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We analyse the spectrum of additive finite-rank deformations of N×N Wigner matrices H. The spectrum
of the deformed matrix undergoes a transition, associated with the creation or annihilation of an outlier,
when an eigenvalue di of the deformation crosses a critical value ±1. This transition happens on the scale
|di| − 1 ∼ N−1/3. We allow the eigenvalues di of the deformation to depend on N under the condition∣∣|di| − 1

∣∣ > (logN)C log logNN−1/3. We make no assumptions on the eigenvectors of the deformation. In
the limit N →∞, we identify the law of the outliers and prove that the non-outliers close to the spectral
edge have a universal distribution coinciding with that of the extremal eigenvalues of a Gaussian matrix
ensemble.

A key ingredient in our proof is the isotropic local semicircle law, which establishes optimal high-
probability bounds on the quantity

〈
v ,

(
(H − z)−1 −m(z)1

)
w
〉
, where m(z) is the Stieltjes transform

of Wigner’s semicircle law and v,w are arbitrary deterministic vectors.
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1. Introduction

Random matrices were introduced by Wigner [35] in the 1950s to model the excitation spectra of large atomic
nuclei, and have since been the subject of intense mathematical investigation. In this paper we study Wigner
matrices – random matrices whose entries are independent up to symmetry constraints – that have been
deformed by a finite-rank perturbation. By Weyl’s eigenvalue interlacing inequalities, such a deformation does
not influence the global statistics of the eigenvalues. Thus, the empirical eigenvalue densities of deformed
and undeformed Wigner matrices have the same large-scale asymptotics, and are governed by Wigner’s
famous semicircle law. However, the behaviour of individual eigenvalues may change dramatically under a
deformation. In particular, deformed Wigner matrices may exhibit outliers, eigenvalues located away from
the bulk spectrum. Such models were first investigated by Füredi and Komlós [29]. Subsequently, much
progress [5–7,11–13,28,32] has been made in the analysis of the spectrum of such deformed matrix models.
See e.g. [32] for a review of recent developments. Analogous deformations of covariance matrices, so-called
spiked population models, as well as generalizations thereof, were studied in [1, 2, 4].

In a seminal work [3], Baik, Ben Arous, and Péché investigated the spectrum of deformed (spiked)
complex Gaussian sample covariance matrices. They established a phase transition, sometimes referred to
as the BBP transition, in the distribution of the extremal eigenvalues. In [31], Péché proved a similar result
for additive deformations of GUE (the Gaussian Unitary Ensemble). Subsequently, the results of [3] and [31]
were extended to the other Gaussian ensembles, such as GOE (the Gaussian Orthogonal Ensemble), by
Bloemendal and Virág [9, 10]. We sketch the results of [3, 9, 10, 31] in the case of additive deformations of
GUE. For simplicity, we consider rank-one deformations, although the results of [3, 9, 10,31] cover arbitrary
rank-k deformations. Thus, let H be an N × N GUE matrix, normalized so that its entries have variance
N−1. Let H̃(d) ..= H + dvv∗, where v is a normalized vector and d is independent of N . If d > 1 then the

spectrum of H̃(d) consists of a bulk spectrum asymptotically contained in [−2, 2], and an outlier, located at
d + d−1 and having a normal law with variance of order N−1. If d < 1 then there is no such outlier, and
the statistics of the extremal eigenvalues of H̃(d) coincide with those of H. Thus, as d increases from 1− ε
to 1 + ε for some small ε > 0, the largest eigenvalue of H̃(d) detaches itself from the bulk spectrum and
becomes an outlier.

The phase transition takes place on the scale d = 1 + wN−1/3 where w is of order one. This may be
heuristically understood as follows. The largest eigenvalues of H are known to fluctuate on the scale N−2/3

around 2. The critical scale for d, i.e. the scale on which the outlier is separated from 2 by a gap of order
N−2/3, is therefore d = 1 +wN−1/3 (since in that case d+d−1 = 2 +w2N−2/3 +O(w3N−1)). In [3,9,10,31],
the authors established the weak convergence as N →∞

N2/3
(
λN
(
H̃(1 + wN−1/3)

)
− 2
)

=⇒ Λw ,

where λN (A) denotes the largest eigenvalue of A. Moreover, the asymptotics in w of the law Λw was analysed
in [3,8–10,31]: as w → +∞, the law Λw converges to a Gaussian; as w → −∞, the law Λw converges to the
Tracy-Widom-β distribution (where β = 1 for GOE and β = 2 for GUE). As mentioned above, the results
of [3, 9, 10, 31] also apply to rank-k deformations, where the picture is similar; each eigenvalue di ∈ [−1, 1]c

gives rise to an outlier located around di + d−1i , while eigenvalues di ∈ (−1, 1) do not change the statistics

of the extremal eigenvalues of H̃.
The proofs of [3, 31] use an asymptotic analysis of Fredholm determinants, while those of [9, 10] use an

explicit tridiagonal representation of H; both of these approaches rely heavily on the Gaussian nature of
H. In order to study the phase transition for non-Gaussian matrix ensembles, and in particular address the

2



question of spectral universality, a different approach is needed. Interestingly, it was observed in [11–13] that
the distribution of the outliers is not universal, and may depend on the geometry of the eigenvectors of A.
The non-universality of the outliers was further investigated in [32].

In the present paper we take H to be a real symmetric or complex Hermitian Wigner matrix, and A to
be a rank-k deterministic matrix whose symmetry class (real symmetric or complex Hermitian) coincides
with that of H. We make the following assumptions on the perturbation A.

(A1) The eigenvalues d1, . . . , dk of A may depend on N ; they satisfy
∣∣|di|− 1

∣∣ > (logN)C log logNN−1/3, i.e.,
on the scale of the phase transition, the eigenvalues of A are separated from the transition points by
at least a logarithmic factor.

(A2) The eigenvectors of A are arbitrary orthonormal vectors.

Our main results on the spectrum of H +A may be informally summarized as follows.

(R1) The non-outliers “stick” to eigenvalues of the undeformed matrix H (Theorem 2.7). In particular, the
extremal bulk eigenvalues of H +A are universal.

(R2) We identify the distribution of the outliers of H +A (Theorem 2.14).

A key ingredient in our proof is a generalization of the local semicircle law. The study of the local
semicircle law was initiated in [21, 22]; it provides a key step towards establishing universality for Wigner
matrices [17, 23, 26, 27, 33, 34]. The strongest versions of the local semicircle law, proved in [15, 16, 26], give
precise estimates on the local eigenvalue density, down to scales containing Nε eigenvalues. In fact, as
formulated in [26], the local semicircle law gives optimal high-probability estimates on the quantity

Gij(z)− δijm(z) , (1.1)

where m(z) denotes the Stieltjes transform of Wigner’s semicircle law and G(z) = (H− z)−1 is the resolvent
of H. Starting from such estimates on (1.1), the two following facts are established in [26].

(i) The eigenvalue density is governed by Wigner’s semicircle law down to scales containing Nε eigenvalues.

(ii) Eigenvalue rigidity : optimal high-probability bounds on the eigenvalue locations.

Another key ingredient in the proof of universality of random matrices is the Green function comparison
method introduced in [27]. It uses a Lindeberg replacement strategy, which previously appeared in the context
of random matrix theory in [14,33,34]. A fundamental input in the Green function comparison method is a
precise control on the matrix entries of G, which is provided by the local semicircle law. The Green function
comparison method has subsequently been applied to proving the spectral universality of adjacency matrices
of random graphs [15,16] as well as the universality of eigenvectors of Wigner matrices [30].

In this paper, we extend the local semicircle law to the isotropic local semicircle law, which gives optimal
high-probability estimates on the quantity〈

v ,
(
G(z)−m(z)1

)
w
〉
, (1.2)

where v and w are arbitrary deterministic vectors. Note that (1.1) is a special case obtained from (1.2) by
setting v = ei and w = ej , where ei denotes i-th standard basis vector of CN .
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1.1. Outline and sketch of proofs. In Section 2, we introduce basic definitions and state our results. In a
first part, we state the isotropic semicircle law (Theorem 2.2) and some important corollaries, such as the
isotropic delocalization estimate (Theorem 2.5). The second part of Section 2 is devoted to the spectra of
deformed Wigner matrices. Our main results are deviation estimates on the eigenvalue locations (Theorem
2.7) and the distribution of the outliers (Theorem 2.14). In subsequent remarks we discuss some special
cases of interest, in particular making the link to the previous results of [11–13,32].

The remainder of this paper is devoted to proofs. As it turns out, the proof of the isotropic local semicircle
law is considerably simpler if the third moments of the matrix entries of H vanish. This case is dealt with in
Section 3. The proof is based on the Green function comparison method and the local semicircle law of [26].
In Section 4, we give the additional arguments needed to extend the isotropic local semicircle law to arbitrary
matrix entries. We remark that the Green function comparison method has been traditionally [16, 27, 30]
used to obtain limiting distributions of smooth, bounded, observables that depend on the resolvent G. In
this paper we use it in a novel setting: to obtain high-probability bounds on a fluctuating error.

In Section 5 we use the isotropic semicircle law to obtain an improved estimate outside of the classical
spectrum [−2, 2], and prove the isotropic delocalization result which yields optimal high-probability bounds
on projections of the eigenvectors of H onto arbitrary deterministic vectors.

Section 6 is devoted to the proof of deviation estimates for the eigenvalues of H + A. Our starting
point for locating the eigenvalues is a simple identity from linear algebra (Lemma 6.1) already used in the
works [5–7, 32]. Similar identities were also used in [1, 2, 4] for deformed covariance matrices. Using such
identities, the study of the eigenvalue distribution of the deformed ensemble can be reduced to the study of
the resolvent. In our case, this study of the resolvent is considerably more involved because we allow very
general perturbations and also identify the distribution of non-outliers. In order to illustrate our method, we
first consider the rank-one case in Theorem 6.3. The general rank-k case is based on a bootstrap argument –
in which the eigenvalues d = (d1, . . . , dk) of A are varied – which may be summarized in the following three
steps.

(i) For arbitrary d, we establish a “permissible region” Γ(d) ⊂ R whose complement cannot contain
eigenvalues of H + A. The region Γ(d) consists essentially of small neighbourhoods of the extremal
eigenvalues of H as well as of small neighbourhoods of the classical outlier locations di + d−1i for i
satisfying |di| > 1.

(ii) We fix d to be independent of N . In this simple case, we prove that each permissible neighbourhood
of a classical outlier location di + d−1i contains exactly one eigenvalue of H + A. Moreover, we prove
that the non-outliers of H +A stick to eigenvalues of H.

(iii) In order to allow arbitrary N -dependent d’s, we construct a continuous path (d(t))t∈[0,1] that takes an
N -independent initial configuration d(0) to the desired N -dependent configuration d ≡ d(1). Using (i),
(ii), and the continuity of the eigenvalues of H + A(t) as functions of t, we infer that the conclusions
of (ii) remain valid for all d(t) where t ∈ [0, 1], and in particular for d(1). (Here A(t) denotes the
perturbation with eigenvalues d(t).)

Finally, Section 7 contains the proof of Theorem 2.14, the distribution of the outliers. The proof consists
of four main steps.

(i) We reduce the problem of identifying the distribution of an outlier to that of analysing the distribution
of random variables of the form 〈v , G(θ)v〉, where θ ..= d + d−1 and d is an eigenvalue of A with
associated eigenvector v. The argument is based on a precise control of the derivative of G(z) and
second-order perturbation theory.
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(ii) We consider the case where H is Gaussian. Using the unitary invariance of the law of H, we prove
that 〈v , G(θ)v〉, when appropriately rescaled, converges to a normal random variable.

The remainder of the proof consists in analysing the difference between the general Wigner case and the
Gaussian case. Ultimately, we shall apply the Green function comparison method to expressions of the form
〈v , G(θ)v〉 (Step (iv) below). However, this method is only applicable if ‖v‖∞ is sufficiently small (in fact,
our result shows that the Green function comparison method must fail if ‖v‖∞ is not small). We therefore
have to perform a two-step comparison.

(iii) Let H be the Wigner matrix we are interested in. We introduce a cutoff εN (equal to ϕ−D in the

notation of Section 7.3). We define Ĥ as the Wigner matrix obtained from H by replacing the (i, j)-th
entry of H with a Gaussian whenever |vi| 6 εN and |vj | 6 εN . We choose εN large enough that most

entries of Ĥ are Gaussian. We shall compare H with a Gaussian matrix V via the intermediate matrix
Ĥ. In this step, (iii), we compare Ĥ with V .

Our proof relies on a block expansion of Ĥ, which expresses the distribution of the difference〈
v , (Ĥ − θ)−1v

〉
−
〈
v , (V − θ)−1v

〉
in terms of a sum of independent random variables (Γ1, . . . ,Γ6 in the notation of Section 7.3) whose
laws may be explicitly computed.

(iv) In the final step, we use the Green function comparison method to analyse the difference〈
v , (H − θ)−1v

〉
−
〈
v , (Ĥ − θ)−1v

〉
.

By definition of Ĥ, whenever the entry (i, j) of H differs from that of Ĥ, we have |vi| 6 εN and
|vj | 6 εN . As a consequence, as it turns out, the Green function comparison method is applicable. Of
special note in this comparison argument is a shift in the mean of the outlier (arising from the second
term on the right-hand side of (7.50)), depending on the third moments of the entries of H.

Acknowledgements. We are grateful to Alex Bloemendal, Paul Bourgade, László Erdős, and Horng-Tzer
Yau for helpful comments.

2. Results

2.1. The setup. Let Hω ≡ H = (hij) be an N×N matrix; here ω denotes the running element in probability
space, which we shall almost always drop from the notation. We assume that the upper-triangular entries
(hij

.. i 6 j) are independent complex-valued random variables. The remaining entries of H are given by
imposing H = H∗. Here H∗ denotes the Hermitian conjugate of H. We assume that all entries are centred,
Ehij = 0. In addition, we assume that one of the two following conditions holds.

(i) Real symmetric Wigner matrix: hij ∈ R for all i, j and

Eh2ii =
2

N
, Eh2ij =

1

N
(i 6= j) .
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(ii) Complex Hermitian Wigner matrix:

Eh2ii =
1

N
, E|hij |2 =

1

N
, Eh2ij = 0 (i 6= j) .

We use the abbreviation GOE/GUE to mean GOE if H is a real symmetric Wigner matrix with Gaussian
entries and GUE if H is a complex Hermitian Wigner matrix with Gaussian entries. We assume that the
entries of H have uniformly subexponential decay, i.e. that there exists a constant ϑ > 0 such that

P
(√
N |hij | > x

)
6 ϑ−1 exp(−xϑ) (2.1)

for all i, j. Note that we do not assume the entries of H to be identically distributed.
The following quantities will appear throughout this paper. We choose a fixed but arbitrary constant

Σ > 3. We define the logarithmic control parameter

ϕN ≡ ϕ ..= (logN)log logN . (2.2)

The parameter ζ will play the role of a fixed positive constant, which simultaneously dictates the power of
ϕ in large deviations estimates and characterizes the decay of probability of exceptional events, according to
the following definition.

Definition 2.1 (High probability events). Let ζ > 0. We say that an N -dependent event Ξ holds with
ζ-high probability if there is some constant C such that

P(Ξc) 6 NC exp(−ϕζ) (2.3)

for large enough N .

Introduce the spectral parameter
z = E + iη ,

which will be used as the argument of Stieltjes transforms and resolvents. In the following we shall often use
the notation E = Re z and η = Im z without further comment. Let

%(ξ) ..=
1

2π

√
[4− ξ2]+ (ξ ∈ R)

denote the density of the local semicircle law, and

m(z) ..=

∫
%(ξ)

ξ − z
dξ (z /∈ [−2, 2]) (2.4)

its Stieltjes transform. To avoid confusion, we remark that the Stieltjes transform m was denoted by msc

in the papers [15–27], in which m had a different meaning from (2.4). It is well known that the Stieltjes
transform m satisfies the identity

m(z) +
1

m(z)
+ z = 0 . (2.5)

For η > 0 we define the resolvent of H through

G(z) ..= (H − z)−1 .
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We use the notation v = (vi)
N
i=1 ∈ CN for the components of a vector. We introduce the standard

scalar product 〈v ,w〉 ..=
∑
i viwi, which induces the Euclidean norm ‖v‖ ..=

√
〈v ,v〉. By definition, v is

normalized if ‖v‖ = 1.
We denote by C a generic positive large constant, whose value may change from one expression to the

next. If this constant depends on some parameters α, we indicate this by writing Cα. Finally, for two
positive quantities AN and BN we use the notation AN � BN to mean C−1AN 6 BN 6 CAN for some
positive constant C.

2.2. The isotropic local semicircle law. For ζ > 0 let

S(ζ) ..=
{
z ∈ C .. |E| 6 Σ , ϕζN−1 6 η 6 Σ

}
. (2.6)

For z ∈ S(ζ) define the control parameter

Ψ(z) ..=

√
Imm(z)

Nη
+

1

Nη
.

Our first main result is on the convergence of G(z) to m(z)1.

Theorem 2.2 (Isotropic local semicircle law). Fix ζ > 0. Then there exists a constant Cζ such that∣∣〈v , G(z)w〉 −m(z)〈v ,w〉
∣∣ 6 ϕCζΨ(z)‖v‖‖w‖ (2.7)

holds with ζ-high probability for all deterministic v,w ∈ CN under either of the two following conditions.

A. The spectral parameter z ∈ S(Cζ) is arbitrary, and the third moments of the entries of H vanish in the
sense that

Eh3ij = Eh2ijhij = 0 (i, j = 1, . . . , N) . (2.8)

B. The spectral parameter z ∈ S(Cζ) satisfies

Ψ(z)3 6 ϕ−C0N−1/2 (2.9)

for some large enough constant C0 depending on ζ.

Away from the asymptotic spectrum [−2, 2], Theorem 2.2 can be strengthened as follows.

Theorem 2.3 (Isotropic local semicircle law outside of the spectrum). Fix ζ > 0 and Σ > 3.
Then there exist constants C1 and Cζ such that for any

E ∈
[
−Σ,−2− ϕC1N−2/3

]
∪
[
2 + ϕC1N−2/3,Σ

]
,

any η ∈ (0,Σ], and any deterministic v,w ∈ CN we have

∣∣〈v , G(z)w〉 −m(z)〈v ,w〉
∣∣ 6 ϕCζ

√
Imm(z)

Nη
‖v‖‖w‖ . (2.10)

with ζ-high probability.
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Remark 2.4. Using a simple lattice argument combined with the Lipschitz continuity of z 7→ G(z), one can
easily strengthen the statement (2.7) of Theorem 2.2 to a simultaneous high probability statement for all z,
as in (3.16) below. For more details, see e.g. Corollary 3.19 in [15].

Similarly, mimicking the proof of Lemma 7.2 below, we find

sup
{
|∂z〈v , G(z)w〉| .. 2 + ϕC1N−2/3 6 |E| 6 Σ , 0 < |η| 6 Σ

}
6 N (2.11)

with ζ-high probability, from which we infer that the statement (2.10) of Theorem 2.3 holds with ζ-high
probability simultaneously for all z = E + iη satisfying the conditions in (2.11).

For an N × N matrix A we denote by λ1(A) 6 λ2(A) 6 · · · 6 λN (A) the nondecreasing sequence of
eigenvalues of A. Moreover, we denote by σ(A) the spectrum of A. It is convenient to abbreviate the
(random) eigenvalues of H by

λα ..= λα(H) .

Denote by u(1),u(2), . . . ,u(N) ∈ CN the normalized eigenvectors of H associated with the eigenvalues λ1 6
λ2 6 · · · 6 λN . Our next result provides a bound on 〈u(α) ,v〉 for arbitrary deterministic v.

Theorem 2.5 (Isotropic delocalization). Fix ζ > 0. Then there is a constant Cζ such that the following
holds for any deterministic and normalized v ∈ CN .

(i) For any integers a and b satisfying 1 6 a < b 6 N/2 and

b− a > 2ϕC0

(
b1/3N−1/6 + (ab)1/3N−1/3

)
(2.12)

we have

1

b− a

b∑
α=a

|〈u(α) ,v〉|2 6 ϕCζN−1 (2.13)

with ζ-high probability. Here C0 is the constant from Theorem 2.2. By symmetry, a similar result holds
for the eigenvectors α > N/2.

(ii) If the third moments of the entries of H vanish in the sense of (2.8), then we have the stronger
statement

sup
α
|〈u(α) ,v〉|2 6 ϕCζN−1 (2.14)

with ζ-high probability.

Remark 2.6. Theorem 2.5 implies that the coefficients of the eigenvectors of H are strongly oscillating.
In order to see this, let α = 1, . . . , N . If the third moments of the entries of H do not vanish, we require
that α /∈ [ϕ−4C0N1/2, N − ϕ−4C0N1/2]. Then choosing v = N−1/2(1, . . . , 1) and v = ei for i = 1, . . . , N in
Theorem 2.5 yields ∣∣∣∣∣

N∑
i=1

u
(α)
i

∣∣∣∣∣ 6 ϕCζ , max
16i6N

|u(α)i | 6 ϕCζN−1/2 (2.15)

with ζ-high probability. The second inequality implies

N∑
i=1

|u(α)i | > ϕ−CζN1/2
N∑
i=1

|u(α)i |
2 = ϕ−CζN1/2

8



with ζ-high probability. Compare this with the first inequality of (2.15).
This behaviour is not surprising. In the GOE/GUE case, it is well known that each eigenvector u(α) is

uniformly distributed on the unit sphere, so that its entries asymptotically behave like i.i.d. Gaussians.

2.3. Finite-rank deformation of Wigner matrices. Let k ∈ N be fixed, V be a deterministic N × k matrix
satisfying V ∗V = 1, and d1, . . . , dk ∈ R \ {0} be deterministic. We allow d1 ≡ d1(N), . . . , dk ≡ dk(N) to
depend on N . We also use the notation V = [v(1), . . . ,v(k)], where v(1), . . . ,v(k) ∈ CN are orthonormal.
Define the rank-k perturbation

V DV ∗ =

k∑
i=1

div
(i)(v(i))∗ , D = diag(d1, . . . , dk) .

We shall study the spectrum of the deformed matrix

H̃ ..= H + V DV ∗ .

We abbreviate the eigenvalues of H̃ by
µα ..= λα(H̃) .

In order to state our results, we order the eigenvalues of D, i.e. we assume that d1 6 . . . 6 dk. Define
the numbers

k± ..= #{i .. ±di > 1} .
As we shall see, k− is the number of outliers to the left of the bulk and k+ the number of outliers to the
right of the bulk. We shall always assume that k− and k+ are independent of N .

Let
O ..=

{
i ∈ {1, . . . , k} .. |di| > 1

}
= {1, . . . , k−, k − k+ + 1, . . . , k} (2.16)

denote the k−+k+ indices associated with the outliers. For i ∈ O abbreviate the associated eigenvalue index
by

α(i) ..=

{
N − k + i if i > k − k+ + 1

i if i 6 k− .
(2.17)

Finally, for d ∈ R \ (−1, 1) we define

θ(d) ..= d+
1

d
. (2.18)

Theorem 2.7 (Locations of the deformed eigenvalues). Fix ζ > 0, K > 0, k ∈ N, and 0 < b < 1/3.
Then there exist positive constants C2 and C3 such that the following holds.

Choose a sequence ψ ≡ ψN satisfying 1 6 ψ 6 Nb. Suppose that

|di| 6 Σ− 1 ,
∣∣|di| − 1

∣∣ > ϕC2ψN−1/3 (2.19)

for all i = 1, . . . , k. Then for i ∈ O we have∣∣µα(i) − θ(di)∣∣ 6 ϕC3N−1/2(|di| − 1)1/2 (2.20)

with ζ-high probability. Moreover,

|µα − λα−k− | 6 ψ−1N−2/3 for k− + 1 6 α 6 ϕK , (2.21a)

|µα − λα+k+ | 6 ψ−1N−2/3 for N − ϕK 6 α 6 N − k+ , (2.21b)

with ζ-high probability.
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Remark 2.8. In [12], Capitaine, Donati-Martin, and Féral proved that µα(i) → θ(di) almost surely for all
i ∈ O, under the assumptions that (i)D does not depend onN and (ii) the law of the entries ofH is symmetric
and satisfies a Poincaré inequality. Subsequently, the assumption (ii) was relaxed by Pizzo, Renfrew, and
Soshnikov [32]. In fact, in [32] the authors proved, assuming (i), that the sequence

√
N(µα(i) − θ(di)) is

bounded in probability for all i ∈ O.
In [5, 6], Benaych-Georges, Guionnet, and Mäıda considered deformations of Wigner matrices by finite-

rank random matrices whose eigenvalues are independent of N and whose eigenvectors are either independent
copies of a random vector with i.i.d. centred components satisfying a log-Sobolev inequality or are obtained
by Gram-Schmidt orthonormalization of such independent copies. For these random perturbation models,
they established eigenvalue sticking estimates similar to (2.21).

Remark 2.9. Provided one is only interested in the locations of the outliers, i.e. (2.20), one can set ψ = 1
in Theorem 2.7.

We shall refer to the eigenvalues in (2.20), i.e. µ1, . . . µk− , µN−k++1, . . . , µN , as the outliers, and to the
eigenvalues in (2.21), i.e. µk−+1, . . . , µϕK , µN−ϕK , . . . , µN−k+ , as the extremal bulk eigenvalues.

Remark 2.10. The phase transition associated with di happens on the scale di = 1 + aiN
−1/3 where ai is

of order one. The condition (2.19) is optimal (up to powers of ϕ) in the sense that the power of N in (2.19)
cannot be reduced. Indeed, in [3, 9, 10, 31] it is established that, for rank-one1 deformations of GOE/GUE
with d = 1 + aN−1/3 and a of order one, µN fluctuates on the scale N−2/3 and its distribution differs from
that of λN . Hence in that case (2.21) cannot hold for ψ � 1. See also Remark 2.13 below for a more detailed

discussion of the qualitative behaviour of eigenvalues of H̃ as di crosses a transition point.
Note that the location θ(di) of the outlier associated with di = 1+aiN

−1/3 satisfies θ(di) = 2+N−2/3a2i +
O(a3iN

−1). In comparison, the largest eigenvalue of H fluctuates on a scale N−2/3 around 2.

Remark 2.11. An immediate corollary of Theorem 2.7 is the universality of the extremal bulk eigenvalues
of H̃. In other words, under the assumption ||di| − 1| > ϕC2+1N−1/3 for all i, the statistics of the extremal

bulk eigenvalues of H̃ coincide with those of GOE/GUE.
Indeed, choosing ψ = ϕ in Theorem 6.3 and invoking the edge universality for the Wigner matrix H

proved in Theorem 1.1 of [30] (for similar results, see also [16,26]), we find for all ` ∈ N and all bounded and
continuous f that

lim
N→∞

[
Ef
(
N2/3(µk−+1 + 2), . . . , N2/3(µk−+` + 2)

)
− EGf

(
N2/3(λ1 + 2), . . . , N2/3(λ` + 2)

)]
= 0 ,

where EG denotes expectation with respect to the N ×N GOE/GUE matrices. A similar result holds at the
other end of the spectrum.

Remark 2.12. Theorem 2.7 was formulated for deterministic perturbations. However, it extends trivially
to the case where V is random, independent of H, with arbitrary law satisfying V ∗V = 1.

Remark 2.13. The parameter ψ describes how strongly the extremal bulk eigenvalues of H̃ stick to extremal
eigenvalues of H. If di is within distance CN−1/3 of a transition point ±1, one does not expect the eigenvalues
of H̃ to stick to the eigenvalues of H. For very weak sticking on the scale N−2/3ϕ−1, corresponding to ψ = ϕ,

1For simplicity of presentation, we consider rank-one deformations, although the results of [3, 9, 10, 31] hold for rank-k
deformations.
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the eigenvalues di have to satisfy
∣∣|di|− 1

∣∣ > ϕC2+1N−1/3. In particular, we may allow outliers at a distance

ϕ2C2+2N−2/3 from the spectral edge.

On the other hand, in order to obtain strong sticking on the scale N−1+ε, corresponding to ψ = N1/3−ε,
the eigenvalues di have to satisfy

∣∣|di| − 1
∣∣ > ϕC2N−ε. Now the outliers have to lie at a distance of at least

N2C2−2ε from the spectral edge.

Thus, Theorem 2.7 gives a clear picture of what happens to the extremal bulk eigenvalues as di passes a
transition point ±1. For definiteness, consider the case where di is varied from 1− c to 1 + c for some small
c > 0, and all other eigenvalues of D are kept constant. Consider an extremal bulk eigenvalue near +2, say
µα. By Theorem 2.7, for di 6 1− ϕC2+1N−1/3, µα sticks to λβ where β ..= α+ k+. As di approaches 1, the
eigenvalue µα progressively detaches itself from λβ . Theorem 2.7 allows one to follow this behaviour down
to |di−1| = ϕC2+1N−1/3. Below this scale, as di passes 1, the eigenvalue µα “jumps” from from the vicinity
of λβ to the vicinity of λβ+1. This jump happens in the range di ∈ [1 − ϕC2+1N−1/3, 1 + ϕC2+1N−1/3].
After the jump, i.e. for di > 1 + ϕC2+1N−1/3, the eigenvalue µα sticks to λβ+1 instead of λβ , provided that
β < N . If β = N , then µα escapes from the bulk spectrum and becomes an outlier. This jump happens
simultaneously for all extremal bulk eigenvalues near +2, and is accompanied by the creation of an outlier.
This may be expressed as (k0, k+) 7→ (k0 − 1, k+ + 1). Meanwhile, the extremal bulk eigenvalues on the
other side of the spectrum, i.e. near −2, remain unaffected by the transition, and continue sticking to the
same eigenvalues of H they stuck to before the transition.

Next, we identify the distribution of the outliers. We introduce the customary symmetry index β, by
definition equal to 1 if H is real symmetric and 2 if H is complex Hermitian. In order to state our result,

we define the moment matrices M (3) = (M
(3)
ij ) and M (4) = (M

(4)
ij ) of H through

M
(3)
ij

..= N3/2E
(
|hij |2hij

)
, M

(4)
ij

..= N2E|hij |4 .

By definition of H, the matrices M (3) and M (4) are Hermitian. Moreover, by (2.1) they have uniformly
bounded entries. For v = (vi) ∈ CN define

Q(v) ..=
1

2
√
N

∑
i,j

viM
(3)
ij

(
|vi|2 + |vj |2

)
vj ,

R(v) ..=
1

N

∑
i,j

(
M

(4)
ij − 4 + β

)
|vj |4 ,

S(v) ..=
1

N

∑
i,j

viM
(3)
ij vj . (2.22)

The functions Q, R, and S are bounded on the unit ball in CN , uniformly in N .

Theorem 2.14 (Distribution of the outliers). There is a constant C2 such that the following holds.
Suppose that

|di| 6 Σ− 1 ,
∣∣|di| − 1

∣∣ > ϕC2N−1/3 (2.23)

for all i = 1, . . . , k. Suppose moreover that for all i ∈ O we have

min
j 6=i
|di − dj | > ϕC2N−1/2(|di| − 1)−1/2 . (2.24)
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For i ∈ O define the random variable

Πi
..= (|di|+ 1)(|di| − 1)1/2

(
N1/2〈v(i) , Hv(i)〉

d2i
+
S(v(i))

d4i

)
and Υi, a random variable independent of Πi with law

Υi
d
= N

(
0 ,

2(|di|+ 1)

βd4i
+ (|di|+ 1)2(|di| − 1)

(
4Q(v(i))

d5i
+
R(v(i))

d6i

))
.

Then we have, for all i ∈ O and all bounded and continuous f ,

lim
N→∞

[
Ef
(
N1/2(|di| − 1)−1/2

(
µα(i) − θ(di)

))
− Ef(Πi + Υi)

]
= 0 . (2.25)

Note that, by a standard approximation argument, (2.25) also holds for f(x) = 1(x 6 a) where a ∈ R;
hence the convergence (2.25) may also be stated in terms of distribution functions.

Remark 2.15. In [11], Capitaine, Donati-Martin, and Féral identified the law of the outliers of deformed
Wigner matrices subject to the following conditions: (i) D is independent of N but may have degenerate
eigenvalues; (ii) the law of the matrix entries of H is symmetric and satisfies a Poincaré inequality; (iii)
the eigenvectors of the deformation belong to one of two classes, corresponding roughly to either partially
delocalized eigenvectors or strongly localized eigenvectors. Subsequently, the assumption (ii) was relaxed by
Pizzo, Renfrew, and Soshnikov in [32]. (But assumption (iii) imposes that S(v(i)) = Q(v(i)) = 0 still holds
for the results of [32].)

Remark 2.16. The condition (2.24) has the following interpretation. Let i ∈ O and assume for definiteness
that di > 1. If j is not associated with an outlier on the right-hand side of the bulk, i.e. if dj < 1, then di−dj
is bounded from below by the right-hand side of (2.24), as follows from (2.23). Hence the condition (2.24) is
only needed to ensure that the outliers are not to close too each other; in fact, this condition is optimal (up
to the factor ϕC2) in guaranteeing that the distributions of the outliers have essentially no overlap. Indeed,
by Theorem 2.7 we know that µα(i) lies with ζ-high probability in an interval of length 2ϕC3N−1/2(di−1)1/2

centred around θ(di). Moreover, differentiating (2.18) yields

θ(dj)− θ(di) � (di − 1)(dj − di) .

Imposing the condition |θ(dj)− θ(di)| > ϕC3N−1/2(di− 1)1/2 leads to (2.24) (with C2 increased if necessary
so that C2 > C3). In fact, in [3,31,32] it was proved (for D independent of N) that the distribution associated
with degenerate outliers is not Gaussian.

The following remarks discuss some special cases of interest. In order to simplify notations, we set k = 1
and write d ≡ d1, v ≡ v(1), Π ≡ Π1, and Υ ≡ Υ1.

Remark 2.17. In the GOE/GUE case, we have M (3) = 0 and M
(4)
ij = (4− β) + δij(17− 8β). Thus we get

that Q(v) = S(v) = 0 and R(v) = O(N−1). Since N1/2〈v , Hv〉 is a centred Gaussian with variance 2β−1,
we therefore find that Π + Υ has asymptotically2 the distribution of a centred Gaussian with variance

2(|d|+ 1)2(|d| − 1)

βd4
+

2(|d|+ 1)

βd4
=

2(|d|+ 1)

βd2
.

2See Section 7.2 for precise definitions and more details.
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Remark 2.18. If ϕC2N−1/3 6
∣∣|d| − 1

∣∣ = o(1) then Π + Υ converges weakly to a centred Gaussian with
variance 4β−1. As an outlier approaches the bulk spectrum, the dependence of its distribution on the details
of H and v is washed out. Therefore, unlike outliers located at a distance of order one from the bulk
spectrum, outliers close to ±2 exhibit universality. Moreover, as an outlier approaches the bulk, its variance
shrinks from N−1 (for d− 1 � 1) to N−4/3 (for d− 1 � N−1/3).

Remark 2.19. If maxi|vi| → 0 as N →∞, we find that Q(v)→ 0 and R(v)→ 0 as N →∞. Moreover, the
Central Limit Theorem implies in this case that N1/2〈v , Hv〉 converges in distribution to a centred Gaussian
with variance 2β−1. Therefore Π + Υ has asymptotically the distribution of

N
(

(|d|+ 1)(|d| − 1)1/2S(v)

d4
,

2(|d|+ 1)

βd2

)
.

Thus, the only difference to the GOE/GUE case is a shift caused by the nonvanishing third moments

of H. For example, if M
(3)
ij = m(3) ∈ R is independent of i and j, and v = N−1/2(1, . . . , 1), we find

S(v) = m(3) +O(N−1).

Remark 2.20. Typically, R(v) is nonzero if v has entries which do not converge to zero. An example for

which Q(v) is nonzero is M
(3)
ij = m(3) ∈ R independent of N and v = (2−1/2, (2N−2)−1/2, . . . , (2N−2)−1/2),

in which case we have Q(v) = 2−3/2m(3) +O(N−1/2).

Remark 2.21. Consider now the case where maxi|vi| does not tend to zero as N → ∞. For definiteness,
let v = (u,w), where the dimension of u is constant and maxi|wi| → 0 as N → ∞. By the Central
Limit Theorem and a short variance calculation, N1/2〈v , Hv〉 has asymptotically the same distribution as
N1/2〈u , Hu〉+ 2β−1(1−‖u‖2)(1 + 2‖u‖2)Z, where Z is a standard normal random variable independent of
H.

Let us take for example v = (1, 0, . . . , 0). Then Π+Υ has asymptotically the same distribution as Π′+Υ′,
where

Π′ ..= (|d|+ 1)(|d| − 1)1/2d−2N1/2h11 ,

and Υ′ is a centred Gaussian, independent of Π′, with variance

2(|d|+ 1)

βd4
+

(|d|+ 1)2(|d| − 1)

Nd6

∑
i

(
N2E|h1i|4 − 4 + β

)
.

3. Proof of Theorem 2.2, Case A

In this section we prove Theorem 2.2 in the case A, i.e. where the first three moments of the entries of H
coincide with those of GOE/GUE.

We start by introducing the following notations we shall use throughout the rest of the paper. For an
N ×N matrix A and v,w ∈ CN we abbreviate

Avw
..= 〈v , Aw〉 .

We also write
Avei ≡ Avi , Aeiv ≡ Aiv , Aeiej ≡ Aij ,
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where ei ∈ CN denotes the i-th standard basis vector.
For definiteness, we consider the case where H is a complex Hermitian Wigner matrix; the proof for real

symmetric Wigner matrices is the same. By Markov’s inequality, in order to prove Theorem 2.2 it suffices
to prove the following result.

Proposition 3.1. Assume (2.8) and let ζ > 0 be fixed. Then there exists a constant Cζ such that, for all
n 6 ϕζ , all deterministic v,w ∈ CN , and all z ∈ S(Cζ),

E
∣∣Gvw(z)− 〈v ,w〉m(z)

∣∣n 6
(
ϕCζΨ(z)‖v‖‖w‖

)n
. (3.1)

The rest of this section is devoted to the proof of Proposition 3.1.

3.1. Preliminaries. We start with a few basic tools. For E ∈ R define

κE ..=
∣∣|E| − 2

∣∣ , (3.2)

the distance from E to the spectral edges ±2. In the following we use the notations

z = E + iη , κ ≡ κE

without further comment. The following lemma collects some useful properties of m, the Stieltjes transform
of the semicircle law.

Lemma 3.2. For |z| 6 2Σ we have

|m(z)| � 1 , |1−m(z)2| �
√
κ+ η . (3.3)

Moreover,

Imm(z) �

{√
κ+ η if |E| 6 2
η√
κ+η

if |E| > 2 .

(Here the implicit constants depend on Σ.)

Proof. The proof is an elementary calculation; see Lemma 4.2 in [27].

In addition to Ψ, we shall make use of a larger control parameter Φ, defined as

Φ(z) ..= Imm(z) +
1

Nη
, Ψ(z) =

√
Imm(z)

Nη
+

1

Nη
�

√
Φ(z)

Nη
. (3.4)

From Lemma 3.2 we find, for any z satisfying |z| 6 2Σ,

N−1/2 .

√
Imm(z)

Nη
. Ψ(z) . Φ(z) , (3.5)

where AN . BN means AN 6 CBN for some constant C.
We shall often need to consider minors of H, which are the content of the following definition.
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Definition 3.3 (Minors). For T ⊂ {1, . . . , N} we define H(T) by

(H(T))ij ..= 1(i /∈ T)1(j /∈ T)hij .

Moreover, we define the resolvent of H(T) through

G
(T)
ij (z) ..= 1(i /∈ T)1(j /∈ T)(H(T) − z)−1ij .

We also set
(T)∑
i

..=
∑
i..i/∈T

.

When T = {a}, we abbreviate ({a}) by (a) in the above definitions; similarly, we write (ab) instead of ({a, b}).

We shall also need the following resolvent identities, proved in Lemma 4.2 of [25] and Lemma 6.10 of [16].

Lemma 3.4 (Resolvent identities). For any i, j, k we have

Gij = G
(k)
ij +

GikGkj
Gkk

. (3.6)

Moreover, for i 6= j we have

Gij = −Gii
(i)∑
k

hikG
(i)
kj = −Gjj

(j)∑
k

G
(j)
ik hkj . (3.7)

These identities also hold for minors H(T).

It is an immediate consequence of (3.6) that

Gvw = G(k)
vw +

GvkGkw
Gkk

. (3.8)

Moreover, we introduce the notations

Gvi ..= −
(i)∑
k

G
(i)
vkhki , Giv ..= −

(i)∑
k

hikG
(i)
kv , (3.9)

so that
Gvi = Gii

(
vi + Gvi

)
, Giv = Gii

(
vi + Giv

)
(3.10)

by (3.7).
Next, we record some basic large deviations estimates.

Lemma 3.5 (Large deviations estimates). Let a1, . . . , aN , b1, . . . , bM be independent random variables
with zero mean and unit variance. Assume that there is a constant ϑ > 0 such that

P(|ai| > x) 6 ϑ−1 exp(−xϑ) (i = 1, . . . , N) ,

P(|bi| > x) 6 ϑ−1 exp(−xϑ) (i = 1, . . . ,M) . (3.11)
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Then there exists a constant ρ ≡ ρ(ϑ) > 1 such that, for any ζ > 0 and any deterministic complex numbers
Ai and Bij, we have with ζ-high probability∣∣∣∣∣

N∑
i=1

Aiai

∣∣∣∣∣ 6 ϕρζ

(
N∑
i=1

|Ai|2
)1/2

, (3.12)∣∣∣∣∣∑
i

Ai|ai|2 −
∑
i

Ai

∣∣∣∣∣ 6 ϕρζ
(∑

i

|Ai|2
)1/2

, (3.13)∣∣∣∣∣∑
i 6=j

aiBijaj

∣∣∣∣∣ 6 ϕρζ
(∑
i6=j

|Bij |2
)1/2

, (3.14)∣∣∣∣∣∑
i,j

aiBijbj

∣∣∣∣∣ 6 ϕρζ
(∑
i,j

|Bij |2
)1/2

. (3.15)

Proof. The estimates (3.12) – (3.14) we proved in Appendix B of [25]. The estimate (3.15) follows easily

from (3.12) in two steps. Defining Ai ..=
∑
j Bijbj , (3.12) yields |Ai| 6 ϕρζ

(∑
j |Bij |2

)1/2
with ζ-high

probability. Since the families {Ai} and {ai} are independent, (3.15) follows by using (3.12) again.

Finally, we quote the following results which are proved in Theorems 2.1 and 2.2 of [26]. (Recall that we
use the notation m for the quantity denoted by msc in [26].)

Theorem 3.6 (Local semicircle law). Fix ζ > 0. Then there exists a constant Cζ such that the event

⋂
z∈S(Cζ)

{
max

16i,j6N

∣∣Gij(z)− δijm(z)
∣∣ 6 ϕCζΨ(z)

}
(3.16)

holds with ζ-high probability.

Denote by γ1 6 γ2 6 · · · 6 γN the classical locations of the eigenvalues of H, defined through

N

∫ γα

−∞
%(x) dx = α (1 6 α 6 N) . (3.17)

Theorem 3.7 (Rigidity of eigenvalues). Fix ζ > 0. Then there exists a constant Cζ such that

|λα − γα| 6 ϕCζ
(
min{α,N + 1− α}

)−1/3
N−2/3

for all α = 1, . . . , N with ζ-high probability.

3.2. Estimate of Gvi. After these preparations, we may prove the key tool behind the proof of Proposition
3.1. It will be used as input in the Green function comparison method, throughout Sections 3.3, 3.4, and 4.
Let us sketch its importance in the Green function comparison method. Anticipating the notation from the
proof of Lemma 3.9, we shall have to estimate quantities of the form

(S −R)vv =
(
−N−1/2RV R+N−1RV RV R+ · · ·

)
vv
,
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where the right-hand side is a resolvent expansion of the left-hand side. The first matrix product on the
right-hand side may be written as

(RV R)vv = RvaVabRbv +RvbVbaRav

(again anticipating the notation from the proof of Lemma 3.9). Lemma 3.8 will be used to estimate the
resolvent entries of the form Rva in such error estimates. These resolvent entries arise whenever the Green
function comparison method is applied to the component (·)vv of a resolvent.

Lemma 3.8. For any ζ > 0 there exists a constant Cζ such that

|Gvi(z)|+ |Giv(z)|+ |Gvi(z)|+ |Giv(z)| 6 ϕCζ

√
ImGvv(z)

Nη
+ C|vi| (3.18)

holds with ζ-high probability for all z ∈ S(Cζ).

Proof. Since the families (hki)k and (G
(i)
vk)k are independent, (3.9), (3.12), and (2.1) yield

|Gvi| 6 ϕCζ

(
1

N

(i)∑
k

∣∣G(i)
vk

∣∣2)1/2

with ζ-high probability for some constant Cζ . By spectral decomposition one easily finds that

1

N

(i)∑
k

∣∣G(i)
vk

∣∣2 =
1

Nη
ImG(i)

vv .

From (3.3) and (3.16) we find that
|Gii| 6 C (3.19)

with ζ-high probability provided that η > ϕCζ for some large enough Cζ . Setting

X ..= |Gvi|+ |Giv| ,

we therefore conclude, using first (3.8) and then (3.10), that

X 6 ϕCζ

(
ImGvv + |Gii|

∣∣Gvi/Gii
∣∣∣∣Giv/Gii∣∣

Nη

)1/2

6 ϕCζ

√
ImGvv

Nη
+ ϕCζ

X√
Nη

+ ϕCζ
|vi|√
Nη

with ζ-high probability. Thus we find for η > ϕ2CζN−1

X 6 ϕCζ

√
ImGvv

Nη
+ |vi|

with ζ-high probability, and the claim for |Gvi| + |Giv| follows. The claim for |Gvi| + |Giv| follows using
(3.10) and (3.19).
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3.3. Estimate of ImGvv. The first step in the proof of Proposition 3.1 is the following estimate of ImGvv.
Note that ImGvv is a nonnegative quantity, as may be easily seen by spectral decomposition of G.

Lemma 3.9. Let ζ > 0 be fixed. Then there exists a constant Cζ such that, for all n 6 ϕζ , all deterministic
and normalized v ∈ CN , and all z ∈ S(Cζ), we have

E
(
ImGvv(z)

)n
6
(
ϕCζΦ(z)

)n
. (3.20)

Proof. We shall prove (3.20) using Green function comparison to GOE/GUE. First we claim that (3.20)
holds if H is a GOE/GUE matrix. Indeed, in that case, using unitary invariance, (3.5), and (3.16), we find
for z ∈ S(Cζ) that

E
(
ImGvv(z)

)n
= E

(
ImG11(z)

)n
6
(
ϕCζΦ(z)

)n
+NnNC exp(−ϕ2ζ) ,

where in the last inequality we used the rough bound |G11(z)| 6 η−1 6 N . Thus (3.20) for GOE/GUE
follows from (3.5) and the estimate

NCn exp(−ϕ2ζ) 6 C ,

valid for n 6 ϕζ .
From now on we work on the product space generated by the Wigner matrix H = (N−1/2Wij)i,j and

the GOE/GUE matrix (N−1/2Vij)i,j . We fix a bijective ordering map on the index set of the independent
matrix elements,

φ .. {(i, j) .. 1 6 i 6 j 6 N} →
{

1, . . . , γmax

}
where γmax

..=
N(N + 1)

2
, (3.21)

and denote by Hγ = (hγij), γ = 0, . . . , γmax, the Wigner matrix whose upper-triangular entries are defined
by

hγij
..=

{
N−1/2Wij if φ(i, j) 6 γ

N−1/2Vij otherwise .

In particular, H0 is a GOE/GUE matrix and Hγmax = H.

Let E(ij) denote the matrix whose matrix elements are given by E
(ij)
kl

..= δikδjl. Fix γ > 1 and let (a, b)
be determined by φ(a, b) = γ. We shall compare Hγ−1 with Hγ for each γ and then sum up the differences.
Note that the matrices Hγ−1 and Hγ differ only in the entries (a, b) and (b, a), and they can be written as

Hγ−1 = Q+N−1/2V where V ..= VabE
(ab) + 1(a 6= b)VbaE

(ba) , (3.22)

and
Hγ = Q+N−1/2W where W ..= WabE

(ab) + 1(a 6= b)WbaE
(ba) ;

here the matrix Q satisfies Qab = Qba = 0.
Next, we introduce the Green functions

R ..=
1

Q− z
, S ..=

1

Hγ−1 − z
, T ..=

1

Hγ − z
, (3.23)

which are well-defined for η > 0 since Q and Hγ are self-adjoint. Using the notation Gγ ..= (Hγ − z)−1, we
have the telescopic sum

E
(
ImGγmax

vv

)n − E
(
ImG0

vv

)n
=

γmax∑
γ=1

(
E
(
ImGγvv

)n − E
(
ImGγ−1vv

)n)
. (3.24)
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For any K ∈ N we have the resolvent expansions

S =

K−1∑
k=0

N−k/2(−RV )kR+N−K/2(−RV )KS =

K−1∑
k=0

N−k/2R(−V R)k +N−K/2S(−V R)K (3.25)

and

R =

K−1∑
k=0

N−k/2(SV )kS +N−K/2(SV )KR =

K−1∑
k=0

N−k/2S(V S)k +N−K/2R(V S)K . (3.26)

Now we choose K = 10 in (3.26). Applying Theorem 3.6 to the Wigner matrix S, using the rough bound
‖R‖ 6 η−1 6 N to estimate the rest term in (3.26), and recalling (2.1), we find∣∣Rij − δijm∣∣ 6

∣∣Sij − δijm∣∣+ ϕCζN−1/2 6 ϕCζΨ (3.27)

with 2ζ-high probability. Here we also used (3.5). Throughout the proof we shall tacitly make use of the
bound |Rij | 6 C with 2ζ-high probability, as follows from (3.27).

Next, setting K = 1 in (3.25), recalling (2.1), and using Lemma 3.8, we find

|Sva −Rva| 6 N−1/2ϕCζ
(
|SvaRba|+ |SvbRaa|

)
6 N−1/2ϕCζ

(√
ImSvv

Nη
+ |va|+ |vb|

)
(3.28)

with 2ζ-high probability. Now (3.28), (3.5), and Lemma 3.8 yield

|Rva| 6 ϕCζ

√
ImSvv

Nη
+ C|va|+ ϕCζN−1/2 6 ϕCζ

√
ImSvv

Nη
+ ϕCζΨ + C|va| (3.29)

with 2ζ-high probability. The same bound holds for Rav. Similarly, choosing K = 1 in (3.25) yields, using
(3.29), that

|Svv −Rvv| 6 N−1/2ϕCζ
(
|SvaRbv|+ |SvbRav|

)
6 N−1/2ϕCζ

(
ImSvv

Nη
+ |va|2 + |vb|2

)
(3.30)

with 2ζ-high probability.
After these preparations, we may start to estimate

(
ImSvv

)n − (ImRvv

)n
=

n∑
m=1

Am (ImRvv)n−m ,

where we defined

Am ..=

(
n

m

)(
ImSvv − ImRvv

)m
.

We choose K = 4 in (3.25) and introduce the notation S − R =
∑4
k=1 Yk, whereby Yk has k factors V . We

write

Am =

4m∑
k=m

Am,k where Am,k ..=

(
n

m

) 4∑
k1,...,km=1

1
(
k1 + · · ·+ km = k

) m∏
i=1

Im(Yki)vv . (3.31)
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Thus we have

E
(
ImSvv

)n − E
(
ImRvv

)n
= A+

n∑
m=1

4m∑
k=max{4,m}

EAm,k
(
ImRvv

)n−m
, (3.32)

where A depends on the randomness only through Q and the first three moments of Vab.
We shall prove that

n∑
m=1

4m∑
k=4

E |Am,k|
(
ImRvv

)n−m
6
Eab

logN

(
E
(
ImSvv

)n
+ (ϕCζΦ)n

)
, (3.33)

where we defined

Eab ..=

2∑
σ,τ=0

N−2+σ/2+τ/2|va|σ|vb|τ . (3.34)

For future use, we note that the proof of (3.33) does not require the vanishing of the third moments of H
as in (2.8). Before proving (3.33), we show how it implies (3.20). Let us abbreviate Xγ

..= E
(
ImGγvv

)n
and

Eγ ..= (logN)−1Eφ−1(γ). Note that, since ImGγvv > 0, we have Xγ > 0 for all γ. Repeating the derivation
of (3.32) for T instead of S, using that the first three moments of Vab and Wab are the same, and using the
estimate (3.33) and its analogue with S replaced by T , we find

Xγ −Xγ−1 6 Eγ
(
Xγ +Xγ−1 +

(
ϕCζΦ

)n)
.

Abbreviating rγ ..= (1− Eγ)−1(1 + Eγ) > 1 we therefore find

Xγ 6 rγ Xγ−1 + rγ Eγ
(
ϕCζΦ

)n
.

Since (3.20) holds for GOE/GUE, we have the initial estimate X0 6
(
ϕCζΦ

)n
. Iteration therefore yields

Xγ 6

(
γ∏
j=1

rγ

)(
1 +

γ∑
j=1

Eγ

)(
ϕCζΦ

)n
.

Next, we observe that
∑
γ Eγ 6 1. Since 0 6 Eγ 6 1/2, we find

∏
γ rγ 6 C. This implies

E
(
ImGvv

)n
= Xγmax 6

(
ϕCζΦ

)n
,

which is (3.20).
What remains is to prove (3.33). Recall that in (3.31), (Yk)vv = N−k/2

[
(−RV )kR

]
vv

if k < 4 and

(Y4)vv = N−2
[
(−RV )kS

]
vv

. For each Yki in (3.31), we write out the matrix multiplication in terms of
matrix elements of S, R, and V . Then we multiply everything out. We classify the resulting terms using
two additional parameters s, t > 0. Here s is the total number of matrix elements Rva, Rav, Sva, and Sav;
t is defined similarly with a replaced by b. If a = b, we use the symmetric convention s = t.

We have the conditions
s+ t = 2m, k > max{s, t} . (3.35)

The first one is immediate. The second one is clearly true if a = b. In order to prove it in the case a 6= b,
assume for definiteness that s > t. Then each factor Rva, Rav, Sva, and Sav is associated with a unique
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factor Vab or Vba (the one standing next to it in the matrix product); this proves the second condition of
(3.35). Thus we have the decomposition

Am,k =

k∑
s,t=0

1(s+ t = 2m)Am,k,s,t , (3.36)

in self-explanatory notation.
Using Lemma 3.8 and (3.29), we get the bound(

|Rva|+ |Rav|+ |Sva|+ |Sav|
)s(
|Rvb|+ |Rbv|+ |Svb|+ |Sbv|

)t
6

(
ϕCζ

√
ImSvv

Nη
+ ϕCζΨ + C|va|

)s(
ϕCζ

√
ImSvv

Nη
+ ϕCζΨ + C|vb|

)t

6

(
ϕCζ

ImSvv

Nη
+ ϕCζΨ2

)m
+

(
ϕCζ

ImSvv

Nη
+ ϕCζΨ2

)m−s/2
(C|va|)s

+

(
ϕCζ

ImSvv

Nη
+ ϕCζΨ2

)m−t/2
(C|vb|)t + (C|va|)s(C|vb|)t

6 ϕ−Dm

(
ϕCζ,D

(
ImSvv

Nη
+ Ψ2 +N−1/2

))m(
1 +Ns/4|va|s +N t/4|vb|t +Ns/4+t/4|va|s|vb|t

)
(3.37)

with 2ζ-high probability, where in the second step we used Lemma 3.10 below and s + t 6 ϕζ , and in the
third step the inequality xm−aya 6 (x + y)m. Here D > 0 is some constant to be chosen later, and Cζ,D
denotes a constant depending on ζ and D. For the following it will be convenient to abbreviate

Fab(s, t) ..= 1 +Ns/4|va|s +N t/4|vb|t +Ns/4+t/4|va|s|vb|t .

Using (3.4), (3.5), and Lemma 3.10 below, we find that there is a constant Cζ,D such that for z ∈ S(Cζ,D)
we have(
|Rva|+ |Rav|+ |Sva|+ |Sav|

)s(
|Rvb|+ |Rbv|+ |Svb|+ |Sbv|

)t
6 ϕ−Dm

((
ImSvv

)m
+
(
ϕCζ,DΦ

)m)Fab(s, t) (3.38)

with 2ζ-high probability.
Next, we observe that (3.30) and (3.5) imply

ImRvv 6
(
1 + ϕCζN−1/2

)
ImSvv + ϕCζΦ (3.39)

with 2ζ-high probability. Recall that, be definition, Am,k,s,t contains k factors V , s factors in the set
{Rva, Rav, Sva, Sav}, and t factors in the set {Rvb, Rbv, Svb, Sbv}. Therefore the definitions (3.31) and
(3.36), as well as the estimates (2.1), (3.38), and (3.39), yield

|Am,k,s,t|(ImRvv)n−m

6 (4n)mϕkCζN−k/2ϕ−Dm
((

ImSvv

)m
+
(
ϕCζ,DΦ

)m)Fab(s, t)((1 + ϕCζN−1/2
)

ImSvv + ϕCζΦ
)n−m

6 ϕ(Cζ−D)mN−k/2
(

(ImSvv)n +
(
ϕCζ,DΦ

)n)Fab(s, t) (3.40)
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with 2ζ-high probability, where we used that k 6 4m, that n 6 ϕζ ,
(
n
m

)
6 nm, and Lemma 3.10 below.

Denote by Ξ the event on which the estimate (3.40) holds; thus, P(Ξc) 6 NC exp(−ϕ2ζ). Using (2.1) and
the deterministic bound ‖R‖+ ‖S‖ 6 N , it is easy to see that on Ξc we have the rough estimate

E|Am,k,s,t|(ImRvv)n−m1(Ξc) 6 Nn
(
E|Am,k,s,t|2

)1/2
P(Ξc)1/2 6 (Nϕζ)Cϕ

ζ

exp(−cϕ2ζ) 6 ΦnN−10n

for all n 6 ϕζ and N large enough. Therefore choosing D ≡ Dζ large enough we get from (3.40)

E|Am,k,s,t|(ImRvv)n−m 6 ϕ−m
(

(ImSvv)n +
(
ϕCζΦ

)n)
N−k/2 Fab(s, t) .

Therefore (3.33) follows using (3.35) if we can prove that

N−max{4,s,t}/2
(

1 +Ns/4|va|s +N t/4|vb|t +Ns/4+t/4|va|s|vb|t
)

6 CEab = C

2∑
σ,τ=0

N−2+σ/2+τ/2|va|σ|vb|τ .

(3.41)
for all s, t. We check that all terms on the left-hand side of (3.41) are bounded, for all s, t > 0, by the
right-hand side of (3.41). The first term is trivial: N−max{4,s,t}/2 6 N−2. The second term is bounded by

N−max{4,s,t}/2Ns/4|va|s 6 N−2 +N−2+1/4|va|+N−2+1|va|2 .

The third term is bounded similarly. Finally, the last term is bounded by

N−max{4,s,t}/2Ns/4+t/4|va|s|vb|t 6 E +N−2+1/2|va||vb|+N−2+1+1/4(|va|2|vb|+ |va||vb|2) + |va|2|vb|2 ,

where E denotes a quantity bounded by the three previous terms. This completes the proof of (3.41), and
hence of (3.33).

What remains is to prove the following elementary result.

Lemma 3.10. For x, y > 0 and m ∈ N we have

(x+ y)m 6 Cxm + (my)m .

Proof. By convexity of the function x 7→ xm we have, for any λ ∈ (0, 1),

(x+ y)m =

(
(1− λ)

x

1− λ
+ λ

y

λ

)m
6

1

(1− λ)m
xm +

1

λm
ym .

Choosing λ = 1/m yields the claim.
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3.4. Estimate of Gvv −m. We now conclude the proof of Proposition 3.1. By polarization and linearity, it
is enough to prove the following result.

Lemma 3.11. Let ζ > 0 be fixed. Then there exists a constant Cζ such that, for all n 6 ϕζ , all deterministic
and normalized v ∈ CN , and all z ∈ S(Cζ), we have

E
∣∣Gvv(z)−m(z)

∣∣n 6
(
ϕCζΨ(z)

)n
. (3.42)

Proof. The proof is very similar to that of Lemma 3.9, whose notation we take over without further
comment. In order to avoid dealing with complex numbers, we estimate the real and imaginary parts of
Gvv −m separately. We give the argument for the real part; the imaginary part is dealt with in the same
way. Throughout the following n denotes an even number less than ϕζ .

For the GOE/GUE matrix H0 we get from Theorem 3.6, as in the proof of Lemma 3.9, that

E
(
ReG0

vv − Rem
)n

6
(
ϕCζΨ

)n
. (3.43)

In order to perform the comparison step, we write, similarly to (3.32),

E
(
ReSvv − Rem

)n − E
(
ReRvv − Rem

)n
= B +

n∑
m=1

4m∑
k=max{4,m}

EBm,k
(
ReRvv − Rem

)n−m
,

where B depends on the randomness only through Q and the first three moments of Vab, and

Bm,k ..=

(
n

m

) 4∑
k1,...,km=1

1
(
k1 + · · ·+ km = k

) m∏
i=1

Re(Yki)vv .

Similarly to (3.33), we shall prove that

n∑
m=1

4m∑
k=4

E
(
|Bm,k|

∣∣ReRvv − Rem
∣∣n−m) 6

Eab
logN

E

[(
ReSvv − Rem

)n
+

(
ϕCζ

ImSvv

Nη

)n
+ (ϕCζΨ)n

]
.

(3.44)
Using Lemma 3.9, (3.4), and (3.5) we find that the right-hand side of (3.44) is bounded by

Eab
logN

E

[(
ReSvv − Rem

)n
+ (ϕCζΨ)n

]
.

Therefore (3.43) and (3.44) yield (3.42), exactly as in the paragraph following (3.34).
What remains therefore is to prove (3.44). Using (3.37), (3.5), and Lemma 3.10 we get, for arbitrary

D > 0,

(
|Rva|+ |Rav|+ |Sva|+ |Sav|

)s(
|Rvb|+ |Rbv|+ |Svb|+ |Sbv|

)t
6 ϕ−Dm

((
ϕCζ,D

ImSvv

Nη

)m
+
(
ϕCζ,DΨ

)m)Fab(s, t) (3.45)
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with 2ζ-high probability. Therefore we get, similarly to (3.40),

|Bm,k,s,t|
∣∣ReRvv − Rem

∣∣n−m
6 ϕ(Cζ−D)mN−k/2

((
ReSvv − Rem

)n
+

(
ϕCζ,D

ImSvv

Nη

)n
+
(
ϕCζ,DΨ

)n)Fab(s, t)
with 2ζ-high probability, where we used (3.30), N−1/2 6 Ψ, and Lemma 3.10. Choosing D > 0 large enough
and recalling (3.41) yields (3.44). (We omit the details of the analysis on the low-probability event, which
are similar to those following (3.40).) This concludes the proof of Lemma 3.11.

4. Proof of Theorem 2.2, Case B

In this section we prove Theorem 2.2 in the case B, i.e. we impose no condition on the third moments of the
entries of H, and Ψ(z) satisfies (2.9). By Markov’s inequality, it suffices to prove the following result.

Proposition 4.1. Fix ζ > 0. Then there are constants C0 and Cζ , both depending on ζ, such that the
following holds. Assume that z ∈ S(Cζ) satisfies (2.9) with constant C0. Then we have, for all n 6 ϕζ and
all deterministic v,w ∈ CN , that

E
∣∣Gvw(z)− 〈v ,w〉m(z)

∣∣n 6
(
ϕCζΨ(z)‖v‖‖w‖

)n
. (4.1)

The rest of this section is devoted to the proof of Proposition 4.1. We take over the notation of Section
3, which we use throughout this section without further comment.

4.1. Estimate of ImGvv. In this section we derive an apriori bound on ImGvv by proving the following
result.

Lemma 4.2. Fix ζ > 0. Then there are large enough constants C0 and Cζ , both depending on ζ, such that
the following holds. Assume that z ∈ S(Cζ) satisfies (2.9) with constant C0. Then we have, for all n 6 ϕζ

and all deterministic and normalized v ∈ CN , that

E
(
ImGvv(z)

)n
6
(
ϕCζΦ(z)

)n
. (4.2)

The following (trivial) observation will be needed in the next section: The constant C0 may be increased
at will without changing Cζ in (4.2).

The main technical estimate behind the proof of Lemma 4.2 is the following lemma. Recall the setup
(3.21) of the Green function comparison, and in particular the definitions (3.23).

Lemma 4.3. Fix ζ > 0. Then there are constants C0 and C1, both depending on ζ, such that if (2.9) holds
with constant C0 then we have the following. For any a, b we have∣∣∣∣∣

n∑
m=1

4m∑
k=max{3,m}

EAm,k(ImRvv)n−m

∣∣∣∣∣ 6
C

logN

(
Ẽab +N−3/2

ϕC1

Nη

)(
E
(
ImSvv

)n
+ (ϕC1Φ)n

)
, (4.3)

where

Ẽab ..= Eab + δab
(
|va|2 +N−3/2

)
=

2∑
σ,τ=0

N−2+σ/2+τ/2|va|σ|vb|τ + δab
(
|va|2 +N−3/2

)
.
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Moreover, if

|va|+ |vb| 6 N−1/4

√
ϕC1

Nη
(4.4)

then we have the stronger bound∣∣∣∣∣
n∑

m=1

4m∑
k=max{3,m}

EAm,k(ImRvv)n−m

∣∣∣∣∣ 6
C

logN
Ẽab
(
E
(
ImSvv

)n
+ (ϕC1Φ)n

)
. (4.5)

Before proving Lemma 4.3, we use it to complete the proof of Lemma 4.2.

Proof of Lemma 4.2. Let B ⊂ {1, . . . , N}2 denote the subset

B ..=

{
(a, b) .. |va|+ |vb| > N−1/4

√
ϕC1

Nη

}
.

Since ‖v‖ = 1, the number of indices a such that |va| > ε is bounded by ε−2. Therefore

|B| 6 N3/2

(
ϕC1

Nη

)−1
.

Therefore we have ∑
(a,b)∈B

C

logN

(
Ẽab +N−3/2

ϕC1

Nη

)
+

∑
(a,b)∈Bc

C

logN
Ẽab 6

C

logN
.

Now (4.2) follows from (4.3) and (4.5), by repeating the argument after (3.34).

Before proving Lemma 4.3, we record the following lower bound on η.

Lemma 4.4. Let C0 > 0. If (2.9) holds then

η > ϕC0/3N−5/6 . (4.6)

Proof. The claim follows immediately from (Nη)−1 6 Ψ 6 ϕ−C0/3N−1/6.

Proof of Lemma 4.3. Note that the proof of (3.33) did not use the assumption (2.8). In particular, all
statements in the proof of Lemma 3.9 after (3.35) remain true in the case B. By (3.33), it is enough to prove∣∣∣EAm,3(ImRvv)n−m

∣∣∣ 6
1

logN

(
Ẽab +N−3/2

ϕCζ

Nη

)(
E
(
ImSvv

)n
+ (ϕCζΦ)n

)
(4.7)

for m = 1, 2, 3 as well as, assuming (4.4),∣∣∣EAm,3(ImRvv)n−m
∣∣∣ 6

1

logN
Ẽab
(
E
(
ImSvv

)n
+ (ϕCζΦ)n

)
(4.8)

for m = 1, 2, 3. In order to prove (4.7) and (4.8), we distinguish four cases depending on m and whether
a = b. Recall from (3.35) that

s+ t = 2m, s 6 3 , t 6 3 . (4.9)
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Case (i): a = b and m 6 3. Similarly to (3.37), we find(
|Rva|+ |Rav|

)2m
6 ϕ−Dm

(
ImSvv + ϕCζ,DΦ

)m(
1 +Nm/2|va|2m

)
with 2ζ-high probability, for any constant D > 0 and z ∈ S(Cζ,D). Therefore (3.39) yields

|Am,3|(ImRvv)n−m 6 ϕCζ−DmN−3/2
(

ImSvv + ϕCζ,DΦ
)n(

1 +Nm/2|va|2m
)

6 ϕ−1
(

ImSvv + ϕCζΦ
)n(

N−3/2 + |va|2
)

with 2ζ-high probability, where we used that 1 6 m 6 3. Therefore Lemma 3.10 yields

E|Am,3|(ImRvv)n−m 6 Cϕ−1
(
E
(
ImSvv

)n
+ (ϕCζΦ)n

)(
N−3/2 + |va|2

)
, (4.10)

which is (4.8). In particular, we have also proved (4.7). Here we omit the details of the estimate on the
event of low probability, which are analogous to those following (3.40).

Case (ii): a 6= b and m = 3. By (4.9), we have s = t = 3. From (3.37) we get

(
|Rva|+ |Rav|

)s(
|Rvb|+ |Rbv|

)t
6

(
ϕCζ

ImSvv

Nη
+ ϕCζΨ2

)m
+

(
ϕCζ

ImSvv

Nη
+ ϕCζΨ2

)m−s/2
(C|va|)s

+

(
ϕCζ

ImSvv

Nη
+ ϕCζΨ2

)m−t/2
(C|vb|)t + (C|va|)s(C|vb|)t (4.11)

with 2ζ-high probability. Together with (3.4) and (3.39), this yields(
|Rva|+ |Rav|

)s(
|Rvb|+ |Rbv|

)t
(ImRvv)n−m 6

(
ImSvv + ϕCζ,DΦ

)n
×

[(
ϕCζ

Nη

)m
+

(
ϕCζ

Nη

)s/2(
ϕDΦ

)−t/2|vb|t +

(
ϕCζ

Nη

)t/2(
ϕDΦ

)−s/2|va|s +
(
ϕDΦ

)−s/2−t/2|va|s|vb|t] (4.12)

with 2ζ-high probability and for any D > 0. Choosing D and C0 in (2.9) large enough, we get from (2.1),
(4.6), Lemma 3.10, and N−1/2 6 Φ that

|A3,3|(ImRvv)n−3 6 ϕ−1N−3/2
(

(ImSvv)n + (ϕCζΦ)n
)(
N−1/2 +N1/2|vb|2 +N1/2|va|2 +N3/2|va|2|vb|2

)
with 2ζ-high probability. Now (4.8), and hence also (4.7), follows easily (we omit the details of the analysis
on the low-probability event).

Case (iii): a 6= b and m = 2. Consider first the case s = t = 2. Then A2,3,2,2 (see (3.36) and (3.31)) is a
finite sum of O(1) terms of the form

X1
..= RvahabRbv RvahabRbahabRbv . (4.13)

(The other terms can be obtained from (4.13) by permutation of indices and complex conjugation of factors.)
We shall estimate the contribution of X1; the other terms are dealt with in exactly the same way. Note
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the presence of an off-diagonal resolvent matrix element Rba, as required by the condition s = t = 2. From
(3.27) and (4.12) we get, with m = s = t = 2, that

|X1| (ImRvv)n−2 6 ϕCζ ΨN−3/2
(
ImSvv + ϕCζ,DΦ

)n
×

[(
ϕCζ

Nη

)2

+
ϕCζ

Nη

(
ϕDΦ

)−1|vb|2 +
ϕCζ

Nη

(
ϕDΦ

)−1|va|2 +
(
ϕDΦ

)−2|va|2|vb|2]
with 2ζ-high probability. Note the factor Ψ arising from the estimate of Rba. Choosing D and C0 large
enough, and recalling (2.9), we find using Lemma 3.10 that

|X1| (ImRvv)n−2 6 ϕ−1
(

(ImSvv)n + (ϕCζΦ)n
)
Eab

with 2ζ-high probability. This yields (4.8) and hence also (4.7).
Let us therefore consider the case s = 3 and t = 1. (The case s = 1 and t = 3 is estimated in the same

way.) Using the bounds Φ > (Nη)−1 and Φ > N−1/2, we find

|A2,3,3,1| (ImRvv)n−2 (4.14)

6 ϕCζ N−3/2
(
ImSvv + ϕCζ,DΦ

)n
×

[(
ϕCζ

Nη

)2

+

(
ϕCζ

Nη

)3/2(
ϕDΦ

)−1/2|vb|+ (ϕCζ
Nη

)1/2(
ϕDΦ

)−3/2|va|2 +
(
ϕDΦ

)−2|va|2|vb|]

6 ϕ−1
(

(ImSvv)n + (ϕCζΦ)n
)[
N−3/2

ϕCζ

Nη
+N−3/2|vb|+N−1|va|2 +N−1/2|va|2|vb|

]
(4.15)

with 2ζ-high probability, for D and C0 large enough. This yields (4.7) in the case s = 3 and t = 1.
In order to prove the stronger bound (4.8) in the case s = 3 and t = 1, we note that (3.29), (3.4), (3.5),

and the assumption (4.4) yield

|Rva| 6 ϕCζ

√
ImSvv + Φ

Nη
. (4.16)

The same bound holds for Rav, Rvb, and Rbv. Now A2,3,3,1 is a finite sum of O(1) terms of the form

X2
..= RvahabRbv RvahabRbbhbaRav .

(Again, the other terms can be obtained from X2 by permutation of indices and complex conjugation of
factors.) We shall show that∣∣EX2(ImRvv)n−2

∣∣ 6 Cϕ−1Eab
(
E(ImSvv)n + (ϕCζΦ)n

)
. (4.17)

We split Rbb = (Rbb −m) +m in the definition of X2. The first resulting term is estimated, using (3.27), by

ϕCζ ΨN−3/2
∣∣RvaRbvRvaRav

∣∣(ImRvv)n−2 .

The estimate of |X1|(ImSvv)n−2 above may now be applied verbatim. What remains is the second term
resulting from the above splitting of X2. Since |m| 6 C and hab is independent of R, we therefore have to
show that

CN−3/2
∣∣∣ERvaRbvRvaRav (ImRvv)n−2

∣∣∣ 6 ϕ−1Eab
(
E(ImSvv)n + (ϕCζΦ)n

)
. (4.18)
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Using (3.7), we expand

Rbv = mRbv +R′bv , (4.19)

where we defined (see also (3.9))

Rbv ..= −
(b)∑
k

hbkR
(b)
kv , R′bv ..= vbRbb + (Rbb −m)Rbv . (4.20)

Now we observe that, using the bound (3.27), we may repeat the proof of Lemma 3.8 to the letter to find
that its statement holds with (G,G) replaced with (R,R). Thus we find

|Rbv| 6 ϕCζ

√
ImRvv

Nη
+ C|vb| 6 ϕCζ

√
ImSvv + Φ

Nη
+ ϕCζN−1/4(Nη)−1/2 6 ϕCζ

√
ImSvv + Φ

Nη
(4.21)

with 2ζ-high probability, where in the second step we used (3.39) and (4.4), and in the last step (3.5). Using
(3.27), (4.4), and Φ > (Nη)−1, we therefore find

|R′bv| 6
(
ϕCζ

Ψ√
Nη

+ ϕ−DN−1/4
)

(ImSvv + ϕCζ,DΦ)1/2 (4.22)

with 2ζ-high probability, for any D > 0. Therefore (3.39) and (4.16) yield

CN−3/2
∣∣∣ERvaR′bvRvaRav (ImRvv)n−2

∣∣∣ 6 N−3/2ϕCζ (Nη)−3/2
(

Ψ√
Nη

+N−1/4
)(

ImSvv + ϕCζΦ
)n

with 2ζ-high probability. Using (2.9), (4.6), and Lemma 3.10, we find that the right-hand side is bounded
by

ϕ−1N−2
(

(ImSvv)n + (ϕCζΦ)n
)

with 2ζ-high probability. Combined with the usual estimate on the complementary low-probability event,
this concludes the estimate of the R′bv-term. What remains is to prove that

CN−3/2
∣∣∣ERvaRbvRvaRav (ImRvv)n−2

∣∣∣ 6 ϕ−1Eab
(
E(ImSvv)n + (ϕCζΦ)n

)
, (4.23)

The key observation behind the estimate of (4.23) is that EbRbv = 0, where Eb denotes partial expectation
with respect to the b-th column of Q. Thus we have

ERvaRbvRvaRav (ImRvv)n−2 = E
[
RvaRvaRav (ImRvv)n−2 −R(b)

vaR
(b)
vaR

(b)
av (ImR(b)

vv)n−2
]
Rbv .

In order to compare the quantities in the brackets, we use (3.6), (3.27), and (4.16) to get

Rva = R(b)
va +

RvbRba
Rbb

= R(b)
va +O(ϕCζΨRvb) , (4.24)

Rvv = R(b)
vv +

RvbRbv
Rbb

= R(b)
vv +O

(
ϕCζ

ImSvv + Φ

Nη

)
(4.25)
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with 2ζ-high probability. In particular, we get from (3.39) and (4.16) that

ImR(b)
vv 6 (1 + ϕ−ζ) ImSvv + ϕCζΦ , |R(b)

va | 6 ϕCζ

√
ImSvv + Φ

Nη
(4.26)

with 2ζ-high probability, for z ∈ S(C ′ζ) with some large enough C ′ζ . A telescopic estimate of the form

k∏
i=1

(xi + yi)−
k∏
i=1

xi =

k∑
j=1

(
j−1∏
i=1

xi

)
yj

(
k∏

i=j+1

(xi + yi)

)

therefore gives

CN−3/2
∣∣∣RvaRvaRav (ImRvv)n−2 −R(b)

vaR
(b)
vaR

(b)
av (ImR(b)

vv)n−2
∣∣∣ ∣∣Rbv∣∣

6 ϕCζN−3/2|Rbv|
(

ImSvv + Φ

Nη

)3/2

Ψ
(
ImSvv + ϕCζΦ

)n−2
+ nϕCζN−3/2|Rbv|

(
ImSvv + Φ

Nη

)5/2(
ImSvv + ϕCζΦ

)n−3
6 ϕCζN−3/2

√
ImSvv + Φ

Nη

(
Ψ

(Nη)3/2
+

1

(Nη)5/2

)(
ImSvv + ϕCζΦ

)n−1/2
with 2ζ-high probability, where in the last step we used (4.21) and n 6 ϕζ . Now (4.23) follows easily for
large enough C0 in (2.9), using (2.9) and (4.6). This concludes the proof of (4.18) and hence of (4.17).

Case (iv): a 6= b and m = 1. Similarly to (4.15), one easily finds the weak bound (4.7). Let us therefore
assume (4.4) and prove (4.8). It suffices to prove that

N−3/2
∣∣EX3(ImRvv)n−1

∣∣ 6 ϕ−1N−2
(
E
(
ImSvv

)n
+ (ϕCζΦ)n

)
, (4.27)

where X3 stands for any of the following expressions:

RvaRbaRbaRbv , RvaRbbRabRav , RvaRbbRaaRbv .

Here we used that hab and hba are independent of R. (Up to an immaterial renaming of indices and
complex conjugation, all terms in A1,3 are covered by one of these three cases.) Applying the splittings
Raa = m+ (Raa −m) and Rbb = m+ (Rbb −m), we find that it suffices to prove (4.27) for X3 being any of

RvaRbaRbaRbv , Rva(Rbb −m)RabRav , Rva(Rbb −m)(Raa −m)Rbv ,

RvaRabRav , Rva(Rbb −m)Rbv , Rva(Raa −m)Rbv ,

RvaRbv .

Next, applying the splitting (4.19) to the last line, we find that it suffices to prove (4.27) for X3 being any of

RvaRbaRbaRbv , Rva(Rbb −m)RabRav , Rva(Rbb −m)(Raa −m)Rbv , R′vaR′bv , (4.28a)

RvaRabRav , Rva(Rbb −m)Rbv , Rva(Raa −m)Rbv , R′vaRbv , RvaR′bv , (4.28b)

RvaRbv . (4.28c)
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For X3 in (4.28a), we find from (3.27), (4.16), and (4.22) that

|X3| 6 ϕCζ
(

Ψ2

Nη
+ ϕ−DN−1/2

)(
ImSvv + ϕCζ,DΦ

)
with 2ζ-high probability, from which (4.27) easily follows using (2.9), (4.6), (3.39), and Lemma 3.10, having
chosen D and C0 in (2.9) large enough.

Let us now consider X3 = RvaRabRav. Using (3.7), we split, similarly to (4.19),

Rab = mRab + (Rbb −m)Rab , Rab ..= −
(b)∑
k

R
(b)
ak hkb .

Using (3.12), (3.4), (3.6), and (3.27), we find

|Rab| 6 ϕCζ

(
1

N

(b)∑
k

|R(b)
ak |

2

)1/2

= ϕCζ
(

1

Nη
ImR(b)

aa

)1/2

6 ϕCζ
(

Imm+ Ψ

Nη

)1/2

6 ϕCζΨ (4.29)

with 2ζ-high probability. For the second part of X3 resulting from the splitting of Rab, we therefore get the
estimate ∣∣Rva(Rbb −m)RabRav

∣∣ 6 ϕCζ
Ψ2

Nη

(
ImSvv + ϕCζΦ

)
6 ϕ−1N−1/2

(
ImSvv + ϕCζΦ

)
with 2ζ-high probability. For the first part, we use EbRab to write

ERvaRabRav(ImRvv)n−1 = E
[
RvaRav(ImRvv)n−1 −R(b)

vaR
(b)
av (ImR(b)

vv)n−1
]
Rab .

This may be estimated using a telescopic sum, exactly as (4.8); we omit the details. This completes the
proof of (4.27) in the case X3 = RvaRabRav. The second and third terms of (4.28b) are estimated similarly.

For the choice X3 = RvaR′bv, we use EaRva = 0 to write

ERvaR′bv(ImRvv)n−1 = E
[
R′bv(ImRvv)n−1 −

(
R′bv

)(a)
(ImR(a)

vv )n−1
]
Rva , (4.30)

where we defined

(
R′bv

)(a) ..= vbR
(a)
bb + (R

(a)
bb −m)R(a)

bv , R(a)
bv

..= −
(ab)∑
k

hbkR
(ab)
kv .

We find

∣∣R(a)
bv −Rbv

∣∣ 6 |hba||R(b)
av |+

∣∣∣∣∣
(ab)∑
k

hbk
(
R

(b)
kv −R

(ab)
kv

)∣∣∣∣∣
6 ϕCζN−1/2

√
ImSvv + Φ

Nη
+ ϕCζ |R(b)

av |

(
1

N

∑
k

|R(b)
ka |

2

)1/2

6 ϕCζ
Ψ√
Nη

(
ImSvv + Φ

)1/2
(4.31)
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with 2ζ-high probability, where we used (4.26), (2.1), (3.12), (3.6), and (4.24). Together with (3.6), (3.27),
(4.16), and (4.4), we therefore find

∣∣(R′bv)(a) −R′bv∣∣ 6
(
|vb|+ |Rbv|

)
|R(a)
bb −Rbb|+ |R

(b)
bb −m|ϕ

Cζ
Ψ√
Nη

(
ImSvv + Φ

)1/2
6 ϕCζ

Ψ2

√
Nη

(
ImSvv + Φ

)1/2
(4.32)

with 2ζ-high probability. Recalling (4.21), (4.25), Lemma 3.10, and the usual rough estimate on the com-
plementary low-probability event, a telescopic estimate in (4.30) therefore gives

ERvaR′bv(ImRvv)n−1 6 ϕCζ
(

Ψ2

Nη
+

Ψ

(Nη)2

)(
E(ImSvv)n +

(
ϕCζΦ

)n)
.

Now (4.27) follows.
Now we prove (4.27) for X3 as in (4.28c). We begin with a graded expansion of Rvv. Using (3.8) we find

Rvv = R(a)
vv +

RvaRav
Raa

= R(ab)
vv +

R
(a)
vb R

(a)
bv

R
(a)
bb

+
RvaRav
Raa

.

We deal with the last term by applying (3.6) twice, followed by

1

Raa
=

1

R
(b)
aa

− RabRba

RaaRbbR
(b)
aa

,

itself an immediate consequence of (3.6). This gives the graded expansion

Rvv = R[ab]
vv +R[a]

vv +R[b]
vv +R[∅]

vv ,

where

R[ab]
vv

..= R(ab)
vv , R[a]

vv
..=

R
(a)
vb R

(a)
bv

R
(a)
bb

, R[b]
vv

..=
R

(b)
vaR

(b)
av

R
(b)
aa

R[∅]
vv

..=
RvbRbaRav
RaaRbb

+
R

(b)
vaRabRbv
RaaRbb

− R
(b)
vaR

(b)
avRabRba

RaaRbbR
(b)
aa

.

Note that R
[T]
v is independent of the columns of H indexed by T. Moreover, by (3.27), Lemma 3.2, (3.6),

(4.16), and (4.26), we have

∣∣R[a]
vv

∣∣+
∣∣R[b]

vv

∣∣ 6 ϕCζ
ImSvv + Φ

Nη
,

∣∣R[∅]
vv

∣∣ 6 ϕCζΨ
ImSvv + Φ

Nη
(4.33)

with 2ζ-high probability. Thus we write

ERvaRbv(ImRvv)n−1 =
∑
A

ERvaRbv
n−1∏
i=1

ImR[Ai]
vv (4.34)
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where A = (Ai)
n−1
i=1 and Ai ∈ {∅, a, b, ab} for i = 1, . . . , n − 1. In order to keep track of the terms in the

summation over A, we introduce the counting functions

r1(A) ..=

n−1∑
i=1

(
1(Ai = a) + 1(Ai = b)

)
, r2(A) ..=

n−1∑
i=1

1(Ai = ∅) .

We partition the sum in (4.34) as∑
A

=
∑
A

1
(
r2(A) = 0

)
1
(
r1(A) = 0

)
+
∑
A

1
(
r2(A) = 0

)
1
(
r1(A) = 1

)
+
∑
A

1
(
r2(A) > 1 or r1(A) > 2

)
.

(4.35)
Let us concentrate on the first summand; its condition is equivalent to Ai = ab for all i. Using EaRva = 0

and Eb
(
Rbv −R(a)

bv

)
= 0 we get

ERvaRbv(ImR[ab]
vv )n−1 = E

(
Rva −R(b)

va

)(
Rbv −R(a)

bv

)
(ImR[ab]

vv )n−1 .

From (4.31), (4.33), (3.39), and Lemma 3.10 we therefore get

∣∣ERvaRbv(ImR[ab]
vv )n−1

∣∣ 6 ϕCζ
Ψ2

Nη

(
E(ImSvv)n + (ϕCζΦ)n

)
6 ϕ−1N−1/2

(
E(ImSvv)n + (ϕCζΦ)n

)
for large enough C0.

The second summand of (4.35) consists of n terms of the form

ERvaRbv(ImR[a]
vv)(ImR[ab]

vv )n−2 = ERva

(
Rbv −R(a)

bv

)
(ImR[a]

vv)(ImR[ab]
vv )n−2 .

Recalling (4.33), we estimate this as above by

ϕCζ
Ψ

(Nη)2
(
E(ImSvv)n + (ϕCζΦ)n

)
6 ϕ−1N−1/2

(
E(ImSvv)n + (ϕCζΦ)n

)
for large enough C0.

What remains is to estimate the third summand in (4.35). From (4.33) and (4.31) we get

∑
A

1
(
r2(A) > 1 or r1(A) > 2

)∣∣RvaRbv
∣∣ n−1∏
i=1

∣∣ImR[Ai]
vv

∣∣
6 ϕCζ

(
1

(Nη)3
+

Ψ

(Nη)2

)(
ImSvv + ϕCζΦ

)n
6 ϕ−1N−1/2

(
(ImSvv)n + (ϕCζΦ)n

)
with 2ζ-high probability. This completes the proof of (4.27) for X3 = RvaRbv.
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4.2. Estimate of Gvv −m. We now conclude the proof of Proposition 4.1. By polarization and linearity, it
is enough to prove the following result.

Lemma 4.5. Fix ζ > 0. Then there are constants C0 and Cζ , both depending on ζ, such that the following
holds. Assume that z ∈ S(Cζ) satisfies (2.9) with constant C0. Then we have, for all n 6 ϕζ and all
deterministic and normalized v ∈ CN , that

E
∣∣Gvv(z)−m(z)

∣∣n 6
(
ϕCζΨ(z)

)n
. (4.36)

Proof. As in the proof of Lemma 3.11, we focus on ReGvv−Rem. Assume without loss of generality that
n is even. We shall prove that

∣∣∣E(Bm,3(ReRvv − Rem
)n−m)∣∣∣ 6

1

logN

(
Ẽab +N−3/2ϕC1Ψ

)[
E
(
ReSvv − Rem

)n
+ (ϕCζΨ)n

]
(4.37)

for m = 1, 2, 3 as well as, assuming

|va|+ |vb| 6 N−1/4ϕC1/2
√

Ψ , (4.38)

that ∣∣∣E(Bm,3(ReRvv − Rem
)n−m)∣∣∣ 6

1

logN
Ẽab

[
E
(
ReSvv − Rem

)n
+ (ϕCζΨ)n

]
(4.39)

for m = 1, 2, 3. Here C1 is a large enough constant depending on ζ.

Assuming that (4.37) and (4.39) have been proved, we get the claim (4.36) from (3.44) and Lemma 4.3
applied to S; the detains are identical to those of the proof of Lemma 4.2 and the argument following (3.34).

The proof of (4.37) and (4.39) is similar to the proof of (4.7) and (4.8). The key input is the apriori
bound

ImSvv 6 ϕCζΦ (4.40)

with 2ζ-high probability, which follows from (4.2) and Markov’s inequality. Throughout the proof, we shall
consistently (and without further mention) make use of the inequality

Ψm
∣∣ReRvv − Rem

∣∣n−m 6 ϕ−D
(∣∣ReSvv − Rem

∣∣n + (ϕCζ,DΨ)n
)
,

which follows from the elementary inequality xmyn−m 6 xn+yn for x, y > 0, Lemma 3.10, and the estimate

|Rvv − Svv| 6 ϕCζΨ

with 2ζ-high probability (as follows from (3.30)). Moreover, as in (4.16), we find that (4.38) implies

|Rva| 6 ϕCζΨ . (4.41)

The same bound holds for Rav, Rvb, and Rbv.

As in the proof of Lemma 4.3, we consider four cases.

Case (i): a = b and m 6 3. This is easily dealt with using (3.45); we omit further details.
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Case (ii): a 6= b and m = 3. Recall that in this case we have t = s = 3. From (4.11) we get

(
|Rva|+ |Rav|

)3(
|Rvb|+ |Rbv|

)3
6 ϕCζ

(
ImSvv

Nη
+ Ψ2

)3/2[(
ImSvv

Nη
+ Ψ2

)3/2

+ |va|2 + |vb|2 + Ψ−3|va|2|vb|2
]

with 2ζ-high probability. Therefore using (4.40), (3.4), and Ψ > cN−1/2 we get

|B3,3|
∣∣ReRvv − Rem

∣∣n−3 6 ϕCζN−3/2Ψ3
[
Ψ3 + |va|2 + |vb|2 +N3/2|va|2|vb|2

] ∣∣ReRvv − Rem
∣∣n−3

6 ϕCζ−D
((

ReRvv − Rem
)n

+ (ϕ3DΨ)n
)
Ẽab

with 2ζ-high probability, where in the last step we used (2.9). Choosing D large enough yields (4.39), and
hence also (4.37).

Case (iii): a 6= b and m = 2. In the case s = t = 2, the estimate is similar to the estimate of X1 in (4.13).
Using (4.40), (3.4), and Ψ > cN−1/2 we get

|X1| 6 ϕCζΨ Ψ2
(
Ψ2 + |va|2 + |vb|2 +N |va|2|vb|2

)
with 2ζ-high probability, from which (4.39), and hence also (4.37), easily follows.

Next, consider the case s = 3 and t = 1. In order to prove (4.37), we estimate using (4.40) and (3.29),
similarly to (4.15),

|B2,3,3,1| 6 ϕCζN−3/2
(
Ψ + |va|

)3(
Ψ + |vb|

)
6 ϕCζΨ2

[
N−3/2

Φ

Nη
+N−3/2|vb|+N−1|va|2 +N−1/2|va|2|vb|

]
with 2ζ-high probability from which (4.37) follows. Let us therefore prove (4.39), assuming (4.38). Using
(4.41) and (4.40), we find

|Rva|+ |Rav|+ |Rvb|+ |Rbv| 6 ϕCζΨ (4.42)

with 2ζ-high probability. We need to prove that

N−3/2
∣∣∣ERvaRbbRavRavRbv

(
ReRvv − Rem

)n−2∣∣∣ 6 ϕ−1Ẽab

[
E
(
ReSvv − Rem

)n
+ (ϕCζΨ)n

]
. (4.43)

As for (4.18), by splitting Rbb = (Rbb −m) +m and using (3.27), we find that it is enough to prove

N−3/2
∣∣∣ERvaRavRavRbv

(
ReRvv − Rem

)n−2∣∣∣ 6 ϕ−1Ẽab

[
E
(
ReSvv − Rem

)n
+ (ϕCζΨ)n

]
. (4.44)

As for (4.18), we use the splitting (4.19). Using (3.27), (4.40), and (4.6), we find that the bounds

|Rbv| 6 ϕCζΨ 6 ϕCζN−1/6 , |R′bv| 6 ϕCζ
(
N−1/4√
Nη

+ Ψ2

)
6 ϕCζN−1/3 (4.45)
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hold with 2ζ-high probability. Thus we get (4.44) with Rbv replaced with R′bv. The remaining term with
Rbv is estimated exactly as (4.23); we omit the details.

Case (iv): a 6= b and m = 1. In order to prove (4.37), we use (4.40) to get

|B1,3| 6 ϕCζΨ
(

Ψ + |va|+ |vb|+ Ψ−1|va||vb|+ Ψ−1|va|2 + Ψ−1|vb|2
)

with 2ζ-high probability, from which (4.37) easily follows using Ψ > N−1/2.
As for (4.27), in order to prove (4.37) and (4.39) it suffices to prove the following claim. For X3 being

any expression in (4.28a) – (4.28c), we have

N−3/2
∣∣EX3(ReRvv − Rem)n−1

∣∣ 6 ϕ−1
(
Ẽab +N−3/2ϕCζΨ

)(
E
(
ReSvv − Rem

)n
+ (ϕCζΨ)n

)
, (4.46)

as well as, assuming (4.38),

N−3/2
∣∣EX3(ReRvv − Rem)n−1

∣∣ 6 ϕ−1Ẽab
(
E
(
ReSvv − Rem

)n
+ (ϕCζΨ)n

)
. (4.47)

Note that from (4.20) and (4.40) we get that

|R′bv| 6 C|vb|+ ϕCζΨ2 . (4.48)

If X3 is any expression in (4.28a), we get from Lemma 3.8, (3.27), (4.40), and (4.48) that

|X3| 6 ϕCζΨ2
(
Ψ + |va|

)(
Ψ + |vb|

)
+ ϕCζ

(
Ψ2 + |va|

)(
Ψ2 + |vb|

)
with 2ζ-high probability. Now (4.47), and in particular (4.46), follows easily (note that we did not assume
(4.38)).

Next, let X3 be an expression in (4.28b). From Lemma 3.8, (3.27), (4.40), and (4.48) we get

|X3| 6 ϕCζΨ
(
Ψ + |va|

)(
Ψ + |va|+ |vb|

)
+ ϕCζ

(
Ψ2 + |va|

)(
Ψ + |vb|

)
+ ϕCζ

(
Ψ + |va|

)(
Ψ2 + |vb|

)
with 2ζ-high probability. Now (4.46) follows easily. Moreover, (4.47) under the assumption (4.38) follows

exactly like in paragraphs of (4.29) and (4.30), using the bound
∣∣(R′bv)(a) − R′bv∣∣ 6 ϕCζΨ3 with 2ζ-high

probability, as follows from (4.32) and (4.40).
Finally, we consider the case (4.28c), i.e. X3 = RvaRbv. Under the assumption (4.38), we find from

(4.40), (4.33), and (4.31),∣∣R(a)
bv −Rbv

∣∣ 6 ϕCζΨ2 ,
∣∣R[a]

vv

∣∣+
∣∣R[b]

vv

∣∣ 6 ϕCζΨ2 ,
∣∣R[∅]

vv

∣∣ 6 ϕCζΨ3

with 2ζ-high probability. Then the argument from the proof of Lemma 4.2 can be applied almost unchanged,
and we get (4.47) assuming (4.38).

5. Proof of Theorems 2.3 and 2.5

By Lemma 3.2, if η 6 κ and |E| > 2 then the control parameter on the right-hand side of (2.10) can also be
expressed as √

Imm(z)

Nη
� N−1/2κ−1/4 , (5.1)

where κ ≡ κE was defined in (3.2).
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Proof of Theorem 2.3. By polarization and linearity, it is enough to prove that

∣∣Gvv(z)−m(z)
∣∣ 6 ϕCζ

√
Imm(z)

Nη
(5.2)

with ζ-high probability, for all normalized v. Moreover, by symmetry it suffices to consider the case 2 +
ϕC1N−2/3 6 E 6 Σ. In particular, κ > ϕC1N−2/3. Using Lemma 3.2 we find that Theorem 2.2 implies
(5.2) if η > η0, where we defined

η0 ..= N−1/2κ1/4 .

Note that η0 6 κ.
It remains therefore to establish (5.2) when 0 6 η 6 η0. Define

z ..= E + iη , z0 ..= E + iη0 .

By (5.1) and (5.2) at z0, it is enough to prove that∣∣m(z)−m(z0)
∣∣ 6 CN−1/2κ−1/4 (5.3)

and ∣∣Gvv(z)−Gvv(z0)
∣∣ 6 ϕCζN−1/2κ−1/4 (5.4)

with ζ-high probability.
Differentiating (2.5), we find

m′ =
m2

1−m2
, (5.5)

which, by Lemma 3.2, implies that m′ � (κ+ η)−1/2 = O(κ−1/2). Therefore we get∣∣m(z)−m(z0)
∣∣ 6 Cκ−1/2η0 = CN−1/2κ−1/4 ,

which is (5.3).
Next, by Theorem 3.7 we have E > λN + η0 with ζ-high probability provided C1 is large enough.

Therefore, since η 6 η0 6 E − λN 6 E − λα with ζ-high probability for all α 6 N , we get

ImGvv(z) =
∑
α

|〈v ,u(α)〉|2η
(E − λα)2 + η2

6 2
∑
α

|〈v ,u(α)〉|2η0
(E − λα)2 + η20

= 2 ImGvv(z0) 6 ϕCζN−1/2κ−1/4 (5.6)

with ζ-high probability, by (5.2) at z0 and the estimate Imm(z0) 6 CN−1/2κ−1/4. Finally, we estimate the
real part from

∣∣ReGvv(z)− ReGvv(z0)
∣∣ =

∑
α

(E − λα)(η20 − η2)|〈u(α) ,v〉|2(
(E − λα)2 + η2

)(
(E − λα)2 + η20

)
6

η0
E − λN

∑
α

η0|〈u(α) ,v〉|2

(E − λα)2 + η20
6 ImGvv(z0) (5.7)

with ζ-high probability, where in the last step we used that η0 6 E − λN . Combining (5.6) and (5.7)
completes the proof of (5.4).
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Proof of Theorem 2.5. We begin with (2.14), whose proof is immediate. Using Theorem 2.2 with Con-
dition A and Remark 2.4, we find

C > ImGvv(λα + iη) =
∑
β

η|〈u(β) ,v〉|2

(λα − λβ)2 + η2
> η−1|〈u(α) ,v〉|2

with ζ-high probability, where we used Theorem 3.7 to ensure that λα ∈ [−Σ,Σ] with ζ-high probability.
Choosing η = ϕζN−1 yields (2.14).

In order to prove (2.13), we set

η ..= γb − γa , E ..= γa ,

where γα is the classical location of the α-th eigenvalue defined in (3.17). Then we get

b∑
α=a

|〈u(α) ,v〉|2 6 ϕCζ
b∑

α=a

η2|〈u(α) ,v〉|2

(λα − E)2 + η2
6 ϕCζη ImGvv(E + iη) , (5.8)

where in the first step we used Theorem 3.7 to conclude that (λα − E)2 6 ϕCζη2 for a 6 α 6 b. In order
to invoke Theorem 2.2 with Condition B, we have to satisfy (2.9). Recalling Lemma 3.2, we find that (2.9)
holds provided that

η > ϕC0N−5/6 , κ 6 ϕ−2C0η2N4/3 , (5.9)

where we abbreviated κ ≡ κE . From (3.17) we get

γα + 2 � α2/3N−2/3 (5.10)

for α 6 N/2, from which we deduce, recalling E = γα,

κ � a2/3N−2/3 , η � (b2/3 − a2/3)N−2/3 .

Hence (5.9) is satisfies provided that

b2/3 − a2/3 > ϕC0N−1/6 + ϕC0a1/3N−1/3 .

Since b2/3 − a2/3 > b−1/3(b− a)/2, we find that (5.9), and hence (2.9), holds under the condition (2.12).
Therefore we may apply Theorem 2.2 to the right-hand side of (5.8) to get

b∑
α=a

|〈u(α) ,v〉|2 6 ϕCζη

(
1

Nη
+ Imm(E + iη)

)
6 ϕCζN−1

(
(b2/3 − a2/3)3/2 + a1/3(b2/3 − a2/3)

)
with ζ-high probability, where we used Lemma 3.2. The claim now follows from the elementary inequalities

b2/3 − a2/3 6 (b− a)2/3 , b2/3 − a2/3 6 a−1/3(b− a) .

For future use, we record the following consequence of Theorem 2.5 which is useful in combination with
dyadic decompositions. For any integer K 6 N/4 we have

2K∑
α=K

|〈u(α) ,v〉|2 6 ϕCζKN−1 (5.11)

with ζ-high probability.
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6. Eigenvalue locations: proof of Theorem 2.7

6.1. Basic facts from linear algebra. We begin by collecting a few well-known tools from linear algebra, on
which our analysis of the deformed spectrum relies.

We use the following representation of the eigenvalues of H̃, which was already used in several papers on
finite-rank deformations of random matrices [5–7,32].

Lemma 6.1. If µ ∈ R \ σ(H) and det(D) 6= 0 then µ ∈ σ(H̃) if and only if

det
(
V ∗G(µ)V +D−1

)
= 0 .

Proof. For the convenience of the reader, we give the simple proof. The claim follows from the computation

det
(
H̃ − µ

)
= det(H − µ) det

(
1 + (H − µ)−1V DV ∗

)
= det(H − µ) det

(
1 + V ∗(H − µ)−1V D

)
= det(H − µ) det(D) det

(
D−1 + V ∗(H − µ)−1V

)
,

where in the second step we used the identity det(1 + AB) = det(1 + BA) which is valid for any n × m
matrix A and m× n matrix B.

We shall also make use of the well-known Weyl’s interlacing property, summarized in the following lemma.

Lemma 6.2. If A is an N ×N Hermitian matrix and B = A+ dvv∗ with some d > 0 and v ∈ CN , then the
eigenvalues of A and B are interlaced:

λ1(A) 6 λ1(B) 6 λ2(A) 6 · · · 6 λN−1(B) 6 λN (A) 6 λN (B) .

We shall occasionally need the eigenvalues of H to be distinct. To that end, we assume without loss of
generality that the law of H is absolutely continuous; otherwise consider the matrix H + e−NV where V is
a GOE/GUE matrix independent of H. It is immediate that this perturbation does not change any of H’s
spectral statistics. Moreover, any Hermitian matrix with an absolutely continuous law has almost surely
distinct eigenvalues.

6.2. Warmup: the rank-one case. In order to illustrate our method, we first present a much simplified proof
which deals with the case k = 1. Let v ∈ CN be normalized and deterministic, and d ∈ R be deterministic
(and possibly N -dependent). Define the deformed matrix

H̃ ..= H + dvv∗ .

For the following we note the elementary estimate

θ(d)− 2 � (d− 1)2 , (6.1)

as follows from (2.18).

Theorem 6.3. Fix ζ > 0. Then there is a constant Cζ such that the following holds. For 0 6 d 6 1 we have

0 6 µN − λN 6 ϕCζ
d

N(1− d+N−1/3)
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with ζ-high probability. For 1 6 d 6 Σ− 1 we have

|µN − θ(d)| 6 ϕCζ

√
d− 1 +N−1/3

N

with ζ-high probability.
By symmetry, an analogous result holds for d 6 0.

Proof. First we note that it is enough to consider d ∈ R+\
[
1− ϕDN−1/3, 1 + ϕDN−1/3

]
for some arbitrary

but fixed D > 0. This follows from |λN − 2| 6 ϕCζN−2/3 with ζ-high probability (see Theorem 3.7), the
monotonicity of the map d 7→ λN (H + dvv∗) (see Lemma 6.2), and the observation that θ(1 + ε) =
1+ε2 +O(ε3) as ε→ 0 (which implies that |θ(d)−2| 6 ϕ2D+1N−2/3 for d ∈

[
1− ϕDN−1/3, 1 + ϕDN−1/3

]
).

The key identity3 for the proof is

Gvv(µN ) = −1

d
,

as follows from Lemma 6.1. Let us begin with the case d > 1+ϕDN−1/3. Since m : R\(−2, 2)→ [−1, 1]\{0}
is bijective, we find from (2.5) that θ(d) is uniquely characterized by

m(θ(d)) = −1

d
. (6.2)

We therefore have to solve the equation m(θ(d)) = Gvv(x) for x ∈ [2+ϕC1N−2/3,∞), where C1 the constant
from Theorem 2.3. By Theorem 2.3, we have

Gvv(x) = m(x) +O
(
ϕCζN−1/2κ−1/4x

)
(6.3)

with ζ-high probability.
Next, define the interval

Id ..= [x−(d), x+(d)] , x±(d) ..= θ(d)± ϕDN−1/2(d− 1)1/2 .

We claim that
κx � (d− 1)2 , m′(x) � (d− 1)−1 (x ∈ Id) (6.4)

The first relation of (6.4) follows from

|x− θ(d)| 6 ϕDN−1/2(d− 1)1/2 and θ(d)− 2 > c(d− 1)2 > cϕ3D/2N−1/2(d− 1)1/2 ,

where in the last step we used d > 1+ϕDN−1/3. In order to prove the second relation of (6.4), we differentiate
(5.5) and use Lemma 3.2 to get

m′(x) � κ−1/2x , m′′(x) � κ−3/2x . (6.5)

Therefore we get from (6.5) and the mean value theorem applied to m′ that

|m′(x)−m′(θ(d))| 6 CϕDN−1/2(d− 1)1/2(d− 1)−3 6 Cϕ−D/2(d− 1)−1 .

3Here we ignore the possibility that µN ∈ σ(H). Since the law of H is absolutely continuous, it is easy to check that the
interlacing inequalities in Lemma 6.2 are strict with probability one; see e.g. the proof of Lemma 6.7.
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Therefore (6.4) follows from m′(θ(d)) � (d− 1)−1.
Now choose D large enough that x−(d) > 2 + ϕC1N−2/3 for d > ϕDN−2/3. Thus (6.3) and (6.4) yield

Gvv(x−(d)) < m(θ(d)) < Gvv(x+(d)) (6.6)

with ζ-high probability, provided D is chosen larger than the constant Cζ in (6.3). Finally we observe
that, by Theorem 3.7, with ζ-high probability the function x 7→ Gvv(x) is continuous and increasing on
[2 +ϕC1N−2/3,∞). It follows that with ζ-high probability the equation Gvv(x) = m(θ(d)) has precisely one
solution, x = µN , in [2 +ϕC1N−2/3,∞). Moreover, this solution lies in Id, which implies that it satisfies the
claim of Theorem 6.3 for d > 1.

What remains is the case d 6 1− ϕDN−1/3. Choose x ..= 2 + ϕC1N−2/3 where C1 is a large constant to
be chosen later. For large enough C1 we find from Theorem 2.3

Gvv(x) = m(x) +O
(
N−1/3ϕ−C1/4

)
(6.7)

with ζ-high probability. From (3.3) we find

1 +m(x) � N−1/3ϕC1/2 , (6.8)

which yields

1 +Gvv(x) > 0 > 1− 1

d

with ζ-high probability. Choosing C1 large enough, we find as above that y 7→ Gvv(y) is with ζ-high
probability increasing and continuous for y > x, from which we deduce that

λN 6 µN 6 x

with ζ-high probability. (The first inequality follows from Lemma 6.2.)
Next, abbreviate q ..= ϕC2 for some large constant C2 to be chosen later. Using Theorem 3.7 we estimate,

for λN 6 µN 6 x and large enough C2,∣∣∣∣∣ ∑
α6N−q

|〈u(α) ,v〉|2

λα − µN
−

∑
α6N−q

|〈u(α) ,v〉|2

λα − x

∣∣∣∣∣ 6 ϕCζN−2/3
∑

α6N−q

|〈u(α) ,v〉|2

(λα − µN )2

6 ϕCζN−2/3
∑
k>1

2kN−1

(22k/3N−2/3)2
+ ϕCζN−2/3

6 ϕCζN−1/3

with ζ-high probability. In the second inequality we estimated the contribution of the eigenvalues α > N/2
using the dyadic decomposition

Uk ..=
{
α ∈ [N/2 , N − q] .. N − 2k+1 6 α 6 N − 2k

}
combined with Theorem 3.7, the estimate

2− γα � (N − α)2/3N−2/3 (α > N/2) ,
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and the delocalization estimate (5.11). A similar (in fact easier) dyadic decomposition works for the remaining
eigenvalues α < N/2 and yields the last term of the second line. Moreover, we have

∑
α>N−q

|〈u(α) ,v〉|2

|λα − x|
6 ϕCζ+C2N−1/3

with ζ-high probability, by Theorems 3.7 and 2.5. Recalling (6.7) and (6.8), we have therefore proved that

−1

d
= Gvv(µN ) =

∑
α

|〈u(α) ,v〉|2

λα − µN
= −1 +O

(
ϕCζ+C1+C2N−1/3

)
+

∑
α>N−q

|〈u(α) ,v〉|2

λα − µN

with ζ-high probability. Therefore

1

µN − λN

∑
α>N−q

|〈u(α) ,v〉|2 >
∑

α>N−q

|〈u(α) ,v〉|2

µN − λα
=

1

d
− 1 +O

(
ϕCζ+C1+C2N−1/3

)
with ζ-high probability. Theorem 2.5 implies |〈u(α) ,v〉|2 6 ϕCζN−1, and the claim follows. This concludes
the proof of Theorem 6.3.

6.3. The permissible region. The rest of this section is devoted to the proof of Theorem 2.7.

Definition 6.4. We choose an event, denoted by Ξ, of ζ-high probability on which the following statements
hold.

(i) The eigenvalues of H are distinct.

(ii) For all i = 1, . . . , k and α = 1, . . . , N we have 〈v(i) ,u(α)〉 6= 0 .

(iii) All statements of Theorems 2.2, 2.3, 2.5, and 3.7 hold.

We note that such a Ξ exists. As explained in Section 6.1, we assume without loss of generality that the
law of H is absolutely continuous. Then conditions (i) and (ii) hold almost surely; we omit the standard
proof. That condition (iii) holds with ζ-high probability is a consequence of Theorems 2.2, 2.3, 2.5, and 3.7
(see also Remark 2.4).

For the whole remainder of the proof of Theorem 2.7, we choose and fix an arbitrary realization H ≡ Hω

with ω ∈ Ξ. Thus, the randomness of H only comes into play in ensuring that Ξ is of ζ-high probability.
The rest of the argument is entirely deterministic.

Fix k−, k+ ∈ N and define k0 ..= k − k+ − k− = #{i .. |di| 6 1}. Write

d = (d1, . . . , dk) = (d−,d0,d+) dσ = (dσ1 , . . . , d
σ
kσ ) (σ = −, 0,+) .

We adopt the convention that

d−1 6 · · · 6 d−k− < −1 6 d01 6 · · · 6 d0k0 6 1 < d+1 6 · · · 6 d+k+ . (6.9)

Abbreviate
ψ̃N ≡ ψ̃ ..= 2kψ . (6.10)
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For C̃2 > 0 define the sets

D−(C̃2) ..=
{
d− .. −Σ + 1 6 d−i 6 −1− ϕC̃2 ψ̃N−1/3 , i = 1, . . . , k−

}
,

D+(C̃2) ..=
{
d+ .. 1 + ϕC̃2 ψ̃N−1/3 6 d+i 6 Σ− 1 , i = 1, . . . , k+

}
,

D0(C̃2) ..=
{
d0 .. −1 + ϕC̃2 ψ̃N−1/3 6 d0i 6 1− ϕC̃2 ψ̃N−1/3 , i = 1, . . . , k0

}
,

the set of allowed d’s,

D(C̃2) ..=
{

(d−,d0,d+) .. dσ ∈ Dσ(C̃2) , σ = −, 0,+
}
,

and the subset
D∗(C̃2) ..=

{
d ∈ D(C̃2) .. di 6= 0 for i = 1, . . . , k

}
.

Let K̃ > 0 denote a constant to be chosen later, and define

S(K̃) ..=
(
−∞ , −2 + ϕK̃N−2/3

)
∪
(

2− ϕK̃N−2/3 , ∞
)
.

We shall only consider eigenvalues of H̃ in S(K̃) for some large but fixed K̃.

Let C̃3 > 0 denote some large constant to be chosen later. Define the intervals

I−i (d) ..=

[
θ(d−i )− ϕC̃3N−1/2(−d−i − 1)1/2 , θ(d−i ) + ϕC̃3N−1/2(−d−i − 1)1/2

]
(i = 1, . . . , k−) ,

I+i (d) ..=

[
θ(d+i )− ϕC̃3N−1/2(d+i − 1)1/2 , θ(d+i ) + ϕC̃3N−1/2(d+i − 1)1/2

]
(i = 1, . . . , k+) ,

I0 ..=
{
x ∈ R .. dist(x, σ(H)) 6 N−2/3ψ̃−1

}
∩ S(K̃) .

For d ∈ D(C̃2) define

Γ(d) ..= I0 ∪

(
k−⋃
i=1

I−i (d)

)
∪

(
k+⋃
i=1

I+i (d)

)
.

The following proposition states that Γ(d) is the “permissible region” for the eigenvalues of H̃. Roughly,
the allowed region consists of a small neighbourhood of each θ(di) for i ∈ O, as well as of small neighbourhoods
of the eigenvalues of H. The latter regions house the sticking eigenvalues. Proposition (6.5) only establishes
where the eigenvalues are allowed to lie; it gives no other information on their locations (such as the number

of eigenvalues in each interval). Note that, by definition of S(K̃), the set Γ(d) only keeps track of eigenvalues

outside of the interval
[
−2 + ϕK̃N−2/3, 2− ϕK̃N−2/3

]
. This will eventually suffice for the statement (2.21)

thanks to the eigenvalue rigidity estimate for H, Theorem 3.7, combined with eigenvalue interlacing; see
(6.34) below.

Proposition 6.5. For C̃3 and C̃2(C̃3) large enough (depending on ζ, K̃, and the constant C1 from Theorem

2.3) the following holds. For any d ∈ D(C̃2) and H ≡ Hω with ω ∈ Ξ we have

I±i (d) ∩ I0 = ∅ for all i = 1, . . . , k± (6.11)

as well as
σ(H̃) ∩ S(K̃) ⊂ Γ(d) . (6.12)
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Proof. Clearly, it is enough to prove the claim for d ∈ D∗(C̃2). We shall choose the constants C̃3(ζ, C1)

and C̃2(ζ, K̃, C1, C̃3) to be large enough during the proof. (Here C1 is the constant from Theorem 2.3.)
First we prove (6.11). By definition of Ξ (see Theorem 3.7), we find that (6.11) holds if

2 + ϕ2C̃2N−2/3 − ϕC̃3+C̃2/2N−2/3 > 2 + 2ϕCζN−2/3 > λN +N−2/3ψ̃−1 ,

which is satisfied provided that
2C̃2 > C̃3 + C̃2/2 + Cζ . (6.13)

In order to prove (6.12), we define, for each z ∈ C \ σ(H), the k × k matrix M(z) through

Mij(z) ..= Gv(i)v(j)(z) + δijd
−1
i . (6.14)

From Lemma 6.1 we find that x ∈ σ(H̃) \ σ(H) if and only if M(x) is singular. The proof therefore consists
in locating x ∈ R \ σ(H) for which M(x) is singular.

First we consider the case x > 2 + ϕC̃2N−2/3. On Ξ we have

λN 6 2 + ϕC̃2−1N−2/3 and λ1 > −2− ϕC̃2−1N−2/3 (6.15)

provided C̃2 is large enough (see Theorem 3.7). In particular, by (6.15) and the definition of Ξ, we have

x /∈ σ(H). By increasing C̃2 if necessary we may assume that C̃2 > C1, where C1 is the constant from
Theorem 2.3. Therefore we get from Theorem 2.3 and Lemma 3.2 that

M(x+ iy) = m(x+ iy) +D−1 +O
(
ϕCζN−1/2κ−1/4x

)
(6.16)

for all y ∈ [−Σ,Σ]. (We include an imaginary part y 6= 0 for later applications of (6.16); for the purposes of
this proof we set y = 0.)

Let i ∈ {1, . . . , k+}. Then we may repeat to the letter the argument in the proof of Theorem 6.3 leading

to (6.4). Provided that C̃3 > Cζ + 2, where Cζ is the constant in (6.16), we therefore get that∣∣∣∣m(x) +
1

d+i

∣∣∣∣ > ϕCζ+1N−1/2κ−1/4x if x /∈ I+i (d) .

This takes care of the components d+ in D−1. In order to deal with the remaining components, d0 and d−,
we observe that

m(x) ∈
[
−1,−c

]
for some c > 0 depending on Σ. It is now easy to put all the estimates associated with i = 1, . . . , k together.
Recalling (6.16) and choosing C̃2 large enough yields, for Cζ denoting the constant from (6.16),∣∣∣∣m(x) +

1

di

∣∣∣∣ > ϕCζ+1N−1/2κ−1/4x

for all i = 1, . . . , k provided that

x ∈
[
2 + ϕC̃2N−2/3,Σ

]
\
k+⋃
i=1

I+i (d) . (6.17)
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We conclude4 from (6.16) that M(x) is regular if (6.17) holds.
An almost identical argument applied to d− yields that M(x) is regular if

x ∈
[
−Σ,−2− ϕC̃2N−2/3

]
∪
[
2 + ϕC̃2N−2/3,Σ

]
\

(
k−⋃
i=1

I−i (d) ∪
k+⋃
i=1

I+i (d)

)
. (6.18)

Next, we focus on the case

x ∈
[
2− ϕK̃N−2/3, 2 + ϕC̃2N−2/3

]
, dist(x, σ(H)) > N−2/3ψ̃−1 . (6.19)

Our aim is to prove that M(x) is regular for any x satisfying (6.19). Once this is done, the regularity of

M(x) for x satisfying (6.18) or (6.19) will imply (6.12). Choose η ..= N−2/3ψ̃−1 and estimate

|Gv(i)v(j)(x)−Gv(i)v(j)(x+ iη)| 6
∑
α

|〈u(α) ,v(i)〉|2 + |〈u(α) ,v(j)〉|2

2

∣∣∣∣ 1

λα − x
− 1

λα − x− iη

∣∣∣∣
6
∑
α

(
|〈u(α) ,v(i)〉|2 + |〈u(α) ,v(j)〉|2

) η

(λα − x)2 + η2

= ImGv(i)v(i)(x+ iη) + ImGv(j)v(j)(x+ iη) ,

where in the second step we used (6.19). Therefore, by definition of Ξ (See also Theorem 2.2) and Lemma

3.2, we get (recall that ψ̃ > 1)

Gv(i)v(j)(x) = δijm(x+iη)+O

(
ϕCζ Imm(x+ iη) +

ϕCζ

Nη

)
= −δij +O

(
ϕCζN−1/3

(
ψ̃ + ϕK̃/2 + ϕC̃2/2

))
.

This implies, for any x satisfying (6.19), that

M(x) = −1 +D−1 +O

(
ϕCζN−1/3

(
ψ̃ + ϕK̃/2 + ϕC̃2/2

))
. (6.20)

Since ∣∣∣∣−1 +
1

di

∣∣∣∣ >
1

2
ϕC̃2 ψ̃N−1/3

for all i, we find that M(x) is regular provided C̃2 is chosen large enough that

C̃2 − 1 > Cζ + K̃/2 + C̃2/2 .

This completes the analysis of the case (6.19). The case

x ∈
[
−2− ϕC̃2N−2/3,−2 + ϕK̃N−2/3

]
, dist(x, σ(H)) > N−2/3ψ̃−1

is handled similarly. This completes the proof.

4Here we use the well-known fact that if λ ∈ σ(A+B) then dist(λ, σ(A)) 6 ‖B‖.
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6.4. The initial configuration. In this section we fix a configuration d(0) ≡ d that is independent of N , and
satisfies k0 = 0 as well as

−Σ + 1 6 d−1 < · · · < d−k− < −1 , 1 < d+1 < · · · < d+k+ 6 Σ− 1 . (6.21)

Note that d ∈ D∗(C̃2) for large enough N .
First we deal with the outliers.

Proposition 6.6. For N large enough, each interval I−i (d), i = 1, . . . , k−, and I+i (d), i = 1, . . . , k+,

contains precisely one eigenvalue of H̃.

Proof. Let i ∈ {1, . . . , k+} and pick a small N -independent positively oriented closed contour C ⊂ C\[−2, 2]

that encloses θ(d+i ) but no other point of the set
⋃
σ=±

⋃kσ
i=1{θ(dσi )}. By Proposition 6.5, it suffices to show

that the interior of C contains precisely one eigenvalue of H̃. Define

fN (z) ..= det
(
M(z) +D−1

)
, g(z) ..= det

(
m(z) +D−1

)
.

The functions g and fN are holomorphic on and inside C (for large enough N). Moreover, by construction
of C, the function g has precisely one zero inside C, namely at z = θ(d+i ). Next, we have

min
z∈C
|g(z)| > c > 0 , |g(z)− fN (z)| 6 ϕCζN−1/2 ,

where the second inequality follows from (6.16). The claim now follows from Rouché’s theorem. The
eigenvalues near θ(d−i ), i = 1, . . . , k−, are handled similarly.

Before moving on, we record the following result on rank-one deformations.

Lemma 6.7. Let v ∈ Ck be nonzero. Then for all i = 1, . . . , k − 1 and all Hermitian k × k matrices A we
have

lim
d→∞

λi(A+ dvv∗) = lim
d→−∞

λi+1(A+ dvv∗) .

Proof. By Lemma 6.1, we find that x /∈ σ(A) is an eigenvalue of A+ dvv∗ if and only if

〈v , (A− x)−1v〉 = −1

d
.

Let
E ..=

{
A .. the eigenvalues of A are distinct , 〈v ,u(i)(A)〉 6= 0 for all i

}
,

where u(i)(A) denotes the eigenvector of A associated with the eigenvalue λi(A). (Note that u(i)(A) is
well-defined in E, since the eigenvalues are distinct.) It is not hard to see that Ec is dense in the space of
Hermitian matrices.

We write the condition 〈v , (A− x)−1v〉 = −d−1 as

f(x) ..=
∑
i

|〈v ,u(i)(A)〉|2

λi(A)− x
= −1

d
,

Let A ∈ E. Then f has k singularities at the eigenvalues of H, away from which we have f ′ > 0 . Moreover,
f(x) ↑ 0 as x ↑ ∞, and f(x) ↓ 0 as x ↓ −∞. Thus, for any d ∈ R \ {0}, the equation f(x) = −d−1
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has exactly k solutions in R \ σ(A). Since A + dvv∗ has at most k distinct eigenvalues, this proves that
σ(A + dvv∗) ∩ σ(A) = ∅ for all d ∈ R. Moreover, the equation f(x) = 0 has exactly k − 1 solutions,
x1, . . . , xk−1. Since f ′(xi) > 0 for each i = 1, . . . , k − 1, it is easy to see that xi = limd→∞ λi(A + dvv∗) =
limd→−∞ λi+1(A+ dvv∗).

Now the claim follows by approximating an arbitrary matrix A by matrices in E, and by using the
Lipschitz continuity of the map A 7→ λi(A).

We now deal with the extremal bulk eigenvalues.

Proposition 6.8. Fix 0 < δ < 1/3 and K̃ > 0. Let d be N -independent and satisfy (6.21). Then for large

enough N (depending on δ and K̃) we have for all α satisfying λα > 2− ϕK̃N−2/3 that

|λα − µα−k+ | 6 N−1+δ .

Similarly, we have for all α satisfying λα 6 −2 + ϕK̃N−2/3 that

|λα − µα+k− | 6 N−1+δ .

Proof. We only prove the first statement; the proof of the second one is almost identical. Abbreviate
δ′ ..= δ/2.

Before embarking on the full proof, we first give a sketch of its main idea, under some simplifying
assumptions. Let A ∈ N be some fixed constant, and assume that, for each α > N − A, the neighbours of
λα are further than N−1+δ

′
away from λα. (This assumption in fact holds with probability 1− o(1), a fact

we shall neither use nor prove.) We claim that there is at least one eigenvalue of H̃ in the interval [xα−, x
α
+]

surrounding λα, where
xα±

..= λα ±N−1+δ
′
/3 .

Before sketching the proof of the above claim, we show how to use it to conclude the argument. By
Proposition 6.6, there are at least k+ eigenvalues in (xN+ ,∞). Recall that by assumption k0 = 0, i.e. |di| > 1
for all i. Therefore using interlacing, i.e. a repeated application of Lemma 6.2, we conclude that there are
exactly k+ eigenvalues in (xN+ ,∞). From the above claim we find that there is at least one eigenvalue in
[xN− , x

N
+ ]. Using interlacing we find that there are at most k+ + 1 eigenvalues in [xN− ,∞). We conclude that

there is exactly one eigenvalue in [xN− , x
N
+ ]. We may move on to the (N − 1)-th eigenvalue: we have proved

that there are (i) at least k+ + 1 eigenvalues in [xN− ,∞) (from the previous step), (ii) at least one eigenvalue

in [xN−1− , xN−1+ ] (from the claim), and (iii) at most k+ + 2 eigenvalues in [xN−1− ,∞) (from interlacing); we

conclude that there is exactly one eigenvalue in [xN−1− , xN−1+ ]. Continuing in this fashion concludes the proof.

Let us now complete the sketch of the proof of the above claim. Assume for simplicity that H and H̃
have no common eigenvalues. From Lemma 6.1 we find that x is an eigenvalue of H̃ if and only if the matrix
M(x), defined in (6.14), is singular. Thus, we have to prove that there is an x ∈ [xα−, x

α
+] such that M(x) is

singular. The idea of the argument is to do a spectral decomposition of G, and resum all terms not associated
with λα to get something close to Rem(x) ≈ −1. More precisely, we write

Mij(x) =
〈v(i) ,u(α)〉〈u(α) ,v(j)〉

λα − x
+
∑
β 6=α

〈v(i) ,u(β)〉〈u(β) ,v(j)〉
λβ − x

+ δijd
−1
i

≈ 〈v
(i) ,u(α)〉〈u(α) ,v(j)〉

λα − x
+ Rem(x)δij + δijd

−1
i ,
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where the sum over β was replaced with Rem(x)δij (up to negligible error terms). This approximation
will be justified using Theorems 2.2 and 2.5; it uses that x ∈ [xα−, x

α
+] and consequently all eigenvalues

λβ , β 6= α, are separated from x by at least N−1+δ/3. Introducing the vector y = (yi) ∈ Ck, defined by
yi ..= 〈v(i) ,u(α)〉, we therefore get

M(x) ≈ yy∗

λα − x
− 1 +D−1 , (6.22)

where we used that Rem(x) ≈ −1. By assumption, |di| > 1 for all i; therefore the matrix −1 + D−1 is
strictly negative. Also, Theorem 2.5 implies that |yi| 6 ϕCζN−1/2. Thus it is easy to conclude that all
eigenvalues of M(xα−) are negative. The first term on the right-hand side of (6.22) is a rank-one matrix. As
x approaches λα from the left, its nonzero eigenvalue tends to +∞. By continuity, there must therefore exist
an x ∈ [xα−, λα) such that M(x) is singular. This concludes the sketch of the proof of the claim.

Now we turn towards the detailed proof in the general case. Since eigenvalues of H may be separated by
less than N−1+δ

′
, we begin by clumping together eigenvalues of H which are separated by less than N−1+δ

′
.

More precisely, we construct a partition A = (Aq)q of {1, . . . , N}, defined as the finest partition in which α

and β belong to the same block if |λα−λβ | 6 N−1+δ
′
. Thus, each block consists of a sequence of consecutive

integers. We order the blocks of A in a “decreasing” fashion, in such a way that if q < r then λα > λβ for
all α ∈ Aq and β ∈ Ar.

We now derive a bound on the size of the blocks near the edge. Roughly, we shall show that if λ ∈ Aq
and λ > 2− ϕCN−2/3 then |Aq| 6 ϕC

′
. Let C4 be a large constant to be chosen later. Now choose α and β

satisfying 0 6 α 6 β 6 ϕC4 such that N − α and N − β belong to the same block. Then by definition of Ξ
and A we have

c
[
(β/N)2/3 − (α/N)2/3

]
− ϕCζN−2/3 6 λN−α − λN−β 6 (β − α)N−1+δ

′
,

where we used the statement of Theorem 3.7 and the definition (3.17). Thus we get the condition

N−2/3
[
cβ−1/3(β − α)− ϕCζ

]
6 N−1+δ

′
(β − α) .

We conclude that if α and β satisfy 0 6 α 6 β 6 ϕC4 and N − α and N − β belong to the same block, then

β − α 6 ϕCζ+C4/3+1 . (6.23)

Let α∗ denote the largest integer such that λN−α∗ > 2−ϕK̃N−2/3. In particular, by definition of Ξ (see
Theorem 3.7) we have

α∗ 6 ϕ3K̃/2+Cζ . (6.24)

Now we choose C4 ≡ C4(ζ, K̃) large enough that

C4 > max
(

3K̃/2 + Cζ , Cζ + C4/3 + 1
)

+ 2 .

Next, define Q through N − α∗ ∈ AQ. Therefore we get from (6.23) and (6.24) that any α 6 ϕC4 such that
N − α ∈ AQ satisfies

α 6 α∗ + ϕCζ+C4/3+1 6 ϕC4−1 .

Since blocks are contiguous, we conclude that

|Aq| 6 ϕC4−1 . (6.25)
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for each q = 1, . . . , Q. Moreover, by definition of Ξ (see Theorem 3.7), we find

|λN−α − 2| 6 ϕ2C4/3+CζN−2/3 .

for all q = 1, . . . , Q and all α such that N − α ∈ Aq.
Now we are ready for the main argument. Pick q ∈ {1, . . . , Q} and abbreviate

aq ..= min
α∈Aq

λα , bq ..= max
α∈Aq

λα .

We introduce the path

xqt
..= aq −N−1+δ

′
/3 +

(
bq − aq + 2N−1+δ

′
/3
)
t , (t ∈ [0, 1]) ,

which will serve to count eigenvalues. (Note that xq0 = aq−N−1+δ′/3 and xq1 = bq+N−1+δ
′
/3.) The interval

[xq0, x
t
1] contains precisely those eigenvalues of H that are in Aq, and its endpoints xq0 and xq1 are at a distance

greater than N−1+δ
′
/3 from any eigenvalue of H. Thus, [xq0, x

t
1] is the correct generalization of the interval

[xα−, x
α
+] from the sketch given at the beginning of this proof.

In order to avoid problems with exceptional events, we add some randomness to D. Recall that D satisfies
(6.21). Let ∆ be a k×k Hermitian random matrix whose upper triangular entries are independent and have
an absolutely continuous law supported in the unit disk. For ε > 0 define

H̃ε ..= H + V (D−1 + ε∆)−1V ∗ .

From now on we use “almost surely” to mean almost surely with respect to the randomness of ∆. Our main
goal is to prove that for each ε > 0, almost surely, there are at least |Aq| eigenvalues of H̃ε in [xq0, x

q
1]\σ(H).

(Having done this, we shall deduce, by taking ε→ 0, that H̃ has at least |Aq| eigenvalues in [xq0, x
q
1].)

For x /∈ σ(H) define

Mε
ij(x) ..= Gv(i)v(j)(x) + δijd

−1
i + ε∆ij (i, j = 1, . . . , k) .

Then (assuming x /∈ σ(H)) we know that x ∈ σ(H̃ε) if and only if Mε(x) is singular. Split

Gv(i)v(j)(x) =
∑
α∈Aq

〈v(i) ,u(α)〉〈u(α) ,v(j)〉
λα − x

+
∑
α/∈Aq

〈v(i) ,u(α)〉〈u(α) ,v(j)〉
λα − x

.

Let x ∈ [xq0, x
q
1]. Similarly to the proof of (6.20), we choose η ..= N−1+δ

′
and estimate∣∣∣∣∣ ∑

α/∈Aq

〈v(i) ,u(α)〉〈u(α) ,v(j)〉
λα − x

−
∑
α/∈Aq

〈v(i) ,u(α)〉〈u(α) ,v(j)〉
λα − x− iη

∣∣∣∣∣
6 2

(
ImGv(i)v(i)(x+ iη) + ImGv(j)v(j)(x+ iη)

)
,

where we used that |x− λα| > 2N−1+δ
′
/3 for α /∈ Aq. Moreover,∣∣∣∣∣ ∑

α∈Aq

〈v(i) ,u(α)〉〈u(α) ,v(j)〉
λα − x− iη

∣∣∣∣∣ 6 ϕCζ+C4N−δ
′
,
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where we used (6.23) and the definition of Ξ (see Theorem 2.5). Estimating Gv(i)v(j)(x + iη) −m(x + iη)
therefore yields, similarly to (6.20),

Mε
ij(x) =

∑
α∈Aq

〈v(i) ,u(α)〉〈u(α) ,v(j)〉
λα − x

− δij + δijd
−1
i + ε∆ij +O

(
ϕCζ+C4N−δ

′/2
)
.

Introducing the vector

y(α) = (y
(α)
i )ki=1 , y

(α)
i

..= 〈v(i) ,u(α)〉 ,

we get

Mε(x) =
∑
α∈Aq

y(α)(y(α))∗

λα − x
− 1 +D−1 + ε∆ +R(x) , R(x) = O

(
ϕCζ+C4N−δ

′/2
)
, (6.26)

where R(x) is continuous in x and independent of ∆. Compare this to (6.22) in the sketch given at the
beginning of the proof. By Theorem 2.5, for α ∈ Aq we have

|y(α)i | = O
(
ϕCζN−1/2

)
. (6.27)

We may now start the counting of the eigenvalues of H̃ in [xq0, x
q
1]. We have to prove that there are

at least L ..= |Aq| distinct points x in [xq0, x
q
1] at which Mε(x) has a zero eigenvalue. As in the simple

continuity argument given in the sketch at the beginning of this proof, we shall make use of continuity.
However, having to find L such values x instead of just one is a significant complication5. Before coming
to the full counting argument, we give a sketch of its main idea. See Figure 6.1 for a graphical depiction
of this sketch. We extend the real line R, on which the eigenvalues of Mε(x) reside, to the real projective
line R = R ∪ {∞} ∼= S1. One can think of R as a ring with two distinguished points, 0 at the bottom
and ∞ at the top. Thanks to Lemma 6.7, it is possible to label the k eigenvalues of Mε(xqt ) so that they
are continuous R-valued functions (denoted by ẽε1(t), . . . , ẽεk(t) below) on [0, 1]. Thus, we get a family of k
beads moving continuously counterclockwise on a ring. At t = 0, the eigenvalues are all strictly negative
(and finite), i.e. all beads lie in the left half of the ring. As t is continuously increased from 0 to 1, the
beads move counterclockwise around the ring. Our goal is to count the number of times 0 is hit by a bead.
Thanks to the explicit form of the first term on the right-hand side of (6.26), we know that the point ∞ is
hit exactly L times as t ranges from 0 to 1. Since at time t = 0 all beads were in the left half of the ring,
and since the beads move continuously counterclockwise, we conclude by continuity that 0 is hit at least L
times as t ranges from 0 to 1. Below, we denote the times at which ∞ is hit by s1, . . . , sL, and the times at
which 0 is hit by t1, . . . , tL. One nuisance we have to deal with in the proof is the possibility of several beads
crossing one of the two points 0 or ∞ simultaneously. Such events are not admissible for our counting. For
instance, if at time t a bead is at 0 while another is at ∞, we cannot conclude that xqt is an eigenvalue of H̃;
indeed, because there is a bead at ∞, we know that xqt is an eigenvalue of H, and hence Lemma 6.1 is not
applicable. However, such pathological events almost surely do not occur. Avoiding them was the reason
for introducing ∆. Note that the final result of the counting argument – the number of eigenvalues of H̃ε in
[xq0, x

q
1] – is stable under the limit ε→ 0. This will allow us to conclude the proof.

5This complication is also visible in the joint arrangement of the eigenvalues of H and H̃. If all eigenvalues of H are well-

separated (by at least N−1+δ′ ) then, as outlined in the sketch at the beginning of the proof, each eigenvalue λα of H has an

associated eigenvalue of H̃, which lies in the interval [λα −N−1+δ′/3, λα). In fact, this eigenvalue typically lies at a distance
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Figure 6.1: A graphical representation of the movement of the eigenvalues (or “beads”) ẽε1(t), ẽε2(t) of Mε(xqt )
as t ranges from 0 to 1. In this example we have L = 3, k = 2, and 0 < t1 < t2 < s1 < s2 < t3 < s3 < 1.

Now we give the full proof. Recall that |di| > 1 is independent of N for all i. Thus we get from (6.26)
and (6.27) that, for large enough N and small enough ε, all eigenvalues of Mε(xq0) are negative. (Here we

used that |λα−xq0| > N−1+δ
′
/3 for α ∈ Aq.) We shall vary t continuously from 0 to 1 and count the number

of eigenvalues crossing the origin. Let L ..= |Aq| and denote by

0 < s1 < s2 < · · · < sL < 1

the values of t at which xqt ∈ σ(H). (Recall that the eigenvalues of H are distinct.) It is also convenient to
write s0 = 0 and sL+1 = 1. For t ∈ [0, 1] \ {s1, . . . sL}, let

eε1(t) 6 eε2(t) 6 · · · 6 eεk(t)

denote the ordered eigenvalues of Mε(xqt ). We record the following fundamental properties of eε1(t), . . . , eεk(t).

(i) For all i = 1, . . . , k, we have eεi (0) < 0 for N large enough and ε small enough (depending on N).

(ii) For every ` = 0, . . . , L and i = 1, . . . , k, the function eεi is continuous on (s`, s`+1).

(iii) At each singular point s`, ` = 1, . . . , L, we have

eεi (s
−
` ) = eεi+1(s+` ) (i = 1, . . . k − 1) .

N−1 to the left of λα, as follows from (6.22) and the fact that the typical size of y is N−1/2. However, if two eigenvalues of

H are closer than N−1, this simple ordering breaks down. In general, therefore, all we can say about the eigenvalues of H̃
associated with the eigenvalues of H in Aq is that they are close to the group {λα}α∈Aq . Since the diameter of this group is
small (see (6.28) below), this will be enough.
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(In particular, both one-sided limits exist.)

Property (i) was proved after (6.27). Property (ii) follows from (6.26). Property (iii) follows from Lemma
6.7, using (6.26) and the fact that R(x) is continuous.

Moreover, the two following claims are true almost surely.

(a) For each ` = 1, . . . , L and i = 1, . . . , k − 1 we have eεi (s
−
` ) 6= 0. (The remaining index k satisfies

eεk(s−` ) = +∞.)

(b) If eεi (t) = 0 for some t ∈ [0, 1] \ {s1, . . . , sL} then eεj(t) 6= 0 for all j 6= i.

In terms of beads ẽε1(t), . . . , ẽεk(t) ∈ R (see below), the properties (a) and (b) can be informally summarized
as: (a) if a bead is at ∞ then there is no bead at 0, (b) at most one bead is at 0. We omit the standard6

proofs of (a) and (b), which rely on the fact that the law of ∆ is absolutely continuous.
In order to conclude our main argument, it is convenient to regard the eigenvalues eε1(t), . . . , eεk(t) as

elements of R = R ∪ {∞} ∼= S1, the real projective line. From properties (ii) - (iii), it is apparent that we
may rearrange the eigenvalues of Mε(xqt ) as ẽε1(t), . . . , ẽεk(t) ∈ R and extend them to functions (“beads”) on
whole interval [0, 1] in such a way that, almost surely, each ẽεi is a continuous R-valued function on [0, 1].

We now claim the following.

(∗) Almost surely, there are L distinct times t1 < t2 < · · · < tL ∈ [0, 1] \ {s1, . . . , sL} such that for each
` = 1, . . . , L there is an i = 1, . . . , k with ẽεi (t`) = 0.

Let us prove (∗). Let ni ∈ N denote the number of times that ẽεi hits∞ as t ranges from 0 to 1. From (6.26)

we find that
∑k
i=1 ni = L (recall that the eigenvalues of H are distinct). Moreover, again from (6.26), we

find that each such passage of ∞ by ẽεi always takes place in the same direction, namely from the positive
reals to the negative reals with t increasing. More precisely, if ẽεi (t∗) = ∞ then there is a neighbourhood
I 3 t∗ such that for all t ∈ I we have

ẽεi (t) ∈ R+ for t < t∗ and ẽεi (t) ∈ R− for t > t∗.

Since at time zero we have ẽεi (0) ∈ R− (see Property (i) above) we conclude that ẽεi has at least ni distinct
zeros. (Recall that ni was defined as the number of times ẽεi hits ∞.) Moreover, by Property (a), the zeros
ẽεi are almost surely in [0, 1]\{s1, . . . , sL}. By Property (b), the zeros of eε1, . . . , e

ε
k are almost surely disjoint.

Since
∑k
i=1 ni = L, the claim (∗) follows.

From (∗) we conclude that, almost surely, Mε(x) is singular in at least L points in the set [xq0, x
q
1]\σ(H).

Therefore H̃ε has almost surely at least L eigenvalues in [xq0, x
q
1]. Taking ε→ 0, we find that H̃ has at least

L = |Aq| eigenvalues in [xq0, x
q
1].

What remains is to prove that H̃ has at most |Aq| eigenvalues in [xq0, x
q
1]. We prove this using interlacing,

similarly to the corresponding argument given in the sketch at the beginning of the proof. Together with
Proposition 6.6, we have proved that there are at least |A1|+ k+ eigenvalues of H̃ in [x10,∞). By interlacing

(i.e. a repeated application of Lemma 6.2), we find that there are at most |A1| + k+ eigenvalues of H̃ in

[x10,∞). We deduce, again using Proposition 6.6, that there are exactly |A1| eigenvalues of H̃ in [x10, x
1
1].

6The “standard” arguments rely on the fact that the set of singular Hermitian matrices is an algebraic variety of codimension
one. In addition, the proof of (a) requires the following fact. Let P be a rank-one orthogonal projector on Ck and A a Hermitian
k × k matrix; then, as x → ±∞, exactly k − 1 eigenvalues of the matrix A + xP converge, and their limits coincide with the
eigenvalues of A restricted to a map from kerP to kerP . The proof of (b) uses that the set of Hermitian matrices with multiple
eigenvalues at zero is an algebraic variety of codimension two.
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We have proved that there are at least |A1| + |A2| + k+ eigenvalues of H̃ in [x20,∞). Using eigenvalue

interlacing, we find that there are at most |A1| + |A2| + k+ eigenvalues of H̃ in [x20,∞). We conclude that

there are exactly |A2| eigenvalues of H̃ in [x20, x
2
1].

We may now repeat this argument for q = 3, 4, . . . , Q, to get that H̃ has exactly |Aq| eigenvalues in
[xq0, x

q
1], for q = 1, 2, . . . , Q. Moreover, by (6.25), we find for any α ∈ Aq that

sup
{
|x− λα| .. α ∈ Aq , x ∈ [xq0, x

q
1]
}

6 ϕC4N−1+δ
′
6 N−1+δ . (6.28)

Therefore the proof is complete.

6.5. Bootstrapping and conclusion of the proof of Theorem 2.7. We may now complete the proof of Theorem
2.7. In order to extend the statements of Propositions 6.6 and 6.8 to arbitrary N -dependent configurations
d ∈ D(C̃2), we continuously deform an N -independent d, for which Propositions 6.6 and 6.8 hold, to the
desired N -dependent d. The statements of Propositions 6.6 and 6.8 remain valid for all intermediate d’s;
this will follow from the continuity of the eigenvalues of H̃ as a function of d and from Proposition 6.5.
Roughly, Proposition 6.5 establishes a forbidden region, for arbitrary d, which the eigenvalues of H̃ cannot
cross since they are deformed continuously.

Let d(1) ≡ dN (1) ∈ D∗(C̃2) be given (and possibly N -dependent), with associated N -independent indices

k−, k0, k+. Choose an N -independent d(0) ∈ D(C̃2) with the same indices k−, k0, k+, such that d0(0) = 0
and (d−(0),d+(0)) satisfies (6.21). We shall use a bootstrap argument by choosing a continuous (possibly
N -dependent) path (d(t) .. 0 6 t 6 1) that connects d(0) and d(1). We require the path d(t) to have the
following properties.

(i) For all t ∈ [0, 1] the point d(t) satisfies (6.9) and d(t) ∈ D(C̃2).

(ii) If I+i (d(1)) ∩ I+j (d(1)) = ∅ for a pair 1 6 i < j 6 k+ then I+i (d(t)) ∩ I+j (d(t)) = ∅ for all t ∈ [0, 1].
The same restriction is imposed for + replaced with −.

It is easy to see that such a path exists. Informally, condition (ii) states that if the allowed regions for the
outliers i and j do not over lap at time t = 1 (i.e. the outliers can be distinguished), then they may not
overlap at any earlier time.

We continue to work at fixed N and with a fixed realization H ≡ Hω with ω ∈ Ξ. Let C̃2 and C̃3 be the
constants from Proposition 6.5, and choose δ > 0 such that ψ̃ 6 N1/3−δ. Define

H̃(t) ..= H + V diag(d1(t), . . . , dk(t))V ∗

and abbreviate µα(t) = λα(H̃(t)). By Propositions 6.6 and 6.8, we have that

µN−k++i(0) ∈ I+i (d(0)) (i = 1, . . . , k+) , (6.29a)

µi(0) ∈ I−i (d(0)) (i = 1, . . . , k−) , (6.29b)

as well as

λα > 2− ϕK̃N−2/3 =⇒ |λα − µα−k+(0)| 6 N−2/3ψ̃−1 , (6.30a)

λα 6 −2 + ϕK̃N−2/3 =⇒ |λα − µα+k−(0)| 6 N−2/3ψ̃−1 . (6.30b)
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In order to invoke a continuity argument, we note that Proposition 6.5 yields

σ(H̃(t)) ∩ S(K̃) ⊂ Γ(d(t)) (6.31)

for all t ∈ [0, 1]. Moreover, since t 7→ H̃(t) is continuous, we find that µα(t) is continuous in t ∈ [0, 1] for all
α.

Let us first analyse the outliers. We focus on the positive outliers associated with d+; the negative ones
are dealt with in the same way. Assume first that the k+ intervals I+1 (d(t)), . . . , I+k+(d(t)) are disjoint for
t = 1. Then, from Property (ii) above, we know that they are disjoint for all t ∈ [0, 1]. Thus we find, from
(6.29), (6.31), and the continuity of t 7→ µα(t) that

µN−k++i(t) ∈ I+i (d(t)) (i = 1, . . . , k+) (6.32)

for all t ∈ [0, 1], and in particular for t = 1.
If I+1 (d(1)), . . . , I+k+(d(1)) are not disjoint, the situation is only slightly more complicated. Let B denote

the finest partition of {1, . . . , k+} such that i and j belong to the same block of B if I+i (d(1))∩I+j (d(1)) 6= ∅.
Note that the blocks of B are sequences of consecutive integers. Denote by Bi the block of B that contains
i. Then (6.29) and (6.31) yield, instead of (6.32), that

µN−k++i(t) ∈
⋃
j∈Bi

I+j (d(t)) (i = 1, . . . , k+) (6.33)

for all t ∈ [0, 1]. At t = 1, the right-hand side of (6.33) is an interval that contains θ(dj) for all j ∈ Bi. In
order to estimate its size, we pick a j ∈ Bi that is not the largest element of Bi. To streamline notation,
abbreviate d ..= d+j (1) and d′ ..= d+j+1(1). Our first task is to estimate d′−d. Since I+j (d(1))∩I+j+1(d(1)) 6= ∅,
we have (

1− 1

(d′)2

)
(d′ − d) 6 θ(d′)− θ(d) 6 2ϕC̃3N−1/2(d′ − 1)1/2 .

where the second inequality follows from the definition of I+i (·). This yields

d′ − d 6 CϕC̃3N−1/2(d′ − 1)−1/2 6 CϕC̃3N−1/2(d− 1)−1/2 ,

where the constant C depends only on Σ. Thus we get

(d′ − 1)1/2 6 (d− 1)1/2
(

1 +
d′ − d
d− 1

)
6 (d− 1)1/2

(
1 + CϕC̃3N−1/2(d− 1)−3/2

)
6 (d− 1)1/2(1 + o(1)) ,

where the last inequality follows from (6.13). Repeating this estimate of θ(d+j+1(1)) − θ(d+j (1)) for the
remaining j ∈ Bi, we find

diam

( ⋃
j∈Bi

I+j (d(1))

)
6 (2|Bi|+ 2)ϕC̃3N−1/2 min

j∈Bi
(d+j (1)− 1)1/2(1 + o(1)) .

This immediately yields

|µN−k++i(1)− θ(d+i )| 6 ϕC̃3+1N−1/2(d+i (1)− 1)1/2 (i = 1, . . . , k+) ,
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and the claim follows.
What remains is the analysis of the extremal bulk eigenvalues. Once again, we make use of a continuity

argument. As before, we only consider positive eigenvalues, λα > 2 − ϕK̃N−2/3 for some K̃ to be chosen
below. Note that by interlacing, Lemma 6.2, we have

λα−k 6 µα 6 λα+k (6.34)

(using the convention that λα = +∞ for α > N). Recall the role of K from the assumptions of Theorem

2.7. Therefore using the definition of Ξ (see Theorem 3.7), we find that there is a K̃ = K̃(K) such that if
α > N − ϕK then

λα−k > 2− ϕK̃N−2/3 and µα > 2− ϕK̃N−2/3 .

Let now α satisfy N − ϕK 6 α 6 N − k+. Using (6.30), (6.31), and Proposition 6.5, we find

|λα+k+ − µα(0)| 6 N−2/3ψ̃−1 and dist(µα(t), σ(H)) 6 N−2/3ψ̃−1 (6.35)

for all t ∈ [0, 1]. In addition, we know the two following facts about µα(t), for all t ∈ [0, 1].

(i) µα(t) is in the same connected component of I0 ⊂ R as µα(0) (by continuity of µα(t) and Proposition
6.5).

(ii) µα(t) satisfies the interlacing bound (6.34) for all t ∈ [0, 1].

Let Bα be the set of β = 1, . . . , N such that λβ and λα are in the same connected component of I0. Thus
we conclude from (i) and (ii) that

µα(t) ∈
⋃

β∈Bα+k+
..

|α+k+−β|6k

[
λβ −N−2/3ψ̃−1 , λβ +N−2/3ψ̃−1

]
.

Thus we get

|λα+k+ − µα(t)| 6 2kN−2/3ψ̃−1 (6.36)

for all t ∈ [0, 1]. Choosing

C2
..= C̃2 + 1 , C3

..= C̃3 + 1

completes the proof of Theorem 2.7 (recall the definition (6.10)).

7. Distribution of the outliers: proof of Theorem 2.14

7.1. Reduction to the law of Gv(i)v(i)(θ(di)). The following proposition reduces the problem to analysing a
single explicit random variable.

Proposition 7.1. There is a constant C2, depending on ζ, such that the following holds. Suppose that

|di| 6 Σ− 1 ,
∣∣|di| − 1

∣∣ > ϕC2N−1/3
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for all i = 1, . . . , k. Suppose moreover that for all i ∈ O (2.24) holds. Recall the definitions (2.16) and
(2.17). Then we have for all i ∈ O

N1/2(|di|−1)−1/2
(
µα(i) − θ(di)

)
= −(1+O(ϕ−1))(|di|+1)N1/2(|di|−1)1/2

(
Gv(i)v(i)(θ(di)) +

1

di

)
+O(ϕ−1)

with ζ-high probability.

Before proving Proposition 7.1, we record the following auxiliary result.

Lemma 7.2. Let C1 denote the constant from Theorem 2.3. For any

x ∈
[
−Σ,−2− ϕC1N−2/3

]
∪
[
2 + ϕC1N−2/3,Σ

]
and any normalized v ∈ CN we have∣∣∂xGvv(x)− ∂xm(x)

∣∣ 6 ϕCζN−1/3κ−1x (7.1)

with ζ-high probability. More generally, we have, for any normalized v,w ∈ CN ,∣∣∂xGvw(x)− ∂xm(x)〈v ,w〉
∣∣ 6 ϕCζN−1/3κ−1x (7.2)

with ζ-high probability.

Proof. By symmetry, we may assume that x > 0. Moreover, (7.2) follows from (7.1) and polarization.
We therefore prove (7.1) for x > 0. We have

∂xGvv(x) =
∑
α

|〈u(α) ,v〉|2

(λα − x)2
.

Choose x > 2 +N−2/3ϕC1 and abbreviate κ ≡ κx. Thus we get, for η > ϕζN−1,∣∣∣∣∂xGvv(x)− 1

η
ImGvv(x+ iη)

∣∣∣∣ =

∣∣∣∣∣∑
α

|〈u(α) ,v〉|2

(λα − x)2
−
∑
α

|〈u(α) ,v〉|2

(λα − x)2 + η2

∣∣∣∣∣
6

η2

(x− λN )2
1

η
ImGvv(x+ iη)

6 2
η2

κ2
1

η
ImGvv(x+ iη)

with ζ-high probability, where in the last step we used Theorem 3.7. (In the proof of Theorem 2.3, the
constant C1 was chosen large enough for this application of Theorem 3.7; see (5.6).) A similar calculation
using the definition (2.4) yields∣∣∣∣∂xm(x)− 1

η
Imm(x+ iη)

∣∣∣∣ 6
η2

κ2
1

η
Imm(x+ iη) .

Therefore we get, using Theorem 2.3 and Lemma 3.2,

∣∣∂xGvv(x)− ∂xm(x)
∣∣ 6

2η

κ2

(
ImGvv(x+ iη) + Imm(x+ iη)

)
+

1

η
ϕCζ

√
Imm(x+ iη)

Nη

6 Cη2κ−5/2 + ϕCζ
(
ηκ−2 + η−1

)
N−1/2κ−1/4

with ζ-high probability. Choosing η ..= N−1/6κ3/4 yields the claim.
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Proof of Proposition 7.1. We only prove the claim for the case di > 1; the case di < −1 is handled
similarly.

For 2 + ϕC1N−2/3 6 x 6 Σ, where C1 is the constant from Theorem 2.3, we define the k × k Hermitian
matrices A(x) and Ã(x) through

Aij(x) ..= Gv(i)v(j)(x)−m(x)δij + d−1i δij , Ãij(x) ..= δij

(
Gv(i)v(i)(x)−m(x) + d−1i

)
.

(Here we subtract m(x)1 so as to ensure that ∂xA(x) is well-behaved; see below.) We denote the ordered

eigenvalues of A(x) and Ã(x) by a1(x) 6 · · · 6 ak(x) and ã1(x) 6 · · · 6 ãk(x) respectively.
For the rest of the proof we fix i ∈ O satisfying di > 1. We abbreviate θi ..= θ(di). We begin by comparing

the eigenvalues of Ã(θi) and D−1. Define the eigenvalue index r ≡ r(i) = 1, . . . , k through

ãr(x) =
1

di
+Gv(i)v(i)(x)−m(x) . (7.3)

In particular,

ãr(θi) = Gv(i)v(i)(θi) +
2

di
.

Theorem 2.3 implies that ∣∣∣Gv(j)v(j)(θi)−m(θi)
∣∣∣ 6 ϕCζN−1/2(di − 1)−1/2 . (7.4)

with ζ-high probability for j = 1, . . . , k. In particular,∣∣∣∣ãr(θi)− 1

di

∣∣∣∣ 6 ϕCζN−1/2(di − 1)−1/2

with ζ-high probability. Moreover, (7.4) and the condition (2.24) yield, for j 6= i,∣∣∣Gv(j)v(j)(θi)−m(θi)
∣∣∣ � |di − dj | (7.5)

with ζ-high probability, provided C2 is chosen large enough. We therefore conclude that

min
j 6=r

∣∣ãj(θi)− ãr(θi)∣∣ > ϕC2−1N−1/2(di − 1)−1/2 (7.6)

with ζ-high probability, provided C2 is large enough.
Next, we compare the eigenvalues of A(θi) and Ã(θi) using second-order perturbation theory (the first-

order correction vanishes by definition of Ã and A). Theorem 2.3 yields

‖A(θi)− Ã(θi)‖ 6 ϕCζN−1/2(di − 1)−1/2

with ζ-high probability. Therefore (7.6) and nondegenerate second-order perturbation theory yield, for large
enough C2,

ar(θi) = ãr(θi) +O

(
ϕCζN−1(di − 1)−1

minj 6=r|ãj(θi)− ãr(θi)|

)
= ãr(θi) +O

(
ϕCζ−C2N−1/2(di − 1)−1/2

)
(7.7)
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with ζ-high probability.
Next, we analyse A(x) and make the link to µα(i). From Lemma 7.2 we find∥∥∂xA(x)

∥∥ 6 ϕCζN−1/3κ−1x

with ζ-high probability. In particular, we have for all j = 1, . . . , k that∣∣aj(x)− aj(y)
∣∣ 6 ϕCζN−1/3(κ−1x + κ−1y )|x− y| (7.8)

with ζ-high probability, provided that 2 + ϕC1N−2/3 6 x, y 6 Σ.
Recall the definition (2.17) of α(i). From Lemma 6.1 and Theorem 3.7, we know that µα(i) is characterized

by the property that there is a q ≡ q(i) ∈ {1, . . . , k} such that

aq(µα(i)) = −m(µα(i)) .

By Theorem 2.7 we have

|µα(i) − θi| 6 ϕC3N−1/2(di − 1)1/2 (7.9)

with ζ-high probability. Provided C2 is large enough (depending on C3), it is easy to see from (7.9) that

µα(i) − 2 � θi − 2 � (di − 1)2 (7.10)

with ζ-high probability. Thus we find, using (7.8), (7.9), and (7.10), that for large enough C2 we have

m(µα(i)) = −aq(θi) +O
(
ϕCζN−5/6(di − 1)−3/2

)
(7.11)

with ζ-high probability. (Here we absorbed the constant C3 into Cζ .)
We now prove that q = r with ζ-high probability provided C2 is large enough. Assume by contradiction

that q 6= r. Then we get, using Theorem 2.3 and the condition (2.24), that∣∣∣∣aq(θi)− 1

di

∣∣∣∣ > ϕC2−1N−1/2(di − 1)−1/2 (7.12)

with ζ-high probability. Moreover, (7.8), (7.9), and (7.10) yield

aq(θi) = aq(µα(i)) +O
(
ϕCζN−5/6(di − 1)−3/2

)
= −m(µα(i)) +O

(
ϕCζN−5/6(di − 1)−3/2

)
=

1

di
+O

(
ϕCζN−1/2(di − 1)−1/2 + ϕCζN−5/6(di − 1)−3/2

)
with ζ-high probability, where in the last step we used (6.5). Together with (7.12), this yields the desired
contradiction provided C2 is large enough. Hence q = r.

Putting (7.3), (7.11), and (7.7) together, we get

m(µα(i)) = −Gv(i)v(i)(θi)−
2

di
+O

(
ϕCζN−5/6(di − 1)−3/2 + ϕCζ−C2N−1/2(di − 1)−1/2

)
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with ζ-high probability. Thus we find that, for all x between θi and µα(i), we have

m′(x) = m′(θi) +O(ϕC3N−1/2(di − 1)−5/2) = m′(θi)(1 +O(ϕ−1))

with ζ-high probability, where we used (6.5) and (7.9). Using (6.2), (7.10), and (6.5), we conclude that

µα(i) − θi = −(1 +O(ϕ−1))
Gv(i)v(i)(θi) + d−1i

m′(θi)
+O

(
ϕCζN−5/6(di − 1)−1/2 + ϕCζ−C2N−1/2(di − 1)1/2

)
with ζ-high probability. The claim now follows for large enough C2, using the identity (6.2).

7.2. The GOE/GUE case. By Proposition 7.1, it is enough to analyse the random variable

X ..= N1/2(|d|+ 1)(|d| − 1)1/2
(
Gvv(θ) +

1

d

)
, (7.13)

where v ∈ CN is normalized, d satisfies

1 + ϕC2N−1/3 6 |d| 6 Σ− 1 , (7.14)

and we abbreviated θ ≡ θ(d). For definiteness, we choose d > 1 in the following.
The following notion of convergence of random variables is convenient for our needs.

Definition 7.3. Two sequences of random variables, {AN} and {BN}, are asymptotically equal in distri-

bution, denoted AN
d∼ BN , if they are tight and satisfy

lim
N→∞

(
Ef(AN )− Ef(BN )

)
= 0 (7.15)

for all bounded and continuous f .

Remark 7.4. Definition 7.3 extends the notion of convergence in distribution, in the sense that Ef(AN )
need not have a limit as N →∞.

Remark 7.5. In order to show that AN
d∼ BN , it suffices to establish the tightness of either {AN} or {BN}

and to verify (7.15) for all f ∈ C∞c (R). Indeed, if {AN} is tight then so is {BN}, by (7.15). By tightness of
AN and BN , we may replace in (7.15) the bounded and continuous f with a compactly supported continuous
function g. Next, we can approximate g uniformly with C∞c -functions.

Remark 7.6. Clearly, AN
d∼ BN if AN

d
= BN for all N .

Lemma 7.7. Let AN
d∼ BN and RN satisfy limN P(|RN | 6 εN ) = 1, where {εN} is a positive null sequence.

Then AN
d∼ BN +RN .

Proof. By Remark 7.5, it suffices to prove (7.15) for f ∈ C1(R) such that f and f ′ are bounded. Then

Ef(AN )− Ef(BN +RN ) =
(
Ef(AN )− Ef(BN )

)
+
(
Ef(BN )− Ef(BN +RN )

)
= o(1) + E

[
1(|RN | 6 εN )

(
f(BN )− f(BN +RN )

)]
= o(1)

where in the last step we used the boundedness of f ′.
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Lemma 7.8. Let {AN}, {A′N}, {BN}, and {B′N} be sequences of random variables. Suppose that AN
d∼ A′N ,

BN
d∼ B′N , AN and BN are independent, and A′N and B′N are independent. Then

AN +BN
d∼ A′N +B′N .

Proof. Without loss of generality, we may assume that AN , BN , A
′
N , B

′
N are independent (after replacing

A′N and B′N with new random variables without changing their laws.) Then for any λ ∈ R we have

E eiλ(AN+BN ) − E eiλ(A
′
N+B′N ) = E

[
eiλAN (eiλBN − eiλB

′
N ) + (eiλAN − eiλA

′
N )eiλB

′
N

]
= E eiλAN E(eiλBN − eiλB

′
N ) + E(eiλAN − eiλA

′
N )E eiλB

′
N

−→ 0

as N →∞.
Next, we observe that AN + BN and A′N + B′N are tight. Therefore, recalling Remark 7.5, we find that

it suffices to prove
E f(AN +BN )− E f(A′N +B′N ) −→ 0

f ∈ C∞c . Denoting by f̂ the Fourier transform of f , we find

E f(AN +BN )− E f(A′N +B′N ) =

∫
dλ f̂(λ)

[
E eiλ(AN+BN ) − E eiλ(A

′
N+B′N )

]
−→ 0

by dominated convergence.

Proposition 7.9. Let H be a GOE/GUE matrix. Assume that d satisfies (7.14). Then for large enough
C2 we have

X
d∼ N

(
0,

2(d+ 1)

βd2

)
.

Proof. By unitary invariance, we have Gvv
d
= G11, where

d
= denotes equality in distribution. In or-

der to handle the exceptional low-probability events, we add a small imaginary part to the spectral pa-
rameter z ..= θ + iN−4. Throughout the following we abbreviate G ≡ G(z) and m ≡ m(z). Writing
a∗ ..= (h12, h13, . . . , h1N ), we get from Schur’s formula and (2.5) that

G11 =
1

h11 − z − a∗G(1)a
=

1

−m− z + h11 −
(
a∗G(1)a−m

)
= m−m2h11 +m2

(
a∗G(1)a−m

)
+O(|h11|2) +O

(∣∣a∗G(1)a−m
∣∣2) (7.16)

with ζ-high probability. Again by unitary invariance, we have a∗G(1)a
d
= ‖a‖2G(1)

22 . Moreover, both sides
are independent of h11, so that

−m2h11 +m2
(
a∗G(1)a−m

) d
= −m2h11 +m2

(
‖a‖2G(1)

22 −m
)
. (7.17)

In order to estimate the error term in (7.16), we write

‖a‖2G(1)
22 −m =

(
‖a‖2 − 1

)
G

(1)
22 + (G

(1)
22 −m) . (7.18)
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Using (3.6) to estimate G
(1)
22 − G22, as well as Theorem 2.3, Lemma 3.5, and Lemma 3.2, we therefore find

that ∣∣‖a‖2G(1)
22 −m

∣∣ 6 ϕCζN−1/2(d− 1)−1/2 (7.19)

with ζ-high probability. Moreover, we have the trivial bound E
∣∣‖a‖2G(1)

22 −m
∣∣k 6 (kN)Ck for k ∈ N.

From (7.16), (7.17), (7.18), and (7.19), we conclude that there exist random variables R̃1 and R̃2 satisfying

|R̃1|+ |R̃2| 6 ϕCζN−1(d− 1)−1 (7.20)

with ζ-high probability, the rough bound

E(|R̃1|+ |R̃2|)k 6 (kN)Ck , (7.21)

and (
G

(2)
11 −m

)
+ R̃1 = −m2h11 +m2

(
a∗G(1)a−m

)
d
= −m2h11 +m2

(
‖a‖2G(1)

22 −m
)

= −m2h11 +m3
(
‖a‖2 − 1

)
+m2(G

(1)
22 −m) + R̃2 .

Defining

Y1 ..= N1/2(d+ 1)(d− 1)1/2 Re
(
G

(2)
11 −m

)
, Y2 ..= N1/2(d+ 1)(d− 1)1/2 Re

(
G

(1)
22 −m

)
,

W ..= N1/2 Re
(
−m2h11 +m3

(
‖a‖2 − 1

))
, Ri ..= N1/2(d+ 1)(d− 1)1/2 Re R̃i (i = 1, 2) ,

we therefore get

Y1 +R1
d
= (d+ 1)(d− 1)1/2W +m2Y2 +R2 . (7.22)

In order to infer the distribution of Y1 from (7.22), we observe that the random variables Y2 and W are

independent. Also, Y1
d
= Y2. Recalling Theorem 2.3 and (3.6), we find the bounds

|Yi| 6 ϕCζ , |Ri| 6 ϕCζN−1/2(d− 1)−1/2 (i = 1, 2) (7.23)

with ζ-high probability, and the rough bounds

|Yi| 6 N2 , E|Ri|k 6 (kN)Ck (i = 1, 2) . (7.24)

Moreover, by the Central Limit Theorem(
2(d2 + 1)

βd6

)−1
W

d∼ N (0, 1) , (7.25)

where we used (6.2).
Next, let B and Z2 be independent random variables whose laws are given by

B
d
= N

(
0,

2(d2 + 1)

βd6

)
, Z2

d
= N (0, ξ2) ,
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where we introduced

ξ2 ≡ ξ2N
..= d4

(d2 − 1)(d+ 1)

d4 − 1

2(d2 + 1)

βd6
=

2(d+ 1)

βd2
.

Defining
Z1

..= (d+ 1)(d− 1)1/2B + d−2Z2 , (7.26)

we find that Z1
d
= Z2. Moreover, a standard moment calculation and the definition of W yield

lim
N→∞

(EW k − EBk) = 0 ; (7.27)

as usual, only the pairings in the moment expansion of EW k survive the limit N → ∞. (See also (7.25),
which however cannot be used to deduce (7.27) directly.)

We now compare the distributions of Y1 and Z1 by computing moments. Note that the family {EZk1 }N∈N
is bounded for each k ∈ N. We claim that

lim
N→∞

(
EY k1 − EZk1

)
= 0 (7.28)

for all k ∈ N. (This will imply that Y1
d∼ Z1.) We shall prove (7.28) by induction on k. Taking the

expectation of (7.22) yields

EY1 = m2EY1 +O
(
ϕCζN−1/2(d− 1)−1/2

)
where we used (7.23), (7.24), and EW = O(N−1/2). Therefore

EY1 6 CϕCζN−1/2(d− 1)−3/2 = o(1)

provided C2 in (7.14) is large enough. Here we used that

m(z) = d−1 +O(N−3) , (7.29)

as follows from the definition of z = θ + iN−4, (5.5), Lemma 3.2, and (6.2). Therefore (7.28) for k = 1
follows using EZ1 = 0.

For the induction step, we assume that (7.28) holds for all k′ 6 k − 1. From (7.22) we find

EY k1 +

k∑
l=1

(
k

l

)
E
(
Rl1Y

k−l
1

)
= E

(
(d+ 1)(d− 1)1/2W +m2Y2

)k
+

k∑
l=1

(
k

l

)
E
(
Rl1
(
(d+ 1)(d− 1)1/2W +m2Y2

)k−l)
. (7.30)

We estimate the summands on the left-hand side by∣∣E(Rl1Y k−l1

)∣∣ 6 NC exp(−ϕC) +
(
ϕCζN−1/2(d− 1)−1/2

)l
E|Y1|k−l

6 C
(
ϕCζN−1/2(d− 1)−1/2

)l
ϕCζ

6 ϕCζN−1/2(d− 1)−1/2 ,
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where in the first step we used (7.23) and (7.24), in the second step the estimate E|Y1|k−l 6 ϕCζ as follows
from the induction assumption (7.28) applied to even moments (recall that Y1 is real) as well as (7.23) and
(7.24), and in the third step the fact that l > 1. Note that the constant Cζ is independent of k. A similar
estimate applies to the summands on the right-hand side of (7.30). Thus (7.30) yields

EY k1 = E
(
(d+ 1)(d− 1)1/2W +m2Y2

)k
+O

(
ϕCζN−1/2(d− 1)−1/2

)
= m2k EY k1 +

k∑
l=2

(
k

l

)
E
(
(d+ 1)(d− 1)1/2W

)l E(m2Y2
)k−l

+O
(
ϕCζN−1/2(d− 1)−1/2

)
,

where in the second step we used the induction assumption and the estimate EW = O(N−1/2). Therefore
we get

EY k1 =
1

1−m2k

k∑
l=2

(
k

l

)
E
(
(d+ 1)(d− 1)1/2W

)l E(m2Y2
)k−l

+O
(
ϕCζN−1/2(d− 1)−3/2

)
, (7.31)

where we used (7.29).
In order to conclude the proof of (7.28), we deduce from (7.26) that

EZk1 =
1

1− d−2k
k∑
l=2

(
k

l

)
E
(
(d+ 1)(d− 1)1/2B

)l E(d−2Z2

)k−l
. (7.32)

Using the induction assumption (7.28) for k′ = k − l, (7.29), and the condition l > 2, we get from (7.31),
(7.32), and (7.27) that

lim
N→∞

(
EY k1 − EZk1

)
= 0

for large enough C2. This concludes the proof of (7.28).

Next, by definition we have ξ−1Z1
d
= N (0, 1). Moreover, we have that ξ ∈ [c, C] for some positive

constants c and C depending only on Σ. Together with (7.28) for k = 2, we infer that the families {ξ−1Y1}N∈N
and {ξ−1Z1}N∈N are tight. Therefore we get from (7.28) that

lim
N→∞

(
Ef(ξ−1Y1)− Ef(ξ−1Z1)

)
= 0 (7.33)

for any continuous bounded function f . Next, we estimate∣∣G11(θ)−G(2)
11 (z)

∣∣ 6
∣∣G11(θ)−G11(z)

∣∣+
∣∣G11(z)−G(2)

11 (z)
∣∣

6 N−4N2 + ϕCζN−1(d− 1)−1 6 ϕCζN−1(d− 1)−1

with ζ-high probability, where in the second step we used Lemma 7.2, (5.5), and Lemma 3.2 to estimate the
first term, and Theorem 2.3 and (6.1) to estimate the second term. Therefore

X
d
= N1/2(d+ 1)(d− 1)1/2

(
G11(θ) + d−1

)
= Y1 +O

(
ϕCζN−1/2(d− 1)−1/2

)
= Y1 + o(1)

with ζ-high probability, where in the second step we used (7.29). Therefore (7.33), the fact that Z
d
= Z1,

and dominated convergence yield

lim
N→∞

(
Ef(ξ−1X)− Ef(ξ−1Z)

)
= 0 . (7.34)

The claim now follows from Lemma 7.10 below.
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Lemma 7.10. Let {ξN} be a bounded deterministic sequence. Let A∞, A1, A2, . . . be random variables such
that AN converges weakly to A∞. Then we have for any bounded continuous function f

Ef(ξNAN )− Ef(ξNA∞) −→ 0

as N →∞.

Proof. By Skorokhod’s representation theorem, there exist new random variables Ã∞, Ã1, Ã2, . . . such that

A∞
d
= Ã∞, AN

d
= ÃN for all N ∈ N, and ÃN → Ã∞ almost surely. Let ω be such that ÃN (ω) → Ã∞(ω).

By assumption on ξN , we find that there exists a C ≡ C(ω) such that ξN ÃN (ω) ∈ [−C,C] and ξN Ã∞(ω) ∈
[−C,C] for all N ∈ N. Since f is uniformly continuous on [−C,C], we find that

lim
N→∞

(
f(ξN ÃN (ω))− f(ξN Ã∞(ω))

)
= 0 .

The claim now follows by dominated convergence.

7.3. The almost-GOE/GUE case. As it turns out, replacing the matrix element hij with a Gaussian in
the Green function comparison step below (Section 7.4) is only possible if |vi| 6 ϕ−D and |vi| 6 ϕ−D, for
some large enough constant D > 0. If this assumption is not satisfied, we first have to replace hij with a
Gaussian using a different method, which effectively keeps track of the fluctuations of Gvv resulting from
large components of v. Thus we shall proceed in two steps:

(i) We compare the original Wigner matrix H with Ĥ, a Wigner matrix obtained from H by replacing
the (i, j)-th entry of H with a Gaussian whenever |vi| 6 ϕ−D and |vj | 6 ϕ−D.

(ii) We compare the matrix Ĥ to a Gaussian matrix.

The step (ii) is performed in this section. To simplify notation, we write H instead of Ĥ throughout this
section. The step (i) is performed using Green function comparison in Section 7.4 below.

The following shorthand will prove useful.

Definition 7.11. Let {σN} be a bounded positive sequence. If AN and BN are independent random variables

with BN
d∼ N (0, σ2

N ), and if SN
d∼ AN +BN , then we write

SN
d∼ AN +N (0, σ2

N ) .

For the following we write

X = νN1/2

(
Gvv(θ) +

1

d

)
, ν ≡ νN ..= (d+ 1)(d− 1)1/2 .

Proposition 7.12. Fix D > 0. Let v ∈ CN be normalized and H be a Wigner matrix such that if |vi| 6 ϕ−D

and |vj | 6 ϕ−D then hij is Gaussian. Then we have

X
d∼ −νN1/2d−2〈v , Hv〉+N

(
0 ,

2(d+ 1)

βd4
+

4ν2Q(v)

d5
+
ν2R(v)

d6

)
,

where Q(v) and R(v) were defined in (2.22).
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Proof. As before, we consistently drop the spectral parameter z = θ from our notation.

Let M ∈ N denote the number of entries of v satisfying |vi| > ϕ−D. Since v is normalized, we have
M 6 ϕ2D. To simplify notation, we assume (after a suitable permutation of the rows and columns of H)
that the entries of v satisfy |vi| > ϕ−D for i 6M and |vi| 6 ϕ−D for i > M . Split v =

(
u
w

)
, where u ∈ CM

and w ∈ CN−M . (Throughout the following we assume that w 6= 0; the case w = 0 may be easily handled
by approximation with nonzero w.) We also split

H =

(
A B∗

B H0

)
,

where A is an M ×M matrix and H0 an (N −M) × (N −M) matrix with Gaussian entries. Choose a
deterministic orthogonal/unitary (N −M)× (N −M) matrix S such that Sw = (‖w‖, 0, . . . , 0)∗. Thus we
get

Gvv = v∗
(
1 0
0 S∗

)(
1 0
0 S

)(
A− z B∗

B H0 − z

)−1(
1 0
0 S∗

)(
1 0
0 S

)
v

d
=

 u
‖w‖

0

∗(A− z B∗S∗

SB H0 − z

)−1 u
‖w‖

0

 ,

where we used that SH0S
∗ d

= H0 and the fact that A, B, and H0 are independent.

Next, we split

S =

(
w∗/‖w‖

S̃

)
, H0 =

(
g a∗

a H1

)
,

where a ∈ CN−M−1 is a vector of i.i.d. Gaussians. Note that S̃∗ is an isometry, i.e. S̃S̃∗ = 1. Thus we may
write

Gvv
d
=

 u
‖w‖

0

∗ A− z B∗w/‖w‖ B∗S̃∗

w∗B/‖w‖ g − z a∗

S̃B a H1 − z

−1 u
‖w‖

0


=..

(
x
0

)∗(
E − z F ∗

F H1 − z

)−1(
x
0

)
=.. Γ , (7.35)

where the second equality defines the right-hand side using self-explanatory notation. Note that, by defini-
tion, ‖x‖ = ‖v‖ = 1.

Next, we claim that

(F ∗F )ij = δij +O
(
ϕCζN−1/2

)
(7.36)

with ζ-high probability. In order to prove (7.36), write

F ∗F =

(
B∗S̃∗S̃B B∗S̃∗a

a∗S̃B a∗a

)
.
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We consider four cases. First, if 1 6 i 6= j 6M we find using (3.15) that

∣∣(F ∗F )ij
∣∣ =

∣∣∣∣∣∑
k,l

B∗ik(S̃∗S̃)klB̃lj

∣∣∣∣∣ 6
ϕCζ

N

(∑
k,l

∣∣(S̃∗S̃)kl
∣∣2)1/2

=
ϕCζ

N

(
Tr(S̃∗S̃)2

)1/2
6 ϕCζN−1/2

with ζ-high probability. Second, if 1 6 i 6M we find using (3.13) and (3.14) that

∣∣(F ∗F )ii − 1
∣∣ =

∣∣∣∣∣∑
k,l

B∗ik(S̃∗S̃)klBli − 1

∣∣∣∣∣ 6

∣∣∣∣ 1

N

∑
i

(S̃∗S̃)ii − 1

∣∣∣∣+
ϕCζ

N

(∑
k,l

∣∣(S̃∗S̃)kl
∣∣2)1/2

6 ϕCζN−1/2

with ζ-high probability. Third, for i = M + 1 we have by (3.13)∣∣(F ∗F )ii − 1
∣∣ = |a∗a− 1| 6 ϕCζN−1/2

with ζ-high probability. Finally, for 1 6 i < j = M + 1 we have by (3.15)

∣∣(F ∗F )ij
∣∣ =

∣∣∣∣∣∑
k,l

B∗ikS̃
∗
klal

∣∣∣∣∣ 6
ϕCζ

N

(∑
k,l

|S̃∗kl|2
)1/2

=
ϕCζ

N

(
Tr S̃∗S̃

)1/2
6 ϕCζN−1/2

with ζ-high probability. This completes the proof of (7.36).
Next, abbreviate G1(z) ..= (H1− z)−1. Since N1/2(N −M − 1)−1/2H1 is an (N −M − 1)× (N −M − 1)

GOE/GUE matrix, we find from (7.36), Theorem 2.3, and Lemma 3.2 that∣∣∣(F ∗G1F
)
ij
− δijm

∣∣∣ 6 ϕCζN−1/2(d− 1)−1/2 (7.37)

with ζ-high probability. Therefore Schur’s formula yields

Γ = x∗
(
−z −m−

(
−E + F ∗G1F −m

))−1
x

= m‖x‖2 −m2〈x , Ex〉+m2
(
〈Fx , G1Fx〉 −m‖x‖2

)
+O

(
ϕCζN−1(d− 1)−1

)
. (7.38)

with ζ-high probability, where in the second step we expanded using (2.5), and estimated the error term
using (7.37) as well as the bounds M 6 ϕCζ and |Eij | 6 ϕCζN−1/2 . Recalling that ‖x‖ = 1, we find

Γ−m = −m2

(
u
‖w‖

)∗(
A B∗w/‖w‖

w∗B/‖w‖ g

)(
u
‖w‖

)
+m2‖Fx‖2

(
1

‖Fx‖2
〈Fx , G1Fx〉 −m

)
+m3

(
‖Fx‖2 − 1

)
+O

(
ϕCζN−1(d− 1)−1

)
(7.39)

with ζ-high probability.
Next, from Fx = S̃Bu + ‖w‖a we find

‖Fx‖2 =
〈
Bu , S̃∗S̃Bu

〉
+ 2‖w‖Re

〈
Bu , S̃∗a

〉
+ ‖w‖2‖a‖2

=
〈
Bu , Bu

〉
−
∣∣〈w , Bu〉

∣∣2 + 2‖w‖Re
〈
Bu , S̃∗a

〉
+ ‖w‖2‖a‖2 .

65



Applying (3.12) to 〈w , Bu〉 =
∑
i,j wiujBij (with N in (3.12) replaced by M(N −M)), we find

∣∣〈w , Bu〉
∣∣2 6 ϕCζN−1 .

Similarly, using (3.13) and (3.14) we find that

‖Bu‖2 = ‖u‖2 +O
(
ϕCζN−1/2

)
, ‖S̃Bu‖2 = ‖u‖2 +O

(
ϕCζN−1/2

)
with ζ-high probability, using (3.15) that∣∣〈Bu , S̃∗a

〉∣∣ 6 ϕCζN−1/2

with ζ-high probability, and using (3.13) that

‖a‖2 = 1 +O
(
ϕCζN−1/2

)
with ζ-high probability. Using ‖u‖ > ϕ−D (by definition of u), we therefore conclude that

‖Fx‖2 = ‖Bu‖2 + 2 Re
‖u‖‖w‖
‖S̃Bu‖‖a‖

〈
S̃Bu ,a

〉
+ ‖w‖2‖a‖2 +O

(
ϕCζN−1

)
= 1 +O

(
ϕCζN−1/2

)
(7.40)

with ζ-high probability. Using Theorem 2.3 applied to G1 (recall that F and H1 are independent), we
therefore get from (7.39) that

Γ−m = −m2
(
〈u , Au〉+ ‖w‖2g + 2 Re〈w , Bu〉

)
+m2

(
1

‖Fx‖2
〈Fx , G1Fx〉 −m

)

+m3

(
‖Bu‖2 − ‖u‖2 + 2 Re

‖u‖‖w‖
‖S̃Bu‖‖a‖

〈
S̃Bu ,a

〉
+ ‖w‖2

(
‖a‖2 − 1

))
+O

(
ϕCζN−1(d− 1)−1

)
(7.41)

with ζ-high probability. We write this as

Γ−m = Γ1 + · · ·+ Γ6 +O
(
ϕCζN−1(d− 1)−1

)
(7.42)

with ζ-high probability, where

Γ1
..= −m2〈u , Au〉 , Γ2

..= −m2‖w‖2g , Γ3
..= m2

(
1

‖Fx‖2
〈Fx , G1Fx〉 −m

)
,

Γ4
..= −2m2 Re〈w , Bu〉+m3

(
‖Bu‖2 − ‖u‖2

)
, Γ5

..= 2m3 Re
‖u‖‖w‖
‖S̃Bu‖‖a‖

〈
S̃Bu ,a

〉
,

Γ6
..= m3‖w‖2

(
‖a‖2 − 1

)
.

We now claim that Γ1, . . . ,Γ6 are independent. In order to prove this, let f1, . . . , f6 be indicator functions
of Borel sets in R. Write a = aω in polar coordinates, where a > 0 and ω ∈ SN−M−2. Since a is Gaussian,
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a and ω are independent. Denote by ρ1, . . . , ρ6 the laws of A,B, g, a,ω, H1 respectively. Then we get

E
6∏
i=1

fi(Γi) =

∫
dρ1(A) dρ2(B) dρ3(d) dρ4(a) dρ5(ω) dρ6(H1)

6∏
i=1

fi(Γi)

=
(
Ef1(Γ1)

)(
Ef2(Γ2)

)(
Ef6(Γ6)

) ∫
dρ2(B) dρ5(ω) dρ6(H1) f3(Γ3)f4(Γ4)f5(Γ5)

=
(
Ef1(Γ1)

)(
Ef2(Γ2)

)(
Ef6(Γ6)

)(
Ef3(Γ3)

)(
Ef5(Γ5)

) ∫
dρ2(B)f4(Γ4)

=

6∏
i=1

Efi(Γi) ,

where the second equality follows by definition of the Γ’s, and the third from the invariance of the law
of ω under rotations (applied to Γ5) and from the invariance of the law of H1 under orthogonal/unitary
conjugations (applied to Γ3). This proves the independence of Γ1, . . . ,Γ6.

Next, we identify the asymptotic laws of Γ1, . . . ,Γ6. There is nothing to be done with Γ1. By definition,

νN1/2Γ2
d
= N

(
0, 2ν2β−1m4‖w‖4

)
. (7.43)

Since Fx is independent of H1 and M 6 ϕ2D, we get from Proposition 7.9 that

νN1/2Γ3
d∼ N

(
0,m4 2(d+ 1)

βd2

)
. (7.44)

In order to analyse Γ4, we define bi ..= (Bu)i for i = 1, . . . , N −M . Then {bi}i are independent and satisfy

Ebi = 0 , E|bi|2 =
1

N
‖u‖2 , E|bi|4 =

4− β
N2
‖u‖4 +

1

N2

∑
j

(
M

(4)
ij − 4 + β

)
|uj |4 .

Thus we find
Γ4 =

∑
i

(
−2m2 Rewibi +m3

(
|bi|2 − E|bi|2

))
+O(M/N) .

The variance of the term in parentheses is

E
(
−2m2 Rewibi +m3

(
|bi|2 − E|bi|2

))2
= 4m4E(Rewibi)

2 − 4m5ERe
(
(wibi)|bi|2

)
+m6E

(
|bi|2 − E|bi|2

)2
= 4m4β−1N−1‖u‖2|wi|2 − 4m5N−3/2 Re

(
wi
∑
j

M
(3)
ij uj |uj |

2

)

+m6N−2
(

(3− β)‖u‖4 +
∑
j

(
M

(4)
ij − 4 + β

)
|uj |4

)
.

Since |wi| 6 ϕ−D, we get from the Central Limit Theorem and Lemma 7.10 that

νN1/2Γ4
d∼ N

(
0, ν2

4m4

β
‖u‖2‖w‖2 − 4ν2m5Q(w,u) + ν2m6

(
2β−1‖u‖4 +R(u)

))
, (7.45)
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where we abbreviated

Q(w,u) ..= N−1/2 Re
∑
i,j

wiM
(3)
ij uj |uj |

2 , R(u) ..=
1

N

∑
i,j

(
M

(4)
ij − 4 + β

)
|uj |4 ,

and used that 3 − β = 2β−1 for β = 1, 2. Since ‖u‖ 6 1 and ‖w‖ 6 1, we find that Q(w,u) 6 C and

R(u) 6 C for some positive constant C. Next, using Γ5 = 2m3‖w‖Re〈S̃Bu ,a〉 + O(ϕCζN−1) with ζ-high
probability and

E
(
2 Re〈S̃Bu ,a〉

)2
=

4

βN2
(N −M − 1)‖u‖2 ,

we find from the Central Limit Theorem and Lemma 7.10 that

νN1/2Γ5
d∼ N

(
0, 4ν2β−1m6‖u‖2‖w‖2

)
. (7.46)

Finally, we have ‖a‖2 − 1 = ‖a‖2 − E‖a‖2 +O(M/N) and

E
(
|ai|2 − E|ai|2

)2
= 2β−1N−2 .

Thus we conclude from the Central Limit Theorem and Lemma 7.10 that

νN1/2Γ6
d∼ N

(
0, 2ν2β−1m6‖w‖4

)
. (7.47)

Next, (7.43) – (7.47) imply that νN1/2Γ2, . . . , νN
1/2Γ6 are tight (as N -dependent random variables).

Moreover, an easy variance calculation shows that νN1/2Γ1 is also tight. Therefore we get from (7.35),
(7.42), (7.43) – (7.47), Lemma 7.7, and Lemma 7.8 that (recall the notation from Definition 7.11)

X
d∼ −νN1/2m2〈u , Au〉+N (0, V1) ,

where

V1 ..=
2(d+ 1)

βd6
+

2ν2

βd4
(
‖w‖4 + 2‖u‖2‖w‖2

)
+

4ν2

d5
Q(w,u)

+
ν2

d6
R(u) +

2ν2

βd6

(
‖u‖4 + 2‖u‖2‖w‖2 + ‖w‖4

)
.

Here we used (6.2).
Next, from

〈v , Hv〉 = 〈u , Au〉+ 2 Re〈w , Bu〉+ 〈w , H0w〉 ,
the Central Limit Theorem, Lemma 7.10, and Lemma 7.8 we find

νN1/2〈v , Hv〉 d∼ νN1/2〈u , Au〉+N
(

0,
2ν2

β
(1− ‖u‖4)

)
. (7.48)

Moreover, using that the dimension M of u satisfies M 6 ϕ2D and the fact that maxi|wi| 6 ϕ−D, we find

Q(w,u) = Q(v) +O(ϕ−D) , R(u) = R(v) +O(ϕ−2D) .

Therefore we get, using Lemma 7.8 and recalling that 1 = ‖v‖2 = ‖u‖2 + ‖w‖2,

X
d∼ −νN1/2d−2〈v , Hv〉+N

(
0 ,

2(d+ 1)

βd6
+

4ν2

d5
Q(v) +

ν2

d6
R(v) +

2ν2

βd6

)
.

This concludes the proof.
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7.4. Conclusion of the proof of Theorem 2.14. In this section we compute the distribution of Gvv(θ)−m(θ)
for a general Wigner matrix H, and hence complete the proof of Theorem 2.14. We use the Green function
comparison method from the proof of Lemma 3.9.

Let H = (hij) = (N−1/2Wij) be an arbitrary real symmetric / Hermitian Wigner matrix, V = (N−1/2Vij)
a GOE/GUE matrix independent of H, and v ∈ CN be normalized. For D > 0 define the subset

ID ..=
{
i = 1, . . . , N .. |vi| 6 ϕ−D

}
.

Define a new Wigner matrix Ĥ = (ĥij) = (N−1/2Ŵij) through

Ŵij
..=

{
Vij if i ∈ ID and j ∈ ID
Wij otherwise .

Thus, Ĥ satisfies the assumptions of Proposition 7.12. Let

JD ..=
{

1 6 i 6 j 6 N .. i ∈ ID and j ∈ ID
}

be the set of matrix indices to be replaced. Similarly to (3.21), we choose a bijective map φ .. JD →
{1, . . . , γmax(D)} and denote by Hγ = (hγij) the matrix defined by

hγij
..=

{
N−1/2Wij if φ(i, j) 6 γ

N−1/2Ŵij otherwise .

In particular, H0 = Ĥ and Hγmax(D) = H. Let now (a, b) ∈ JD satisfy φ(a, b) = γ. Similarly to (3.22), we
write

Hγ−1 = Q+N−1/2V where V ..= VabE
(ab) + 1(a 6= b)VbaE

(ba) ,

and
Hγ = Q+N−1/2W where W ..= WabE

(ab) + 1(a 6= b)WbaE
(ba) .

In order to avoid singular behaviour on exceptional low-probability events, we add a small imaginary
part to the spectral parameter θ, and set z ..= θ + iN−4. Abbreviate

x ..= νN1/2 Re(Gvv(z)−m(z)) . (7.49)

Thus we have the rough bound |x| 6 N4 which we shall tacitly use in the following. We use the notation
(3.23), which gives rise to the quantities xR, xS , xT defined through (7.49) with G replaced by R,S, T
respectively. We may now state the main comparison estimate.

Lemma 7.13. Provided D is a large enough constant, the following holds. Let f ∈ C3(R) be bounded with
bounded derivatives and q ≡ qN be an arbitrary deterministic real sequence. Then

Ef(xT + q) = Ef(xR + q) + YabEf ′(xR + q) +Aab +O
(
ϕ−1Êab

)
, (7.50)

Ef(xS + q) = Ef(xR + q) +Aab +O
(
ϕ−1Êab

)
, (7.51)

where Aab satisfies |Aab| 6 ϕ−1,

Yab ..= −νN−1 Re
(
m4M

(3)
ab vavb +m4M

(3)
ba vbva

)
,
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and

Êab ..=

2∑
σ,τ=0

N−2+σ/2+τ/2|va|σ|vb|τ + δab

2∑
σ=0

N−1+σ/2|va|σ .

Before proving Lemma 7.13, we show how it implies Theorem 2.14.

Proof of Theorem 2.14. Fix D > 0 large enough that the conclusion of Lemma 7.13 holds. By Remark
7.5, we may assume that f ∈ C∞c (R). Let γ = φ(a, b). Since |va| 6 ϕ−D and |vb| 6 ϕ−D, we find

Y 2
ab 6 ϕ−1Êab . (7.52)

Applying (7.50) and (7.51) with f replaced by f ′ yields

YabEf ′(xT + q) = YabEf ′(xR + q) + YabAab +O
(
ϕ−1Êab

)
.

Subtracting this from (7.50) and using |Aab| 6 ϕ−1 yields

Ef(xT + q) = Ef(xR + q) + YabEf ′(xT + q) +Aab +O
(
ϕ−1Êab + ϕ−1|Yab|

)
.

Subtracting (7.51) yields

Ef(xγ + q) = Ef(xγ−1 + q) + YabEf ′(xγ + q) +O
(
ϕ−1Êab + ϕ−1|Yab|

)
,

where we introduced the notation xγ ..= νN1/2 Re
(
(Hγ − z)−1vv −m(z)

)
. Using (7.52) we therefore get

Ef(xγ + q − Yab) = Ef(xγ−1 + q) +O
(
ϕ−1Êab + ϕ−1|Yab|

)
. (7.53)

We now iterate (7.53), starting at γ = 1 and q = 0. Using that
∑
a,b Êab 6 C and

∑
a,b|Yab| 6 C, we find

after γmax iterations of (7.53)

Ef

(
xγmax(D) −

γmax(D)∑
γ=1

Yϕ−1(γ)

)
= Ef(x0) +O(ϕ−1) .

Moreover, using |va| 6 ϕ−D and |vb| 6 ϕ−D, we find that

γmax(D)∑
γ=1

Yϕ−1(γ) = −νN−1 Re
∑

a,b∈ID

1(a 6 b)m(z)4
(
M

(3)
ab vavb +M

(3)
ba vbva

)

= −νN−1 Re

N∑
a,b=1

m(z)4M
(3)
ab vavb +O(ϕ−2D) .

Using Lemma 7.8 we find

νN1/2
(

(H − z)−1vv −m(z)
)

d∼ νN1/2
(

(Ĥ − z)−1vv −m(z)
)
− νN−1 Re

N∑
a,b=1

m(z)4M
(3)
ab vavb .
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Using Lemma 7.2, it is now easy to remove the imaginary part N−4 of z to get

νN1/2
(

(H − θ)−1vv + d−1
)

d∼ νN1/2
(

(Ĥ − θ)−1vv + d−1
)
− νS(v)

d4
.

Since Ĥ satisfies the assumptions of Proposition 7.12, we find

νN1/2
(

(H − θ)−1vv + d−1
)

d∼ −νN
1/2〈v , Hv〉
d2

− νS(v)

d4
+N

(
0 ,

2(d+ 1)

βd4
+

4ν2Q(v)

d5
+
ν2R(v)

d6

)
,

using the notation of Definition 7.11. Now Theorem 2.14 follows from Proposition 7.1 and Lemma 7.7.

Proof of Lemma 7.13. As before, we consistently drop the spectral parameter z = θ+ iN−4 from G and
m. We focus on (7.50). From Theorem 2.3, (3.29), and (3.28) (with S replaced by T ), we find

|Tva| 6 ϕCζN−1/2(d− 1)−1/2 +C|va| , |Rva| 6 ϕCζN−1/2(d− 1)−1/2 +C|va|+ϕCζN−1/2|vb| (7.54)

with ζ-high probability, and similar results hold for Tav, Tvb, Tbv, Rav, Rvb, and Rbv. Similarly, from the
first inequality of (3.30) (with S replaced by T ), we get∣∣Tvv −Rvv

∣∣ 6 ϕCζN−1/2
(
N−1(d− 1)−1 +N−1/2(d− 1)−1/2(|va|+ |vb|) + |va||vb|+N−1/2(|va|2 + |vb|2)

)
with ζ-high probability. This yields

|xT −xR| 6 ϕC̃ζ
[
N−1(d− 1)−1/2 +N−1/2(|va|+ |vb|) + (d− 1)1/2|va||vb|+N−1/2(d− 1)1/2(|va|2 + |vb|2)

]
(7.55)

with ζ-high probability for some constant C̃ζ . Now choose D > C̃ζ + 1. By definition of JD, we have that
|va| 6 ϕ−D and |vb| 6 ϕ−D. Therefore

|xT − xR|3 6 ϕ−1Êab

with ζ-high probability. This yields

Ef(xT + q) = Ef(xR + q) + E
(
f ′(xR + q)(xT − xR)

)
+

1

2
E
(
f ′′(xR + q)(xT − xR)2

)
+O

(
ϕ−1Êab

)
. (7.56)

In order to analyse xT − xR = νN1/2 Re(Tvv −Rvv), we write

xT − xR = y1 + y2 + y3 + y4 ,

where

yk ..=

{
νN1/2−k/2 Re

(
(−RW )kR

)
vv

if k = 1, 2, 3

νN−3/2 Re
(
(−RW )4T

)
vv

if k = 4 .

Using (7.54), it is easy to check that y1 is bounded by the right-hand side of (7.55), and that

|yk| 6 ϕCζN1/2−k/2
(
N−1(d− 1)−1/2 + (d− 1)1/2

(
|va|2 + |vb|2

))
(k = 2, 3, 4) (7.57)
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with ζ-high probability. In particular,

xT − xR = y1 + y2 + y3 +O
(
ϕ−1Êab

)
with ζ-high probability. Moreover, using, |va| 6 ϕ−D, |vb| 6 ϕ−D, (7.57) for k = 2, and the fact that y1 is
bounded by the right-hand side of (7.55), we find that

|y1||y2| 6 ϕ−1Êab

with ζ-high probability, provided D is chosen large enough. Similarly, using (7.57) we find that |yk||yk′ | 6
ϕ−1Êab for k, k′ > 2 for large enough D. Thus we conclude from (7.56) that

Ef(xT + q) = Ef(xR + q) + E
(
f ′(xR + q)y3

)
+Aab +O

(
ϕ−1Êab

)
,

where

Aab ..= E
(
f ′(xR + q)(y1 + y2)

)
+

1

2
E
(
f ′′(xR + q)y21

)
depends on the randomness only through R and the first two moments of Wab. Moreover, from (7.57) and
the fact that y1 is bounded by the right-hand side of (7.55), we conclude that |Aab| 6 ϕ−1.

What remains is the analysis of the term E
(
f ′(xR + q)y3

)
. We shall prove that∣∣∣E(f ′(xR + q)y3

)
− Yab Ef ′(xR + q)

∣∣∣ 6 Cϕ−1Êab . (7.58)

If a = b, it is easy to see from (7.57) and the definition of Yab that

|y3|+ |Yab| 6 ϕ−1Êab ,

from which (7.58) follows.
Let us therefore assume that a 6= b. We multiply out the matrix product in

(
(−RW )3R

)
vv

and regroup
the resulting eight terms according to the number, r, of off-diagonal matrix elements (Rab or Rba) of R.
(By convention, the endpoint matrix elements Rv· and R·v are not counted as off-diagonal.) This gives, in

self-explanatory notation, y3 =
∑2
r=0 y3,r. Using Theorem 2.3 and (7.54), we find

|y3,1|+ |y3,2| 6 ϕCζN−3/2
(
N−1/2(d− 1)−1/2 + |va|+ |vb|

)2
6 ϕ−1Êab

with ζ-high probability . Therefore it suffices to prove that∣∣∣E(f ′(xR + q)y3,0
)
− Yab Ef ′(xR + q)

∣∣∣ 6 Cϕ−1Êab (7.59)

for a 6= b. By definition,

y3,0 = −νN−1 Re
(
RvaWabRbbWbaRaaWabRbv +RvbWbaRaaWabRbbWbaRav

)
.

Using (7.54) and Theorem 2.3 we find∣∣∣y3,0 + νN−1 Re
(
m2|Wab|2

(
RvaWabRbv +RvbWbaRav

))∣∣∣ 6 ϕ−1Êab

72



with ζ-high probability. We only deal with the first term of y3,0; the second one is dealt with analogously.
Recalling the definition of Yab, we conclude that, in order to establish (7.59), it suffices to prove∣∣∣∣E(f ′(xR + q)νN−1 Re

(
m2M

(3)
ab RvaRbv −m4M

(3)
ab vavb

))∣∣∣∣ 6 Cϕ−1Êab (7.60)

with ζ-high probability; here we used that R is independent of Wab.
Setting u = (ui) with ui ..= 1(i /∈ {a, b})vi and recalling (3.9) and (3.10), we get

Rva = vaRaa + vbRba +Rua = vam+ va(Raa −m) + vbRba +mRua + (Raa −m)Rua , (7.61)

where we defined

Rua
..= −

(a)∑
i

R
(a)
ui hia , Rbu ..= −

(b)∑
i

hbiR
(b)
iu ;

see (4.20). The second and third terms are estimated using (7.54) and Theorem 2.3:

|Raa −m|+ |Rba| 6 ϕCζN−1/2(d− 1)−1/2 (7.62)

with ζ-high probability. Moreover, since R(a) = T (a), we find from Lemma (3.12), Theorem 2.3, and (3.8)
that

∣∣Rua

∣∣ 6 ϕCζ

(
1

N

(a)∑
i

∣∣T (a)
ui

∣∣2)1/2

6 ϕCζ

(
1

N

∑
i

(
|ui|2 +N−1(d− 1)−1

))1/2

6 ϕCζN−1/2(d− 1)−1/2 (7.63)

with ζ-high probability. A similar estimate holds for Rbu. Using (7.61), (7.62), (7.63), and (7.54) we get

νN−1
∣∣∣E(f ′(xR + q)

(
RvaRbv −m2vavb

))∣∣∣
6 νN−1

∣∣∣E[f ′(xR + q)
(
m2vbRua +m2vaRbu +m2RuaRbu

)]∣∣∣+ Cϕ−1Êab (7.64)

with ζ-high probability.
What remains is to estimate the right-hand side of (7.64). Defining

x
(a)
R

..= νN1/2 Re(R(a)
vv −m) ,

we find from (3.8) and (7.54) that∣∣xR − x(a)R ∣∣ 6 ϕCζ
(
N−1/2(d− 1)−1/2 +N1/2(d− 1)1/2|va|2 +N−1/2(d− 1)1/2|vb|2

)
with ζ-high probability. Using (7.63) and using that the derivative of f is bounded, we may estimate the
first term of (7.64) as

νN−1
∣∣∣E[f ′(xR + q)vbRua

]∣∣∣ 6 νN−1
∣∣∣E[f ′(x(a)R + q)vbRua

]∣∣∣+ Cϕ−1Êab = Cϕ−1Êab
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with ζ-high probability. In the second step we used that x
(a)
R is independent of the the a-th column of Q

and that EaRua = 0. The second term of (7.64) is similar. In order to estimate the third, we have to make
Rbu independent of the a-th column of Q. (See the definition (3.22).) We estimate, using (3.8), R(b) = T (b),
(3.12), and (7.54)∣∣∣∣∣Rbu +

(ab)∑
i

hbiR
(ab)
iu

∣∣∣∣∣ 6
∣∣hbaT (b)

au

∣∣+

∣∣∣∣∣
(ab)∑
i

hbi
T

(b)
ia T

(b)
au

T
(b)
aa

∣∣∣∣∣
6 ϕCζ

(
N−1(d− 1)−1/2 +N−1/2|va|

)
+ ϕCζN−1/2

(
(ab)∑
i

∣∣∣T (b)
ia T

(b)
au /T

(b)
aa

∣∣∣2)1/2

6 ϕCζ
(
N−1(d− 1)−1 +N−1/2(d− 1)−1/2|va|

)
with ζ-high probability. Thus we may estimate the third term of (7.64) by

νN−1
∣∣∣E[f ′(xR + q)RuaRbu

]∣∣∣ 6 νN−1

∣∣∣∣∣E
[
f ′(x

(a)
R + q)Rua

(ab)∑
i

hbiR
(ab)
iu

]∣∣∣∣∣+ Cϕ−1Êab = Cϕ−1Êab ,

where in the second step we again used that EaRua = 0. This concludes the proof of (7.60), and hence of
(7.50).

The proof of (7.51) is almost identical to the proof of (7.50), except that E|Vab|2Vab = 0, so that the
left-hand side of the analogue of (7.60) vanishes. Note that, by definition, Aab depends only on R and on
the first two moments of Wab, which coincide with those of Vab. Hence Aab is the same in (7.50) and (7.51).
This concludes the proof.
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[3] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices, Ann. Prob. 33 (2005), 1643–1697.

[4] J. Baik and J.W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population
models, J. Multivar. Anal. 97 (2006), 1382–1408.
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[20] L. Erdős, B. Schlein, and H.T. Yau, Local semicircle law and complete delocalization for Wigner random
matrices, Comm. Math. Phys. 287 (2009), 641–655.

[21] , Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices,
Ann. Prob. 37 (2009), 815–852.

[22] , Wegner estimate and level repulsion for Wigner random matrices, Int. Math. Res. Not. 2010
(2010), 436–479.

[23] , Universality of random matrices and local relaxation flow, Invent. Math. 185 (2011), no. 1,
75–119.
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