, which of course is
more regular than being of bounded variation.

The proof can roughly be divided into three steps. Consider an arbitrary initial data
α0 ∈ BV . The first step, which was shown in [3], is that the maximal future development
of such data is complete, unless there exists a singular endpoint e of the central timelike
geodesic � from o. A sharp criterion of the appearance of e was also found: 2m

r � 0
when approaching e from the past, where m is the mass function. The second step is
to understand how an apparent horizon forms. We have the following collapse theorem
also by Christodoulou.

Theorem 2 (Christodoulou, [2]). Consider the spherically symmetric solution of the
Einstein-scalar field equations with initial data given on a null cone Co. Let S1 and S2
be two spherical sections with area radii r1, r2 and mass contents m1, m2, and S2 is in
the exterior to S1. Denote

δ = r2
r1

− 1.

Then there exist two universal positive constants c0, c1 such that if δ ≤ c0 and

2(m2 − m1) > c1r2δ log

(
1

δ

)

,

then the incoming null cone through S2 intersects the apparent horizon and enters the
trapped region, the region of trapped surfaces. Moreover, there exists an event horizon
and the trapped region terminates at a spacelike singular future boundary.

Inspired by this theorem, one can then consider the future of Ce ∪ Co, where Ce
is the boundary of the causal past of e and intersects Co at s = se and Co here refers
to the part s ≥ se. Then the last step, what was really proved in [4] is that, allowing a
perturbation on α0, there exists a sequence pn ∈ � where pn → e such that the null cone
Cpn issuing from pn satisfies the assumptions of Theorem 2 at two spheres S1,n and S2,n
on Cpn , between which the distance tends to zero. The corresponding spacetimes have
an event horizon and therefore possess a complete future null infinity, which verifies the
weak cosmic censorship conjecture. Moreover, the distance of S1,n and S2,n tending to
zero implies that the apparent horizon issues from e and therefore the future boundary
of the maximal development is spacelike and singular. This verifies the strong cosmic
censorship conjecture.
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Fig. 1. The original proof by Christodoulou. The closed trapped surfaces on the top of the light grey regions
are predicted by Theorem 2

1.2. The content of this paper. In this paper, we are going to give a new argument of
this last step. This argument is more robust and can potentially be extended beyond
spherical symmetry, which has been studied in our companion paper [6]. The present
article can then be understood as an introduction to our new methods applied on the
original spherically symmetric model studied by Christodoulou, so we are not going to
prove any essentially new results in this paper.

We would like to give a statement of what we prove exactly in this paper. First,
we introduce a double null coordinate (u, u) of the quotient spacetime relative to the
singular endpoint e of � as follows. Let u and u be optical functions, i.e., their level sets,
which we denote by Cu and Cu , are incoming and outgoing null cones respectively. We
take u = 0, u = −r on Ce, and take u = u0 and u increasing towards the future on Co
where −u0 = r0 is the area radius of the sphere Ce ∩ Co. Using this notation, we will
write Ce = C0, Co = Cu0 . In terms of the double null coordinate (u, u) relative to e,
what we will reprove can be stated as follows.

Theorem 3. Let E be the complement of the collection of functions α0 ∈ BV whose
maximal future development is either complete or has the property, that if e is the
singular endpoint of � and (u, u) is the double null coordinate relative to e, then there
exist two sequences δn → 0+ and un → 0− such that

2(m − mn) >
c1r(r − rn)

rn
log

rn
r − rn

, with
r − rn
rn

≤ c0 (1.1)

where m and r take values at (u, u) = (δn, un), mn = m(0, un), rn = |un| and c0, c1 are
the constants given in Theorem 2. Then if α0 ∈ E , there exist two functions f1, f2 ∈ BV ,
such that α0 + λ1 f1 + λ2 f2 /∈ E and has non-complete maximal future development for
all λ1, λ2 with λ1 �= 0 or λ2 �= 0. Moreover, if α0 + λ1 f1 + λ2 f2 ≡ α′

0 + λ′
1 f

′
1 + λ′

2 f
′
2,

then α0 ≡ α′
0, f1 ≡ f ′

1, f2 ≡ f ′
2 and λ1 = λ′

1, λ2 = λ′
2.

We discuss some differences between the original proof of Christodoulou and the
proof in this paper in the rest of the introduction. The proof of Christodoulou is roughly
depicted in Fig. 1. Instead of using the double null coordinate, Christodoulou worked in
a dimensionless coordinate (s, t) relative to the singular endpoint e defined as follows:

u = u0e
−t , −2r = u0e

s−t .

The proof should be done by deriving suitable estimates and Christodoulou started by
assuming that the conclusion of Theorem 3 is not true for a generic class of the initial
data, this is to say, given any ε > 0, the opposite of (1.1), i.e.,
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Fig. 2. The proof in this paper. Similar to Fig. 1, the closed trapped surfaces on the top of the light grey regions
are predicted by Theorem 2

2(m(s, t) − m(0, t)) ≤ c1r(s, t)s log

(
1

s

)

(1.2)

holds in the region {0 ≤ s ≤ c0} ∩ {0 ≤ u ≤ ε}, the intersection of the dark grey region
in Fig. 1 and the part of the spacetime before the incoming null cone u = ε. For the
spherically symmetric Einstein-scalar field system, themassm governs thewhole system
and has good monotonicity properties. Therefore Christodoulou was able to estimate all
related geometric quantities in a sharp way in terms of m(s, t) − m(0, t), which is
bounded from (1.2), without knowing any a priori bounds of the solution. In particular,
he was able to compare the value of r ∂

∂uφ1 in the region {0 ≤ s ≤ c0} ∩ {0 ≤ u ≤ ε}
to its values on C0 = Ce and on Cu0 = Co. By carefully choosing a sequence (sn, tn)
approaching the singularity, i.e., sn → 0+ and tn → +∞, the estimates in particular
give a lower bound of r ∂

∂uφ and hence a lower bound of m − mn at (sn, tn), which is

roughly speaking an L2 integral of r ∂
∂uφ relative to u. Christodoulou found that such a

lower bound onm−mn contradicts to (1.2) at (sn, tn) for sufficiently large n. Therefore,
(1.1) should hold for some particular (sε, tε) ∈ {0 ≤ s ≤ c0} ∩ {0 ≤ u ≤ ε}. And since
the above argument works for any ε > 0, it was concluded that (1.1) should hold for a
sequence of (sεn , tεn ) and this is what one wanted to prove.

However, in order to extend this result beyond spherical symmetry, muchmore things
need to be concerned. First of all, we need to derive suitable a priori estimates in order to
establish the existence of the solution. Second, we may not benefit from the assumptions
like (1.2) which is from proof by contradiction because themass can no longer govern the
whole system without symmetries. In addition, the estimates derived by Christodoulou
are so sharp that it is not easy to extend them beyond spherical symmetry.

The proof given in this paper, which is depicted in Fig. 2, is along the following line.
Different from the dimensionless coordinate (s, t), wework in the double null coordinate
(u, u), in which many new techniques pioneered by Christodoulou in the work [5] were
developed recently. In the double null coordinate, we are able to derive a priori L∞
bounds of the geometric quantities, including ∂

∂uφ, ∂
∂uφ, and the derivatives of r and

1 Strictly speaking, Christodoulou estimated the quantity r ∂
∂r φ.
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� defined by −2�2 = g
(

∂
∂u , ∂

∂u

)

. These a priori estimates are proved by a bootstrap

argument to hold in all rectangular regions, the dark grey regions in Fig. 2, in the form
0 ≤ u ≤ δ, u0 ≤ u ≤ u1 where δ|u1|−1 should be sufficiently small. Then we carefully
choose two sequences δn → 0+ and un → 0− according to the condition (1.1)2 and
our main new observation is that the quantity δn|un|−1 is small enough to guarantee
that the a priori estimates are satisfied in 0 ≤ u ≤ δn , u0 ≤ u ≤ un for sufficiently
large n. Moreover, these a priori estimates, which are in principle more relaxed than the
estimates derived by Christodoulou, are still enough to give a suitable lower bound of
r ∂

∂uφ for 0 ≤ u ≤ δn , u = un , and hence a lower bound of m − mn which implies
the condition (1.1) for a generic class of the initial data. In particular, we do not need
to argue by contradiction since we already have L∞ a priori bounds which are much
stronger than the original assumption (1.2) of Christodoulou. One of the advantages of
not arguing by contradiction is that we are able to identify the exact locations where the
condition (1.1) holds.

The a priori estimates we derive are robust and analogues of them may hold when no
symmetries are imposed, and the new argument presented in this paper can possibly be
extended. The generalization of these estimates without symmetries will also be used
in proving the existence of the solution. In our companion paper [6], we consider the
characteristic initial value problem of the Einstein-scalar field equations, with the initial
data given on two null cones intersecting at a sphere. The incoming null cone is assumed
to be spherically symmetric and singular at its vertex, in the sense that 2m

r � 0 when
approaching it from the past. No symmetries are imposed on the outgoing null cone.
Then we will show that the argument presented in this paper can be directly generalized
and we can also prove certain instability theorems. We suggest the readers refer to [6]
for the precise statements. Finally, we should also mention that the estimates derived in
this paper, and also those in [6], are inspired by and share many common features with
those in the work of An-Luk [1] where they worked with the spacetime region deep near
the vertex which is regular. Readers may also refer to [6] for some discussions about
this.

2. Double Null Coordinates and Equations

2.1. Double null coordinate. The spherically symmetric spacetime can be studied
through its 2-dimensional quotient spacetime manifold with boundary �, the fixed point
set of the SO(3) action, being a timelike geodesic, which we call the central line. We
use a double null coordinate (u, u), where u, u are optical functions, which means that
their level sets Cu and Cu are incoming and outgoing null cones invariant under the
SO(3) action respectively. In the quotient spacetime, Cu and Cu are then incoming and
outgoing null lines respectively. We then denote

L = ∂

∂u
, L = ∂

∂u
,

and define the lapse function � by

−2�2 = g(L , L).

2 We remark that the the choice of two sequences δn and un , is similar to the choice of (sn , tn) in
Christodoulou’s proof.
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Then the metric has the form

−2�2(du ⊗ du + du ⊗ du) + r2dσS2

where the area radius function r = r(u, u) is defined by

Area(Su,u) = 4πr2,

and dσS2 is the standard metric of the unit sphere.

2.2. Equations. From the form of the metric, the unknowns of the Einstein-scalar field
equations are r , � and the scalar field function φ. What we really concern are their
derivatives. We define the null expansions relative to the normalized pair of null vectors
�−2L , L and the mass function m by

h = �−2Dr, h = Dr, m = r

2
(1 + hh),

where D and D are the restrictions on the orbit spheres of the Lie derivatives along L
and L . When applying on functions, D and D are simply the ordinary derivatives. We
then define the D derivative of the lapse �

ω = D log�,

while its D derivative is not needed in this paper. Finally, we also need the derivatives
of the scalar field function φ:

Lφ = ∂

∂u
φ, Lφ = ∂

∂u
φ.

We then list below all the equations satisfied by the above quantities and needed in
this paper. First of all, we have the following five null structure equations:3

Dh = − r�−2(Lφ)2, (2.1)

D(�2h) = − �2(1 + hh)

r
, (2.2)

Dh = − �2(1 + hh)

r
, (2.3)

D(�−2h) = − r�−2(Lφ)2, (2.4)

Dω =�2(1 + hh)

r2
− LφLφ. (2.5)

The following two equations, which are equivalent, are the wave equation satisfied by
φ:

D(r Lφ) = − �2hLφ, (2.6)

D(r Lφ) = − hLφ. (2.7)

3 Readers may refer to [2] for the derivations of these equations, though the notations have some slight
differences. These equations can also be directlywritten down from the general null structure equationswithout
symmetries, which can be found in the authors companion paper [6] mentioned above. The derivations of these
equations in vacuum can be found in Christodoulou’s work [5] on the formation of black holes.
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Finally, we have the following equation about the mass function m:

Dm = − 1

2
h�−2(r Lφ)2, (2.8)

Dm = − 1

2
h(r Lφ)2. (2.9)

3. A Priori Bounds for the Solution

We begin the proof of Theorem 3. Recall that we start from an arbitrary initial data
α0 ∈ BV and the central line has a singular endpoint e, approaching which 2m

r � 0.
The double null coordinate (u, u) is chosen such that u = 0, u = −r on the boundary
of the causal past of e, and u = u0 = −r0 and u increases towards the future on the
initial null cone Co where r0 is the area radius of Ce ∩ Co.

3.1. Geometry on C0. First of all we would like derive some identities on C0, the
boundary of the causal past of e. We denote the restrictions on C0 of some geometric
quantities, which are considered as functions of u:

ψ = ψ(u) = r Lφ

∣
∣
∣
C0

, ϕ = ϕ(u) = r Lφ

∣
∣
∣
C0

,

�0 = �0(u) = �

∣
∣
∣
C0

, h0 = h0(u) = h
∣
∣
C0

.

From u = −r on C0, we must have h
∣
∣
C0

≡ −1. Substituting this into (2.4), we find

∂

∂u
log�0 = −1

2

ψ2

|u| , and hence − log
�2

0(u)

�2
0(u0)

=
∫ u

u0

ψ2(u′)
|u′| du′. (3.1)

From (2.2), we have

∂

∂u
(�2

0h0) = −�2
0(1 − h0)

|u| , (3.2)

and hence − log
�2

0(u)h0(u)

�2
0(u0)h0(u0)

=
∫ u

u0

1

|u′|
(

1

h0(u′)
− 1

)

du′. (3.3)

Because m
∣
∣
C0

≥ 04 and the apparent horizon, where m = 2r , does not intersects

C0,
5 and hence none of the spherical sections of C0 are closed trapped surfaces, then

2m < r on C0. From the definition of the mass m and that h
∣
∣
C0

≡ −1 on C0, we have

1− h0 = 2m
r

∣
∣
C0

which lies in [0, 1) and hence 0 < h0 ≤ 1. Then we are going to prove
an important lemma.

4 See for example Proposition 4.1 in [2]. Roughly speaking, the non-negativity of the mass m follows from
that it is monotonically increasing along future outgoing null cones and it vanishes on the central line.

5 Intuitively thinking, if the apparent horizon intersects C0, then we have nothing to prove because we
already have a black hole and the singularity is not naked. In fact, it was proved by Christodoulou in the
complete version of the collapse theorem in [3] that the apparent horizon contains no incoming null pieces
and intersects the singular boundary. This would contradict to the assumption that C0 is the boundary of the
past of the singular endpoint of the central line.
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Lemma 1. Both �2
0h0 and �0 are monotonically decreasing and converge to 0 as u →

0−.
Proof. The monotonicity follows from the fact that the integrands in (3.1) and (3.3) are
positive. From Lemma 2 in [4] (3.3) tends to infinity as u → 0−. We rewrite this proof
using the notations in this paper. Indeed, on C0, it holds

2m
r

∣
∣
C0

= 1− h0, then using the
fact that m(0, u) is decreasing which follows from (2.9), we have

∫ u

3u

1

|u′|
(

1

h0(u′)
− 1

)

du′ =
∫ u

3u

1

|u′|
2m(0,u′)

|u′|
1 − 2m(0,u′)

|u′|
du′

≥
∫ u

3u

1

|u′|
|u|
|u′|

2m(0,u)
|u|

1 − |u|
|u′|

2m(0,u)
|u|

du′ = log

(

1 − 1
3
2m(0,u)

|u|
1 − 2m(0,u)

|u|

)

.

If (3.3) is bounded for all u ∈ [u0, 0), then the first integral above should tend to
zero when u → 0−. However, this implies that 2m

r → 0 from the above inequality, a
contradiction. Therefore�2

0h0 → 0 as u → 0−. If�0 � 0, then�0 has a positive lower
bound because it is decreasing. Therefore �2h0 → 0 implies that h0 → 0. Substitute
this to (3.2), we find as u → 0−,

�2
0(u0)h0(u0) − �2

0(u)h0(u) =
∫ u

u0

�2
0(1 − h0)

|u′| du′ → +∞

and hence �2
0(u)h0(u) → −∞, a contradiction. We conclude that �0 → 0 as u → 0−

and the proof is completed. ��
Remark 2. The proof in the rest of the paper then depends only on the fact that �0 → 0
monotonically. The infiniteness of (3.3) depends strictly on the monotonicity of massm
along C0. We do not expect a robust argument of this proof since the criteria 2m

r � 0
may not make sense beyond spherical symmetry. A robust version of this lemma, which
is beyond reach right now, should include another suitable criterion outside spherical
symmetry, which is still an active area of research.

3.2. Theapriori estimates. Wearegoing toderive the apriori estimates for the geometric
quantities. We fix a small constant δ > 0, a constant u1 ∈ (u0, 0) and denote

F = F (u0, u1) = max{1, sup
u0≤u≤u1

|ϕ(u)|},

and

A = A(δ, u0, u1) = max{1, sup
0≤u≤δ

F−1(|r Lφ(u, u0)| + |u0||ω(u, u0)|)}.

Here F−1 is understood as the reciprocal of the quantity F but not the inverse of the
function. We remark that the product FA contains informations from both Cu0 and
C0 and hence it is the expected bound of r Lφ and the whole system.6 Without loss
of generality, we also assume that �(u0) ≤ 1. By the monotonicity of �0, we have
�0(u) ≤ 1 for all u ∈ [u0, 0). Then we are going to prove

6 In our companion paper [6], F can be arbitrarily chosen and we establish the existence theorem in a
general form. Then we can apply the existence theorem in different situations by choosing differentF .
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Theorem 4. There exists a universal large constant C0 ≥ 1 such that the following
statement is true. Suppose that

A < +∞,

and for some C ≥ C0 we have

C2δ|u1|−1FW
1
2A ≤ 1, where W = W (u0, u1) = max

{

1,

∣
∣
∣
∣
log

�0(u1)

�0(u0)

∣
∣
∣
∣

}

. (3.4)

Then we have the following estimates for 0 ≤ u ≤ δ, u0 ≤ u ≤ u1:7

1

2
�0(u) ≤ � ≤ 2�0(u),

1

2
|u| ≤ r ≤ 2|u|, (3.5)

|r Lφ| � FA, (3.6)

|r Lφ − ψ | � δ|u|−1FA, (3.7)

|h − h0| � δ|u|−1�−2
0 F 2A2, (3.8)

|h + 1| � δ|u|−1FA, (3.9)

|u||ω| � FW
1
2A. (3.10)

Moreover, we have the improved estimate

|r Lφ(u, u) − ϕ(u)| � |r Lφ(u, u0) − ϕ(u0)| + δ|u|−1F 2W
1
2A2. (3.11)

Proof. We begin the proof by introducing the set Uδ,u1 of u∗ ∈ [u0, u1] such that the
following bootstrap assumptions hold for 0 ≤ u ≤ δ, u0 ≤ u ≤ u∗:

|r Lφ| � C
1
4FA, (3.12)

|u||ω| � C
1
4FW

1
2A. (3.13)

Uδ,u1 is non-empty since u0 ∈ Uδ,u1 by the definition ofF andA, and closed in [u0, u1]
by the continuity of Lφ, ω relative to u.8 Then we choose any u∗ ∈ Uδ,u1 and hope to
derive estimates for 0 ≤ u ≤ δ, u0 ≤ u ≤ u∗ where (3.12) and (3.13) hold. To this end,
we must introduce another set U δ,u∗ of u∗ ∈ [0, δ] such that the following secondary
bootstrap assumptions hold for 0 ≤ u ≤ u∗, 0 ≤ u ≤ u∗:

|r Lφ − ψ | � C
1
4 δ|u|−1FA, (3.14)

|h − h0| � C
1
2 δ|u|−1�−2

0 F 2A2, (3.15)

|h + 1| � C
1
4 δ|u|−1FA. (3.16)

For any u∗ ∈ Uδ,u1 , the set U δ,u∗ is still non-empty since 0 ∈ U δ,u∗ and closed by
the continuity Lφ, h, h relative to u. We then choose u∗ ∈ U δ,u∗ and begin to derive
estimates for 0 ≤ u ≤ u∗, u0 ≤ u ≤ u∗, where (3.12)–(3.16) hold.

7 The notation A � B means A ≤ cB for some universal constant c.
8 This is because we are dealing with a solution of bounded variation, then the quantities Lφ, Lφ, h, h, ω

are bounded and �, r are continuous. Moreover, from the Eqs. (2.1)–(2.7), if r > 0, then Lφ, h, h, ω are
continuous relative to u and Lφ, h, h are continuous relative to u.
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Before closing the bootstrap argument, the estimates we obtain below only hold for
0 ≤ u ≤ u∗, u0 ≤ u ≤ u∗. From (3.13), we have

| log� − log�0| ≤
∫ u∗

0
|ω|du � C

1
4 δ|u|−1FW

1
2A � C−1.

The last inequality is because of (3.4) and |u| ≥ |u1|.9 By choosing C0 (and hence C)
sufficiently large, we have

| log� − log�0| ≤ log 2

and therefore (3.5) holds for �. Moreover, we have

|� − �0| ≤
∫ u∗

0
|�ω| du � C

1
4 δ|u|−1�0FW

1
2A. (3.17)

For r , we note that, from (3.15),

|�2h| � �2
0

(

h0 + C
1
2 δ|u|−1�−2

0 F 2A2
)

� FA. (3.18)

The second inequality holds because �0 ≤ 1 ≤ FA by definition. We then use the
equation Dr = �2h to obtain

|r − |u|| ≤
∫ u∗

0
|�2h|du � δFA. (3.19)

We then deduce that |r −|u|| � C−1|u| and (3.5) holds for r ifC0 is sufficiently large.10

For Lφ, we consider the Eq. (2.6). We write

∂

∂u
(r Lφ − ϕ) = −

(

�2hr−1(r Lφ) − �2
0h0|u|−1ψ

)

. (3.20)

Using (3.14), (3.15), (3.17), (3.18) and (3.19), the right hand side can be estimated by

|�2hr−1(r Lφ) − �2
0h0|u|−1ψ |

� |�2 − �2
0||h0|u|−1ψ | + |�2||h − h0|||u|−1ψ |

+ |�2h||r−1 − |u|−1||ψ | + |�2hr−1||r Lφ − ψ |
� C

1
4 δ|u|−1�2

0FW
1
2A · |u|−1|ψ | + C

1
2 δ|u|−1F 2A2 · |u|−1|ψ |

+FA · δ|u|−2FA · |ψ | + |u|−1FA · C 1
4 δ|u|−1FA

� C
1
2 δ|u|−1F 2A2 · |u|−1

(

1 + |ψ | + �2
0W

1
2 |ψ |

)

.

9 Because (3.4) is used very frequently in a similar manner, we will not point it out again when we use
(3.4) in the rest of the paper. Because W ≥ 1, (3.4) will also be used in the form C2δ|u1|−1FA ≤ 1.
10 Similar to (3.4), the estimates (3.5) are used frequently and we will not point this out in the argument.
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For the first two terms above, we use (3.1) to compute
∫ u

u0
C

1
2 δ|u′|−1F 2A2 · |u′|−1 (1 + |ψ |) du′

� C
1
2 δ|u|−1F 2A2 + C

1
2 δF 2A2

(∫ u

u0

|ψ |2
|u′| du

′
) 1

2
(∫ u

u0

1

|u′|3 du
′
) 1

2

� C
1
2 δ|u|−1F 2W

1
2A2.

For the last term, we note that from (3.1), |ψ |2
|u| = ∂u(− log�2

0), and then
∫ u
u0

�2
0|ψ |2
|u′| du′ ≤

�2
0(u0) ≤ 1. We use this fact to derive that
∫ u

u0
C

1
2 δ|u′|−1F 2A2 · |u′|−1�2

0W
1
2 |ψ |du′

� C
1
2 δF 2W

1
2A2

(
∫ u

u0

�2
0|ψ |2
|u′| du′

) 1
2 (∫ u

u0

1

|u′|3 du
′
) 1

2

� C
1
2 δ|u|−1F 2W

1
2A2.

Combining the above two estimates, we have
∫ u

u0
|�2hr−1(r Lφ) − �2

0h0|u′|−1ψ |du′ � C
1
2 δ|u|−1F 2W

1
2A2. (3.21)

Integrating the Eq. (3.20) and using this estimate, we then have

|r Lφ − ϕ| � |r Lφ − ϕ||Cu0
+ C

1
2 δ|u|−1F 2W

1
2A2.

By the definition of F and A, |r Lφ − ϕ||Cu0
≤ |r Lφ||Cu0

+ |ϕ(u0)| � FA. Then the
estimate (3.6) follows by (3.4).

For Lφ, we note that, from (3.16)

|h| � 1 + C
1
4 δ|u|−1FA � 1 + C−1 � 1. (3.22)

We then simply integrate the Eq. (2.7) and obtain, by (3.5), (3.6) and (3.22) we have
proved above,

|r Lφ − ψ | �
∫ u∗

0
|hLφ|du � δ|u|−1FA.

For h and h, we use the Eqs. (2.1) and (2.3). From (2.1), using (3.5) and (3.6), we
have

|h − h0| �
∫ u∗

0
|r�−2(Lφ)2|du � δ�−2

0 |u|−1F 2A2,

which is the desired estimate (3.8). From (2.3), using (3.5), (3.18) and (3.22), we have

|h + 1| �
∫ u∗

0

∣
∣
∣
∣

�2(1 + hh)

r

∣
∣
∣
∣
du � δ(1 +FA) · |u|−1 � δ|u|−1FA,

which is the desired estimate (3.9).
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For ω, we use the Eq. (2.5). The right hand side of (2.5) can be estimated by, using
(3.5), (3.6), (3.7), (3.18) and (3.22),

∣
∣
∣
∣

�2(1 + hh)

r2
− LφLφ

∣
∣
∣
∣
� |u|−2FA + |u|−2FA(|ψ | + δ|u|−1FA).

Integrating (2.5) and using (3.1), we then have

|ω| � |u|−1FW
1
2A,

which is the desired estimate (3.10).
We have completed the estimates in the region 0 ≤ u ≤ u∗, u0 ≤ u ≤ u∗ and

conclude that the estimates (3.6)–(3.10) hold under the bootstrap assumptions (3.12)–
(3.16) if C0 is sufficiently large. We begin to close the bootstrap argument. We find
that the estimates (3.6)–(3.10) improve the bootstrap assumptions (3.12)–(3.16) if C0
is sufficiently large. In particular, the secondary bootstrap assumptions (3.14), (3.15)
and (3.16) are improved. By the continuity of Lφ, h, h relative to u, these secondary
bootstrap assumptions hold for 0 ≤ u ≤ u∗ + ε, u0 ≤ u ≤ u∗ for some ε > 0 if u∗ < δ.
This shows that U δ,u∗ is open in [0, δ]. Then U δ,u∗ = [0, δ] for any u∗ ∈ Uδ,u1 , and
in particular, the secondary bootstrap assumptions (3.14), (3.15) and (3.16) hold for
0 ≤ u ≤ δ, u0 ≤ u ≤ u∗ and we have closed the secondary bootstrap argument. By the
same argument as in deriving the above estimates (3.6)–(3.10), with u∗ replaced by δ, we
conclude that the estimates (3.6)–(3.10) hold for 0 ≤ u ≤ δ, u0 ≤ u ≤ u∗. In particular,
(3.6) and (3.10) improve the bootstrap assumptions (3.12) and (3.13). By the continuity
of Lφ andω relative to u,Uδ,u1 is open in [u0, u1] and thenUδ,u1 = [u0, u1]. In particular,
the bootstrap assumptions (3.12) and (3.13) hold for 0 ≤ u ≤ δ, u0 ≤ u ≤ u1 and we
have closed the whole bootstrap argument. By the same argument as in deriving the
above estimates (3.6)–(3.10) again and the secondary bootstrap argument, we conclude
that (3.6)–(3.10) hold for 0 ≤ u ≤ δ, u0 ≤ u ≤ u1. At last, using these estimates,
we can find that (3.21) holds without C , and then (3.11) also holds. This completes the
proof. ��

4. Instability Theorems

We then turn to the proof of the instability theorems. We divide the proof in two cases
according to the behavior of ϕ(u) as u → 0−. The first case is the following.

Theorem 5. If ϕ(u) is unbounded as u → 0−, then there exist two sequences δn → 0+

and un → 0− such that (1.1) holds for u = δn, u = un.

Proof. Because ϕ(u) is unbounded, we can find a sequence un → 0− such that

|ϕn| = sup
u0≤u≤un

|ϕ(u)| → ∞ as n → ∞

where ϕn = ϕ(un). Define δn in terms of un = −rn by

ϕ2
n = 28c1�

4
n log

rn
4�2

nδn
(4.1)

where �n = �0(un) and c1 is the constant in Theorem 2. It is obvious that δn → 0+

because �n → 0. We are going to prove such δn, un are the two sequences we need.
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We hope to apply Theorem 4 for δ = δn , u1 = un . We find that

Fn = F (u0, un) = max{1, sup
u0≤u≤u1

|ϕ(u)|} = |ϕn|

if n is sufficiently large, and the correspondingAn is bounded since the initial data is of
bounded variation, and hence bounded. So we compute, for each n,

C2δn|un|−1|ϕn|W
1
2

n = 1

4
C2�−2

n exp

(

− ϕ2
n

28c1�4
n

)

|ϕn|W
1
2

n

where Wn = W (u0, un) = max
{

1,
∣
∣
∣log �n

�0(u0)

∣
∣
∣

}

. We can see the right hand side tends

to zero and therefore (3.4) holds for δ = δn , u1 = un for sufficiently large n depending
on C and the initial bound of Lφ on Cu0 . As a consequence, we have the following
estimates for a sufficiently large C ≥ C0 and u ∈ [0, δn], u = un :

• |h + 1| ≤ C−1, which implies − h ≥ 1

2
.

• �−2 ≥ 1

4
�−2

n , 1 ≥ r

2rn
.

• |r Lφ−ϕn| ≤ c|r Lφ(u, u0)−ϕ(u0)|+cC−1|ϕn| for some c depending on the initial

bound of Lφ on Cu0 which follows from (3.11) and implies that |r Lφ| >
1

2
|ϕn| for

n sufficiently large.

• �2
nδn ≥ �2

nhnδn =
∫ δn

0
�2

nhndu ≥ 1

4

∫ δn

0
�2hdu = 1

4
(r − rn), where we use

hn = h(0, un) ≥ h because of Dh ≤ 0 from Eq. (2.1).

From (2.8), (4.1) and the above all estimates, we have, for n sufficiently large,

m − mn = 1

2

∫ δn

0
(−h)�−2(r Lφ)2du

>
1

26
δn�

−2
n ϕ2

n

= 1

26
δn�

−2
n · 28c1�4

n log
rn

4�2
nδn

≥ c1r

2rn
· 4�2

nδn log
rn

4�2
nδn

≥ c1r

2rn
(r − rn) log

rn
r − rn

which is the inequality in (1.1). For the last inequality, note that the function x log rn
x is

monotonically increasing for (0, rn
e ] and

4�2
nδn

rn
= exp

(

− ϕ2
n

28c1�4
n

)

which will be smaller than e−1 for sufficiently large n since the right hand side tends to
zero. Then 4�2

nδn ≤ rn
e and the last inequality holds. Finally, r−rn

rn
≤ c0 follows also

from
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r − rn
rn

≤ 4�2
nδn

rn
= exp

(

− ϕ2
n

28c1�4
n

)

≤ c0

for sufficiently large n. The proof is then completed. ��
The second case is the following.

Theorem 6. Suppose that ϕ(u) is bounded by some � ≥ 1, and there exists some
γ ∈ (0, 4) such that

lim sup
u→0−

�
γ−4
0 (u) f (u; γ ) > 1 (4.2)

where the function f is defined by

f (u; γ ) = 1

δ(u; γ )

∫ δ(u;γ )

0
|r Lφ(u, u0) + (ϕ(u) − ϕ(u0))|2du

and δ(u; γ ) is defined in terms of u by

�
4−γ
0 (u) = 28c1�

4
0(u) log

|u|
4�2

0(u)δ(u; γ )
. (4.3)

Then the conclusion of Theorem 5 also holds.

Proof. From (4.2), there exists a sequence un → 0− such that

f (un; γ ) > �
4−γ
0 (un). (4.4)

From (4.3), we have δn = δ(un; γ ) → 0+ and

Fn = F (u0, un) = max{1, sup
u0≤u≤un

|ϕ(u)|} ≤ �.

The corresponding An is also bounded. Then

C2δn|un|−1FnWn ≤ C2 1

4
�−2

n exp

(

− 1

28c1�
γ
n

)

�Wn .

The right hand side tends to zero and therefore (3.4) holds for δ = δn , u = un for
n sufficiently large. Applying Theorem 4, the following estimates hold for 0 ≤ u ≤
δn, u = un if C0 and n is sufficiently large, similar to those listed in the proof of
Theorem 5:

−h ≥ 1

2
, �−2 ≥ 1

4
�−2

n , 1 ≥ r

2rn
, �2

nδn ≥ 1

4
(r − rn). (4.5)

However, the estimate we need for Lφ is slightly different. We go back to Eq. (3.20).
Integrating it from u0 to un leads to

(r Lφ(u, un) − ϕn) − (r Lφ(u, u0) − ϕ(u0))

=
∫ un

u0
−

(

�2hr−1(r Lφ) − �2
0h0|u′|−1ψ

)

du′.

The right hand side can be estimated by (3.21), with C dropped since we have the
estimates (3.6)–(3.10) instead of the bootstrap assumptions (3.12)–(3.16). Then we
have, for n sufficiently large,
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|r Lφ(u, un)| ≥ |r Lφ(u, u0) + (ϕn − ϕ(u0))| − cδn|un|−1�2W
1
2

n

for some constant c depending on the initial bound of Lφ on Cu0 . Now from (4.3) again,
we have

cδn|un|−1�2W
1
2

n = 1

4
�−2

n exp

(

− 1

28c1�
γ
n

)

W
1
2

n · c�2

and the rate of the right hand side tending to zero is faster than any positive power of

�n , then in particular it is less than
√

1
4�

4−γ
n if n is sufficiently large. From (4.3) and

(4.4) we arrive at the lower bound
∫ δn

0
|r Lφ(u, un)|2du >

1

2
δn f (un; γ ) − 1

4
δn�

4−γ
n ≥ 1

4
δn�

4−γ
n

= 26c1δn�
4
n log

rn
4�2

nδn
.

Therefore, by the above estimate, the estimates (4.5), and that 4�2
nδn
rn

= exp
(

− 1
28c2�

γ
n

)

tends to zero, we have r−rn
rn

≤ c0 and

m − mn = 1

2

∫ δn

0
(−h)�−2(r Lφ)2du

≥ 1

24
�−2

n

∫ δn

0
(r Lφ)2du

>
1

24
�−2

n · 26c1δn�4
n log

rn
4�2

nδn

≥ c1r

2rn
(r − rn) log

rn
r − rn

for sufficiently large n as in the proof of Theorem 5. The proof of Theorem 6 is then
completed. ��
Remark 3. It is worth mentioning that in Christodoulou’s original proof, when ϕ(u) is
bounded but does not tend to zero, the conclusions of Theorem 5 holds without any
additional conditions like (4.2). Indeed, the condition (4.2) is slightly different from that
in Christodoulou’s proof and we can see when ϕ(u) is bounded but does not tend to
zero, (4.2) holds identically because r Lφ(u, u0) is of bounded variations and hence can
be made right-continuous.

The remaining part of the proof of Theorem 3 is then similar to that in the last section
in [4]. We still present the proof here for the sake of completeness.

Proof of Theorem 3. We fix the coordinate u = r − r0 on Co = Cu0 . Then

α0 = ∂

∂r
(rφ) = r Lφ

∣
∣
Co

+ φ
∣
∣
Co

.

We denote θ0 = θ0(r) = r Lφ
∣
∣
u=r−r0,u=u0

. As in [4], α0 being of bounded variation is

equivalent to θ0 being bounded variation and |θ0|
r ∈ L1(0,+∞). Therefore we consider
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instead θ0 in such a space. Suppose that θ0 ∈ E , then there exists a singular endpoint e
on � and we have a double null coordinate (u, u) relative to e and in particular, Ce ∩Co
has area radius r0. Moreover, we must have ϕ(u) is bounded and

lim sup
u→0−

�
γ−4
0 (u) f (u; γ ) ≤ 1 (4.6)

for all γ ∈ (0, 4). This is because by Theorems 5 and 6, if ϕ(u) is not bounded, or (4.6),
the opposite of (4.2), does not hold for some γ ∈ (0, 4), then there exist two sequences
δn → 0+ and un → 0− such that (1.1) holds, and hence θ0 /∈ E by the definition of E in
Theorem 3. We then define f1 = f1(r) such that it vanishes on [0, r0) and near infinity,
and is absolutely continuous on [r0,+∞) with f1(r0) = 1. We also define f2 = f2(r)
to be absolutely continuous on [0,+∞) such that it vanishes on [0, r0] and near infinity,
and

f2(r) =
√

d

dr

[

(r − r0)�2
0(u(r − r0; 2))

]

, r ∈ [r0, r0 + 1]
where u(δ; 2) is the inverse function of δ(u; 2) defined by (4.3) where γ = 2. More
specifically, u(r − r0; 2) in the definition of f2(r) above is defined through

1 = 28c1�
2
0(u(r − r0; 2)) log |u(r − r0; 2)|

4�2
0(u(r − r0; 2))(r − r0)

.

Recalling that f1(r0) = 1 and it is right-continuous at r0, we must have f1(r) > 1
2 in

[r0, r0 + ε) for some ε > 0 and then for all γ ∈ (0, 4) and λ1 �= 0,

lim
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
λ21 f

2
1 (u + r0)du ≥ lim

u→0−
λ21�

γ−4
0 (u)

4
= +∞. (4.7)

On the other hand, we define u(γ ) through δ(u; γ ) = δ(u(γ ); 2). From (4.3), or equiva-
lently,

δ(u; γ ) = |u|(4�2
0(u))−1 exp

(

− 1

28c1�
γ
0 (u)

)

.

When u increases, or equivalently |u| decreases since u < 0, �0(u) decreases and

hence (4�2
0(u))−1 exp

(

− 1
28c1�

γ
0 (u)

)

decreases when �0(u) is sufficiently small, and

then δ(u; γ ) decreases. On the other hand, when γ increases, δ(u; γ ) also decreases.
Then if γ ∈ (0, 2), we must have |u| < |u(γ )| and therefore �0(u(γ )) > �0(u). We
then have

lim
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
λ22 f

2
2 (u + r0)du

= lim
u→0− λ22�

γ−4
0 (u)�2

0(u(γ )) ≥ λ22 lim
u→0− �

γ−2
0 (u) = +∞.

(4.8)

If γ ∈ (2, 4), we have �0(u(γ )) < �0(u) and

lim
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
λ22 f

2
2 (u + r0)du

= lim
u→0− λ22�

γ−4
0 (u)�2

0(u(γ )) ≤ λ22 lim
u→0− �

γ−2
0 (u) = 0.

(4.9)
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We then compute, when λ1 �= 0, for γ ∈ (2, 4), from (4.6), (4.7), (4.8) and (4.9),

lim sup
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
|r Lφ(u, u0) + λ1 f1(u + r0) + λ2 f2(u + r0) + (ϕ(u) − ϕ(u0))|2du

≥ lim inf
u→0−

�
γ−4
0 (u)

2δ(u; γ )

∫ δ(u;γ )

0
|λ1 f1(u + r0)|2du

− lim sup
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
|λ2 f2(u + r0)|2du

− lim sup
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
|r Lφ(u, u0) + (ϕ(u) − ϕ(u0))|2du

= +∞.

When λ1 = 0, λ2 �= 0, we compute, for γ ∈ (0, 2), from (4.6) and (4.8),

lim sup
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
|r Lφ(u, u0) + λ1 f1(u + r0) + λ2 f2(u + r0) + (ϕ(u) − ϕ(u0))|2du

≥ lim inf
u→0−

�
γ−4
0 (u)

2δ(u; γ )

∫ δ(u;γ )

0
|λ2 f2(u + r0)|2du

− lim sup
u→0−

�
γ−4
0 (u)

δ(u; γ )

∫ δ(u;γ )

0
|r Lφ(u, u0) + (ϕ(u) − ϕ(u0))|2du

= +∞.

This proves that θ0 + λ1 f1 + λ2 f2 /∈ E for all λ1, λ2 with λ1 �= 0 or λ2 �= 0. Now
suppose that θ, θ ′ ∈ E and

θλ1,λ2 := θ0 + λ1 f1 + λ2 f2 ≡ θ ′
λ′
1,λ

′
2

:= θ ′
0 + λ′

1 f
′
1 + λ′

2 f
′
2.

Assume that e′ is the singular endpoint of � in the maximal future development of θ ′
0

(and hence of θ ′
λ′
1,λ

′
2
) and Ce′ ∩Co has area radius r ′

0. We then have e = e′ and r0 = r ′
0.

Because fi , f ′
i vanish on [0, r0), we will have θ(r) ≡ θ ′(r) for r ∈ [0, r0) and hence

the double coordinate (u, u), the functions ϕ(u) and �0(u), are the same. Therefore
f1 ≡ f ′

1, f2 ≡ f ′
2. We then write

θλ1−λ′
1,λ2−λ′

2
≡ θ ′

0.

From the above argument, when λ1 �= λ′
1 or λ2 �= λ′

2, θλ1−λ′
1,λ2−λ′

2
/∈ E but θ ′

0 ∈ E .
Therefore we must have λ1 = λ′

1 and λ2 = λ′
2. Finally, we conclude that θ ≡ θ ′ and the

proof is completed. ��
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