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Abstract In this paper we investigate the one-dimensional hyperbolic mean curvature

flow for closed plane curves. More precisely, we consider a family of closed curves F :

S1
× [0, T )→ R

2 which satisfies the following evolution equation

∂2F

∂t2
(u, t) = k(u, t) �N(u, t)− �ρ(u, t), ∀ (u, t) ∈ S1

× [0, T )

with the initial data

F (u, 0) = F0(u) and
∂F

∂t
(u, 0) = f(u) �N0,

where k is the mean curvature and �N is the unit inner normal vector of the plane curve

F (u, t), f(u) and �N0 are the initial velocity and the unit inner normal vector of the initial

convex closed curve F0, respectively, and �ρ is given by

�ρ �

�
∂2F

∂s∂t
,
∂F

∂t

�
�T ,

in which �T stands for the unit tangent vector. The above problem is an initial value problem

for a system of partial differential equations for F , it can be completely reduced to an initial

value problem for a single partial differential equation for its support function. The latter

equation is a hyperbolic Monge-Ampère equation. Based on this, we show that there exists

a class of initial velocities such that the solution of the above initial value problem exists

only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution converges
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to a point or shocks and other propagating discontinuities are generated. Furthermore, we

also consider the hyperbolic mean curvature flow with the dissipative terms and obtain

the similar equations about the support functions and the curvature of the curve. In the

end, we discuss the close relationship between the hyperbolic mean curvature flow and the

equations for the evolving relativistic string in the Minkowski space-time R
1,1.

Key words hyperbolic mean curvature flow; hyperbolic Monge-Ampère equation; closed

plane curve; short-time existence
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1 Introduction

In this paper we study the closed convex evolving plane curves. More precisely, we consider

the following initial value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2F

∂t2
(u, t) = k(u, t) �N(u, t)− �ρ(u, t), ∀ (u, t) ∈ S1 × [0, T ),

F (u, 0) = F0(u),
∂F

∂t
(u, 0) = f(u) �N0,

(1.1)

where k is the mean curvature, �N is the unit inner normal at F (u, t), F0 stands for a smooth

strictly convex closed curve, f(u)(≥ 0) and �N0 are the initial velocity and inner normal vector

of F0, respectively, and with �T denoting the unit tangent vector and s the arclength parameter,

�ρ is defined by

�ρ �

(
∂2F

∂s∂t
,
∂F

∂t

)
�T . (1.2)

This system is an initial value problem for a system of partial differential equations for

F , which can be completely reduced to an initial value problem for a single partial differential

equation for its support function. The latter equation is a hyperbolic Monge-Ampère equation.

Our first result is the following local existence theorem for the initial value problem (1.1).

Theorem 1.1 (Local existences and uniqueness) Suppose that F0 is a smooth strictly

convex closed curve. Then there exist a positive T and a family of strictly convex closed curves

F (·, t) with t ∈ [0, T ) such that F (·, t) satisfies (1.1), provided that f(u) is a smooth function
on S1.

Our second main result is the following theorem.

Theorem 1.2 Suppose that F0 is a smooth strictly convex closed curve. Then there

exists a class of the initial velocities such that the solution of (1.1) with F0 and f as initial

curve and initial velocity of the initial curve, respectively, exists only at a finite time interval

[0, Tmax). Moreover, as t→ Tmax, one of the following must be true:

(i) the solution F (·, t) converges to a point, i.e., the curvature of the limit curve becomes
unbounded as t→ Tmax;

(ii) the curvature k of the curve is discontinuous as t→ Tmax, so that the solution converges

to a piecewise smooth curve.

Remark 1.1 The condition (ii) indicates that shocks and other propagating discontinu-

ities maybe generated within the hyperbolic mean curvature flow, however, it is not clear such

phenomeana are possible within the parabolic mean curvature flow.
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After rescaling as Gage and Hamilton did, we can see that the limiting solution will be a

circle, if Theorem 1.2 (i) holds. We will also introduce hyperbolic mean curvature flow with

dissipative terms. A close relation between our hyperbolic mean curvature flow and the string

evolving in the Minkowski space-time will be derived in the last section of the paper.

For reader’s convenience, we briefly discuss some history of parabolic and hyperbolic mean

curvature flows.

The parabolic theory for the evolving of plane curves, which in its simplest form is based

on the curve shortening equation

v = k (1.3)

relating the normal velocity v and the curvature k, has been extremely successful in providing

geometers with great insight. For example, Gage and Halmilton [7] proved that, when the

curve is strictly convex, the deformation decreases the isoperimetric ratio, and furthermore if it

shrinks to a point p, the normalized curves, obtained by “blowing up” the curves at p so that

its enclosed areas is π, must tend to the unit circle in a certain sense. Grayson [8] generalized

this result and showed that a smooth embedded plane curve first becomes convex and then

shrinks to a point in a finite time. These results can be applied to many physical problems such

as crystal growth, computer vision and image processing. One of the important applications of

mean curvature flow is that Huisken and Ilmanen developed a theory of weak solutions of the

inverse mean curvature flow and used it to prove successfully the Riemannian Penrose inequality

which plays an important role in general relativity (see [14]).

However, to our knowledge, there is very few hyperbolic versions of mean curvature flow.

Melting crystals of helium exhibits a phenomenon generally not found in other materials: os-

cillations of the solid-liquid interface in which atoms of the solid move only when they melt

and enter the liquid (see [8] and references therein). Gurtin and Podio-Guidugli [8] developed

a hyperbolic theory for the evolution of plane curves. Rostein, Brandon and Novick-Cohen [24]

studied a hyperbolic theory by the mean curvature flow equation

vt + ψv = k, (1.4)

where vt is the normal acceleration of the interface, ψ is a constant. A crystalline algorithm

was developed for the motion of closed polygonal curves.

The hyperbolic version of mean curvature flow is important in both mathematics and appli-

cations, and has attracted many mathematicians to study it. He, Kong, and Liu [11] introduced

hyperbolic mean curvature flow from geometric point of view. LetM be a Riemannian manifold

and X(·, t) :M→ R
n+1 be a smooth map. When X is an isometric immersion, the Laplacian

of X is given by �X = H �N , where H is the mean curvature (i.e., the trace of the second

fundamental form) and �N is the unit inner normal vector. The hyperbolic mean curvature flow

is the following partial differential equation of second order

∂2

∂t2
X(u, t) = �X or

∂2

∂t2
X(u, t) = H(u, t) �N(u, t), ∀ u ∈ M, ∀ t > 0. (1.5)

X = X(u, t) is called a solution of the hyperbolic mean curvature flow if it satisfies the equation

(1.5). The corresponding system of partial differential equations are not strictly hyperbolic,

however, by a trick of DeTurck [6], He, Kong, and Liu in [11] obtained strictly hyperbolic
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system of partial differential equations, and based on this, they also showed that this flow

admits a unique short-time smooth solution and possesses the nonlinear stability defined on the

Euclidean space with dimension larger than 4. Moreover, the nonlinear wave equations satisfied

by curvatures are also derived in [11], these equations will play an important role in future study.

The hyperbolic mean curvature flow was considered as one of the general hyperbolic geometric

flows introduced by Kong and Liu, see [21] for more discussions for related hyperbolic flows and

their applications to geometry and Einstein equations.

Recently, Lefloch and Smoczyk [19] studied the following geometric evolution equation of

hyperbolic type which governs the evolution of a hypersurface moving in the direction of its

mean curvature vector ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2

∂t2
X = eH(u, t) �N −�e,

X(u, 0) = X0,(∂X
∂t

)�T0

t=0
= 0,

(1.6)

where �T0 stands for the unit tangential vector of the initial hypersurface X0, e � 1
2

( ∣∣ d
dt
X

∣∣2 +
n
)
is the local energy density and �e � �iei, in which ei =

∂e
∂xi . This flow stems from a

geometrically natural action containing kinetic and internal energy terms. They have shown

that the normal hyperbolic mean curvature flow will blow up in finite time. In the case of

graphs, they introduce a concept of weak solution suitably restricted by an entropy inequality

and proved that the classical solution is unique in the larger class of entropy solutions. In

the special case of one-dimensional graphs, a global-in-time existence result is established.

Moreover, an existence theorem has been established under the assumption that the BV norm

of initial data is small.

The paper is organized as follows. In Section 2, a hyperbolic Monge-Ampère equation will

be derived and a theorem on local existence and uniqueness of the solution, i.e., Theorem 1.1

will be proved. In Section 3, an example is given and then some properties of the evolving

curve have been established. The main result — Theorem 1.2 will be proved in Section 4. In

Section 5, we consider the normal hyperbolic mean curvature flow with the dissipative term

and get the hyperbolic equation of S and k, respectively. Section 6 is devoted to illustrating

the relations between the hyperbolic mean curvature flow and the evolution equations for the

relativistic string in the Minkowski space R
1,1.

2 Hyperbolic Monge-Ampère Equation

Roughly speaking, an evolving curve is a smooth family of curves u 	→ F (u, t), where

u ∈ S1 and t ∈ [0, T ), in which T is called the duration of F . For a given curve F (·, t), the
underlying physics must be independent of the choice of the parameter u, and hence can involve

F only through intrinsic quantities such as curvature, normal acceleration and normal velocity,

which are independent of parametrization. On the other hand, this invariance allows us to use

any convenient parametrization. The following notion is needed in our study.

Definition 2.1 A curve F : S1 × [0, T )→ R
2 evolves normally if(

∂F

∂t
,
∂F

∂u

)
= 0, (2.1)
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for all (u, t) ∈ S1 × [0, T ).

Definition 2.1 can be found in [3] and [19]. In this paper, we shall restrict our attention

to the parametrization (2.1). Such a parametrization significantly simplifies the analysis. The

normally evolving curve was first investigated by Angenent and Gurtin [3] and then further

studied by Lefloch and Smoczyk [19]. The following result is important, it shows that within a

large class of time-dependent curves there is no essential loss of generality in limiting attention

to curves that evolves normally.

Lemma A If the evolving curve C is closed, then there is a parameter change φ for C
such that C ◦ φ is a normally evolving curve.

This important lemma was proved in [3]. In fact, for the initial value problem (1.1), the

initial velocity field is normal to the curve, it can be proved that this property is preserved

during the evolution, that is to say, the flow (1.1) is automatically a normal flow∗⎧⎨⎩
∂F

∂t
= σ(u, t) �N,

F (u, 0) = F0(u),
(2.2)

where σ(u, t) = f(u) +
∫ t

0 k(u, ξ)dξ, hence we have

∂σ

∂t
= k(u, t), σ

∂σ

∂s
=

(
∂2F

∂s∂t
,
∂F

∂t

)
. (2.3)

Here we denote by s = s(·, t) the arclength parameter of the curve F (·, t) : S1 → R
2. The

operator ∂/∂s is given in terms of u by

∂

∂s
=
1

υ

∂

∂u
,

where

υ =
√
(∂x/∂u)2 + (∂y/∂u)2 = |∂F/∂u|.

By Frenet formula,

∂ �T

∂s
= k �N,

∂ �N

∂s
= −k�T .

Then {�T , �N} is an orthogonal basis of R
2. Let us denote θ to be the unit outer normal angle

for a convex closed curve F : S1 → R
2. Hence,

�N = (− cos θ,− sin θ), �T = (− sin θ, cos θ),

and by Frenet formula, we have
∂θ

∂s
= k.

Furthermore,
∂N

∂t
= −∂θ

∂t
�T ,

∂T

∂t
=
∂θ

∂t
�N.

∗Although the partial differential equation in (2.2) only contains the first order derivative of F with respect

to t, i.e., Ft, it is non-local partial differential equation, and it is not easier to handle than the second order

partial differential equation in (1.1).
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Using the previous definition, we have

∂2

∂t∂s
= kσ

∂

∂s
+

∂2

∂s∂t
,

and observing

�T (u, t) =
∂F

∂s
(u, t),

we deduce
∂ �T

∂t
=

∂

∂t

(
∂F

∂s

)
=
∂σ

∂s
�N,

and
∂ �N

∂t
= −∂σ

∂s
�T ,

hence,
∂θ

∂t
=
∂σ

∂s
.

Suppose that F (u, t) : S1 × [0, T )→ R
2 is a family of convex curves satisfying the curve

shortening flow (1.1). Let us use the normal angle to parameterize each convex curve F (·, t),
i.e., set

F̃ (θ, τ) = F (u(θ, τ), t(θ, τ)),

where t(θ, τ) = τ . Here, �N and �T are independent of the parameter τ , which can be proved as

follows:

0 =
∂θ

∂τ
=
∂θ

∂u

∂u

∂τ
+
∂θ

∂t
,

then
∂θ

∂t
= − ∂θ

∂u

∂u

∂τ
= −∂θ

∂s

∂s

∂u

∂u

∂τ
= −kυ∂u

∂τ
.

Hence,

∂ �T

∂τ
=
∂ �T

∂t
+
∂ �T

∂u

∂u

∂τ
=
∂θ

∂t
�N +

∂ �T

∂s

∂s

∂u

∂u

∂τ
=

(
∂θ

∂t
+ kυ

∂u

∂τ

)
�N = 0,

and
∂ �N

∂τ
=
∂ �N

∂t
+
∂ �N

∂u

∂u

∂τ
= −∂θ

∂t
�T +

∂ �N

∂s

∂s

∂u

∂u

∂τ
= −

(
∂θ

∂t
+ kυ

∂u

∂τ

)
�T = 0.

By the chain rule,

∂F̃

∂τ
=
∂F

∂u

∂u

∂τ
+
∂F

∂t
,

and
∂2F̃

∂τ2
=
∂F

∂u

∂2u

∂τ2
+
∂2F

∂u2

(
∂u

∂τ

)2

+ 2
∂2F

∂u∂t

∂u

∂τ
+
∂2F

∂t2
.

The support function of F is given by

S(θ, τ) = (F̃ (θ, τ),− �N ) = (F̃ (θ, τ), (cos θ, sin θ)) = x(θ, τ) cos θ + y(θ, τ) sin θ.

Its derivative satisfies

Sθ(θ, τ) = −x(θ, τ) sin θ + y(θ, τ) cos θ + (F̃θ(θ, τ), (cos θ, sin θ))

= −x(θ, τ) sin θ + y(θ, τ) cos θ = (F̃ (θ, τ), �T ),
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where

(F̃θ(θ, τ), (cos θ, sin θ)) = 0,

namely, the tangent vector is orthogonal to the unit normal vector. And then the curve can be

represented by the support function⎧⎨⎩x = S cos θ − Sθ sin θ,

y = S sin θ + Sθ cos θ.
(2.4)

Thus all geometric quantities of the curve can be represented by the support function. In

particular, the curvature can be written as

k =
1

Sθθ + S
.

In fact, by the definition of the support function,

Sθθ + S = −xθ sin θ + yθ cos θ − x cos θ − y sin θ + x cos θ + y sin θ

=
(∂F̃
∂θ

, �T
)
=

(∂F̃
∂s

∂s

∂θ
, �T

)
=
1

k
.

We know that the support function

S(θ, τ) =
(
F̃ (θ, τ),− �N)

satisfies

Sτ =
(∂F̃
∂τ

,− �N
)
+

(
F̃ (θ, τ),

∂ �N

∂τ

)
=

(∂F
∂u

∂u

∂τ
+
∂F

∂t
,− �N

)
=

(∂F
∂t
,− �N

)
= −σ̃(θ, τ),

where (
F̃ (θ, τ),

∂ �N

∂τ

)
= 0

is obtained by ∂ �N
∂τ

= 0. Moreover,

Sττ =

(
∂2F̃

∂τ2
,− �N

)
+

(
∂F̃

∂τ
,−∂

�N

∂τ

)

=

(
∂F

∂u

∂2u

∂τ2
+
∂2F

∂u2

(
∂u

∂τ

)2

+ 2
∂2F

∂u∂t

∂u

∂τ
+
∂2F

∂t2
,− �N

)

=

(
∂2F

∂u2

(
∂u

∂τ

)2

+ 2
∂2F

∂u∂t

∂u

∂τ
+
∂2F

∂t2
,− �N

)

=

(
∂2F

∂u2

(
∂u

∂τ

)2

+
∂2F

∂u∂t

∂u

∂τ
,− �N

)
+

(
∂2F

∂u∂t

∂u

∂τ
+
∂2F

∂t2
,− �N

)
=

((
∂F

∂u

)
τ

,− �N
)
∂u

∂τ
+

(
∂2F

∂u∂t

∂u

∂τ
+
∂2F

∂t2
,− �N

)
=

(
∂2F

∂u∂t

∂u

∂τ
,− �N

)
− k.
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In terms of the normal evolving curve, we have(
∂F

∂t
, �T

)
≡ 0 for all t ∈ [0, T ).

By the formula

Sτ =

(
∂F

∂t
,− �N

)
,

we get

Sθτ =

(
∂2F

∂u∂t

∂u

∂θ
,− �N

)
+

(
∂F

∂t
,−∂

�N

∂θ

)
=

(
∂2F

∂u∂t

∂u

∂θ
,− �N

)
+

(
∂F

∂t
, �T

)
=

(
∂2F

∂u∂t

∂u

∂θ
,− �N

)
=

1

∂θ/∂u

(
∂2F

∂u∂t
,− �N

)
=

1

(∂θ/∂s)(∂s/∂u)

(
∂2F

∂u∂t
,− �N

)
=

1

kυ

(
∂2F

∂u∂t
,− �N

)
.

Noting that

Sθ = (F̃ , �T ),

we have

Sτθ =

(
∂F̃

∂τ
, �T

)
+

(
F̃ ,

∂ �T

∂τ

)
=

(
∂F̃

∂τ
, �T

)

=

(
∂F

∂u

∂u

∂τ
+
∂F

∂t
, �T

)
=

(
∂F

∂u

∂u

∂τ
, �T

)
= υ

∂u

∂τ
.

Hence, the support function S satisfies

Sττ =

(
∂2F

∂u∂t

∂u

∂τ
,− �N

)
− k = kυ

∂u

∂τ
Sθτ − k = kS2

θτ − k = (S2
θτ − 1)k, (2.5)

namely,

Sττ =
S2

θτ − 1

Sθθ + S
, ∀ (θ, τ) ∈ S1 × [0, T ). (2.6)

Then, it follows from (1.1) that⎧⎪⎪⎨⎪⎪⎩
SSττ + SττSθθ − S2

θτ + 1 = 0,

S(θ, 0) = h(θ),

Sτ (θ, 0) = −f̃(θ),
(2.7)

where h is the support function of F0, and f̃ is the initial velocity of the initial curve F0.

For an unknown function z = z(θ, τ) defined for (θ, τ) ∈ R
2, the corresponding Monge-

Ampère equation reads

A+Bzττ + Czτθ +Dzθθ + E(zττzθθ − z2
θτ) = 0, (2.8)

the coefficients A, B, C, D and E depends on τ, θ, S, Sτ , Sθ. We say that the equation (2.8)

is τ -hyperbolic for S, if �2(τ, θ, z, zτ , zθ) � C2−4BD+4AE > 0 and zθθ+B(τ, θ, z, zτ , zθ) �= 0.
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We state the initial values z(0, θ) = z0(θ), zτ (0, θ) = z1(θ) for the unknown function on the

θ ∈ [0, 2π]. Moreover, we require the following τ -hyperbolicity condition:

�2(0, θ, z0, z1, z
′

0) = (C2 − 4BD + 4AE)|t=0 > 0,

z′′0 +B(0, θ, z0, z1, z
′

0) �= 0,

in which z′0 =
dz0

dθ
and z′′0 =

d2z0

dθ2 .

It is easy to see that the equation (2.7) is a hyperbolic Monge-Amère equation, in which

A = 1, B = S, C = D = 0, E = 1.

In fact,

�2(τ, θ, S, Sτ , Sθ) = C2 − 4BD + 4AE = 02 − 4S × 0 + 4× 1× 1 = 4 > 0,

and

Sθθ +B(τ, θ, S, Sτ , Sθ) = Sθθ + S =
1

k
�= 0.

Furthermore, if we assume that h(θ) is third and f̃(θ) is twice continuous by differentiable on

the real axis, then the initial conditions satisfies

�2(0, θ, h,−f̃ , hθ) = 4 > 0,

and

hθθ +B(0, θ, h,−f̃ , hθ) = hθθ + h =
1

k0
�= 0.

This implies that the equation (2.7) is a hyperbolic Monge-Ampère equation on S. By the

standard theory of hyperbolic equations (e.g., [10, 12, 17, 20, 27]), we have

Theorem 2.1 (Local existences and uniqueness) Suppose that F0 is a smooth strictly

convex closed curve. Then there exist a positive T and a family of strictly convex closed curves

F (·, t) (in which t ∈ [0, T )) such that F (·, t) satisfies (1.1) (or 2.7), provided that f(u) is a

smooth function on S1.

Theorem 2.1 is nothing but Theorem 1.1, which is one of main results in this paper.

3 An Example and Some Propositions

In this section, we will give an example to understand further the normal hyperbolic mean

curvature flow. For simplicity we replace τ by t.

Example 3.1 Consider F (·, t) to be a family of round circles with the radius R(t) cen-
tered at the origin. The support function and the curvature are given by S(θ, t) = R(t) and

k(θ, t) = 1/R(t), respectively. Substituting these into (1.1) gives⎧⎨⎩Rtt = − 1

R
,

R(0) = r0 > 0, Rt(0) = r1.
(3.1)

For this initial value problem, we have the following lemma which is given in [11].
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Lemma 3.1 For arbitrary initial data r0 > 0, if the initial velocity r1 � 0, the solution

R = R(t) decreases and shrinks to a point at time T ∗ (whenever r1 = 0, we have T ∗ =
√

π
2 r0);

if the initial velocity is positive, the solution R increases first and then decreases and shrinks

to a point in a finite time.

Remark 3.1 In fact, this phenomena can also be interpreted by physical principles.

From (2.7), we can see that the direction of acceleration is always the same as the inner normal

vector. Thus, if Rt(0) � 0, i.e., the initial velocity is in accordance with the unit inner normal

vector, then evolving circle will shrink to a point at a finite time; if Rt(0) > 0, i.e., the initial

velocity is in accordance with the outer unit normal vector, then the evolving circle will expand

first and then shrink to a point at a finite time. In the equation (2.7), St(θ, 0) = −f̃ ≤ 0, i.e.,

we assume the initial velocity always accords with the initial unit inner normal, hence only the

first phenomena will happen.

In what follows, we shall establish some properties enjoyed by the hyperbolic mean curva-

ture flow.

Consider the following general second-order operator

L[w] � awθθ + 2bwθt + cwtt + dwθ + ewt, (3.2)

where a, b, and c are twice continuously differentiable and d and e are continuously differen-

tiable functions of θ and t. The operator L is said to be hyperbolic at a point (θ, t), if

b2 − ac > 0.

It is hyperbolic in a domain D if it is hyperbolic at each point of D, and uniformly hyperbolic

in D if there is a constant μ such that b2 − ac ≥ μ > 0 in D.

We suppose that w and the conormal derivative

∂w

∂ν
� −b∂w

∂θ
− c∂w

∂t

are given at t = 0.

We associate with L the adjoint operator

L∗[ω] � (aω)θθ + 2(bω)θt + (cω)tt − (dω)θ − (eω)t

= aωθθ + 2bωθt + cωtt + (2aθ + 2bt − d)ωθ + (2bθ + 2ct − 3)ωt

+(aθθ + 2bθt + ctt − dθ − et)ω.

Now we shall show that for any hyperbolic operator L there is a function l which satisfies

the following condition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
√
b2 − ac

[
lt − 1

c
(
√
b2 − ac− b)lθ

]
+ lK+ ≥ 0,

2
√
b2 − ac

[
lt +

1

c
(
√
b2 − ac− b)lθ

]
+ lK− ≥ 0,

(L∗ + g)[ω] ≥ 0,

in a sufficiently small strip 0 ≤ t ≤ t0, where

K+ � K+(θ, t) � (
√
b2 − ac)θ + b

c
(
√
b2 − ac)θ + 1

c
(bθ + ct − e))

√
b2 − ac

+

[
− 1

2c
(b2 − ac)θ + aθ + bt − d− b

c
(bθ + ct − e)

]
,
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and

K− � K−(θ, t) � (
√
b2 − ac)θ + b

c
(
√
b2 − ac)θ + 1

c
(bθ + ct − e))

√
b2 − ac

−
[
− 1

2c
(b2 − ac)θ + aθ + bt − d− b

c
(bθ + ct − e)

]
.

We let

l(θ, t) � 1 + αt− βt2. (3.3)

A computation shows that the above condition are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
√
b2 − ac(α− 2βt) + (1 + αt− βt2)K+ ≥ 0,

2
√
b2 − ac(α− 2βt) + (1 + αt− βt2)K− ≥ 0,

−2cβ + (2bθ + 2ct − e)(α − 2βt)

+(aθθ + 2bθt + ctt − dθ − et + g)(1 + αt− βt2) ≥ 0.

(3.4)

Since all the coefficients and their derivatives which appear in the above expressions are sup-

posed bounded and since −c and √b2 − ac have positive lower bounds, the first two expressions
above are positive at t = 0 if α is chosen sufficiently large. The third expression are positive at

t = 0 if β is chosen sufficiently large. With these values of α and β there is a number t0 > 0

such l(θ, t) > 0 and all the inequalities hold for 0 ≤ t ≤ t0.

With l given by (3.3), the condition on the conormal derivative becomes

∂ω

∂ν
+ (bθ + ct − e+ cα)ω ≤ 0 at t = 0.

If we select a constant M so large that

M ≥ −[bθ + ct − e+ cα] on Γ0. (3.5)

Then we obtain the following maximum principle for a strip adjacent to the θ-axis (see [23]).

Lemma 3.2 Suppose that the coefficients of the operator L given by (3.2) are bounded

and have bounded first and second derivatives. Let D be an admissible domain. If t0 and M

are selected in accordance with (3.4) and (3.5), then any function w which satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
(L+ g)[w] ≥ 0 in D,
∂w

∂ν
−Mw ≤ 0 on Γ0,

w ≤ 0 on Γ0,

also satisfies w ≤ 0 in the part of D which lies in the strip 0 ≤ t ≤ t0. The constants t0 and M

depend only on lower bounds for −c and √b2 − ac and on bounds for the coefficients of L and

their derivatives.

Proposition 3.1 (Containment principle) Let F1 and F2 : S
1×[0, T )→ R

2 be two convex

solutions of (1.1) (or (2.7)). Suppose that F2(·, 0) lies in the domain enclosed by F1(·, 0), and
f2(u) ≥ f1(u). Then F2(·, t) is contained in the domain enclosed by F1(·, t) for all t ∈ [0, T ).

Proof Let S1(θ, t) and S2(θ, t) be the support functions of F1(·, t) and F2(·, t), re-
spectively. Then S1 and S2 satisfies the same equation (2.7) with S2(θ, 0) ≤ S1(θ, 0) and

S2t(θ, 0) ≤ S1t(θ, 0) for θ ∈ S1.
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Let w(θ, t) � S2(θ, t)− S1(θ, t), then w satisfies the following equation⎧⎪⎪⎨⎪⎪⎩
wtt = [1− S1θtS2θt] k1k2wθθ + (k1S1θt + k2S2θt)wθt + [1− S1(θ, t)S2(θ, t)] k1k2w,

wt(θ, 0) = f1(θ)− f2(θ) = w1(θ),

w(θ, 0) = h2(θ)− h1(θ) = w0(θ).

(3.6)

Define the operator L by

L[w] � [1− S1θtS2θt]k1k2wθθ + (k1S1θt + k2S2θt)wθt − wtt. (3.7)

In view of (3.7), we know that

a = [1− S1θtS2θt] k1k2, b =
1

2
(k1S1θt + k2S2θt) and c = −1

are twice continuously differentiable and d = e = 0 are continuously differentiable functions of

θ and t. By a direct computation, we get

b2 − ac = 1

4
(k1S1θt + k2S2θt)

2 − [1− S1θtS2θt] k1k2 · (−1)

=
1

4
(k1S1θt − k2S2θt)

2 + k1k2 ≥ min
θ∈[0,2π]

{k10(θ)k20(θ)} > 0.

Hence the operator L is defined by (3.7) is hyperbolic in S1×[0, T ) and it is uniformly hyperbolic
in S1 × [0, T ), since there is a constant μ = min

θ∈[0,2π]
{k10(θ)k20(θ)} such that b2 − ac ≥ μ =

min
θ∈[0,2π]

{k10(θ)k20(θ)} > 0 in S1 × [0, T ).

By Lemma 3.2, we deduce that S2(θ, t) ≤ S1(θ, t) for all t ∈ [0, T ). Thus, the proof is

completed.

Proposition (Preserving convexity) Let k0 be the mean curvature of F0 and let δ =

min
θ∈[0,2π]

{k0(θ)} > 0. Then for a C4-solution S of (2.7), one has

k(θ, t) ≥ δ,

for t ∈ [0, Tmax), where [0, Tmax) is the maximal time interval for the solution F (·, t) of (1.1).
Proof Since the initial curve is strictly convex, by Theorem 2.1, we know that the solution

of (2.7) remains strictly convex on some short time interval [0, T ) with some T ≤ Tmax and its

support function satisfies

Stt = (S2
θt − 1)k =

S2
θt − 1

Sθθ + S
, ∀ (θ, t) ∈ S1 × [0, T ).

By taking derivative in time t, we have

kt =
( 1

Sθθ + S

)
t
= − 1

(Sθθ + S)2
[Sθθt + St] = −k2[Sθθt + St] = k2[σ̃θθ + σ̃],

hence

Sθθt + St = −(Sθθ + S)2kt = − 1

k2
kt,

Sθθθt + Sθt =
(
− 1

k2
kt

)
θ
=

2

k3
ktkθ − 1

k2
kθt,



No.3 Kong et al: HYPERBOLIC MEAN CURVATURE FLOW 505

and

ktt =
2

(Sθθ + S)3
[Sθθt + St]

2 − 1

(Sθθ + S)2
[Sθθtt + Stt]

= 2k3
(
− 1

k2
kt

)2

− k2
{
[(S2

θt − 1)k]θθ + (S2
θt − 1)k

}
=
2

k
k2

t − k2
{
(S2

θt − 1)θθk + 2(S2
θt − 1)θkθ + (S2

θt − 1)kθθ + (S2
θt − 1)k

}
=
2

k
k2

t − k2(S2
θt − 1)(kθθ + k)− k2 {2(SθtSθθt)θk + 4SθtSθθtkθ}

=
2

k
k2

t − k2(S2
θt − 1)(kθθ + k)− k2

{
2(S2

θθt + SθtSθθθt)k + 4Sθt(Sθθ + S − S)tkθ

}
=
2

k
k2

t − k2(S2
θt − 1)(kθθ + k)− k2

{
2[(Sθθt + St)

2 − 2SθθtSt − S2
t + Sθt(Sθθ + S)θt

−S2
θt]k − 4Sθt

1

k2
ktkθ − 4SθtStkθ

}
=
2

k
k2

t − k2(S2
θt − 1)(kθθ + k)− k2

{
2
[
(Sθθt + St)

2 − 2(Sθθt + St)St + S2
t

−S2
θt + Sθt

(1
k

)
θt

]
k − 4Sθt

1

k2
ktkθ − 4SθtStkθ

}
=
2

k
k2

t − k2(S2
θt − 1)(kθθ + k)− k2

{
2
[(
− 1

k2
kt

)2

− 2
(
− 1

k2
kt

)
St + S2

t − S2
θt

+Sθt

( 2

k3
ktkθ − 1

k2
kθt

)]
k − 4Sθt

1

k2
ktkθ − 4SθtStkθ

}
=
2

k
k2

t − k2(S2
θt − 1)(kθθ + k)− k2

{ 2

k3
k2

t +
4

k
Stkt + 2S2

t − 2S2
θtk

+
4

k2
Sθtktkθ − 2

k
Sθtkθt − 4Sθt

1

k2
ktkθ − 4SθtStkθ

}
= k2(1− S2

θt)kθθ + 2kSθtkθt + 4k2SθtStkθ − 4kStkt + (S2
θt + 1− 2S2

t )k
3.

Thus, the curvature k satisfies the following equation

ktt = k2(1− S2
θt)kθθ + 2kSθtkθt + 4k2SθtStkθ − 4kStkt + (S2

θt + 1− 2S2
t )k

3. (3.8)

Define the operator L as follows

L[k] � k2(1− S2
θt)kθθ + 2kSθtkθt − ktt + 4k2SθtStkθ − 4kStkt. (3.9)

In terms of (3.6),

a = k2(1− S2
θt), b = kSθt and c = −1

are twice continuously differentiable and

d = 4k2SθtSt and e = −4kSt

are continuously differentiable functions of θ and t. By the direct computation,

b2 − ac = (kSθt)
2 − k2(1− S2

θt) · (−1) = k2 > 0,

hence the operator L is defined by (3.9) is hyperbolic in the domain S1 × [0, T ).
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We consider the problem of determining a function k(θ, t) which satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(L+ h̃)[k] � k2(1− S2
θt)kθθ + 2kSθtkθt + 4k2SθtStkθ

−4kStkt + k2(S2
θt + 1− 2S2

t )k = 0 in S1 × [0, T̃ ),

k(θ, 0) = k0(θ) on Γ0,

0 ≤ ∂k

∂ν
� −bkθ − ckt � β(θ) on Γ0.

(3.10)

We can find that a function k̃(θ, t) = min
θ∈[0,2π]

{k0(θ)} = δ which satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(L+ h̃)[k̃] = 0 in S1 × [0, T̃ ),

k̃(θ, 0) ≤ k0(θ) on Γ0,

∂k̃

∂ν
−Mk̃ ≤ β(θ) −Mk0(θ) on Γ0,

(3.11)

where Γ0 is the initial domain, and M is the constant given by (3.5). If k and if k̃ satisfies

(3.11), we may apply Lemma 3.2 to k̃ − k and conclude that

k̃ ≤ k(θ, t) in S1 × [0, t0)

with t0 ≤ T . This implies that the solution F (·, t) is convex on [0, Tmax). Moreover, the

curvature of F (·, t) has a uniform positive lower bound min
θ∈S1

{k0(θ)} on S1 × [0, Tmax). Thus,

the proof is completed.

The following lemmas will be useful later.

Lemma 3.3 The arclength L(t) of the closed curve F (·, t) satisfies

dL(t)
dt

= −
∫ 2π

0

σ̃(θ, t)dθ,

and
d2L(t)
dt2

=

∫ 2π

0

[(
∂σ̃

∂θ

)2

k − k
]
dθ.

Proof By the definitino of arclength,

L(t) =
∫ 2π

0

v(θ, t)dθ.

By a direct calculation,

dL(t)
dt

=

∫ 2π

0

∂v

∂t
dθ =

∫ 2π

0

−σ̃(θ, t)k(θ, t)v(θ, t)dθ = −
∫ 2π

0

σ̃(θ, t)dθ,

and then

d2L(t)
dt2

= −
∫ 2π

0

∂

∂t
(σ̃(θ, t)) dθ =

∫ 2π

0

(
S2

θt − 1
)
kdθ =

∫ 2π

0

[(
∂σ̃

∂θ

)2

k − k
]
dθ.

Thus, the proof is completed.
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Lemma 3.4 The area A(t) enclosed by the closed curve F (·, t) satisfies
dA(t)
dt

=

∫ 2π

0

St

k
dθ,

d2A(t)
dt2

= −2π +
∫ 2π

0

S2
t dθ,

d3A(t)
dt3

=

∫ 2π

0

(S2
θt − 1)kStdθ.

Proof The area A(t) enclosed by the convex curve is defined by

A(t) = −1
2

∫ 2π

0

〈
F̃ (θ, t), v(θ, t)N(θ, t)

〉
dθ =

1

2

∫ 2π

0

S

k
dθ.

Then,

dA(t)
dt

=
1

2

∫ 2π

0

[
St

k
− S

k2
kt

]
dθ =

1

2

∫ 2π

0

[
St

k
+ S(Sθθt + St)

]
dθ

=
1

2

∫ 2π

0

[
St

k
+ (Sθθ + S)St

]
dθ =

1

2

∫ 2π

0

[
St

k
+
St

k

]
dθ

=

∫ 2π

0

St

k
dθ,

and then,

d2A(t)
dt2

=

∫ 2π

0

∂

∂t

(
St

k
dθ

)
=

∫ 2π

0

[
Stt

k
− St

k2
kt

]
dθ

=

∫ 2π

0

[
S2

θt − 1 + St(Sθθt + St)
]
dθ

=

∫ 2π

0

(S2
θt − 1 + S2

t − S2
θt)dθ = −2π +

∫ 2π

0

S2
t dθ.

Finally,
d3A(t)
dt3

= 2

∫ 2π

0

StSttdθ = 2

∫ 2π

0

St(S
2
θt − 1)kdθ.

Thus, the proof is completed.

Lemma 3.5 Under the Proposition 3.2, the following inequality holds(
∂σ̃

∂θ

)2

− 1 < 0 for all t ∈ [0, Tmax).

Proof Since
∂σ

∂t
= k > 0 for all t ∈ [0, Tmax),

then

σ(u, t) > σ(u, 0) for all t ∈ (0, Tmax),

i.e.,

σ̃(θ, t) = σ(u, t) > σ(u, 0) = σ̃(θ, 0) for all t ∈ (0, Tmax),

hence,
∂σ̃

∂t
> 0 for all t ∈ [0, Tmax).

On the other hand, by the chain rule,

∂σ

∂t
=
∂σ̃

∂θ

∂θ

∂t
+
∂σ̃

∂t
=
∂σ̃

∂θ

∂σ

∂s
+
∂σ̃

∂t
=
∂σ̃

∂θ

∂σ̃

∂θ

∂θ

∂s
+
∂σ̃

∂t
,
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hence,

∂σ̃

∂t
=

[
1−

(
∂σ̃

∂θ

)2
]
k > 0,

therefore, (
∂σ̃

∂θ

)2

− 1 < 0 for all t ∈ [0, Tmax).

Thus, the proof is completed.

4 Proof of Theorem 1.2

From Example 3.1, we know that, when t→ T ∗, the solution F (·, t) converges to a point.
In other words, we will prove the following theorem which implies Theorem 1.2.

Theorem 4.1 Suppose that F0 is a smooth strictly convex closed curve. Then there

exists a class of the initial velocities such that the solution of (1.1) with F0 and f as initial

curve and initial velocity of the initial curve, respectively, exists only at a finite time interval

[0, Tmax). Moreover, as t→ Tmax, one of the following must be true:

(i) the solution F (·, t) converges to a point, i.e., the curvature of the limit curve becomes
unbounded as t→ Tmax;

(ii) the curvature k of the curve is discontinuous as t→ Tmax, so that the solution converges

to a piecewise smooth curve.

Proof Let [0, Tmax) be the maximal time interval for the solution F (·, t) of (1.1) with F0

and f as initial curve and initial velocity of the initial curve, respectively. We divide the proof

into four steps.

Step 1. Preserving convexity

By Proposition 3.2, we know that the solution F (·, t) remains strictly convex on [0, Tmax)

and the curvature of F (·, t) has a uniform positive lower bound min
θ∈S1

{k0(θ)} on S1 × [0, Tmax).

Step 2. Finite time existence

Enclose the initial curve F0 by a large circle γ0 with the normal initial velocity equals to

the normal initial velocity of the initial curve F0. Then evolve γ0 by the flow (1.1) to get a

solution γ(·, t). By Example 3.1, we know that the solution γ(·, t) exists only at a finite time
interval [0, T ∗), and γ(·, t) converges to a point when t→ T ∗(< +∞). Applying Proposition 3.1

(containment principle), we deduce that F (·, t) is always enclosed by γ(·, t) for all t ∈ [0, T ∗).

Thus we conclude that the solution F (·, t) must become singular at some time Tmax ≤ T ∗.

Step 3. Hausdorff convergence

Note that F (·, t2) is enclosed by F (·, t) whenever t2 > t1 by the evolution equation (1.1)

(or (2.7)). In other words, F (·, t) is shrinking. Let us recall the following classical result in

convex geometry (see [25]).

Blaschke Selection Theorem Let Kj be a sequence of convex sets which are contained

in a bounded set. Then there exists a subsequence Kjk
and a convex set K such that Kjk

converges to K in the Hausdorff metric.

Thus, by using this result, we can directly deduce that F (·, t) converges to a (maybe

degenerate and nonsmooth) weakly convex curve F (·, Tmax) in the Haufdorff metric.
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Step 4. Shrinking to either a point or a limit curve which has the discontinuous

curvature

Noting that (
∂σ̃

∂θ

)2

− 1 < 0 for all t ∈ [0, Tmax),

we obtain from Lemma 3.2 that

d2L(t)
dt2

< 0,
dL(t)
dt

< 0 for all t ∈ [0, Tmax).

Hence, there exists a finite time T0 such that L(T0) = 0. There will be two cases:

Case I T0 ≤ Tmax. On the one hand, there exists a unique classical solution of the

Cauchy problem (1.1) on the interval [0, T0); on the other hand, when t goes to T0, L(t) tends
to zero, i.e.,

L(t) −→ 0 as t↗ T0.

This implies that the curvature k goes to infinity when t tends to T0, and then the solution will

blow up at the time T0. Therefore, by the definition of Tmax, we have

T0 = Tmax.

That is, when t↗ Tmax, the solution F (·, t) converges to a point.
Case II T0 > Tmax. In the present situation,

L(Tmax) > 0.

Then F (·, Tmax) must be nonsmooth. There will be three cases:

Case (i) ‖F (u, Tmax)‖ = sup
u∈S1

|F (u, Tmax)| = ∞, but in Step 2, we have shown that

F (·, t) is contained in the initial curve F0(u), then ‖F (u, Tmax)‖ must be bounded. Hence, case
(i) is not possible.

Case (ii) |Fu(u, Tmax)| =∞, then the length of the limit curve

L(Tmax) = lim
t→Tmax

∫
F (u,t)

ds = lim
t→Tmax

∫
F (u,t)

|Fu(u, t)|du

=

∫
F (u,t)

lim
t→Tmax

|Fu(u, t)|du =∞,

which contradicts with L(Tmax) < L0 where L0 is the length of the initial curve. So case (ii) is

not true.

Case (iii) k is discontinuous. We can not exclude this case. Then this phenomena will

be occurred if the above shocks are not possible. Thus, the proof of Theorem 4.1 is completed.

5 Normal Hyperbolic Mean Curvature Flow with Dissipation

In this section, we consider the normal hyperbolic mean curvature flow with dissipative

term ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2F

∂t2
(u, t) = k(u, t) �N(u, t)− �ρ(u, t) + d

∂F

∂t
, ∀ (u, t) ∈ S1 × [0, T ),

F (u, 0) = F0(u),
∂F

∂t
(u, 0) = f(u) �N0,

(5.1)
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where k is the mean curvature, �N is the inner unit normal at F (u, t), F0 stands for the initial

strictly convex smooth closed curve, f(u) and �N0 are the initial velocity and inner normal vector

of F0, respectively, d is a negative constant and �ρ is denoted by

�ρ �

(
∂2F

∂s∂t
,
∂F

∂t

)
�T .

For (5.1), if we assume (
∂F

∂t
, �N

)
= v,

then we obtain from (5.1) that

vt = k + dv, (5.2)

which is the same as the equation (1.4).

Similar to Section 2, we can also derive a hyperbolic Monge-Ampère equation.

In fact, let us use the normal angle to parameterize each convex curve F (·, t), that is, set
F̃ (θ, τ) = F (u(θ, τ), t(θ, τ)),

where t(θ, τ) = τ . Here �N, �T and θ are independent of the parameter τ . Let

∂F

∂t
= a(u, t) �N + b(u, t)�T for all t ∈ [0, T ).

Noting that Sθ = (F̃ , �T ), we have

Sτθ =

(
∂F̃

∂τ
, �T

)
+

(
F̃ ,

∂ �T

∂τ

)
=

(
∂F̃

∂τ
, �T

)

=

(
∂F

∂u

∂u

∂τ
+
∂F

∂t
, �T

)
=

(
∂F

∂u

∂u

∂τ
, �T

)
+ b̃

=

∣∣∣∣∂F∂u
∣∣∣∣ ∂u∂τ + b̃.

we get

Sθτ =

(
∂2F

∂u∂t

∂u

∂θ
,− �N

)
+

(
∂F

∂t
,−∂

�N

∂θ

)

=

(
∂2F

∂u∂t

∂u

∂θ
,− �N

)
+

(
∂F

∂t
, �T

)
=

(
∂2F

∂u∂t

∂u

∂θ
,− �N

)
+ b̃ =

1

∂θ/∂u

(
∂2F

∂u∂t
,− �N

)
+ b̃

=
1

(∂θ/∂s)(∂s/∂u)

(
∂2F

∂u∂t
,− �N

)
+ b̃

=

(
k

∣∣∣∣∂F∂u
∣∣∣∣)−1 (

∂2F

∂u∂t
,− �N

)
+ b̃.

Then the support function S(θ, τ) satisfies the following equation

Sττ =

(
∂2F

∂u∂t

∂u

∂τ
,− �N

)
+

(
∂2F

∂t2
,− �N

)
= k

∣∣∣∣∂F∂u
∣∣∣∣ ∂u∂τ (Sθτ − b̃)− k + d

(
∂F

∂t
,− �N

)
= k(Sθτ − b̃)(Sθτ − b̃)− k + dSτ = [(Sθτ − b̃)2 − 1]k + dSτ , (5.3)
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namely,

Sττ =
(Sθτ − b̃)2 − 1

Sθθ + S
+ dSτ . (5.4)

The equation (5.4) is equivalent to the following equation

SSττ + 2b̃Sθτ − dSτSθθ + SττSθθ − S2
θτ + 1− b̃2 − dSSτ = 0. (5.5)

Denote

A = 1− b̃2 − dSSτ , B = S, C = 2b̃, D = −dSτ and E = 1,

then

�2(τ, θ, S, Sτ , Sθ) = C2 − 4BD + 4AE = (2b̃)2 − 4S(−dSτ) + 4(1− b̃2 − dSSτ )

= 4 > 0,

Sθθ +B(τ, θ, S, Sτ , Sθ) = Sθθ + S =
1

k
�= 0.

Furthermore, we state the initial values S(0, θ) = h0(θ), Sτ (0, θ) = −f̃(θ) for the unknown
function on the θ ∈ [0, 2π], h(θ) being third and f̃(θ) twice continuous by differentiable on the
real axis. Moreover, we require the τ -hyperbolicity condition:

�2(0, θ, h,−f̃ , hθ) = (C2 − 4BD + 4AE)|t=0 = 4 > 0,

S0θθ + B(0, θ, h,−f̃ , hθ) = hθθ + h =
1

k0
�= 0.

This implies the equation (5.5) is a hyperbolic Monge-Ampère equation on S. Then the support

function S satisfies the following initial value problem⎧⎪⎪⎨⎪⎪⎩
SSττ + 2b̃Sθτ − dSτSθθ + SττSθθ − S2

θτ + 1− b̃2 − dSτS = 0,

S(θ, 0) = h(θ),

Sτ (θ, 0) = −f̃(θ),
(5.6)

where h is the support function of F0, and f̃ is the initial velocity of the initial curve F0.

Similarly, we can get the curvature k satisfies the following equation,

kττ = k2[1− (Sθτ − b̃)2]kθθ + 2k(Sθτ − b̃)kθτ + 4k2(Sθτ − b̃)(Sτ + b̃θ)kθ

+(d− 4kSτ − 4kb̃θ)kτ + [S2
θτ + 1− b̃2 − 2(Sτ + b̃θ)

2 + 2(Sθτ − b̃)b̃θθ]k
3. (5.7)

It is easy to verify that the equation (5.7) is also a hyperbolic equation about τ .

Motivated by the theory of dissipative hyperbolic equations (see [16, 22]), we will study

the initial value problem (5.6) and the initial value problem for (5.7) in the forthcoming paper.

6 Relation Between the Hyperbolic Mean Curvature Flow and the

String Evolution Equation in the Minkowski Space R
1,1

In this section, we study the relation between the hyperbolic mean curve flow and the

evolution equation for the string in the Minkowski space R
1,1.
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Let z = (z0, z1) be a position vector of a point in the two-dimensional Minkowski space

R
1,1. The scalar product of two vectors z and w = (w0, w1) is (z, w) = −z0w0 + z1w1. The

Lorentz metric of R
1,1 reads

ds2 = −dt2 + du2.

A massless closed curve moving in two-dimensional Minkowski space can be defined by

making its action proportional to the two-dimensional area swept out in the Minkowski space.

We are interested in the following motion of one-dimensional Riemannian manifold in R
1,2 with

the following parameter

(t, u)→ X̃ = (t,X(t, u)), (6.1)

where u ∈ M and X̃(·, t) be a positive vector of a point in the Minkowski space R
1,2. The

induced Lorentz metric reads ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g̃00 = −1 +
(
∂X

∂t
,
∂X

∂t

)
,

g̃01 = g̃10 =

(
∂X

∂t
,
∂X

∂u

)
,

g̃11 = g11 =

(
∂X

∂u
,
∂X

∂u

)
,

(6.2)

i.e., the Lorentz metric becomes

ds2 = (dt, du)A(dt, du)T ,

where

A =

⎛⎝ |Xt|2 − 1 〈Xt, Xu〉
〈Xt, Xu〉 |Xu|2

⎞⎠ , (6.3)

in which

|Xt|2 = 〈Xt, Xt〉, |Xu|2 = 〈Xu, Xu〉.

Kong, Zhang, and Zhou in [18] investigated the dynamics of relativistic (in particular, closed)

strings moving in the Minkowski space R
1,n(n ≥ 2). By the variational method, they get the

following equation

|Xu|2Xtt − 2〈Xt, Xu〉Xtu + (|Xt|2 − 1)Xuu = 0. (6.4)

Except the variational method, by vanishing mean curvature of the sub-manifold M, we can

obtain the following equation for the motion ofM in the Minkowski space R
1,2

g̃αβ�α�βX̃ = g̃αβ

(
∂2X̃

∂xα∂xβ
− Γ̃γ

αβ

∂X̃

∂xγ

)
= 0, (6.5)

where α, β = 0, 1. It is convenient to fix the parametrization partially (see Albrecht and Turok

[1], Turok and Bhattacharjee [28]) by requiring

g̃01 = g̃10 =

(
∂X

∂t
,
∂X

∂u

)
= 0, (6.6)
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that is, we require the additional gauge condition that the string velocity be orthogonal to the

string tangent direction. We assume that the surface is C2 and time-like, i.e.,

(|Xt|2 − 1)|Xu|2 − 〈Xt, Xu〉2 < 0,

equivalently,

(1 − |Xt|2) > 0.

Obviously, the equation (6.5) is equivalent to(
∂2X

∂t2
,
∂X

∂t

)
− g11

(|Xt|2 − 1
)( ∂2X

∂t∂u
,
∂X

∂u

)
= 0, (6.7)

∂2X

∂t2
+ g11

(
∂2X

∂u2
− Γ1

11

∂X

∂u

)(|Xt|2 − 1
)− 1

|Xt|2 − 1

(
∂2X

∂t2
,
∂X

∂t

)
∂X

∂t

+g11

(
∂2X

∂t∂u
,
∂X

∂t

)
∂X

∂u
+ g11

(
∂2X

∂t∂u
,
∂X

∂u

)
∂X

∂t
= 0. (6.8)

It is easy to verify that the system (6.7)–(6.8) is equivalent to (6.7) and the following equation

∂2X

∂t2
+ g11

(
∂2X

∂u2
− Γ1

11

∂X

∂u

)(|Xt|2 − 1
)
+ g11

(
∂2X

∂t∂u
,
∂X

∂t

)
∂X

∂u
= 0,

namely,
∂2X

∂t2
= (1− |Xt|2)k �N − 1

|Xu|2
(
∂2X

∂t∂u
,
∂X

∂t

)
∂X

∂u
. (6.9)

Remark 6.1 The equation (6.9) is similar to the equation in (1.1), both of them evolve

normally. The difference between the equation (1.1) and the equation (6.9) is only the normal

acceleration of the evolving curve. Because

1− |Xt|2 > 0,

that is, the velocity of the string is always less than the velocity of light which is meaning in

the classical physics, the motion of the string in the Minkowski space R
1,1 can be regarded as

one of applications of general normal hyperbolic mean curvature flow.

Acknowledgements Wang would like to thank the Center of Mathematical Sciences at

Zhejiang University for the great support and hospitality.

References

[1] Albrecht A, Tuok, N. Evolution of cosmic string. Physics Review Letters, 1985, 54: 1868–1871

[2] Alvarez L, Guichard F, Lions P L, Morel J M. Axioms and fundamental equations of image processing.

Arch Rational Mech Anal, 1993, 123: 199–257

[3] Angenent S, Gurtin M E. Multiplhase thermomechanics with an interfacial structure 2. evolution of an

isothermal interface. Arch Rational Mech Anal, 1989, 108: 323–391

[4] Cao F. Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics 1805. Berlin:

Springer, 2003

[5] Christodoulou D. Global solution of nonlinear hyperbolic equations for small initial data. Comm Pure

Appl Math, 1986, 39: 367–282

[6] DeTurck D. Some regularity theorems in Riemannian geometry. Ann Scient Ecole Norm Sup Paris, 1981,

14: 249–260



514 ACTA MATHEMATICA SCIENTIA Vol.29 Ser.B

[7] Gage M, Hamilton R. The heat equation shrinking convex plane curves. J Diff Geom, 1986, 23: 417–491

[8] Grayson M. Shortening embedded curves. Ann Math, 1989, 101: 71–111

[9] Gurtin M E, Podio-Guidugli P. A hyperbolic theory for the evolution of plane curves. SIAM J Math Anal,

1991, 22: 575–586
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