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ABSTRACT. The DK Flip Conjecture of Bondal-Orlov [3] and Kawamata [6] states that there should
be an embedding of derived categories for any flip, which is known to be true for toroidal flips. In
this paper, we construct new examples of Grassmannian flips which satisfy the DK Flip Conjecture.

1. INTRODUCTION

It is well-known that the birational geometry of an algebraic variety Y is closely related to its
bounded derived category of coherent sheaves DbCoh(Y ), or simply D(Y ). The DK Conjecture by
Bondal-Orlov [3] and Kawamata [6] is one of the most fundamental open problems in this area.
Recall that a birational map f : X2 99K X1 between two smooth varieties X1 and X2 is called a f lop
if there is a third smooth variety X with two birational morphisms π1 : X → X1 and π2 : X → X2

such that f = π1 ◦ π
−1
2 and π∗2 KX2 = π∗1 KX1 . f is called a f lip if π∗2 KX2 = π∗1 KX1 +D for some

effective divisor D on X .1

X

X2 X1

π2 π1

f

DK Flip Conjecture (Bondal-Orlov [3] and Kawamata [6]). For any flip

X2 X1,

there is a derived embedding:

D(X1) D(X2).

Unlike the situations for flops (see [11] for the survey of DK conjecture), there are few examples
of flips proven to satisfy the DK conjecture except for some toroidal flips (see [7], [8], [9] and [10]).
In this paper, we construct some new examples of flips that satisfy the DK flip conjecture.

Consider the partial flag variety

Fl(1,2,N) = {(V1,V2)|V1 ⊂V2 ⊂ CN , dim V1 = 1,dim V2 = 2}

which admits two projective space fibrations onto PN−1 and Gr(2,N) respectively:

1In some contexts or references, the definition of f lop (resp. f lip) used here is usually called K-equivalence (resp.
K-inequivalence).
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Fl(1,2,N)

Gr(2,N) PN−1.

p2 p1

Note that Fl(1,2,N) ∼= PGr(2,N)(U) ∼= PPN−1(Q), where U is the tautological rank 2 subbundle
on Gr(2,N) and Q is the tautological rank (N− 1) quotient bundle on PN−1. Denote the ample
generator of Pic(PN−1) (resp. Pic(Gr(2,N))) by h (resp. H). Let

X = TotFl(1,2,N)(O(H +h)∨), X1 = Tot(p1∗(O(H +h))∨), X2 = Tot(p2∗(O(H +h))∨).

It is easy to check that

p2∗O(h+H) =U∨⊗O(H), (1.1)

p1∗O(h+H) = Q∨⊗O(2h). (1.2)

Then X2 = TotGr(2,N)(U(−H)), X1 = TotPN−1(Q(−2h)) and X will be isomorphic to the two blow-
ing ups: BlGr(2,N)X2 and BlPN−1X1 with the same exceptional divisor E ∼= Fl(1,2,V ):

E = Fl(1,2,N)

Gr(2,N) X PN−1

X2 X1.

p1
j

p2

π2 π1

f

(1.3)

So we get a birational map f from X2 to X1. Now an easy computation implies that

D = π
∗
2 KX2−π

∗
1 KX1 = (N−3)E.

Hence f is a flip if N > 3 and a flop if N = 3.

Theorem 1.1. The flip f : X2 99K X1 considered above satisfies the DK Flip Conjecture, i.e. there
is a fully-faithful embedding of triangulated categories:

D(X1) D(X2).
Φ

Remark 1.2.

(1) When N = 3, (1.3) is the Mukai flop of ΩP2 .
(2) Theorem 1.1 holds for any flip which locally looks like (1.3).

Convention. In this paper, P(V ) = Pro j(Sym•V∨) for any vector bundle V . The derived functors
RHom(−,−) and Ext•(−,−) are taken over the total space X . We will omit the natural functors
p∗1, p∗2 and j∗, i1∗, i2∗ if no confusion occurs.
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Strategy of Proof. Firstly, we can embed D(X1) and D(X2) into D(X) by Orlov’s blow up formula
[17] so that we have the following two semiorthogonal decompositions (SOD) of D(X):

D(X) = 〈π∗1 D(X2), j∗p∗2D(Gr(2,N))〉, (1.4)

D(X) =
〈

π
∗
2 D(X1),〈 j∗(p∗1D(PN−1))(kH)〉0≤k≤N−3〉

〉
. (1.5)

The left orthogonal complements of D(X1) and D(X2) are (copies) of derived categories of Grass-
manianns. It is known that both D(PN−1) and D(Gr(2,N)) admit full exceptional collections by
[1] and [13]. The former one consists of line bundles only while the latter one involves SkU ,
symmetric powers of the tautological subbundle U on Gr(2,N).

Secondly, we use SOD of D(Gr(2,N)) involving SkU to simplify (1.4) to the form (3.1) :

D(X) =
〈
D ,〈O(`h)〉−1≤`≤n−1,H ,〈F`〉0≤`≤n−2,Sn−1U(H),A (`H)〉2≤`≤2n−2

〉
via mutation techniques by Kuznetsov in [14] (C.f. also [15], [19] or [16]). However, there are
still lots of symmetric powers of U remain in the left orthogonal complement of D , which does
not happen for flop situation (see remark 3.7).

Thirdly, to get rid of the remaining SkU’s, we apply the chess-game method introduced in [18]
(also in [4]) which is a systematic method to do cancellation of categories and prove Theorem 1.1
then. Roughly speaking, chess-game method is an analogy of the spectral sequence argument in
cohomologies.

Acknowledgement. The authors would like to thank Kowk Wai Chan, Jesse Huang, Lisa Li,
Laurent Manivel, Yukinobu Toda, Zhiwei Zheng, Yan Zhou and especially Yalong Cao, Qingyuan
Jiang, Mikhail Kapranov, Yujiro Kawamata, Eduard Looijenga, Chin-Lung Wang for many helpful
discussions and suggestions when preparing this paper. The authors are supported by grants from
the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.
CUHK14301117 and CUHK14303518).

2. VANISHING OF COHOMOLOGY AND MUTATIONS

In this section, we list vanishing results and mutations that will be used later in the subsequent
sections. For `≥ 0, let

A l = 〈O,U∨, · · · ,Sn−l−1U∨〉; ;

Al = 〈SlU∨,Sl+1U∨, · · · ,Sn−1U∨〉

B` = 〈O((`+1)h),S`U∨(H−h)〉;

C` = 〈O(`h),S`U∨(H−2h)〉;

E` = 〈O(`h),S`−1U∨(H−h),O((`+1)(H−h)−h)〉;
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F` =

〈S`U∨(H),O((`+2)(H−h)),O((`+3)(H−h)−h)〉 if `≤ n−4;

〈S`U∨(H),O((`+2)(H−h))〉 if ` > n−4;

H =

〈O(H−2h),O(H−h)〉 if n = 2;

〈O(H−2h),O(H−h),O(2H−3h)〉 if n≥ 3;

Lemma 2.1 (Kapranov [5] and Kuznetsov [13]). D(Gr(2,N)) admits a full exceptional collections:

D(Gr(2,N)) =


〈
〈A 1(kH)〉0≤k≤n−1,〈A (`H)〉n−2≤`≤2n−1

〉
if N = 2n,

〈A (kH)〉0≤k≤N−1 if N = 2n+1,
(2.1)

Lemma 2.2. (1) For any 0≤ k ≤ n−1,

RHom(Sn−k−1U∨(H−h),A k) = 0.

(2) For 0≤ k ≤ n−1,

RHom(Ak+2(−h),O(kh)) = 0;

RHom(A n−k−1(H−h),O(kh)) = 0.

(3) For 1≤ k < `≤ n−2,

RHom(C`,Sk−1U∨(H−h)) = 0.

(4) For 1≤ k ≤ n−2 and n− k ≤ `≤ n−1,

RHom(Sn−2−kU∨(H−h),O(`H)) = 0;

RHom(Sn−kU∨(H−h),A k+1(H)) = 0;

RHom(O((n− k)(H−h)−h),A k+2(H)) = 0.

(5) For any 0≤ ` < k≤ r, r = [(n−1)/2], i.e., the greatest integer no bigger than [(n−1)/2],

RHom(An−2`−1((n+ `)H),A 2k+1((n+ k)H)) = 0.

(6) Either (i) 2≤ a−b≤ 2n−3 and b > 0 or (ii) b < 0,

Ext•(O(ah),O(bH)) = 0.

Proof. We give a proof of (1) here and the rest can be obtained using same arguments (See Appen-
dix A1 for detailed proof of others). By adjunction of pullback-pushforward,

RHom(Sn−k−1U∨(H−h),A k) = RHomE(L j∗ j∗Sn−k−1U∨(H−h),A k).

Recall the distinguished triangle associated to the closed immersion j : E ↪→ X :

O(H +h)[1] = OE(−E)[1]−→ L j∗ j∗ −→ id
[1]−→ (2.2)
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and hence inducing a distinguished triangle of complex of vector spaces:

RHomE(Sn−k−1U∨(2H)[1],A k)−→ RHom(Sn−k−1U∨(H−h),A k)−→

RHomE(Sn−k−1U∨(H−h),A k)
[1]−→ .

So it is sufficient to show the vanishing of the first and third terms. With the help of projection
formula (1.1) or Lemma A3, we have the following for 0≤ a≤ n− k−1:

(i) Ext•E(S
n−k−1U∨(2H),SaU∨) = Ext•Gr(2,N)(S

n−k−1U∨(2H),SaU∨),

(ii) Ext•E(S
n−k−1U∨(H−h),SaU∨) = Ext•Gr(2,N)(S

n−k−1U∨(H),SaU∨⊗U∨)

= Ext•Gr(2,N)(S
n−k−1U∨(H),Sa+1U∨⊕Sa−1U∨(H)).

It is noted that all these vanish by SOD of D(Gr(2,N)) (2.1) except for the case k = 0,a = n−1:

Ext•Gr(2,N)(S
n−1U∨(H),SnU∨) = 0.

By Littlewood-Richardson rule,

Sn−1U∨(−H)⊗SnU∨ =
n−1⊕
t=0

Σ
n−t−1,−n+tU∨.

Then

Ext•Gr(2,N)(S
n−1U∨(H),SnU∨) =

n−1⊕
t=0

H•(Gr(2,N),Σn−t−1,−n+tU∨) = 0

by checking the criterion of Theorem A2 (BWB). �

For the projection p2, there exists a relative Euler sequence on E = PGr(2,N)(U):

0−→ O(H−h)−→U∨ −→ O(h)−→ 0.

For each k, there are two short exact sequences on E and X by taking k-th symmetric power :

0−→ Sk−1U∨(H−h)−→ SkU∨ −→ O(kh)−→ 0; (2.3)

0−→ O(k(H−h))−→ SkU∨ −→ Sk−1U∨(kh)−→ 0. (2.4)

Not surprisingly, these two induce the following mutations (See Appendix A1 for the proof):

Lemma 2.3. For any 1≤ k ≤ n−1,

(1) LSk−1U∨(H−h)S
kU∨ = O(kh);

(2) RO(kh)S
kU∨ = Sk−1U∨(H−h);

(3) RSk−1U∨(−h)S
kU∨ = O(k(H−h)).
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3. MUTATIONS ON DERIVED CATEGORY OF X ODD CASE

In this section, we simplify SOD of D(X) (1.4) by mutation techniques when N = 2n+1 (N = 2n
case will be explained in section 5).2 The main result of this section is

Proposition 3.1. For n≥ 2,

D(X) =
〈
D ,〈O(`h)〉−1≤`≤n−1,H ,〈F`〉0≤`≤n−2,Sn−1U(H),A (`H)〉2≤`≤2n−2

〉
(3.1)

where D = L〈A (−h),A (H−h)〉π
∗
2 D(X2).

Proof. At first we left mutate 〈A ((2n−1)H),A (2nH)〉 to the far left. Note that

L〈A ((2n−1)H),A (2nH)〉⊥

∣∣∣∣
〈A ((2n−1)H),A (2nH)〉

=−⊗KX [dimX ]

and KX
∣∣
E = O(−h− (2n−1)H) (see Lemma A1). Thus

D(X) =
〈
A (−h),A (H−h),π∗2 D(X2),〈A (kH)〉0≤k≤2n−2

〉
.

Then left mutate π∗2 D(X2) through 〈A (−h),A (H−h)〉:

D(X) =
〈
D ,A (−h),A (H−h),〈A (kH)〉0≤k≤2n−2

〉
. (3.2)

To arrive (3.1), we need to do mutation on 〈A (−h),A (H − h),A ,A (H)〉 which is involved
and consists of the 4 inductive steps.

(1) First Inductive Step (n≥ 1): Mutation on 〈A (H−h),A 〉.

Lemma 3.2. For 1≤ k ≤ n,

〈A (H−h),A 〉=
〈
A k(H−h),A k−1,〈B`〉n−k≤`≤n−2,Sn−1U∨(H−h)

〉
.

Proof. Prove by induction on k.
• Base case (k = 1). We can exchange Sn−1U∨(H−h) and A by Lemma 1 (k = 0):

LHS = 〈A 1(H−h),Sn−1U∨(H−h),A 〉= 〈A 1(H−h),A ,Sn−1U∨(H−h)〉= RHS.

• Assume that we have SOD for case k. Then

RHS =
〈
A k+1(H−h),Sn−k−1U∨(H−h),A k,Sn−kU∨,〈B`〉n−k≤`≤n−2

〉
=
〈
A k+1(H−h),A k,Sn−k−1U∨(H−h),Sn−kU∨,〈B`〉n−k≤`≤n−2

〉
=
〈
A k+1(H−h),A k,〈B`〉n−k−1≤`≤n−2

〉
.

This is just the case k+ 1 and the lemma follows. In the second line, we exchange
Sn−k−1U∨(H− h) and A k by Lemma 2.2 (1) and the in the last line we left mutate
Sn−kU∨ through Sn−k−1U∨(H−h) (Lemma 2.3).

2The readers can refer to Appendix A1 for the preliminaries and background knowledge of left and right mutations.
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�

Apply Lemma 3.2 for the final case k = n:

〈A (H−h),A 〉=
〈
O,〈B`〉0≤`≤n−2,Sn−1U∨(H−h)

〉
. (3.3)

Remark 3.3. When n = 1, (3.3) is nothing but

〈O(H−h),O〉= 〈O,O(H−h)〉.

(2) Second Inductive Step (n≥ 2): Mutation on
〈
A1(−h),O,〈B`〉0≤`≤n−2

〉
.

Lemma 3.4. For any 1≤ k ≤ n−1,〈
A1(−h),O,〈B`〉0≤`≤n−2

〉
=
〈
〈C`〉0≤`≤k−1,Ak+1(−h),A n−k+1(H−h),〈B`〉k−1≤`≤n−2

〉
.

Proof. Prove by induction on k:
• Base case k = 1 is equivalent to 〈U∨(−h),A2(−h),O〉= 〈O,O(H−2h),A2(−h)〉,

which can be proved by firstly exchange O and A2(−h) using Lemma 2.2 (2) (k = 0)
and right mutate U∨(−h) through O (Lemma 2.3).
• Assume we have the SOD for case k. Then

RHS =
〈
〈C`〉0≤`≤k−1,Sk+1U∨(−h),Ak+2(−h),A n−k−1(H−h),O(kh),Sk−1U∨(H−h),〈B`〉k≤`≤n−2

〉
=
〈
〈C`〉0≤`≤k−1,Sk+1U∨(−h),O(kh),Ak+2(−h),A n−k(H−h),〈Bl〉k≤`≤n−2

〉
=
〈
〈C`〉0≤`≤k,Ak+2(−h),A n−k(H−h),〈B`〉k≤`≤n−2

〉
.

This is the case k+1. In the second line we exchange Ak+2(−h) and 〈A n−k−1(H−
h),O(kh)〉 by Lemma 2.2 (2) and in the third line we right mutate Sk+1U∨(−h)
through O(kh) (Lemma 2.3).

�

Apply Lemma 3.4 to the final case (k = n−1):〈
A1(−h),O,〈B`〉0≤`≤n−2

〉
=
〈
〈C`〉0≤`≤n−2,A

2(H−h),Bn−2

〉
.

(3) Third Inductive Step (n≥ 3): Mutation on
〈
〈C`〉1≤`≤n−2,A

2(H−h)
〉
.

Lemma 3.5. For any 1≤ k ≤ n−1,〈
〈C`〉1≤`≤n−2,A

2(H−h)
〉
=
〈
〈E`〉1≤`≤k−1,〈C`〉k≤`≤n−2,A

2
k−1(H−h)

〉
.

Proof. Prove by induction on k
• Base case k = 1 is trivial.
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• Assume that we have the SOD for the case k. Then

RHS =
〈
〈E`〉1≤`≤k−1,O(kh),SkU∨(H−2h),〈C`〉k+1≤`≤n−2,Sk−1U∨(H−h),A 2

k (H−h)
〉

=
〈
〈E`〉1≤`≤k−1,O(kh),SkU∨(H−2h),Sk−1U∨(H−h),〈C`〉k+1≤`≤n−2,A

2
k (H−h)

〉
=
〈
〈E`〉1≤`≤k,〈C`〉k+1≤`≤n−2,A

2
k (H−h)

〉
.

This is the case k+1. In the second line we exchange 〈C`〉k+1≤`≤n−2 and Sk−1U∨(H−
h) by Lemma 2.2 (3) and in the third line we right mutate SkU∨(H − 2h) through
Sk−1U∨(H−h) (Lemma 2.3).

�

Apply Lemma 3.5 to the final case (k = n−1):〈
〈C`〉1≤`≤n−2,A

2(H−h)
〉
= 〈E`〉1≤`≤n−2.

Lastly in the third inductive process, we do mutation on 〈Sn−1U∨(H − h),A 1(H)〉 by
first exchanging Sn−1U∨(H − h) and A 2(H) by Lemma 2.2 (4) and then right mutating
Sn−1U∨(H−h) through Sn−2U∨(H):

〈Sn−1U∨(H−h),A 1(H)〉= 〈A 2(H),Fn−2〉.

(4) Forth Inductive Process (n≥ 3):Mutation on
〈
〈E`〉1≤`≤n−2,Bn−2,A

2(H)
〉

.

Lemma 3.6. For any 1≤ k ≤ n−2,〈
〈E`〉1≤`≤n−2,Bn−2,A

2(H)
〉

=
〈
〈E`〉1≤`≤n−1−k,〈O(`H)〉n−k≤`≤n−1,A

k+2(H),〈F`〉n−2−k≤`≤n−3

〉
.

Proof. Prove by induction on k.
• Base case k = 1 is equivalent to

〈Bn−2,A
2(H)〉= 〈O((n−1)h),A 3(H),Fn−3〉.

We can exchange Sn−2U∨(H−h) and A 3(H) by Lemma 2.2(4) and then right mutate
Sn−2U∨(H−h) through Sn−3U∨(H) (Lemma 2.3). That is,

`HS = 〈O((n−1)h),A 3(H),Sn−2U∨(H−h),Sn−3U∨(H)〉

= RHS.
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• Assume that we have the SOD for case k. Then

RHS =
〈
〈E`〉1≤`≤n−2−k,O((n−1− k)h),Sn−2−kU∨(H−h),O((n− k)(H−h)−h),

〈O(`H)〉n−k≤`≤n−1,A
k+3(H),Sn−k−3U∨(H),〈F`〉n−2−k≤`≤n−3

〉
=
〈
E`〉1≤`≤n−2−k,O((n−1− k)h),〈O(`H)〉n−k≤`≤n−1,A

k+3(H),

Sn−2−kU∨(H−h),Sn−k−3U∨(H),O((n−1− k)(H−h)−h),〈F`〉n−2−k≤`≤n−3

〉
=
〈
〈E`〉1≤`≤n−2−k,〈O(`H)〉n−1−k≤`≤n−1,A

k+3(H),〈F`〉n−3−k≤`≤n−3

〉
.

This is just the case k+1. It is very similar with the argument in the base case above
by Lemma 2.2(4) and Lemma 2.3: (i) Exchange 〈Sn−2−kU∨(H−h),O((n− k)(H−
h)− h)〉 and 〈〈O(`H)〉n−k≤`≤n−1,A

k+3(H)〉; (ii) Exchange O((n− k)(H− h)− h)
and Sn−k−3U∨(H); (iii) Right mutate Sn−2−kU∨(H−h) through Sn−k−3U∨(H).

�

Apply Lemma 3.6 to the final case (k = n−2):〈
〈E`〉1≤`≤n−2,Bn−2,A

2(H)
〉
=
〈
E1,〈O(`H)〉2≤`≤n−1,〈F`〉0≤`≤n−3

〉
.

In summary, the outcome of inductive step 1-4 is

〈A (−h),A (H−h),A ,A 1(H)〉=
〈
〈O(`H)〉−1≤`≤n−1,H ,〈F`〉0≤`≤n−2

〉
(n≥ 2). (3.4)

We will get SOD (3.1) after reorganizing the collections (3.4) by Lemma 2.2 (6).
�

Remark 3.7. For N = 3, the inductive steps 2-4 are not needed and SOD (1.4) becomes the fol-
lowing:

D(X) = 〈D ,O(−h),O,O(H−h)〉. (3.5)

In this case, we left mutate O(H−h) to the far left and left mutate D to the far left:

D(X) = 〈LO(−2h)D ,O(−2h),O(−h),O〉. (3.6)

Then Theorem 1.1 follows by comparing SOD (3.6) with (1.5) (and actually gives a derived equiv-
alence).

4. PROOF OF MAIN THEOREM BY CHESS GAME METHOD: ODD CASE

In this section we use chess game method developed in [18] and [4] to prove the theorem 1.1.
To do this, we need to mutate SOD (3.1) and (1.5) properly.
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4.1. Mutation of SOD (3.1).

(1) Transposition on 〈A (`H)〉n≤`≤2n−2.
For any 0≤ `≤ r, where r = [(n−1)/2], we can write the SOD of A ((n+ `)H) as

A ((n+ `)H) = 〈A 2`+1((n+ `)H),An−2`−1((n+ `)H)〉.

By Lemma 2.2(5), we can transpose 〈A 2`+1((n+`)H)〉0≤`≤r to the far left of 〈A (`H)〉n≤`≤2n−2

so that we get the following SOD:

〈A (`H)〉n≤`≤2n−2 =
〈
〈A 2`+1((n+ `)H)〉0≤`≤r,〈An−2`−1((n+ `)H)〉0≤`≤r,〈A (`H)〉n+1+r≤`≤2n−2〉

〉
.

(2) Left mutate
〈
〈An−2`−1((n+ `)H)〉0≤`≤r,〈A (`H)〉n+1+r≤`≤2n−2〉

〉
to the far left and then

left mutate D to the far left:

D(X) =
〈
D2,〈An−2`−1((−n+1+ `)H−h)〉0≤`≤r,〈A ((`−2n+1)H−h)〉n+1+r≤`≤2n−2,

〈O(`H)〉−1≤`≤n−1,H ,〈F`〉0≤`≤n−2,Sn−1U∨(H),〈A (kH)〉2≤k≤n−1,

A 2`+1((n+ `)H)〉0≤`≤r

〉
, (4.1)

where D2 = L〈
〈An−2`−1((−n+1+`)H−h)〉0≤`≤r,〈A ((`−2n+1)H−h)〉n+1+r≤`≤2n−2

〉D .

4.2. Mutation on SOD (1.5). Denote j∗(p∗1O(ah)⊗O(bH)) by O(a,b) and we use the following
SOD for D(P2n):

D(P2n) = 〈O(kh)〉−1−n≤k≤n−1 (Cf. Figure 1)

Consider the following staircase shape subcategory Sk (0≤ k ≤ n−2) of ⊥π∗1 D(X1):

〈 O(n−1−2k,n+ k), O(n−2−2k,n+ k), O(n−3−2k,n+ k), · · · , O(n−2,n+ k), O(n−1,n+ k)
O(n−3−2k,n+ k−1), · · · , O(n−2,n+ k−1), O(n−1,n+ k−1)

. . . ...
...

O(n−3,n+1), O(n−2,n+1), O(n−1,n+1)
O(n−1,n)

〉
.

Left mutate Sn−2 (blue part in Figure 1) to the far right by applying Lemma 2.2(6).

D(X) =
〈

π
∗
1 D(X1),〈 j∗(p∗1D(P2n))(kH)〉0≤k≤n,〈O(a,n)〉−1−n≤a≤n−2,〈

LSk−1O(−1−n,n+ k),〈O(a,n+ k)〉−n≤a≤n−2k−2
〉

1≤k≤n−2,Sn−3

〉
. (4.2)

Note that the red part is 〈LSk−1O(−1− n,n+ k)〉1≤k≤n−2 in Figure 2. Then left mutate Sn−2 to
the far left and left mutate π∗1 D(X1) to the far left (Figure 2):

D(X) =
〈
D1,S

′
n−2,〈 j∗(p∗1D(P2n))(kH)〉0≤k≤n,〈O(a,n)〉−1−n≤a≤n−2,〈

LSk−1O(−1−n,n+ k),〈O(a,n+ k)〉−n≤a≤n−2k−2
〉

1≤k≤n−2

〉
(4.3)
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where
S ′ = S ⊗O(−1,1−2n), D1 = LS ′

n−2
π
∗
1 D(X1).

2n−2
...

n+1
n
...
1
0

−1−n −n 1−n 2−n 3−n 4−n · · · n−4 n−3 n−2 n−1
FIGURE 1. SOD of ⊥π∗1 D(X1)(4.2). The horizontal (resp. vertical) direction cor-
responds to O(h) (resp. O(H)).

2n−2
...

n+1
n
...
1
0
−1

...
−n+2
−n+1

−1−n −n 1−n 2−n 3−n 4−n · · · n−4 n−3 n−2 n−1

FIGURE 2. Mutated Chessboard (SOD of ⊥D1 (4.3))

4.3. Proof of Theorem 1.1. To prove that there is a fully-faithful embedding from D(X2) into
D(X1), it is equivalent to show

φ : D1 D(X) D2
iD1 πD2

is fully-faithful, where iD1 is the natural embedding and πD2 is left adjoint to the natural embedding.
That is, for any x,y ∈D1,

HomD2(φ(x),φ(y)) = HomD1(x,y).
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By adjunction,

Hom(φ(x),φ(y)) = Hom(πD2iD1x,πD2iD1y) = Hom(iD1x, iD2πD2iD1y).

So it is sufficient to show that

Cone(y→ πD2y) = 0. (4.4)

Note that πD2 =L⊥D2
and to achieve (4.4), we will show that Hom(⊥D2,y)= 0, which is equivalent

to say that ⊥D2 lies in the whole region in Figure 2. Actually, we will show that ⊥D2 lies in the
subregion consisting of the union of two parts:

(i) 
x+2y≤ 3n−2;

0≤ y≤ 2n−2;

−n≤ x≤ n−1;

(ii) −n≤ x+2y≤ 3n−4;

−n≤ x≤ n−2.

Proposition 4.1. For any integer k,

SkU∨ ∈ 〈O(k−2`,`)〉0≤`≤k

Proof. We prove by induction on k. Note that the RHS forms an exceptional collection by Lemma
2.2(6).

(1) Base case k = 0 is trivial.
(2) Assume that we have SkU∨ ∈ 〈O(k−2`, l)〉0≤`≤k and thus

SkU∨(H−h) ∈ 〈O(k−2`−1, `+1)〉0≤`≤k = 〈O(k−2`,`)〉1≤`≤k+1.

By short exact sequence (2.3), Sk+1U∨ ∈ 〈O(k−2`,`)〉0≤`≤k+1.

�

Remark 4.2. We can view that SkU∨ lies in the “segment” {x+2y = k,0 ≤ y ≤ k,−k ≤ x ≤ k}.
Hence, we have that for any integers a,b,

(i) SaU∨(bH) lies in {x+2y = a+2b,b≤ y≤ a+b,−a≤ x≤ a};
(ii) SaU∨(bH−h) lies in {x+2y = a+2b−1,b≤ y≤ a+b,−a−1≤ x≤ a−1}.

Now we divide the objects of ⊥D2 into two groups:

(1)
〈
〈An−2`−1((−n+1+ `)H−h)〉0≤`≤r,〈A ((`−2n+1)H−h)〉n+1+r≤`≤2n−2

〉
;

(2)
〈
〈O(`H)〉−1≤`≤n−1,H ,〈F`〉0≤`≤n−2,Sn−1U∨(H),〈A (kH)〉2≤k≤n−1,〈A 2`+1((n+`)H)〉0≤`≤r

〉
.

Claim 4.3. Group (1) (resp. (2)) lies in region (1) (resp. (2)).
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Proof. For SaU∨(bH−h) ∈ 〈An−2`−1((−n+1+ `)H−h)〉0≤`≤r, it is easy to check that

−n≤ a+2b−1≤ 3n−4, −n≤ a−1≤ n−2, −a−1≥−n

under the conditions:

b = n−2`−1, 0≤ a≤ n−1, 0≤ `≤ r.

So 〈An−2`−1((−n+ 1+ `)H− h)〉0≤`≤r lies in region (1). The other cases can be proved by the
same arguments. �

Therefore (4.4) holds and the fully faithful functor Φ is given by the composition of following
functors

D(X1)
LS ′n−2

π∗1
−−−−−→D1

φ−→D2

R〈
〈An−2`−1((−n+1+`)H−h)〉0≤`≤r ,〈A ((`−2n+1)H−h)〉n+1+r≤`≤2n−2

〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D

π2∗R〈A (−h),A (H−h)〉−−−−−−−−−−−→D(X2).

5. EVEN DIMENSIONAL CASE: N = 2n(n≥ 2)

We sketch the process to prove even dimensional cases as follows:

(1) Step 1: Left mutate A 1((2n− 2)H),A 1((2n− 1)H) to the far left and then left mutate
π∗2 D(X2) to the far left:

D(X) =
〈
D ′,A 1(−h),A 1(H−h),〈A (`H)〉0≤`≤n−1,〈A 1(kH)〉n≤k≤2n−3

〉
where

D ′ = L〈A 1(−h),A 1(H−h)〉π
∗
2 D(X2).

(2) Step 2: Mutations on 〈A 1(−h),A 1(H−h),A ,A (H)〉.

〈A (−h),A (H−h),A ,A (H)〉=
〈
〈O(`H)〉−1≤`≤n−1,H

′,〈F ′
`〉0≤k≤n−3,Sn−2U∨(H),Sn−1U∨(H)

〉
.

Here

H ′ =


〈O(H−h)〉 if n = 2;

〈O(H−2h),O(H−h)〉 if n = 3;

〈O(H−2h),O(H−h),O(2H−3h)〉 if n≥ 4′

F ′
` =

〈S`U∨(H),O((`+2)(H−h)),O((l +3)(H−h)−h)〉 if `≤ n−5;

〈S`U∨(H),O((`+2)(H−h))〉 if ` > n−5.

(3) Step 3: mutation on 〈A 1(`H)〉n≤`≤2n−3. Let r′ = [(n−1)/2]−1 and consider the follow-
ing SOD for A (aH) where 2n−2− r′ ≤ a≤ 2n−2,

A 1((n+ `)H) = 〈A 2`+3((n+ `)H),A 1
n−2`−3((n+ `)H)〉.
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Next left mutate
〈

Sn−1U∨((n− 1)H),〈A 1
n−2`−3((n+ `)H)〉0≤`≤r′

〉
to the far left and

then left mutate D ′ to the far left:

D(X) =
〈
D ′2,S

n−1U∨(−H−h),〈A 1
n−2`−3(−(`+2)H−h)〉0≤`≤r′,

〈A 1((`−2n+3)H−h)〉n+r′+1≤`≤2n−3,〈O(`H)〉−1≤`≤n−1,

H ′,〈F ′
`〉0≤`≤n−3,Sn−2U∨(H),Sn−1U∨(H),〈A (`H)〉2≤`≤n−2,

〈A 2`−3((n+ `)H)〉−1≤`≤r′
〉
,

where
D ′2 = L〈

Sn−1U∨((n−1)H),〈A 1
n−2`−3((n+`)H)〉0≤`≤r′

〉D ′.

(4) Step 4: mutation on the SOD (1.5) of D(X): mutate blue part to the far left and mutate
D(X1) to the far left (Figure 3).

(5) Step 5: Conclude the main theorem via analyzing ⊥D ′2.

Remark 5.1. It should be noted that when n = 2,N = 4, there is no U∨(H) in the final SOD of
D(X) since we have mutated it to the far left in the beginning of step 3:

D(X) = 〈LU∨(−H−h)D
′,U∨(−H−h),O(−h),O,O(h),O(H−h),O(H)〉.

2n−3
...

n+1
n
...
1
0
−1

...
−n+2
−n+1

−n 1−n 2−n 3−n 4−n · · · n−4 n−3 n−2 n−1
FIGURE 3. Mutated Chessboard (⊥D ′1)

14



APPENDIX . BACKGROUND ON MUTATIONS AND BOREL-WEIL-BOTT

A1. Semiorthogonal decompositions and mutations. A semiorthogonal decomposition (SOD)
of a triangulated category T , written as:

T = 〈T1,T2, . . . ,Tn〉, (.1)

is formed by a sequence of full triangulated subcategories T1, . . . ,Tn of T such that

(1) the natural inclusion functor ιTi : Ti ↪→T admits both right and left adjoints.
(2) HomT (tk, t`) = 0 for all tk ∈Tk and t` ∈T`, if k > `, and
(3) T1,T2, . . . ,Tn generates T , i.e., the smallest triangulated category containing T1,T2, . . . ,Tn

that is closed under shifting and taking cones.

The subcategory Ti satisfying the condition (1) is called admissible. A sequence T1, . . . ,Tn

satisfying the conditions (1) & (2) is called a semiorthogonal collection. When each Ti is generated
by only one object Ei, the sequence E1, . . . ,En is called an exceptional collection.

Suppose T ′ is an admissible subcategory of a triangulated category T . Then denote

T ′⊥ := {T ∈T | Hom(T ′,T ) = 0}, ⊥T ′ := {T ∈T | Hom(T,A ) = 0}

to be the right and respectively left orthogonal of T ′ inside T . T ′⊥ and ⊥T ′ are both admissible,
and we have SOD T = 〈T ′⊥,T ′〉= 〈T ′,⊥T ′〉.

Starting with a SOD, one can obtain a whole collection of new decompositions by mutations. Let
T ′ be an admissible subcategory of a triangulated category T . Then the functor LT ′ := iT ′⊥i∗

T ′⊥
:

T → T (resp. RT ′ := i⊥T ′i
!
⊥T ′

: T → T ) is called the left (resp. right) mutation through T ′,
where i∗

T ′⊥
(resp. i!⊥T ′

) is the left (resp. right) adjoint functor to the inclusion iT ′⊥ : T ′⊥ ↪→ T .
The following results are standard, see [14], [2] and [12].

Lemma A1. Let T ′ and T1, . . . ,Tn be admissible subcategories of a triangulated category T

where n≥ 2 is an integer.

(1) For any b ∈T , there are distinguished triangles

iT ′i
!
T ′(b)→ b→ LT ′ b

[1]−→ , RT ′ b→ b→ iT ′i
∗
T ′(b)

[1]−→ .

(2) (LT ′) |T ′ = 0 and (RT ′) |T ′ = 0 are the zero functors, and (LT ′) |T ′⊥ = IdT ′⊥ : T ′⊥→
T ′⊥, (RT ′) |⊥T ′ = Id⊥T ′ : ⊥T ′→ ⊥T ′ are identity functors. Furthermore (LT ′) |⊥T ′ :
⊥T ′ → T ′⊥ and (RT ′) |T ′⊥ : T ′⊥ → ⊥T ′ are mutually inverse equivalences of cate-
gories.

(3) If T admits a Serre functor S, then LT ′ |⊥T ′ = ST |⊥T ′ and RT ′ |T ′⊥ = S−1
T |T ′⊥ .

(4) If T = 〈T1, . . . ,Tk−1,Tk,Tk+1, . . . ,Tn〉, then

〈T1, . . . ,Tk−1,Tk,Tk+1, . . . ,Tn〉= 〈T1, . . . ,Tk−2,LTk−1(Tk),Tk−1,Tk+1, . . . ,Tn〉

= 〈T1, . . . ,Tk−1,Tk,RTk(Tk−1),Tk−1,Tk+1, . . . ,Tn〉.
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In particular, if T ′ is generated by only one object E, then for b ∈T ,

LE(b) =Cone(RHom(E,b)⊗E ev−→ b) (.2)

RE(b) =Cone(b ev∨−−→ RHom(b,E)∨⊗E∨)[−1]. (.3)

A1. Borel-Weil-Bott Theorem. We will use the following special case of Borel-Weil-Bott (BWB)
theorem repeatedly. Recall that for any non-increasing sequence of integers (a1,a2), one can asso-
ciate the Schur f unctor Σa1,a2 . The readers can refer to section 2 of [13] for the general statement
of BWB and relevant background.

Theorem A2 (Special case of BWB). For any integers a1 ≥ a2,

H•(Gr(2,N),Σa1,a2U∨) = 0

if 1−N ≤ a1 ≤−2 or 2−N ≤ a2 ≤−1.

Also we will use the following projection formula frequently.

Lemma A3. For any integer a,

Rp2∗O(ah) =


SaU∨ if a≥ 0,

0 if a =−1,

S−a−2U⊗O(−H)[−1] if a≤−2.

Proof. Only the third line need checking:

H om(Rp2∗O(ah),O) = Rp2∗H om(O(ah), p!
2O) = Rp2∗H om(O(ah),O(H−2h)[1])

= Rp2∗H om(O,O(H +(−a−2)h)[1]) = O(H)⊗S−a−2U∗[1].

�

A1. Proof of Lemma 2.2.

Proof of Lemma 2.2 (2): Follow the proof of (1), it is sufficient to show for k+2≤ a≤ n−1 and
0≤ b≤ k,

RHomE(SaU∨,O((k+1)h)) = Ext•Gr(2,N)(S
aU∨,Sk+1U∨) = 0

RHomE(SaU∨(H),O(kh)) = Ext•Gr(2,N)(S
aU∨(H),SkU∨) = 0

RHomE(SbU∨(H),O((k+1)h)) = Ext•Gr(2,N)(S
bU∨(H),Sk+1U∨) = 0

RHomE(SbU∨(2H),O(kh)) = Ext•Gr(2,N)(S
bU∨(2H),SkU∨) = 0

These all hold by SOD of D(Gr(2,N)). �
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Proof of Lemma 2.2 (3): It is sufficient to show that

Ext•E(O(`H),Sk−1U∨(H−h)) = Ext•−1
Gr(2,N)(S

k−1U(−H),Sl−1U(−H)) = 0;

Ext•E(O(`H),Sk−1U∨(−2h)) = Ext•−1
Gr(2,N)(S

k−1U,SlU) = 0;

Ext•E(S
lU∨(H−2h),Sk−1U∨(H−h)) = Ext•Gr(2,N)(S

lU∨⊗Sk−1U, p2∗O(−h)) = 0;

Ext•E(S
lU∨(2H−h),Sk−1U∨(H−h)) = Ext•Gr(2,N)(S

lU∨(H),Sk−1U∨) = 0.

The third line uses the projection formula (Lemma A3) and the rest use the SOD of D(Gr(2,N)).
�

Proof of Lemma 2.2 (4): It is sufficient to show for 0≤ a≤ n− k−2 and 0≤ b≤ n− k−3,

RHomE(Sn−2−kU∨(H−h),O(`H)) = Ext•Gr(2,N)(S
n−2−kU∨(H),Sl+1U∨) = 0;

RHomE(Sn−2−kU∨(2H),O(`H)) = Ext•Gr(2,N)(S
n−2−kU∨(2H),SlU∨) = 0;

RHomE(Sn−kU∨(H−h),SaU∨(H)) = Ext•Gr(2,N)(S
n−kU∨(H),SaU∨⊗U∨) = 0;

RHomE(Sn−kU∨(2H),SaU∨(H)) = Ext•Gr(2,N)(S
n−kU∨(H),SaU∨) = 0;

RHomE(O((n− k)(H−h)−h,SbU∨(H)) = Ext•Gr(2,N)(O((n−1− k)H),SbU∨⊗Sn−k+1U∨) = 0;

RHomE(O((n− k)(H−h),SbU∨) = Ext•Gr(2,N)(O((n− k)H),SbU∨⊗Sn−kU∨) = 0.

All these can be shown by theorem A2 and SOD of D(Gr(2,N)). �

Proof of Lemma 2.2 (5): It is sufficient to show for n−2`−1≤ a≤ n−1 and 0≤ b≤ n−2k−2,

Ext•E(S
aU∨((`− k)H),SbU∨) = H•(Gr(2,N),SaU⊗SbU∨((k− l)H)) = 0;

Ext•E(S
aU∨((`− k+1)H),SbU∨(−h)) = 0.

The second line uses the projection formula (Lemma A3). For the first line, by Littlewood-
Richardson rule,

SaU⊗SbU∨((k− `)H =
b⊕

t=0

Σ
b−t+k−`,−a+t+k−`U∨.

It is easy to check that−a+ t+k−` ∈ [2−N,−1] whenever 0≤ t ≤ b,n−2`−1≤ a≤ n−1,0≤
b≤ n−2k−2,0≤ ` < k ≤ r. �

Proof of Lemma 2.2 (6). It is sufficient to show that

Ext•E(O(ah),O(bH)) = H•−1(Gr(2,N),Σb−1,b−a+1U∨) = 0;

Ext•E(O((a+1)h),O((b−1)H) = H•−1(Gr(2,N),Σb−2,b−a−1U∨) = 0.

These hold whenever condition (i) or (ii) by theorem A2. �
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A1. Proof of Lemma 2.3.

Proof of Lemma 2.3: We will give the proof of (1) only. The others are very similar. We need to
compute

Ext•(Sk−1U∨(H−h),SkU∨).

For that, we need to compute (i) Ext•E(S
k−1U∨(2H),SkU∨) and (ii) Ext•E(S

k−1U∨(H− h),SkU∨)
by the distinguished triangle (2.2).

Actually, by SOD of D(Gr(2,N))

(i) Ext•E(S
k−1U∨(2H),SkU∨) = Ext•Gr(2,N)(S

k−1U∨(2H),SkU∨) = 0.
(ii) Ext•E(S

k−1U∨(H−h),SkU∨) = Ext•Gr(2,N)(S
k−1U∨(H),SkU∨⊗U∨) =

Ext•Gr(2,N)(S
k−1U∨(H),Sk+1U∨⊕Sk−1U∨(H)) = C[0].

By (.2),

LSk−1U∨((k−1)(H−h))S
kU∨

=Cone(RHom(Sk−1U∨((k−1)(H−h)),SkU∨)⊗Sk−1U∨((k−1)(H−h))−→ SkU∨)

=Cone(Sk−1U∨((k−1)(H−h))−→ SkU∨) = O(kh).

The last equality uses the short exact sequence (2.3). �
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