THE LOCAL CIRCULAR LAW III: GENERAL CASE

JUN YIN*

Department of Mathematics, University of Wisconsin-Madison
Madison, WI 53706-1388, USA jyin@math.wisc.edu

Abstract

In the first part [9] of this article series, Bourgade, Yau and the author of this paper proved a local
version of the circular law up to the finest scale N ~1/2%¢ for non-Hermitian random matrices at any point
z € C with ||z] — 1] > ¢ for any constant ¢ > 0 independent of the size of the matrix. In the second part
[I0], they extended this result to include the edge case |z| — 1 = o(1), under the main assumption that
the third moments of the matrix elements vanish. (Without the vanishing third moment assumption,
they proved that the circular law is valid near the spectral edge |z| — 1 = o(1) up to scale N~*/4*<)) In
this paper, we will remove this assumption, i.e. we prove a local version of the circular law up to the
finest scale N~/2%% for non-Hermitian random matrices at any point z € C.
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1 INTRODUCTION AND MAIN RESULT

The circular law in random matrix theory describes the macroscopic limiting spectral measure of normalized
non-Hermitian matrices with independent entries. Its origin goes beck to the work of Ginibre [18], who found
the joint density of the eigenvalues of such Gaussian matrices. More precisely, for an N x N matrix with
independent entries \/—%zij such that z;; is identically distributed according to the measure p1, = %e“deA(z)

(dA denotes the Lebesgue measure on C), its eigenvalues p1, . .., uy have a probability density proportional
to
IT 1 — P 2 bl (1.1)
i<j

with respect to the Lebesgue measure on C. These random spectral measures define a determinantal point
process with the explicit kernel (see [1§])

N—-1 N
e~ ¥ (=1 +lz2l?) Z 2122 (1.2)
=0

Kn(z1,22) =

A=

with respect to the Lebesgue measure on C. This integrability property allowed Ginibre to derive the circular

. . N . L
law for the eigenvalues, i.e., % pg ) converges to the uniform measure on the unit circle,

%]l|z|<1dA(Z). (1'3)

This limiting law also holds for real Gaussian entries [14], for which a more detailed analysis was performed
in [BI728.

For non-Gaussian entries, Girko [I9] argued that the macroscopic limiting spectrum is still given by
(3). His main insight is commonly known as the Hermitization technique, which converts the convergence
of complex empirical measures into the convergence of logarithmic transforms of a family of Hermitian
matrices. If we denote the original non-Hermitian matrix by X and the eigenvalues of X by p;, then for any
C? function F we have the identity

% S F(uy) = ﬁ / AF(2) Trlog(X* — 2*)(X — 2)dA(2). (1.4)

Jj=1

Due to the logarithmic singularity at 0, it is clear that the small eigenvalues of the Hermitian matrix
(X*—2z*)(X —2) play a special role. A key question is to estimate the small eigenvalues of (X* — z*)(X —z),
or in other words, the small singular values of (X — z). This problem was not treated in [I9], but the gap was
remedied in a series of papers. First Bai [3] was able to treat the logarithmic singularity assuming bounded
density and bounded high moments for the entries of the matrix (see also [4]). Lower bounds on the smallest
singular values were given in Rudelson, Vershynin [26127], and subsequently Tao, Vu [30], Pan, Zhou [23]
and Gotze, Tikhomirov [20] weakened the moments and smoothness assumptions for the circular law, till
the optimal L? assumption, under which the circular law was proved in [31]. On the other hand, Wood [33]
showed that the circular law also holds for sparse random n by n matrices where each entry is nonzero with
probability n®~! where 0 < a < 1.

In the first part of this article [9], Bourgade, Yau and the author of this paper proved a local version of
the circular law, up to the optimal scale N~1/2+¢ in the bulk of the spectrum. In the second part [10], they



extended this result to include the edge case, under the assumption that the third moments of the matrix
elements vanish. (Without the vanishing third moment assumption, they also proved that the circular law
is valid near the spectral edge |z| — 1 = o(1) up to scale N~/4*¢) This vanishing third moment condition
is also the main assumption in Tao and Vu’s work on local circular law [32]. In the current paper, we will
remove this assumption, i.e. we prove a local version of the circular law up to the finest scale N—/2*¢ for
non-Hermitian random matrices at any point z € C.

More precisely, we considered an N x N matrix X with independent real] centered entries with variance
N~ Let pj, j € [1,N] denote the eigenvalues of X. To state the local circular law, we first define the
notion of stochastic domination.

Definition 1.1. Let W = W) be a family of random variables and ¥ = W) be a family of deterministic
parameters. We say that W is stochastically dominated by ¥ if for any o > 0 and D > 0 we have

P[w]>nN7w] < NP (1.5)
for sufficiently large N. We denote this stochastic domination property by
W < U, or W=0(0).

Furthermore, Let UN) be a possibly N-dependent parameter set. We say W (u) is stochastically dominated
by W(u) uniformly in u € UN), if for any o > 0 and D > 0 we have

sup P[\W(u)\ >N0qf(u)} < NP (1.6)
ucUN)

for uniformly sufficiently large N (may depends on o and D).

Note: In the most cases of this paper, the UY) is chosen as the product of the index sets 1 <4,j < N
and some compact set in C2.

In this paper, as in [9], [I0] and [32], we assume that the probability distributions of the matrix elements
satisfy the following uniform subexponential decay property:

sup P (|\/NXZ-J<| > )\) <o le N (1.7)
(6,5)€l1,N]?

for some constant ¢ > 0 independent of N. This condition can of course be weakened to an hypothesis
of boundedness on sufficiently high moments, but the error estimates in the following Theorem would be
weakened as well.

Note: most constants appearing in this work may depend on 9, but we will not emphasize this dependence
in the proof.

Let f: C — R be a fixed smooth compactly supported function, and f,, (1) = N?*f(N*(u — z)), where
2o depends on N, and s is a fixed scaling parameter in [0,1/2]. Let D denote the unit disk. Theorem 2.2 of
[9] and Theorem 1.2 of [10] assert that the following estimate holds: (Note: Here || f.,]1 = O(1))

NIY fali) = 3 [ £al2dAG) | < N se 0,172 (18)

1For the sake of notational simplicity we do not consider complex entries in this paper, but the statements and proofs are
similar.



@] if ||z0| — 1| > ¢ for some ¢ > 0 independent of N or [I0] if the third moments of matrix entries vanish.
This implies that the circular law holds after zooming up to scale N~'/2%¢ (¢ > 0) under these conditions.
In particular, there are neither clusters of eigenvalues nor holes in the spectrum at such scales. We note that
in [9] and [10], the scaling parameter was denoted as a, but the letter a will be used as a fixed index in this
work.

We aim at understanding the circular law for any zg € C without the vanishing third moment assumption.
The following theorem is our main result.

Theorem 1.2. Local circular law: Let X be an N x N matrix with independent centered entries of variances
1/N. Suppose that the distributions of the matriz elements satisfy the subexponential decay property (IL1).

Let f., be defined as above (L8)) and D denote the unit disk. Then for any s € (0,1/2] and any zy € C, we
have

NS falw) = 3 [ Fal@da) | < v (1.9)

Notice that the main new assertion of (L9) is for the case: |z0| —1 = o(1) and the third moments not
vanishing, since the other cases were proved in [9] and [10], stated in (L3]).

Remark: Shortly after the preprint [9] appeared, a version of local circular law (both in the bulk and
near the edge) was proved by Tao and Vu [32] under the assumption that the first three moments of the
matrix entries match a Gaussian distribution, i.e., the third moment vanish.

In the next section we will introduce our main strategy and improvements.

2 PROOF OF THEOREM

Proof of Thm. [[L2: The bulk case of Thm. was proved in Theorem 2.2 of [9]. Furthermore, it is easy
to see that the results in Thm. for s = 1/2 follow from the results in for s < 1/2. Hence in this proof,
we can assume that

2ol = 1] = o(1), s€(0,1/2)

In the edge case, our Thm. [[Zwas proved in the Thm 1.2 of [I0] with the vanishing third moment assumption.
Hence the goal of this paper is to improve the proof of Thm. 1.2 of [I0]. One can easily check that in the
proof of Thm. 1.2 of [10], the condition EX% = 0 was only used in the Lemma 2.13 of [I0]. Therefore, we
only need to prove a stronger version of Lemma 2.13 in [I0], i.e., the one without vanishing third moment
condition. More precisely, it only remains to prove the following lemma[2:2] (Here we use the same notations
as in [I0], except for the scaling parameter)
O
Before stating lemma[Z2] i.e., the stronger version of Theorem 1.2 of [I0], we introduce some definitions
and notations. First, we introduce the notation

Y =Y, =X —=2z2]

where I is the identity operator. In the following, we use the notation A ~ B when ¢B < |A| < ¢ !B,
where ¢ > 0 is independent of N. For any matrix M, we denote M7 as the transpose of M and M* as the
Hermitian conjugate. Usually we choose z — zg ~ N ™%, hence we define the scaled parameter &:

z2=20+ N %, ie., £:=N°(z— z)



Define the Green function of Y'Y, and its trace by, where w € C and Imw > 0,

N
Glw) = Glw, 2) = (V2Ys —w)~), m(w) = m(w, 2) = %TrG(w, 2) = %; W%w (2.1)
Let m. := m¢(w, z) be the unique solution of
mot = —w(14+me) + |2*(1 +me) ! (2.2)

with positive imaginary part. As proved in [9] and [I0], for some regions of (w,z) with high probability,
m(w, z) converges to m¢(w, z) pointwise, as N — oo. Let p. be the measure whose Stieltjes transform is m..
This measure is compactly supported and supp p. = [max{0, A\_}, A;], where

At = Mg (2 ::M o= /14 8|z|2. 2.3
+ i() 8(0&:&1)7 + || ( )

Note that A_ has the same sign as |z| — 1. Tt is well-known that p.(z,z) can be obtained from its Stieltjes
transform m.(x + in, 2) via

1 . . 1 . .
pc(xa Z) = P Im nli)%l+ mc(x + 11, Z) = ;]lme[max{o,)\,},)ur] Im nl_lgh "nc(‘r + 17, Z)

(Some basic properties of m. and p. were discussed in section 2.2 of [I0])

Definition 2.1. ¢, x, I and Zggf))

C

Let h(z) be a smooth increasing function supported on [1,+00] with h(z) =1 for x = 2 and h(x) =0 for
x < 1. For any € > 0, define ¢ on Ry by (note: Ay depends on z)

6(a) 1= 0n.-(0) o= WV 0) (o) (1= () ). (2.0

Let x be a smooth cutoff function supported in [—1,1] with bounded derivatives and x(y) =1 for |y| < 1/2.
Recall dA denotes the Lebesgue measure on C, for any fixed function g defined on C, we define:

729 =2 (20,6,5) == N / Ag(€) / X(m)¢' (B) Re(m(w)—me(w))dEdndA(€), w = E+in, z=z+N""¢
I
and
[=1 = {w €C: N VE<y E>N"2% |uw|<e, w=FE+ m} . (2.5)

Note: the condition E > N~272¢ was not in the definition of the I used in [10], but clearly this condition
is implied by ¢'(F) # 0, i.e., our new I does not change the value of Zgg)c. One can also easily check:

wel. = |w|'? <2N'"5 (2.6)

With these notations and definitions, we claim the following main lemma. It is a stronger version of
Lemma 2.13 in [10], i.e., the one without vanishing third moment condition.



Lemma 2.2. Under the assumptions of Theorem [L.2, there exists a constant C > 0 such that for any small
enough £ > 0(independent of N), if ||z0| — 1| < e, s € (0,1/2), then

Z{) < N,

Re
where cy is a constant depending only on the function f.

As mentioned above, in the proof of Thm. 1.2 of [I0], the vanishing third moment condition was only
used in the Lemma 2.13 of [I0]. Therefore with the improved Lemma ([2:2]), one can obtain our main result
theorem [[2 as in [10].

O

In the next step, the lemma will be reduced to lemma [2.4]

We note that the bounds proved in [I0] for G;;’s are not strong enough for our purpose in this paper.
Unfortunately we noticed that it seems impossible to improve these bounds in general cases. On the other
hand, we found that though the behaviors G’s and G’s are unstable in the region |m| < (Nn)~!, they are
very stable in the region |m| > (Nn)~! and many stronger bounds can be derived in this region. Therefore,
in the following proof, we separate the Zx . into two parts: the one comes for the region |m| < (Nn)~! and
the one comes for the region |m| > (Nn)~!. The first part can be easily bounded, since the m is small,
so as its contribution to Zx .. For the second part, we will apply Green’s function comparison method
(which was first introduced in [15] for generalized Wigner matrix) and our new stronger bounds in the region
Im| > (Nn)~!

On the other hand, the old Green’s function comparison method was not enough for our purpose, which
is also the reason that in [I0], the authors needed the extra assumption on the third moment of the matrix
entries. In this work, we will introduce an improved Green’s function comparison method, which provides
an extra N~'/2 factor than the previous method. This idea was motivated from the work in [6].

Definition 2.3. tx and Ag)
For N x N matriz X, we define

tx :=tx(e,w,z) := N"°*NnRem

i.e.,

tx :=N"pReTr (X* —2*)(X —2)—w)"", np=Imw

Now we extend the function h defined in Def. [Z1] to the whole real lane, i.e., h(x) = h(—x), but still use
the same notation h(x). With these notations, we define:

AY = A (20,65 =N / AF() / X&' (E) (h(tx) Rem — Rem. )dEdndA(¢), (2.7)
1
where z =20 + N7%¢, w=E+1in, ¢ = ¢, and tx = tx(e,w,2).
Note the only difference between Ag) and Zg(f)c is the h(tx) in front of Rem. Then the difference of Ag)

and Zg(f)c only comes from the region h(tx) # 1, i.e, |[Rem| < 2N¢(Nn)~!. Therefore, by the definitions of
¢ we have

AQ — 2 < / AF(©) / | (2N ()} dEdndA(€) < N (2.8)
where we used (1 — h(tx)) Rem| < 2N¢(Nn)~

Proof of Lemmal2.2: With ([Z.8), it only remains to prove the following lemma.



Lemma 2.4. Under the assumptions of Theorem [L.2, there exists a constant C > 0 such that for any small
enough € > 0(independent of N), if ||z0| — 1| < € and s € (0,1/2), then

Agg) < NCECf

where cy is a constant depending only on the function f.

O
In the next subsection, we will introduce the basic idea of proving Lemma 2.4l The rigorous proof will
start from section 3.

2.1 Basic strategy of proving Lemma [2.4t Before we give the complete proof of this lemma, we introduce
the basic idea and main improvement in the remainder of this section. Lemma 2.2 was proved in [10] under
the vanishing third moment condition. With (2.8)), that result implies that if X;;’s are Gaussian variables,
for all 1 < 4,7 < N, then for any fixed p € 2N;

EAL P < NOP, X, ~ N(0,1/N) (2.9)

As one can see that Agg)c is basically a linear functional of m(w, z). Hence as in [I0], we will apply the Green
function comparison method to show that for sufficiently large IV,

E|A¥)|p < CIE|A¥,)|” 4+ NCep, (2.10)

for any two different ensembles X and X’ whose matrix elements satisfy the condition of Theorem [[L21 To
complete the proof for lemma [2:4], we will choose X’ to be the Ginibre ensemble, whose matrix elements are
Gaussian variables. The X will be the general ensembles in lemma [Z4] Combining [29) and ZI0), with
Markov inequality, one immediately obtains Lemma 2.4

In applying the Green function comparison method, we estimate the expectation value of the functionals
of Y, G = (Y*Y —w)tand G = (YY* —w)" !, ie, EF(Y,G,G). In [I0] and most previous applications
of Green function comparison method, one can only bound the expectation value of these functionals with
their stochastically dominations. For example, in [T0], for i # j and |w|'/? < (N7), one has

(YG)is] <1

With this stochastically domain, the authors in [10] obtained that |E(Y G);;| < N for any o > 0. In the
present paper, under the condition | Rem| > (nN)7!, i.e., h(tx) > 0, we will first show an improved bound:
for i # j and |w|'/? < (Nn)

|w|1/2

|h(tx)(YG)is] < N7

Then using a new idea on Green’s function comparison method, we will show that the expectation value of
this term will obtain an extra factor N1/, i.e.,

|w|1/2

Eh(tx)(YQ);:| < CN~Y2te
[En(tx)(YG)iy| < C No

(2.11)

This extra factor N~1/2 plays a key role in our new proof. A similar method was used in the [6].



Now we explain the basic idea of proving (ZII)-type bounds, i.e.,where the extra N —1/2 factor comes
from. For simplicity we assume X;; € R. Let VL") be the matrix obtained by removing i—th row and
column of Y., and define

Gl .— ((Yz(i,i))*yz(i,i) —w), glii) .— (Yz(i,i) (Yz(i,i))* —w)~!
We write h(tx)(Y.G);; as the polynomials of the i—th row/column of X: Xz, Xz; (1 < k < N), G and
gl e,
h(tx)(Y.G)ij = PU Xy, {Xri}il ), GOD ) G0 4 negligible error

where P is a polynomial. By definition, X, Xy; are independent of G(»? and G(*%. In this polynomial,
we will show that the degrees of every monomials w.r.t. X;; and Xy;’s are always odd numbers. Therefore,
in taking the expectation value, with assumption EX;; = 0 and |EXZ| < O(N~*/2), one will see an extra
combination factor N~'/2. The following simple example will show why the odd powers give an extra
factor N—1/2, Suppose we estimate Estt XikG,(;l’Z)Xingi’z)Xit. Since X, Xj; are independent of G
and G0, EX;; = 0 and |IEXZ| < O(N~*/2), the nonzero contributions only come from the terms where
k = s = t, therefore

|EZXikGEc?i)Xing?i)Xtﬂ = |EZXikGEg?i)Xisti)i)in| < C’Nﬁl/QE(HflabX|G$i)|)2
kst &

On the other hand, without E, this term can only be bounded without this N~1/2 factor (with large deviation
theory).

| ZXikGl(cilyi)Xingi)Xtﬂ =| ZXingz’i)H ZXisGSe’i)XM < (log N)© (H}Z%X |ng'l;i)|)2
k

kst st

Note: one will not see this N=1/2 factor if the degree is even number, e.g., E ZXingit’i)Xit. Based on this
new idea, the main task of proving lemma 24 and ([ZIT))-type bounds is writing the functionals of Y,’s, G’s
and G’s as the polynomials of X, Xz (1 <k < N), GO and GO for some 1 < i < N, (up to negligible
error) and counting the degree of each monomial.

3 PROOF oF LEMMA 2.4

In this section, we apply the Green’s function comparison method to prove the Lemma 241 We will see the
key input of proving Lemma [24] is the lemma This new lemma is similar to (3.62)-(3.63) of [10], but
without the third moments vanishing assumption. More precisely, the (3.62)-(3.63) of [I0] is similar to the
B4 of this work, and lemma is the key step of proving ([B4]). The proof of lemma will start from
section @l In [I0], the (3.62)-(3.63) can be easily proved by bounding the expectation value of these terms
with their stochastically dominations. In this paper, as introduced in subsection 2.1} we will introduce a new
comparison method to show that, for the contribution comes from Xj;’s third moment, their expectation
values have an extra factor N~/2  i.e., lemma B2

First of all, we state the following lemma. It will be used to estimate the expectation value of some
random variables which are stochastically dominated, but not L., bounded.

Lemma 3.1. Let v = v™N) be a family of centered random variables with variance 1/N, satisfying the sub
exponential decay (7). Let A = AN) and A = AN be families of random variables. Suppose A < 1, and



A= ZS:O Ap o™, where |A,| < NY for some fized constant C > 0. We also assume that A is independent
of v and |A| < N€ for some C > 0. Then for any fized p € N and fized (small) § > 0,

|E AAvP| < (E|A|)N—P/2+8 4 N—1/9
for large enough N.
Note: Here A or A;’s may depend on v.

Proof of Lemmal3: By definition [[LT] the assumption A < 1, and the fact that v has sub exponential
decay (L7), for any fixed § > 0 and D > 0 there is a probability subset Q such that P(Q) > 1 — N~ and

|1oAv?| < N—P/2+6

Then
EAAV| < (BJA)N /2 4+ [Eg. AAv?| < (EJA|)N#/29 4 O(N—D/2+20)

for the second inequality, we used Cauchy Schwarz inequality. Choosing large enough D, we complete the

proof of lemma [3.11
O

Because of this lemma, for any centered random variables v with variance 1/N, satisfying the sub expo-
nential decay (7)), we define

C
Mc(v) = {A PA=D A", Ay < NC} (3.1)
n=0

Now we return to prove Lemma 2.4

Proof of Lemma[2 For simplicity, we assume that the matrix entries are real numbers. Let X and
X' be two ensembles which satisfy the assumption of Theorem [[L2l To prove Lemma 2.4] as we explained in
the beginning of subsection 2.1 (near (ZI0)), one only needs to show that for any fixed small enough ¢ > 0,
s €(0,1/2), and p € 2N, if ||z9] — 1] < & then

EIAY P < CEIAQ P + NO, (3.2)
for large enough N. For integer k, 0 < k < N2, define the following matrix X, interpolating between X’
and X: (i) ( )
N . 4 if k>NGE—-1)+j
X (i, j) = { X'(i,j) if k<N(Gi—-1)+j
Note that X’ = Xy and X = Xy2. As one can see that the difference between X; and Xj;_1 is just one
matrix entry. We denote the index of this entry as (a,b) := (ak,br) (ar, b € Z, 1 < ag,br < N), here
k= (ar —1)N + by
Furthermore, we define tx, ., tx,, Agzil, A%g with X5 _1 and Xy, as in Def. We are going to show
that if this special matrix entry is in the diagonal line, i.e., a = b then

B (4Q)" -k (a8) )| < N-¥2 (ve+2m(4]))) (3.3)
otherwise, i.e., a # b,
B (a0)" —E(al) ) [ < N2 (v 28 (49 )" (3.4)



for sufficiently large N (independent of k). Clearly, B3]) and (&4) imply B2).
We are going to compare the these functionals corresponding to X and X;_; with a third one, corre-

sponding to the matrix @ hereafter with deterministic (a, b) entry. We define the following N x N matrices
(hereafter, Yy = Xy — zI, £ =k or k — 1):

v = vgpear = X'(a,b)ean, (3.5)
U = Ugpeap = X (a,b)eqp, (3.6)
@:Xk,l—v:Xk—u, (3.7)
Q=Y 1 —v=Y, —u, (3.8)
R=(Q'Q—w) (39)
R =(QQ* —wI)™! (3.10)
S = (Y Yie1 — wI) (3.11)
T = (Y'Y — wl)™! (3.12)

Furthermore, we define t5 Ag) with @, as in Def. To prove [B3) and [B4), we will estimate

(f) (f) (f) (f)
Axki1 — AX@ and Axk - AX(5 .
First we introduce the notations

1 1 1
mg = NTrS, mp = NTrR, mr = NTrT

We note: with Cauchy’s interlace theorem, for some C' > 0,

|ms —mpg| < C(Nn)™', n=Imw (3.13)
holds for any w and z. It implies
AL~ Ag>| <C (3.14)

To estimate Aggzil - Ag), from (27)), we have

AY) -4y =N / AF(E) / x(nd (B) (hltx, ) Rems — h(tg) Rema ) dEdndA(€), (3.15)
where z = 20 + N7%¢, w = E+1in, ¢ = ¢ .. Recall tx, , and tg are defined with mg and mp respectively.

Applying Taylor’s expansion on the term h(tx,_,) Rems —h(t5) Remp in (8.15) and letting h(*) be the kth
derivative of h, we have

h(tx,_,)Rems — h(tg RemR—ZB ) (Rems — Remg)" + Bi(Xk—1,Q) (Rems — Rempg)* (3.16)

where B,,(Q) (1 < n < 3) and By(Xj_1,Q) are defined as
A 1 —€ n— n— n
Bu(Q) i= — (N e p) "7V (nh< D(tg) + hl )(t@)t@) (3.17)

Bi(Xu1,Q) 1= 5 (V') (4h9(0) + Q)¢

10



where ( is between tx, , and ¢5, and only depends on tx, ., t@ and h. As one can see that By, By and Bs
are independent of v,;. For the definition of B’s, we note that if n > 1, then

h(")(x) 20 = x~1
Therefore, with |h| < 1, we obtain the following uniform bounds for B’s:
B < (N'5p)"=1, 1< n<4 (3.18)
To estimate the mg — mp in BI6]), we study the difference between mg and mp in the parameter set:
{(k,z,w) EZxC?> : 0K k< N?, ||z| -1 <2, wel} (3.19)

Recall in (3.59) of [2] and the discussion below (3.61) of [2], it was proved that with the notations:

Pi(Q) := %Re (—2(QR?)ab) (3.20)
PAQ) = 37 Re (wRaa (R + 2(QF)ap(RQ" o + (QRQ")aa i)

P3(Q) :=
%Re (_2(RQ*)I27a(QR2)ab - 2(RQ*)ba(QR2Q*)aaRbb - 2(RQ*)bawRaa(R2)bb - 2wRaaRbb(QR2)ab))

the difference between Remgs and Remg, i.e., (% ReTr S — % ReTr R) can be written as (recall v,y =
X'(a,b))

3
Remg — Rempg = Z Po(Q) - (vap)® + Pu( X1, Q) - (vap)*, (3.21)
n=1
where Py(Xg_1, @) depends on Xj_1 and @, and the P’s can be bounded as
Pi(Q), P(Q), P3(Q), Pa(Xp-1,Q) < (Nn) ™", (3.22)

uniformly for (k, z,w) in BI9). In [2], the uniformness was not emphasized, but it can be easily checked.
From (37)-(3I0) and the definition of P; 5 5(Q), we can see that P; 5 3(Q) only depend on @ and they are
independent of vgp,.

Now we collect some simple bounds on P;’s. For L., norm, by definition, it is easy to prove that the
following inequalities always hold:

ISI, IRl RE IR QBRI IIQR,  |QR*Q*| < N©

for any (k, z,w) in BI9) and some fixed constant C' > 0. Then with the definition in ([B.20), we also have
that for any (k, z,w) in (3I9) and some constant C' > 0

Py, Py, P3 = O(N©). (3.23)

Expanding S around R with the fact: S = (R™" + (Y'Y, — Q*Q))~!, we obtain that for any fixed m € N

S—R=Y (-R(Y;Yi—Q"Q)" R+ (-R(;Yi-Q"Q)""s (3.24)

n=1
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Let m = 5 in @24). Now we take + ReTr on the both sides of [24) and compare it with 2ZI). Since
YV — Q*Q = vap(€0aQ) + van(Q*€ap) + 12, €44, we can see that for 1 <1 < 3, the P(Q) is the coefficient
of the (vg)' term in the r.hus. of & Re Tr (3:24) and

Py(Xk-1,Q) € Mc(vab) (3.25)
Similarly, using this expansion (m = 5), and the fact:
0uR=R*=0(NY), 0.R=R(Q+Q)R=0(N),

and 9,5, 9,5 = O(NY), we can improve ([322)) to the following one:

max N (|B@) +P@) +IB@) + |P(Xe, Q) <1 (3.26)

(k,z,w)€e

We note: this statement shows that [22)) can hold for different (k, z,w) € (B19) with the same probability
subset.
Inserting ([B.10) and B2I) into (B.IT), we write Ag}fil — Ag ) as a polynomial of vy, as follows.

A - Ag) = 21(Q) vab + 22(Q) - (vap)?* + P3(Q) - (vap)® + Pu(X1—1,Q) - (vap)™ (3.27)
where
21@ =N [ar©) / (B1Py) () (B)AEdndA (€) (3.28)

P5(Q) =N / NG /1 (B1 Py + BoP2)x ()¢ (E)AEdndA (€)

24Q) =N [ 519 [ (BiPr+ 28R P+ BaP)x()6 (B)aB A )

Pu(X1,0) ::N/Af(g)/l(ZBn S ()94 T B, ) (£)a5aaa @
n >4 j=1

where B, = B,(Q), P, = P,(Q) (1 <n <3), By = By(Xy-1,Q) and Py = Py(Xj—1,Q). We note: %,(Q),
P5(Q) and P5(Q) are independent of vp.
Replacing Xy 1 with Xy, with the same method, we obtain (Here vy, is replaced with wgp)

AY) = 4D = 21 Q)uar + 22(Q)ud, + Pa(Q)uy, + Pa(X, Quly (3.29)

From (BI8) and [B26), it is easy to check that &1, P25 and &5 < 1 uniformly hold for 1 < k < N2. For
Lo bound, with ([3:23), they are bounded by N¢ for some C. Similarly, we can obtain that &4 < 1. With

BZ9), we have P4(Xi—1,Q) € Mc(vap) and Py (X, Q) € Me(uap). So far, we proved

Prosa=<1, Pi23(Q) <N Py(Xip-1,Q) € Mc(vap), Pa(Xi, Q) € Mc(uap) (3.30)

uniformly hold for 1 < k< N 2,

12



Now we return to prove ([B3) and ([B4]). First we write
p—1
f) f p IOV f) f)\p—i f I)\p—j
(Agfk l)p_(Ag(Z)p:Z (j)(A(Q))J ((Ag(k 1 A(@))p j _(Ag(,z —A%))p J)_
=0

We insert the (3217) and (8:29) into the r.h.s. and write it in the following form

4p
(A—()glzfl)p A(j Z m'Uab mUZZ) (331)

where A,, only contains A(Qf), 91,213(@), 94(Xk,1,6~2), and B,,, only contains Ag), 91,213(65), 3”4(Xk,c~2)
For example,

As = By = Cps(AZ )P 2} Q) + Cpa(A P2 21(Q) 22(Q) + Cpa (4511 25(Q) (3.32)

where C), ,, (1 < n < 3) are constants only depends on p. Since the first two moments of v,;, and uq coincide,
Ugh, Vgp are independent of @), and A; = By, As = Bs only contain A(Qf), P1.23(Q), we have

4p
E(AY 7 —EAD)Y = 3 (Al — Brully)

m=3

Recall the definition of A, and B, from B3I, for the terms m > 4, using (330) and Lemma B1] we get

p—1
E Z Anlh = Bui) | < 3_E (AP | 04(N"2) + N2 < N2 (04(1) + EJAL ).
p
Therefore, with A3 = Bj,
p 3 p .
(48 )) —E(aD)"| < 82 (0<(0) + EIAD ) + [BAg| (Eody| + [Buds),  (3:33)

Similarly, using (330), B.32), Ag) = O(N?) and Lemma Bl we have
[EAs] (IEvd,| + [Eudy|) < N-3/2 (04(1) + E[AY?) (3.34)

As in [2]-(3.64), using Holder’s inequality and the bound B14), we have

ElALP <E((4{),) )+Z() (\Axkl
2 (0r) 35 ()e (2

< (0= +2E147) 1),
Then combining ([333)-(335), we obtain [B3). (Note: p € 27Z.)

To prove ([B4), we claim the following lemma, which provides the stronger bound on the expectation
value of the r.h.s. of (332).

49, - adp) (3.35)

)7 e (Al -ag)
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Lemma 3.2. Assume 1 < a # b < N. Let X be defined as in Theorem [1.2, except that X, = 0. For any
fized small enough € > 0, if ||z0] — 1] < e and s € (0,1/2), define Ag{), P(X), Bi(X), #(X),1=1,2,3 as

in @0), @20), BI0) and B2). (More precisely Q, Q, R in B20) and BID) will be replaced with X,
Y =X —zI and (Y*Y — wl) respectively.) Then

(AL 25(0)| + [E(A 221 (X) 22(X) | + [B(AD )L 25(X)| < N7Y/2 (0<(1) + E|AD )
(3.36)
uniformly for (a,b).

We return to prove ([B:33) and prove lemma ([B.2)) in the next section. Inserting this lemma and ([B.32])
into (333), as in (B34]), we obtain that if a # b, then

IEA| < N2 (o<(1) +E|4Y) |P) (3.37)

Together with (B:33) and 333]), we obtain [B4]). Clearly, 83) and B.4)) imply [B.2)), and we complete the
proof of lemma 2.4 and lemma

O

4 PROOF OF LEMMA

Lemma bounds the expectation values of some polynomials of Ag) and 2 53(X). Roughly speaking
Lemma shows that the expectation value of these polynomials are much less than their stochastic dom-
ination by a factor N~1/2, (Note: a and b appear in the definitions of P; 23 and By 23. The % 93 are
defined with P; 25 and Bj 23.) As introduced in the second part of subsection 2] (below ([ZI1)), the main
strategy of showing this extra factor is

e writing them as the polynomials (up to negligible error) of Xox’s, Xga's (1 < k < N), G(»% and G(»®)
which are defined as

G(a,a) — ((Y'Z(a,a))*y'z(a,a) _ ,w)—l7 g(a,a) — (Y'Z(a,a)(y'z(a,a))* _ ,w)—l

and V(@) .= Yz(a’a) is the matrix obtained by removing the :—th row and column of Y,.

e showing the degrees of the monomials of X,;’s and Xj,’s in above polynomials are always odd (except
for Xya)-

First of all, in lemmald.B and 4.7 we introduce some polynomials having the properties we need for Lemma
B2 i.e., their expectation values have an extra factor N~'/2 comparing with their stochastic domination.
In the next subsection, we introduce some F sets, whose elements are the "basic" polynomials in our proof,
i.e., the bricks of the polynomials in lemma and 7

4.1 Basic polynomials and their properties. We first introduce some notations.

Definition 4.1. X(T'D) YT Q(TU) gpg gT.U)

Let T, U be some subsets of {1,2,---,N}. Then we define YU as the (N — [U|) x (N — |T|) matriz
obtained by removing all columns of Y indexed by i € T and all rows of Y indexed by © € U. Notice that we
keep the labels of indices of Y when defining Y ™U). With the same method, we define X V) with X .

14



Let y; be the i-th column of Y and y(S) be the vector obtained by removing y;(j) for all j € S. Similarly

%

we define y; be the i-th row of Y. Define

QY — [(Y('JMU))*Y('JI,IU) _ w} , mgl‘,TU) =% Tr G,

-1

1
g(TU) — [Y(mu) (Y T0)* _ w} ’ er,U) - < Tr g,

By definition, m"?9 = m. Since the eigenvalues of Y*Y and YY* are the same except the zero eigenvalue,
it 1s easy to check that

T.0) ru) , |U = |T|
m(G (w) = m(g + “No (4.1)
For |U| = |T|, we define
T 9 T o
There is a crude bound for (mg’U) —m) proved in (6.6) of [9]:
T,U T,U T| + U]
’m(c )—m‘—i-’m(g >—m’<c Nu (4.3)

Definition 4.2. Notations for general sets.
As usual, if t € R or C, and S is a set of random variables then xS denotes the following set as

xS :={xs:s €S}
For two sets S1 and S of random variables, we define the following set as
81'82 = {51-52 | S1 681, S9 682}

For simplicity, we call s €, S if and only if s can be written as the sum of O(1) elements in S, i.e.,

n
s€e, S <— se{Zsi

5; €S, neN, nzO(l)}
i=1

Definition 4.3. Definition of Fo, F1, F; /2 and F.
For fized indeces a, b and ensemble X in lemmal3T 2, we define Fo as the set of random variables (depending
on X ) which are stochastically dominated by 1 and independent of any X and Xpo (1 < k< N), ie.,

Fo={V : V <1, Visindependent of the a—th row and column of X}

Note: Fo depends on a, not b. One example element in Fqy is Tr X — Xgq.

For simplicity, we define
(a)

Yoy Yy

i i#a ij ij#a
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Neat we define Fy as the union of the set (N'Y/2X,,Fo) and the sets of some quadratic forms as follows

() (@)

Fui= (N2 X0 Fo ) | D2 XnaVieXia o Y XarViaXar | max|Via| < 1, Vi € Fo
kl kl

(@) (@)

U Z Xt Vi Xig + N1/? Z Xk Vik Xka
kAl %

II}C%X|VM| <1, Vig € Fo

(Note it is XaViiXia or XakViuXa in the first line and Xk ViiXia in the second line, and the diagonal
terms in the second case is allowed to be larger than the others by a factor N1/2.)

Furthermore, we define F as the set of following random variables

F={vivarnUl U @)r
n=0(1)

where (F1)" represents the set of the products of n elements in Fi. For simplicity, sometimes we write F
F=F

i.e., with the subscription empty set ().
Similarly, we define

(a) (a)
Fipg=14> XaVior Y ViXpa max|Vi| <1, Vi € Fo
k k

Note: For fixed k # a, the total number of X, and Xj, (1 < k < N), in each monomial of the element
in F is always even. On the other hand, this number in F; /- F is always odd. By the definition, it is easy
to see that

Fo, F1 € F

Fo - Fa=Fa, a=0,1/2,1,0

and
]:1/2'.7:1/2C]:1, F-FCF (4.4)

Examples: by definition, G,(c‘ll’a) < 7! for any k,l # a. Hence we have

(a)
Z XkaG;(;lz’a)Xla en T,
kl

(a) (a)
Z XkaGgs)a)Xla Z Xangs)a)Xal € 7772‘/—:7
kl kl
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and if n = O(1)

(a) (a)
S XkaGi Y Xia | | D XakGly Y X | + (Tr X = Xoo) €, 0 2F
kl kl

Definition 4.4. Uniformness Let Fp, T € Ty be a family of random wvariables, where Ty is parameter set
which may depends on N. We say
Fre, F, TeTn,

are uniform for all T € Ty, if the following two uniform conditions hold.

(i) There exist uniform integers m and n independent of N such that for all T € Ty, we can write Fr as
the sum of m elements in (Fo U (F1)"), i.e.,

Fr :ZFT’i’ FTJ' E]‘—QU(}—l)n.
i=1
(i1) All of the stochastic domination relations, i.e., <, appearing in oll Fr’s (T € Tn) hold uniformly.

Similarly, for Fo, F1/2 and F1, we call

1
FTEn]:ou TETNa a =0, 571

uniformly for all T € Ty, if there exist uniform m independent of N such that
Fr = ZFT,u FrieFo, a=0, -, 1
i=1
and the above uniform condition (i) holds.
More general, if Fo, is one of Fo, Fi2, F1, F, s0 as Fg, i.e., a,=0,1/2, 1 or 0, we say
FT €n ]:a ' ]:,87

uniformly for all T € Ty if there exists uniform m independent of N such that Fr can be written as the sum
of the m terms in Fo - Fp, i.e.,

m
Fr = Z FroiFrgs
i=1

and
Fra:€Fo, Frpi:€Fp

hold uniformly for all T € Ty .

Furthermore, with fized D > 0 and random (or deterministic) variable ar, we say

FTenaT-Fa"Fﬁ+O<(N_D)a ‘Fa;]:ﬁz‘/—:();]:l/2;]:17‘/—:
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uniformly for all T € Tn if Fr can be written as
Fr=arFri+ Frp

where
Fry €, Fo-Fs, and Fps <N P

hold uniformly for all T € Ty .

Now we estimate the expectation values of the elements in F - Fy /5. Let Fy /o € Fy/9, F' € F. With large
deviation theory, we can only obtain

Fipo=<1, F<X1, Fip - F<1
But we will show that the elements in F; /5 - 7 may have much smaller expectation value.

Lemma 4.5. For fixed indeces a,b and ensemble X in lemma [32, let Fy and F be two random variables
bounded by N for some C, i.e.,
|Fol + [F| < N¢

We assume that
Fy e N°Fy, and F €, Fipp-F

Then we have
|E FyF| < N™Y2E |Fy| + N~P (4.5)

for any fixred D > 0.

Proof of Lemmal[f.J: For simplicity, we assume F' € Fj /5 - F (not €,). The general case can be proved
with the same method. Furthermore, by definition, EFoF' = 0 if F' € F;/5 - Fo. Hence one only needs to
prove the following case: for some fixed m, F' € Fy /5 - (F1)™, i.e., I can be written as the product of one
element of /5 and m elements of F, i.e.,

F=F )yl Fs- Fy, Fip€Fip, FieF, 1<i<m

By definition, FyjoF1 FoF3 -+ - Fy, can be consider as a polynomials of Xai's and Xi,'s (1 < kK < N),
whose coeflicients are independents of the a-th row and column of X. Then, we can decompose F' as

F=F P FaFs - Fy (4.6)

Z Z Z Z ‘A({k }z 1 {S }z 1 {t } ) (H( aki)Si (ina)ti>
n<2m+1 ki,ko,....kn S1,--,8n t1,..., =1
where k;’s are all different in the summation, and A({ki}?zl, {si}14, {ti}?zl) is the coefficient of [\, (Xak,)** (Xk,a)"

and it is independent of the a-th row and column of X. We separate the parameter region into two cases.
First case: k; # a for all 1 < ¢ < n. By definition of F;, we have

n

A({k Vi fsibimg ftibim ) <1 (D s+ Dot =2m 1) JT(av/2yminteerad (4.7)

i=1
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where the last factor come from the N'/2 factor in the definition of F; (see the N'/2 cha) Xot Vik Xpo term
in the definition of Fj.

Second case: k; = a for some 1 < j < n. Since the k;’s are all different, hence the other k;’s are not
equal to a. Let s; = s, t; = 0, we have

A({ki}?:p {si}iq, {ti}?:1) <1 Z (si +1;) €2N+1 H (Nl/Q)min{Si,ti}NS/Q (4.8)
iit] Wity

By definition of F; and F, we know that for any 6 > 0 and D > 0, there exists probability set (2, which
is independent of the a-th row and column of X, such that P(Q) > 1 — N~ and the <’s in {@7) and (@)
can be replaced with <. More precisely,

]-Q|Aﬁrst casc| N(s r.h.s of (IH) ]-Q|~Asccond casc| < N(s -1.h.s of m (49)
With this Q and |Fy| + |F| < N¢, we have
EFyF = E1qFyF +Elqc FyF = E1gFy F + O(N3¢~D) (4.10)

Hence to prove (€3], we only need to bound E1q FyF. For the first case, i.e., k; # a (1 <1i < n), using (£9),
and the fact that Fjy and ) are independent of the a-th row and column of X, we have

(a) n
EYS X X X teRA({kYiy )i {6)i) <H<Xaki>sw‘<xm>“>

n kl)kQ; ok $158n t1, s i=1

<> > > (Z si+ Y ti=2m+ 1) (Hl (si 2 1)1 (t; #1)1(s; +t; #0) (Nl/z)max{sl»,ti}z> (E| Fy|) N®

n {si}{ti}

-y z T 3w A i 6058 (e o

for any 6 > 0, where the factor (N_l/Q)_2 = N comes from summation of k; : 1 < k; < N. It is easy to
check:

H 1 (Sz 75 1) 1 (ti 75 1) 1 (Si Tt # 0) (N—1/2)max{si,ti}—2 < (N_1/2)1(5i+ti62N_1)

Therefore, for any 6 > 0,

(a) n
EYS X X X teRA({kYiy ()i (6)i) <H<Xam“<Xm>“><<E|Fo|>N—1/2+6

n ki,ka,..okn S1500080 T1ytn i=1
(4.11)

Similarly for the second case: without loss of generality, we assume k1 = a. Then as above, using ([£.9), and
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the fact €2 independent of the a-th row and column of X, we have

n

EY. > Y Y Y tamA(tkdny {sidi (i) | 1) (X0 | (Xa)®

n kz,...,kn#a S 82,..y8n t2,..tn 7;751

DS 1D it eaN+ 1| [ J]1(si A D)1t # 1)L (s + i # 0) (N /2maxtsntdt2 | (B Fy|) N°

o {si}{t} i>2 i>2
< (B|Fpl) N71/2H0 (4.12)
Combining ([I1)) and [@I2)), we obtain
ElqFoF < (E|Fy|) N~1/2, (4.13)
Then together with (EI0]), we obtain (43 and complete the proof of Lemma O

Now we slightly extend the above lemma. Instead of assuming F' €, Fy /5 - F, we assume that F'= F €,
Fijp- F+ O~ (N—P) for some fixed D > 0.

Corollary 4.6. For fized indeces a,b and ensemble X in lemmal3 2, let Fy and F be two random variables
bounded by N for some C, i.e.,
|Fo| +|F| < N¢

We assume that
Fy € cho

and for some fized D > 0,
F =€, Fl/g ‘/—"+O<(N7D)

Then we have
|E FoF| < N™Y2RE|Fy| + N—P+2¢+1 (4.14)

Proof of Corollary[J-6} Write
F=FM+F°, FMe, Fipp-F, F =0 N"P)

Here superscription M and e are for main and error. (Note F™ and F¢ are not assumed to be bounded by
N¢, otherwise the proof is much simpler.) For simplicity, we assume FM ¢ F 2+ F (not €,) and for some
m >0, FM € Fy ;5(F1)™. Then we repeat the same argument as above, i.c., from {G) to @J). Then for

any (small) § > 0 and (large) D > 0, there exists probability set {2, which is independent of the a-th row
and column of X, such that P(Q) > 1— N~ and (@J) holds. Next we write

|EFoF| = |Elge FoF| + [EloFo FM| + [E 1o Fo F°|
= N~D+20 | N-1240 |Fy| + |E 10 Fy F°|

where we used |Fy| + |F| < N¢ and ([@I13).
Now we bound |E 1o Fy F¢|. By the definition of < again, there exists (2 such that P(2) > 1 — NP and

F¢ g N—D+5
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With this ©Q, and |Fy| + |F| < N¢ we write

E1oFyF¢| < |Elg aFoF°| + [Elg g. FoF°| (4.15)
= [ElonqFoF| + [Elgnge FoF| + [E Lgng FoFY|
< N-D+C+6 N-D+20 + |]E 1Qm§cF0FM‘
For the last term, we note that by the definition of 2 we can simply bound the term in F which are
independent of the a-th row and column of X by N°!'. Then using the assumption FM ¢ Fija(F1)™, we

have
2m—+1 2m—+1

|1QFM| < NAm+l Z Z H (lXakj| + |_Xak;j|)

n=1 ki,k2, kn j=1

Together with Cauchy-Schwarz inequality, and subexponential decay property (1), we obtain that
IE1gng. FoF°| <Elg |[RyFe*P(Q°) < N~P+Om
Inserting it into (£I3)), choosing large enough l~), we obtain ([{LI4]) and complete the proof. O

More general, if Fr €, F;/; - F hold uniformly for 7' € T, corollary .6l can be extended to the following
integration version.

Lemma 4.7. For fized indeces a,b and ensemble X in lemmal33, let Fr be a family of random variables such
that for some deterministic x7 and uniform D > 0

Fr €n arFija - F +O(N7P)
hold uniformly for T € T =Ty, i.e., Fr = FM + F% and
FMenarFip-F, Ff=0(N"P)

hold uniformly for T € T = Tn. Here we assume that UxTn can be covered by a compact set in RP for some
p € N, this compact set and p are independent of N.

We also assume that |zvr| + |Fr| < NC for some uniform C > 0. Let Fy be a random variable satisfying
Fy < N°F and |Fy| < NC. Then

‘IEFO/ FTdT‘ < N7Y2 (IE|F0|)/ |z |dT + N—P 20+ (4.16)
TeT TeT

Proof of Lemma[{%} Since Fy and Fr are bounded by N, one can exchange the order of integration
and expectation, i.e.,

IEFO/ FTdT:/ (EF, - Fr)dT
TeT TeT

Then with the uniformness, one can easily extend the proof of Lemma .5 and corollary .6l and prove this
lemma.
O
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4.2 Proof of Lemma [3.2l The Lem. and [£7] are the key observations for the proof of Lemma 3.2l Now
to prove Lemma [32] we claim that the following lemma 9] which shows that the terms in Lemma
can be represented by F and F/, - F(with negligible error term). We first introduce a cutoff function on

Rem(®9). (Recall the definition in Def. E.T))

Definition 4.8. Define x, as
X0 = e 2) =1 (| Rem @] > (v ) (4.17)
Note: By definition and @3), h(tx) > 0 implies x, = 1, and for any |U| + |T| = O(1), we have
htx) >0 = xa=1 = |RemUD|> iNE(Nn)*l (4.18)

Lemma 4.9. Recall X»® and m(®%) defined in Definition @I). Under the assumption of Lemmal[33, for
any fized large D > 0, we have

h(tx) Rem — h(t i) Rem@® €, Nif +OL(ND) (4.19)
n
Bn(X) €, (N))™ ' F+O(N"P), m=1,2,3 (4.20)
1
XaPn(X) €n 5o Fuye F 4 O<(N=P), m=1.3 (4.21)
1
oPo(X) €y — NP
XaP2(X) € N77]:+O<( )

uniformly hold for
a,b: 1<a#b< N, z:|z]-1<2, and wEel.

We postpone the proof of this lemma to the next section. In the remainder of this section, we will prove
Lemma with Lemma .9 First we introduce a simple lemma for the calculation of F sets.

Lemma 4.10. Let A and B be two variables stochastically dominated by N for some C' > 0, i.e., |A|+|B| <
NC. If for random variable Ay and By, we have

A=Ay+O0(N"P), B=By+0,(N"P),

for some D > 0. Then
AB = AgBy + O<(N¢~P) (4.22)

Proof: By assumption,
(A= O<(N"P)) (B—-0O<(N"P)) = AyBy

With |A| + |B| < N, we obtain ([22).

Now we return to finish the proof of Lemma [3.2] B
Proof of Lemma[32: For simplicity, we introduce the notation A(w,z) as

A(w, z) == h(tx) Rem(w, z) — h(tx@.0)) Rem ) (w, 2)
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First as in (330), (3I8) and (323)), one can see that there exists uniform C' > 0, such that

AP+ AL+ 1A, )l + Y 12201+ Y [Pa(w,2)[+ > [Ba(w,2)] <NO  (4.23)

n=1,2,3 n=1,2,3 n=1,2,3

with AY) = AQ), |+ AP - aY)

Y(awa))s We Write

Ay 2300 = S CulA = (4 QL) #H)

Recall the definitions in (Z7), 328) and @I7), for fixed I, with the notation A(w,z) and EIF), we can

write:

(Ag?()a,@ yp=3-t (A(f Ag{(a a)) P3(X) (4.24)
B 1+3 1+3
(A, s /T HA(wi,z» [T (caPrBu)(wi, z) [T Af(E)x (i) (BT
=1 i=l+1 =1

where dT = [[, dE;dn;dA(&;) and T = (I. x supp f)"*3. Using (@23), Lemma L9 and Lemma ILI0, for any
fixed D > 0, we have

l 143 143
/lei,zi oP1B1)(w;, 2;) Fiso- F+O0L(N"D), i = Imw; 4.25
E ( )izlz:[q(x 1B1) <H N7 > 1/2 <( ) n ( )

uniformly hold for T' € T. Applying Lemma [£7] by choosing

l 1+3 1+3
Fo = (A§§<a P Fr=T] AW z) [ PiBy)(wiz), o =[]0 'AFE)x(m:)¢ (E:)
i=1 i=l+1 =1

and T = (I. x supp f)*3, with ([@24) and ([@24)), we obtain
\ 1 :
E(ALL 7 (A0 = A ) 23 < N (B (1AL 7))+ NP
for any fixed D > 0. Then use Holder inequality, we have

’ (A(f

X(a a)

Pt (a9 - ) 2H00| <82 (020) + 8 (1AL 1))
Similarly, one can prove

E(AY )2 25(0)| + [EAL 221 (X) 22(X) | +]E(AL )77 25(0)| < N7V2 (02 (1) +E ((40,.0))7) )

(4.26)
It follows from (@3) that m — m(»% = O(Np)~!. Then it is easy to check that |A(f(a @ — A¥)| < C.
Inserting it into (£20]), we complete the proof of Lemma [3.21

O
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5 POLYNOMIALIZATION OF GREEN’S FUNCTIONS

As showed in the previous sections, to complete the proof of Theorem [[.2 it only remains to prove Lemma
In this section, we will prove Lemma [4.9] i.e., write the terms in ([£I9) as polynomials in F or Fy s - F
(up to negligible error). Since the uniformness can be easily checked, we will only focus on the fixed a, b, z, w:

a,b: 1<a#b< N, =z:||z2|-1 <2, and we€ L.

First we need to write the single matrix elements of G’s and G’s as this type of polynomials. To do so,
we start with deriving some bounds on G’s under the condition:

1
|[Rem| > ZNE(Nn)_l (5.1)
Note: this condition is guaranteed by x, > 0, h(tx) > 0 or h(tx(a.a) > 0.

5.1 Preliminary lemmas. This subsection summarizes some elementary results from [9] and [I0]. Note that
all the inequalities in this subsection hold uniformly for bounded z and w. Furthermore, they hold without
the condition (G)).

Recall the definitions of Y1) GUT) GW.T) v and y; in the definition E1l

Lemma 5.1 (Relation between G, G(T9 and GOD). Fori,j # k (i = j is allowed) we have

(k0) GikGl;j 0.k GirGrj
Gij =Gij - Gur gij =Gij — Gir (5.2)
, ) (v, , (0.9 y%y (v, G

0,) _ (Gy;) (viG) _ A (G (v )

G G+ {vgy 6=C gy (5.3)
and . .
Gl — g 4 (Gyi) (Yfg)7 G — gD _ (G Vy) (y§*g(z’ )).
1-yiGyi 1+y;GtDy;

Definition 5.2. In the following, Ex means the integration with respect to the random variable X. For any
T C [1, N], we introduce the notations

2" = (1= By, )y Gy

and

zM = (1- Ey.)y@)*g(i’my@).
Recall by our convention that y; is a N X 1 column vector and y; is a 1 X N row vector. For simplicity we
will write

zi=2", z=z".
Lemma 5.3 (Identities for G, G, Z and Z). For any T C [1, N], we have

[

. : -1
aOm _ -1 [1 +m(gz,']1’) + 122600 4 me} : (5.4)

0, 0, 1, * i . .
GYY = —wG PG (v g my D) iz (5.5)
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(¢,T)

where, by definition, g =0 ifi € T. Similar results hold for G:

—1 . .
(659 = —w 1+ m) 4 PETD + 27 (5.6)
A O o

Definition 5.4 ( (-High probability events). Define
¢ = (log N)lelos N (5.8)

Let ¢ > 0. We say that an N-dependent event  holds with (-high probability if there is some constant C
such that
P(Q°) < Nexp(—¢°)

for large enough N. Furthermore, we say that Q(u) holds with (-high probability uniformly for w € Uy, if
there is some uniform constant C' such that

max P(Q%(u)) < Nexp(—¢°) (5.9)

ueUn
for uniformly large enough N.

Note: Usually we choose ¢ to be 1. By the definition, if some event {2 holds with (-high probability for
some ¢ > 0, then  holds with probability larger then 1 — N~ for any D > 0.

Lemma 5.5 (Large deviation estimate). Let X be defined as in Theorem [LZ For any ¢ > 0, there exists
Q¢ > 0 such that for T C [1,N], |T| < N/2 the following estimates hold wzth C-high probability uniformly
for1<i,j <N, |w|+ 2| < C:

) (T) Immo? + |22 Im G
1271 = |1 - Ey) (V05 ) w@ﬂ¢mmc‘“41““ , (5.10)
. N
(&,T) (&,T)
|Z.(T)| _ ‘(1 _E,) (y@r)*g(m)y@r))‘ < sDQC/Q\/Imm + 2|2 Im G;;
[ i 7 i X N’I]
Furthermore, for i # j, we have
g Imm(le —i—z?ImGT” —i—z?ImGT”
’(1 —Eyy,) (ygT)G(Tv”)y@)*) Qe/2 id il : (5.11)
J J N’I]
y Immi" + Z2Img(”’m+ 2[2Im g\
‘(1 —Ey.y,) (YET)*Q(”’T)Y;‘T))’ < <PQC/2\/ g id N il o (5.12)
n
where
Ey,y, ( ) (T, i)y ('Jl‘ ) 2] G(T i5) 45 m('ﬂ‘,ij), Ey,y, ( T)*g(w,r) T)) — || g(” .T) +5ijm8j7'ﬂ‘)' (5.13)
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Lemma 5.6. Let X be defined as in Theorem[I2 Suppose |w|+ |z| < C. For any ¢ > 0, there exists C¢ such
that if the assumption

N> %N wl'/? (5.14)
holds then the following estimates hold
max |G| < 2(log N)|w| /2, (5.15)
max|w||G”||Q(l D1 < (log N)*, (5.16)
max |Gy;| < Clog N)?[w| /2, (5.17)
j
Im| < 2(log N)|w™'/?| (5.18)

with ¢-high probability uniformly for lw| + |z] < C.
5.2 Improved bounds on G’s.
The next lemma gives the bounds on G, G and m under the condition ([I]). Note: with (@3], it implies
that for any U, T: |U| +|T| = O(1),
|Rem YD) > (Np)~L. (5.19)

Before we give the rigorous proof for the bounds on G, G, we provide a rough picture on the sizes of
these terms under the condition (B1I), w € I. and ||z| — 1] < 2e. We note that the typical size of the G (v.T)
heavily relies on whether & = [ and whether k, [ are in U, T.

(i) fk=1¢ UUT, the typical size of G}(j}ifﬂ') (w,z) is m(w, z) = + Tr G(w, 2).
(ii) If k #1, and k,1 ¢ UUT, the typical size of G,(cl U (w, z) is \/|m|/(Nn).
(iii) If {k,1} NU # O, then G([U ™ = 0. This result follows from the definition, and it worth to emphasize:

(,3NU#) = G =gV = (5.20)

(iv) If k =1 € T, then the typical size of G,(CE’T) is Jwm| ™1
(v) If k #1,and k € T and [ ¢ T, then the typical size of G(UT is (|w'/2m|)=*/Im]/(Nn)
(vi) If k # 1, and k,l € T then the typical size of G,(CHZJ’T) is |wm2|71 |m|/(Nn)

(vii) With the definition of G(UT) and G(™U) in Def. B} one can easily see that G (T.U) has the same typical
size as G,(d’ (Here the superscript of G is (T, U) not (U, T)).

We note: The m is bounded by (log N)¢|w|~'/? in (ZI8) (no better bound is obtained in this paper),
but we believe that it could be much smaller.
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Lemma 5.7. Let X be defined as in Theorem L2 Let ¢ be small enough positive number, ||2%| — 1| < 2¢ and
w € I (see definition in ZX)). If GI) holds , i.e., |[Rem(w,z)| = $N°(Nn)~' in Q = Q(e,w,2). Then
there exists Q C Q, and C > 0 such that € holds in Q with 1-high probability uniformly for z, w: [|22]—1| < 2¢
and w € I, (see definition in [9)) and the following bounds hold in Q foranyl1<i#j<N, (Here A ~ B
denotes there exists C > 0 such that C~'|B| < |A| < C|B| )

I1+m| > Ni(Np)~! (5.21)
114+ m®| > Nie |2l (5.22)
0.0) _ —tey—bo 1
Gii - (1 + O(N 4 )) w 1+ m(i’i) (5.23)
|14 m| ~ |m| (5.24)
|Gii| < (log N)€|m| (5.25)
C
) ¢ ¥ Im|
1G] < (log N)C | (5.27)
ij c
G < —— (5.28)
lwm|
Gl < o0, M 5.29
| J| 12 N7y ( )
lwGy| ! > N#9| 2| (5.30)
Im@9] > (log N) ™ (5.31)

Furthermore, with the symmetry and the definition of GV and GTY) | these bounds also hold under the

following exchange
GO g™z 7. (5.32)

Proof of Lemmal27l: In the following proof, we only focus on the fixed z, w, 7 and j, since the uniformness
can be easily checked.

We choose ¢ = 1. Because ¢ < N¢ for any fixed ¢ > 0 (see (B.8))) and in this lemma w € I, one can
easily check that the assumption in this lemma implies the conditions of lemma [B.0li.e.,

wel = ([GEI4) holds for VC, (5.33)

Therefore we can use all of the results (with ¢ = 1) of lemma [5.0]in the following proof.
1. We first prove (G.21). The condition (5. implies that |1 >, Re Gy;| = $N°(Nn)~!, then there exists
i:1<i< N such that |G| > $N°(Nn)~!. Together with (EI0), it implies that |g.(.i’®>| < Jw|"'N~"5¢Ny

k22

with 1 - high probability in Q. Inserting it into (5.6 with T = 7, using ngl) =0 from (520), we have
114+ m®) + 29| > N3e(Np) ! (5.34)
Applying (E.10) to bound Zl-(i) with T = 4, using Schwarz’s inequality and the fact Ggl”) = 0 again, we obtain

|Zz(l)| < N /20 1 (89 4 Na/lo(]\]n)_l (5.35)
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holds with 1-high probability in 2. Together with (B34), it implies that with 1-high probability in Q,
14+ m] > 2N (V) !
Then replacing m*%) with m by ([@3)), we obtain [.21)).
2. For ([B.22)), first using (L3) and (B2I0), we have that for anyi: 1 <i < N
1+ mD| > N3=(Np)~! (5.36)
holds with 1-high probability in 2. Together with the Z version of (535]):
|Zi(i)| < N=¢/4 Im m) +N5/3(N77)*1

we obtain (.22]).

3. For (23), it follows from (54]) with T = ¢, (5.20) and (&22).

4. Now we prove (5:24)). Suppose (2.21)), (5:23)) and (&.I10) holds in Q2 C Q. From our previous results, Qg
holds with 1-high probability in €. Now we prove that (5.24]) holds in . First we assume that |14+ m| < 3,
clearly otherwise (5:24) holds. Together with (5.2, it implies that (Nn)~* < 3N~2°. Using [@3) and
11+ m| < 3, we obtain |1+ m()| < 4 and |m%”| < 5. With (:23), the bound |1 + m ()| < 4 implies
|G§?l)| > |5w|~!. The assumption w € I. implies |w| < € (see definition of I. in (ZH])). Then applying (G.10)
on Z;, and using ||z| — 1| < 2¢ and the bounds we just proved on (Nn)~1, mgj’i) and Gl(-?’i), we obtain that
in QQ,

7] < NG (5.37)
0,i)

Together with |G§i | > |5w|~! and the assumption ||z| — 1] < 2¢ and |w| < €, we have

[N

> |10w| ! (5.38)

Now inserting (538) into the identity (5.6) with T = §), using |m(G®’i)| < 5, and |w| < € again, we obtain that

1 1
Gii = . (|Z|2G£?l) N Zi) +ei, e < 60w ™ (|z|2GE?l) N Zl-) (5.39)
Then together with (B.37) and (&.23)), in Qg, we have
Gii — |2 72(1 + m(i’i))‘ < (O(|w]) +o(1)) |(1 + m )] (5.40)
Combining (521)) and ([3]), we have
(14+m®D) = (14 o(1))(1 +m)
Inserting it into (&.40), we have
|Gii — |21 72(1 + m)| < (O(Jw]) +0(1)) |1 +m)], in Qo (5.41)
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It is easy to extend this result to the following one:

max |Gi; — [2| 72 (1 +m)| < (O(Jwl) +0(1)) [(1 +m)|, inQ (5.42)

holds in a probability set Q C Q such that € holds with 1-high probability in 2. Since m = % > Gis, for
small enough e, with |w| < ¢ and ||22| — 1| < 2¢, (542) implies that

9 11 ~
1_0|1+m|<|m|<ﬁ|1+m|7 in
It completed the proof of (2.24).

We note: combining (£3), (51), (E2I) and (524), we have for any |U|, |T| = O(1),
mUT ~me~1+m~14+mYD U, |T]=001) (5.43)

5. For (529, it follows from (23)(with G¢” in the Lh.s.), (543) and (GI6).
6. For (B.26]), first using (&3], (12), (5I3) and (520), we obtain that

Imm(” i + |z 2Img(” i
[eSRIRS %WWWI¢ ” (5.44)

holds with 1-high probability in Q. Applying (G.106) on X 9 instead of X, we obtain that

[wllG557 165571 < (log N)* (5.45)
Recall (0] implies (519). Applying (525) on G;?i), we have that
1GS57] < (1og N)C [m )| (5.46)

holds with 1-high probability in Q. Then inserting (5.45), (546), (E23) and (G43)) into (44, with (EI8)
we obtain (B.20]).

7. For (5:27), from (&.3]), we have

; 0,
(G( J)y]) (v, el J))

G =G0 _
i1 1+ y]G( )yj

)

On the other hand, (58 and (GI3) show that (similar result can be seen in (6.18) of [9])
Gjj=—w '(1+ YjG(Q’j)Y;)_l
Then ‘ _ ‘ _ ‘
Gii = G 1 wg;; ((G(@*J)XT)U _ G(Q’])z*) ((XG<@>J>)ji - Gg.?’”z) (5.47)

]

Since X;x's (1 < k < N) are independent of G("7) using large deviation lemma (e.g. see Lemma 6.7 [9] ),
as in (3.44) of [I0], we have that with 1-high probability,

Im G

(0,5 0,5) xTY.. e}
[(XGOD) ]+ [(GONXT) ] < 7| L

(5.48)
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Inserting this bound, (&28), (5:26) and (BA3) into (B47), we have

Im Gl(-?’j) 1 )

Gy — G| < °
G~ G| < Pl (g L

ie.
[wlm \\ 0.5) ©°
Gii 14+0 G O(=—
= (1+ol5m) 6 v o)
It implies that
|w|m “

¢ = (1+0 G+ 02—
0 = (105 ) 6+ o)
Then with (B.15) and (&I8), it implies
0,5 _
G = G| < ()
and we obtain ([.27)).

8. For (5.2]), using (B4) and (520), we have

G(_Q7ij) — _ [1 +m (l i) + Z(U)]

Using (&10) and (520) again, we can bound Zl-(ij ) as
i)
Immg /

Z(U)g C
12,7 < ¢ N

Together with (543) and (521)), we obtain (B.28]).
9. For (529)), using (55), (512) and (BI3), we obtain that

(i3,0) 2 (i5,0) 2 (45,0)
00 mg + 2] Img + |22 Im G, i.0) 11 (03,0
Km<MW%mMM N + ¢ wz?|Gal |GV 1G5 (5.49)

Furthermore, with (57), (&11), (520) and (543), we have

7,0 i3,0) ) ~(ij.i Im m (45,17 i5,0) ) (g0 |m|
G571 < O ullgP VG [P < o gl O 191 (5.50)

Here these two bounds holds with 1-high probability. As in (546, applying (5:23) on g;jj ’i), with (43]) we
have
95571 < Clul ~Hm 9|~ < Clo| ™ pm|

with 1-high probability in 2. With (&25), (528), (@3)) and (&21]), we also have

|Gl < (1og N)C|ml, 1657V + 165 < Cluw| Y m| ™Y, [m§”| < Clml,
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For the G;?m in (B49), as in (&47) and (B48), with (520), we have
GS‘?@) - ngl) = wG V(G0 XT) (X GED),,
=0 (¢C|wg§§’®> | Im Gg;l) (Nn)*)
Then applying (B:25]) on G;;’i), and applying (23] on QZ(Z ’(D), with (B43]) we obtain that
G571 < (tog N) ml

Inserting these bounds into (49) and (E50), we obtain (529).

10. For (B30), using (5.I0) (with T = §) and (&23), (543) , we have

+ (Jwm|)~!
ARSI Ny

holds with 1-high probability in 2. Together with (BIJ)), we obtain

(lwm])~!

N
Together with (2.28]) and (5I8]), we have

1/2
Zi||wGii| < ¢° [l :
ZiluGal < % 140

1Zil < ¢

Then with (2.0), we obtain (5.30).

11. For (531, we note that (5.24) implies |m| > (log N)~!. Then with ([5.43)), we obtain (5.31)).

(5.51)

(5.52)

(5.53)

O

5.3 Polynomialization of Green’s functions: In this subsection, using the bounds we proved in the last

subsection, we write the G’s and G’s as the polynomials in 7 and /5 - F (with negligible error).

We note: In the Lemma and we assumed X, = 0, but the bounds we proved in Lemma and

Lemma [5.7] still hold for this type of X, the similar detailed argument was given in Remark 3.8 of [2].

Lemma 5.8. Lemmal[520 and Lemmal5] still hold if one enforces X = 0 for some fized 1 < s,t < N.

Note: Here s,t are allowed to be the same as the 7, j in Lemma and Lemma 5.7l For example, from

G29), we have |G| < @“m!/2(Nn)~1/2, even if X = 0.

By the definitions of Ag), P1,2,3(X), Bi,23(X) and P 23(X), one can see that the values of Ag),
P1.2.3(X) would not change if one replaced the G’s inside with x,G’s. Therefore, instead of G’s, we will

write x,G as the polynomials in 7 and F 5 - F (with negligible error).
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Definition 5.9. For simplicity, we define the notations:

(a.0)]

1/2 Im
Nn

Xa

o= Xa|m(a’a)|, 8= Wa Y = Xa|w|

We collect some basic properties of these quantities in the the following lemma.

Lemma 5.10. Under the assumption of Lemmal32, for z, w: ||z%| — 1] < 2¢ and w € I.

Xa(log N)™! < a < (logN)“B < (log N)“n~t (5.54)
Xa(log N)T'N7V/2 <y < N75/2 (5.55)
87* = Xxa(Nnp) ™! (5.56)
% < a < xa(log N)C w172 (5.57)

hold with 1-high probability.

Proof of Lemma[510: We note x, = 1 implies the condition (G.I). Hence the results in Lemma [5.7]
hold with 1- high probability. First from (531 and |w| > 7, we have the first and the third inequalities of

(ER4), and the first inequality of (B55). The second inequality in (5.54) follows from (EI8) and (B43). It
also implies the second inequality of (557). Combining the second inequality of (.54]) with ([26]), we obtain

the second inequality in (B.55). For (2.50), one can easily check this identity by the definition of 8 and ~.
For the first inequality of (.57), it follows from (E21)) and (B43]). O

Definition 5.11. Under the assumption of LemmalZZ, for w € I, ||z| — 1| < 2e and s,k # a, we define Sk
and Ssk as random variables which are independent of the a-th row and columns of X and

G}(j),a) (a) G(@ka
G(Q”“) - Z SksXsa and Z XsaSsk

With ([&.5]), one can obtain their explicit expressions, e.g.,
Sks — kat;Ca g(ak a) G(a ,a) Zg (ak,a) th

Similarly, we define Sks and Ser as random variables which are independent of the a-th row and columns of

X and
g(m ,a)

gk:a Y Z Sk:s as and (a 0) Z XasSsk

As one can see that .S, S , S and S have the same behaviors. Here we collect some basic properties of
these quantities in the the following lemma.

Lemma 5.12. We assume that ||z] — 1| < 2, w € I, k # a and X satisfies the assumption of Lemma [T 2.
For some C' > 0, with 1- high probability, we have

IXaSks| < Xa®® (Osk +7) (5.58)
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S0 as §, S and S. Recall the definition F’s in Def. [{.3, for some C > 0, we have
XaXaa €n VF;  Xa(XSX)aa €n VF, (5.59)

and B
Xa(XTSSX )aq €n NV2F (5.60)

Furthermore, (553), (G59) and (G6QA) hold uniformly for ||z| — 1| < 2, w € I. and k,s : k,s # a,
1<k s<N.

Note: With (B59), we also have

-1 -1
a a a 0.a
Yo (GED) (KGO0 = xa (G7) D XakGR™ = Xa (XSX)aa + Xaa) €07 F  (5:61)
k

Proof of Lemmal512: Since the uniformness are easy to be checked, we will only focus on the fixed z,
w, s and k.

1. For (5.58), the condition Y, = 1 implies that we can apply Lemma [5.0 on the X () Recall: these
bounds also hold under the exchange (B.32)). Then the bounds (528) and (5.26) imply that for s # k,

XalGi ™| < (log N)Cm@ )], xa|G12")| < |w1/fnj<a,a>| |m](va:)|, (5.62)
holds with 1-high probability. Similarly (523]) and (E43]) implies that for s = k
Xel G| < Cluom (@)t
holds with 1-high probability. Then with the explicit expression of Sis in Def. E.11], we have
(a)
XaSks = O(0s + %) — wGS* Zg (ahka) X, (5.63)

holds with 1-high probability. Since Xy’s are independent of Q(ak g (I <t < N), using large deviation
lemma (e.g. see Lemma 6.7 [9] ), as in (3.44) of [10], we have for

(a)

(aka)
(ak,a) C Im Gss
_— 5.64
2.6 Ny (5.64)

holds with 1-high probability. Applying Lemma 5.7 on the X (%% again, from ([5.21), we have

1
GL29] < (log N)C ™) | 4 Oy o
fwm @)

with 1-high probability. Together with the first part of (.62]), (563) and (5.64), we obtain
IXaSks| < COs + 9% + @ w/2m @]y (5.65)

with 1-high probability. At last, with (5I8]) and (5.43]), we obtain (5.58).
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2. For (5.59), we recall the definition of F in Def. @3] especially the two N'/2 factors in F. It is easy to
see that ([59) follows from the first inequality of ([E53]) and the bounds on S in (E5S).

3. For (5.60), since the (5.58) also holds for S, then with the first inequality of (555), we have
1Xa(S9)k| < @€ (O + 7 + N~2) < p©Ny?

with 1-high probability. Together with definition of F, we obtain (&.60).
O

Now we introduce a method to track and show the dependence of the random variables on the indices.
First we give a simple example to show the basic idea. Let Ay, 1 < k,I < N be a family of random variables:

Gy Gy
GG

(XGEeIXxTy ., 1<k

Ay = AN (5.66)

where X7 is the transpose of X. By definition of F and Fj, we can say,

AME}—O'.FO'}—l e F

(a,a) (a,a)
But the first part of the r.h.s. of (5.60), i.e., ‘g(a or only depends on the first index k, the second part Ig(a or

only depends on the second index [ and the third part is independent of the indices. Therefore, we prefer to
write it as
A e FyFFD

More precisely, Ay € ]-',gk} -]-'g] -]—'1[@] means that Ay = f1(k)f2()f3 and fi(k) € Fo, f2(l) € Fo, f3 € Fu,
and f1(k) only depends on index k, f(1) only depends on index [, and f3 does not depends on index.
For general case, to show how the variable depends on the indices, we define the following notations.

Definition 5.13. Let A; be a family of random wvariables where I is indices (vector), not including index a.
we write

A e [TFN, Fo, € {Fo, Fipo, Fr, F}
where I; is a part of I, if and only if there exists fi(I;) € Fa, such that Ar = [[, fi(I;) and fi(1;) only
depends on the indices in I;.

For the example in (5.66), we write Ay € ]—‘(gk] .]-‘([)l] -FUO where I = (k,1), I, = (k), I, = (1) and I3 = (0)),
a1 =ay=0and az3 =1

The following lemma shows the G’s can be written as the polynomials in F’s.

Lemma 5.14. For simplicity, we introduce the notaion:

}'gi{ = X FD 4 Xy FY (5.67)
i.e.,
fk € ]:(gk] — Hgku hk S ]:(gk] : fk = Xakgk + Xkahk
Let w € I. and ||z| — 1| < 2e. Under the assumption of Lemmal[32, for any D > 0, we have
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XG0 e, BF+ 0, (N7P) (5.68)

and
XaGaa €n aF + O (N7P) (5.69)
For any k # a,
Xa( GO TGN € v Fy + Fk + OL(N7P) (5.70)
and,
XaGak €n \/7 Fily FO 4+ (a+ By) FO - Ff + 0L (NP) (5.71)

For any k,l # a,

(oo e (3

N2 Fily+ BYFORFL )y + By FO Fly + By )]-'W)] + O (N"P) (5.72)

Furthermore, (568))-(172) hold uniformly for ||z| — 1| <26, w e I, and 1 < k,l #£a < N

Proof of Lemma[d.14: Because one can easily check the uniformness, in the following proof we will only
focus on the fixed w, z, k and I. Recall (ZI8) and (&33), with the assumption w € I, and ||z| — 1] < 2¢
we know the results in Lemma and [5.7 hold under the assumption of this lemma. Furthermore, these
results also hold for X () (instead of X).

1. We first prove (5.68). Applying Lemma 57 on X (@9 with (25), (5:29) and the first inequality of

BEET), we have
xaG,(j’a) € (5;.31 o+ |w7%|7) Fo, and |w7%|7 <« (5.73)

Then with
740 — (( XGeoxT),, — m(ma)) (5.74)

and o := yom(*® we have
Xa(XG@IXT) e, aF and x,Z% €, o F. (5.75)

From (&0) and (520) with ¢ = a, T = a, we have

Xag(awpxi 1
—w 1 4 m@a) 4 7z{

Then with (522)), for any €, D > 0, there exists C¢ p depending ¢ and D, such that
Cs,D

XG5 = Xa Lw > <7( O (Zé“))k‘1> +O0<(N7P)

NG m(2))

holds with 1-high probability. Hence with (5:43) and XoZS € Mm@ F in (E75), we obtain that

XaGla®) F+O(NP)=BF+0(NP) (5.76)

" wm(a,a)
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which implies (5.68) with the fact: gé‘};q’) and Gfl?l’a) have the same behavior.
2. Now we prove (5:69). From (5.30) and (@4)), with ¢ = @ and T = (), for any ¢, D > 0, there exists
Ce,p depending € and D such that with 1-high probability,

Cs,D

—w X k-1 D
XaGaa = a a (Za) T+ O< (N7 ) (577)
Z (1D + 220887 )k

Note: 1+ m(ga’w) + |z|Qg¢(;Z’®) is independent of the a-th column of X, but depends on the a-th row of X.

From (I0) and (BI3), we have

2o =23 (X6l + 23 65" X + 3 (X kG Xia — m§? — 226l (5.78)
k k kl
Now we claim that for any D,
XaZa €n BF +O<(N7P) (5.79)
and
—1
Xa (1 + om0 |z|2ggg>@>) €, wa F + O (N7D) (5.80)

Combining (579), (580) and (E77), we obtain (5.69).
2.a We prove ([.79) first. Using the G version of (561 and (E76), we can write the first two terms of

the r.h.s. of (B78) as we can write

XaZZ (xT akgl(: D 4 vz Zg( D X0 = 24 Re 2 (g(“’Q)X> €n BYF +OL(N7P) (5.81)

aa
Similarly for the third term of the r.h.s. of (B.18), using ([B.2)), we can write it as

(XTGODX) 00 = S (XT)ar G Xia + (G20) 1S (X760 650 X

kl kl
—(XTG @D X) 0 + (GL2D)~ (g(a @)X) (g(a,@)X>

Using (&73) , (.61) and (&.76), we obtain
Xa(XTG D X) 00 €0 aF + B72F + O<(N D), (5.82)

aa aa

For the fourth term of the r.h.s. of (B18)), using (52), we have

g(a 0) g g a0
(a, @)

aa

G =
Together with (5.60), it implies that

m&Y = e | %gg‘;’@ ((X§SXT)aa +1) (5.83)

and
a 1 _
Xam(g 0 €n a}"—|—[372}"—|——ﬂ]~"—|—0<(N D)
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Now inserting these bounds back to (B78) and using the relations between «, 8 and v in (&54) and (53,
we obtain (B.79).

2.b Now we prove ([B.80). With (&83) and

(Gl = —w(1 + (XG@IXT),,) = —w(1 + m @ 4 Z()

we write
1 (gav)™
(a,0) (a.0) — (@a) = (5.84)
1+mg" + |2*Gaa Hhe v ((XSSXT) + 1) + 2|2
B —w(l + (XG@2XT),,)
—w(1+m@a))(1 +m@a) + 2{) 4 L ((X§SXT) + 1) + 22
We write this denominator as
1 ~
(—w(1 +m @)1+ m@) 4 |z|2) + (—w(l +m(®)Z() + ((XSSXT) + 1)) (5.85)

With (£22), (543), (5I8), we can bound the first term in the second bracket as follows:
Xa|w(1 +m(a’a))Z((la)| < N—a/5

holds with 1-high probability. Together with (L.60) and (E53]), with 1-high probability, we can bound the
second bracket of (5.85) as

1 ~
Xa <—w(1 + m(9)Z() 4 ((XSSXT) + 1)) < N—E/6 (5.86)
On the other hand, we claim for some C' > 0, the following inequality holds with 1-hight probability.

Xa

—w(1+m 01+ m D) 4 [22] > xa(log N) = (5.87)

If (587) does not hold, then y, = 1 and 1 +m(®»® = (—|z| + O(log N)~“)w~ /2. With @&3), (5-2I)) and
[|z] — 1] < 2e , we obtain
1+ m& = (=|2] + O(log N)~C)w™1/2, (5.88)

It follows from 14 m(®%) = (—|z| + O(log N)~¢)w~1/? and (523) that
Gla® — (12|71 + O(log N) = )yw=1/2 (5.89)
Inserting them into (BI0), with (26]), we have
|Z4] = O(log N)~Cw~1/2 (5.90)

Now insert (5.88), (5:89) and (5:90) into (54), we obtain |Gua| = (log N)¢~1w|~1/2 for any C' > 0, which
contradacts (BI5). Therefore, (.87) must hold for some C' > 0.
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Recall the denominator of the r.h.s. of (5.84) equals to the sum of the Lh.s. of (5.80),(E.87) (see (B:8H)).
Then inserting (&.80),([E81) into (E85), we have that for any fixed D, there exists C. p, such that with
1-high probability,

Xa — (a,a) T
- — = ~XaW(1 + (XG"Y X7 )0q) (5.91)
1+ mgj D 4 |z|2gl(w’®)

oo ((Cul+menz? + 4 ((x8sx7) +1))"

= (—w(1 +m@®)(1 +m@a) + [z]2)"

* +O0<(N7P)
For the terms in (T01), we apply (5.73) on (XG(*®XT),, and 7" apply G24) on (1 4+ m(»%)), apply
(E60) on (XgSXT> , apply (&.53) on v and apply (0.87) on the denominator of (5.91]), we obtain

CE,D

Xa 2 2 -\ k-1 -D
- —57 €n —Xa (WF + waF) (—we®F +~4*F)" +O0<(N7P)
1+ m&? 4 |2268" ;

With the bounds of a and « in (554), (E55) and (E51), it implies (E80). Combining (E.79), (580) and
E1T), we obtain (5.69).

3. For (&.10), it clearly follows the Def. BT (558) and Def.

4. Now we prove (5.71)). First with (&.6]) and ([&I3]), we have
(Gaa) ™t = —w(1 + (YGPIYT),,). (5.92)
Applying (B3) on Gur with i = a, recalling Y = X — zI, we have
Gar =G + Gy, ((G(@’“)XT)M - z*Gg%@) ((XG(Q"”)ak - szl%“)) (5.93)
=G+ wGa G PO — 2wG " Gua (GO X ) g

_ z*wgaaG((l@,a) (XG((D’a))ak + wgaa(G(@,a)XT)aa (XG(®7G))ak

a

Writing the first term in the r.h.s. as Gl(]%a)gaa(gaa)_l and applying (5.92) on (G..) ™', we can write the
first three terms in the r.h.s. of ([L93)) as

(-1 (XGODKT) gy 4 25 (XG0 ) wGaa G

Therefore

G = (1= (XGOOXT )y + 2 (XGP) o) w0Gaa G + (2" G + (GOOXT) o) wGaa (KGO
(5.94)

Inserting (.68)-(G70), (81), (82), the fact: af = x, and (G61) into (G94]), we have

XaGak €n (1+a+ By + 8y?) FO (vF ), + A ) + (14 2) FOX GO0 + 0L (NP)
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More precisely, here what we used is the G-version of (581]), (B.82)), i.e
Xa(XGP)4q €, ByF  and  xo(XGPIXT)4q € (a + By*)F

They follows from (B.81), (5:82) and the symmetry between G and G.
Next using (5.57), we have

XaGar €n (o + B9) FO (77, + FIL ) + FOUK GO0 + 04 (N7P) (5.95)
€nXa \/; Fily - FO 4 (a+ By) FO - Ff 4 xa(X GO FU 4+ O (N7P)
For (XG(®:®),;. in (£95), using (5.2)), for k # a we have (note: s can be a)
Gl _ 0o _ G Gyy”
Gla®
Together with (.G61]), (568) and (G70), it implies that
Xa(XGOD) oy = Xa(XGOD)gp + x% " (5.96)
En Xa(XG@D) + Wﬁ‘;a- Fih+ By FO . F 4+ OL(N7P)
It follows from (B73), (note: |w='/2|y = a'/2(Nn)~1/?) that
Xa(XG@D)oy € \/; Fi+ aF Xax €, \/; Fil +ar)k.
Inserting it into (B.90]), with Lemma 510, we obtain
Xa(XGOD) en\/i Fily - FO 4 (a+ By FO - A + 0 (N7P) (5.97)
Together with (5.95]), we obtain (B.71)).
5. Now we prove (572). With (£97), (570) and Lem. B0, we have
Yo ((G<@>G>XT)ka - z*G,ﬁQj;“)) en By FH, - FO 4 pFO . FH 4+ 0L (NP) (5.98)
Together with (53), (92), (568) and ([50]), we can write Gy as follow,
(le G0 ‘”) xdwgaa ((G(w’“)XT)ka - Z*G,g?;”) ((XG(Q’“))GZ - ZGS’;*“)) (5.99)
B O (By 7Y, - FO 4 gFOL ) (B9, - FO 4 pFO B ) 4+ 0L(NP)
urt 50 (P 4 2 ) 50 1 55 0
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Furthermore, with (52), (568)), (570) and (556), we can write Ggl)’a) as

0.0) ;0.0 00) ;0.
aloaf — .00 G G
P aaa G(@ a) G(@ a)

0,a a,a
Xa (Gél ) G](gl )) = Xa
l k] l
_‘7:1/2]:1/2]:[@ +ﬁ7( ]:1/2 ]:([)]X‘Fl[/2> Fo "‘5}-0 }-01 +O0<(N"P)

Therefore, together with (.99]), we obtain ([.72]).
O
Next, we write the terms appeared in the Lemma[Jlas polynomials in F, ;5 and Fy /5 - F (with proper
coefficients and ignorable error terms).

Lemma 5.15. Let w € I, and ||z| — 1| < 2e. Under the assumption of Lemmal33, for any fized large D > 0,
with X, defined in [@IT) and F ¢ defined in (567, we have that for k # a

1 _
Xa(m —m(>?) €, N_77]:+ O<(N~P)

( )

XaGy € BF +O<(N7P) ( )
Xa(Y@)ag €n F + O<(N~P) (5.102)
Xa(Y G)a €0 1 F L, - FO 4+ FL FIO 4 O (N-P), (5.103)
( )

Xa(YG*)ap €n Ffl/z - F+ XpaF + O<(N7P). 5.104
Xa(G?)aa En %}‘ +O0<(N"P) (5.105)
Xa(G2)bb €n [377_1]:4' O<(N_D) (5106)

Xa(YG2Y ") aq €n 2 F + OL(N~P) (5.107)
n

Proof of LemmaZ18: 1. For (BI00), using (5.72) and (B.69), we have

Xa(m m (@ a)) )](\’;Gaa + Xa;] Z (Gkk — G](:]lc,a))
k#a

o} 1 a -
SE 2R DY ( N U+ Pl + ﬁfg?;fg?;()f[ﬂl +OL(NP)
k#a

L By B -D

Here for the last €,,, we used

k) k) [k [k k k
S AL e S A e F AL eF (5.108)
k#a k#a k#a

Then with (5.54) and (5.55), we obtain (.100).
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2. For (B.I01)), it follows from (&72)), Fy/2 - F1/2 C F and the fact: Xq = 0 that

XaGb €n xaGiw™ + j@—‘;f + By XpaFi1j2 - F + BXpaXoaF

Xa
€n aF + an+ (B+~B)F

where we used (520 on GZSZ’“), Xpa € F1/2. Now using Lemma ET0, we obtain (G.I0T).
3. For (5102), with (53) and (592), we can write it as

Xa(Y Qo = —XaGaa (Y C®D)0 = —xqtwGaa ((XG(@*“))M - ng(?;a)) (5.109)

Then with (5:69), (563) and (5.81)), we obtain (5.102).
4. Now we prove (0.103), with (53) and (592)) again, we write it is

(YG)ak = ~0Gaa(Y GO )t = —Gaa (XGOD)op — 2G5 (5.110)

Then using (598) and (E69), we obtain (GI03).
5. For (5.104), by definition, we write (Y G?)qp as

(YG)ap =Y (Y G)akGrp + (Y G)aaGab

k#a
Then using (E103), (B72), with X, = 0, we get
Xa Y _(YG)arGho (5.111)
k#a
(0 [k (a,a) Flk ] (0]
€,y FU ( 1/2+IOX) <G + X fm 1/2+67( f1/2+foxf1/z) + BFN )
k#a

With (EI08]) and Lemma 510, we obtain

Yo D (V@G €0 FOY (vF, + Flk ) Gl + X ( FULFO 4 FUx,)
k#a k#a

Then applying (B.73]) on G,i‘ll)’a), we obtain XaG,(;)’a) € (lw|~'2y + dppa) }'(Ek’b]. Now with

Y A B €NFp Y F Ryt e Fup
k#a k#a

and Lemma again, we get

Xa Z(YG)akab En % (]—'1[/] ].'[@] + ].'{ ]Xba)
k#a

Similarly, with (B102), (571) and Lemma 510 again, we obtain

Xa(YG)aaGab €n 7 (]:1[1}]2]-"[@] 4 ].'[b]Xba)
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and we obtain (B.104]).
6. For (5.105), we write (G?)4, as

Xa(G2) = Xa Z GakGra + Xa(Gaa €n Z XaGakGra + ]:
k#a k#a

where for the second €,,, we used (L.69) and (&54). As in (BI1), using (&71) and (.I08), we have

2
Yo ) GarGia = < fyﬁz FO 4 (ot By) FO -fé’fk)
k#a k#a

& (S4tarmy) 7

Then with Lemma [5.10, we obtain (5.105).
7. (BEI06), we write it as

Xa(G?)w = > GGy + (Gw)? + (Gap)?

k#a,b
With (572), (EI08) and ), Fa Ve NFY, (= 0,1/2,0), after a tedious calculation, we get
Xa Y GGy
k#a,b

2
kb k] b b [k
(\/ f[ ]+ 1/2 1/2"‘5 ( ]}—{/]2 ]:é!){]:lﬂ)'i_ﬁfo.])( ox) Flo)
k#a,b

]-'+< 1/ -+ By 1/ +—N 2+ +ﬂ2 2>f{l}]2fl“}]2f +O0<(N"P)
+<Nﬂm/ + B84/ 3 +—+ +62 2+ﬂ2 )Xbaf{‘}]zf+(52v2N+ﬂ2v+62)X§J

Then using Lemma [5.10] F 1/2 1/2 e F, Xba]:l[/2 € F and X2, € F, we obtain
B
Xa > GG €n ]-'+O<( )
k#a,b

Similarly, using (572), and Lemma [5.10 we have

B

. 2
XaGopGrp €n (a +——+By+ ﬁ) F+O0<(N"P)e, ;}-‘f’ O<(N™P)

N
Using (.69), and Lemma [B.10l we have

XaGbaGab En §F+ O< (NiD)
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which completes the proof of (EI0G]).

8. For (I07), it follows from
(YGzYT)aa = Gaa + w(g2)aa

and (B.69) and (B.1059).
Now we are ready to prove Lemma [£.9] which is the key lemma in the proof of our main result.

5.4 Proof of lemma First with m — m(®® = O(Nn)~! (see {@3)) and the definition of x,, for any
fixed D > 0, with 1-high probability, we can write the h(tx) as

& 1 Rem — Rem(@®a)\ "
h(tx) = Xah(tX) = Z Eh(k)(tx(a,a))xa ( NE(NT])—I > + O(NfD)
k=0

where constant C. p depends on € on D, and h(¥) is the k — th derivative of h. Using (E.I00) and the fact
that h is smooth and supported in [1, 2], we obtain

h(tx) €, F + O<(N~P) (5.112)

and
h(tx) = h(txen) €n N (|t xen| < 2)F + O (N~P) (5.113)

Note: 1(|tx@a| < 2) = 1(|Rem(®9)| < 2N°(N7)~!). Similarly, one can prove
R(tx), h'(tx), h"(tx) €n 1(|txw@a| < 2)F+O0(N"P) (5.114)

Using (&112), (EI13) and (GI00), we have

1
(h(tx) Rem — h(tX<a,a))Rem(“’“)) €n (h(tx) Rem(®®) — h(tX<a,a))Rem(“’“)) + N—n]-" +O(N~P)
1
n—F+O0O- (NP 5.115
€yt t <(N77) ( )

It implies (EI9).
For (£20), recall B,,(X) is defined as

1
T oml

Then using (B.112), (5I14) and (EI00), we obtain ([20).

B (X) (N1E )™ (bt =D () + B0 (1)t

Similarly, for (2], the terms appearing in the definition (320) have been all bounded in (5104), (569),
EI06), (E104), (BI07) and (GI0I). With a simple calculation, one can obtain ([@2]]) and complete the

proof.
O
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