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Abstract

In this paper we introduce the hyperbolic mean curvature flow and prove that the corresponding system
of partial differential equations is strictly hyperbolic, and based on this, we show that this flow admits a
unique short-time smooth solution and possesses the nonlinear stability defined on the Euclidean space
with dimension larger than 4. We derive nonlinear wave equations satisfied by some geometric quantities
related to the hyperbolic mean curvature flow. Moreover, we also discuss the relation between the equations
for hyperbolic mean curvature flow and the equations for extremal surfaces in the Minkowski space–time.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Classical differential geometry is on the study of curved spaces and shapes, in which the time
in general does not play a role. However, in the last few decades, mathematicians have made
great strides in understanding shapes that evolve in time. There are many processes by which
a curve or surface or manifold can evolve, among them two successful examples are the mean
curvature flow and the Ricci flow. For the Ricci flow, there are many deep and outstanding works,
for example, it can be used to successfully solve the Poincaré conjecture and geometrization
conjectures. In this paper we will focus on the mean curvature flow.

* Corresponding author.
E-mail address: kong@cms.zju.edu.cn (D.-X. Kong).
0022-0396/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2008.06.026



374 C.-L. He et al. / J. Differential Equations 246 (2009) 373–390
It is well known that the mean curvature flow is related on the motion of surfaces or mani-
folds. Much more well-known motion of surfaces are those equating the velocity dX

dt
with some

scalar multiple of the normal of the surface. The scalar can be the curvature, mean curvature or
the inverse of the mean curvature with suitable sign attached. This is the traditional mean cur-
vature flow. For the traditional mean curvature flow, a beautiful theory has been developed by
Hamilton, Huisken and other researchers (e.g., [4,6,10]), and some important applications have
been obtained, for example, Huisken and Ilmanen developed a theory of weak solutions of the
inverse mean curvature flow and used it to prove successfully the Riemannian Penrose inequality
(see [11]).

A natural problem is as follows: in the above argument if we replace the velocity dX
dt

by the

acceleration d2X

dt2 , what happens? In fact, Yau in [15] has suggested the following equation related
to a vibrating membrane or the motion of a surface

d2X

dt2
= H �n, (1.1)

where H is the mean curvature and the �n is the unit inner normal vector of the surface, and
pointed out that very little about the global time behavior of the hypersurfaces (see page 242
in [15]). Indeed, according to the authors’ knowledge, up to now only a few of the results on
this aspect have been known: a hyperbolic theory for the evolution of the plane curves has been
developed by Gurtin and Podio-Guidugli [5], and some applications to the crystal interfaces have
been obtained (see [14]).

Here we would like to point out that the traditional mean curvature flow equation is parabolic,
however Eq. (1.1) is hyperbolic (see Section 2 for the details). Therefore, in this sense, we name
Eq. (1.1) as the hyperbolic version of mean curvature flow, or hyperbolic mean curvature flow.
Analogous to our recent work [13], in which we introduced and studied the hyperbolic version
of the Ricci flow—the hyperbolic geometric flow, in this paper we will investigate the hyperbolic
mean curvature flow.

The paper is organized as follows. In Section 2, we introduce the hyperbolic mean curvature
flow and give the short-time existence theorem. In Section 3, we construct some exact solutions
to the hyperbolic mean curvature flow, these solutions play an important role in applied fields.
Section 4 is devoted to the study on the nonlinear stability of the hyperbolic mean curvature
flow defined on the Euclidean space with the dimension larger than 4. In Section 5, we derive
the nonlinear wave equations satisfied by some geometric quantities of the hypersurface X(·, t),
these equations show the wave character of the curvatures. In Section 6, we illustrate the rela-
tions between the hyperbolic mean curvature flow and the equations for extremal surfaces in the
Minkowski space R

1,n.

2. Hyperbolic mean curvature flow

Let M be an n-dimensional smooth manifold and

X(·, t) :M → R
n+1
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be a one-parameter family of smooth hypersurface immersions in R
n+1. We say that it is a

solution of the hyperbolic mean curvature flow if

∂2

∂t2
X(x, t) = H(x, t)�n(x, t), ∀x ∈ M , ∀t > 0, (2.1)

where H(x, t) is the mean curvature of X(x, t) and �n(x, t) is the unit inner normal vector on
X(·, t).

Let g = {gij } and A = {hij } be the induced metric and the second fundamental form on M in
a local coordinate system {xi} (1 � i � n), respectively. Thus, the mean curvature H(x, t) reads

H = gijhij .

Recall that the Gauss–Weingarten relations

∂2X

∂xi∂xj
= Γ k

ij

∂X

∂xk
+ hij �n,

∂ �n
∂xj

= −hjlg
lm ∂X

∂xm
.

Thus, we have

�gX = gij∇i∇jX = gij

(
∂2X

∂xi∂xj
− Γ k

ij

∂X

∂xk

)
= gijhij �n = H �n.

So the hyperbolic mean curvature flow equation (2.1) can be equivalently rewritten as

∂2X

∂t2
= �gX = gij

(
∂2X

∂xi∂xj
− Γ k

ij

∂X

∂xk

)
. (2.2)

Noting

Γ k
ij = gkl

(
∂2X

∂xi∂xj
,
∂X

∂xl

)
,

we get

∂2X

∂t2
= gij ∂2X

∂xi∂xj
− gij gkl

(
∂2X

∂xi∂xj
,
∂X

∂xl

)
∂X

∂xk
. (2.3)

It is easy to see that Eq. (2.3) is not strictly hyperbolic. Therefore, instead of considering Eq. (2.3)
we will follow a trick of DeTurck [3] by modifying the flow through a diffeomorphism of M ,
under which (2.3) turns out to be strictly hyperbolic, so that we can apply the standard theory of
hyperbolic equations.

Suppose X̂(x, t) is a solution of Eq. (2.1) (equivalently, (2.2)) and ϕt :M → M is a family
of diffeomorphisms of M . Let

X(x, t) = ϕ∗
t X̂(x, t),

where ϕ∗
t is the pull-back operator of ϕt . We now want to find the evolution equation for the

metric X(x, t).
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Denote

y(x, t) = ϕt (x) = {
y1(x, t), y2(x, t), . . . , yn(x, t)

}

in local coordinates, and define y(x, t) = ϕt (x) by the following initial value problem

⎧⎨
⎩

∂2yα

∂t2
= ∂yα

∂xk

(
gjl

(
Γ k

jl − Γ̃ k
j l

))
,

yα(x,0) = xα, yα
t (x,0) = 0,

(2.4)

where Γ̃ k
j l is the connection corresponding to the initial metric g̃ij (x). Since

Γ k
jl = ∂yα

∂xj

∂yβ

∂xl

∂xk

∂yγ
Γ̂

γ
αβ + ∂xk

∂yα

∂2yα

∂xj ∂xl
,

the initial value problem (2.4) can be rewritten as

⎧⎪⎨
⎪⎩

∂2yα

∂t2
= gjl

(
∂2yα

∂xj ∂xl
+ ∂yβ

∂xj

∂yγ

∂xl
Γ̂ α

βγ − ∂yα

∂xk
Γ̃ k

j l

)
,

yα(x,0) = xα, yα
t (x,0) = 0.

(2.5)

Obviously, (2.5) is an initial value problem for a strictly hyperbolic system.
On the other hand, noting

�ĝX̂ = ĝαβ∇α∇βX̂ = ĝαβ

(
∂2X̂

∂yα∂yβ
− ∂X̂

∂yγ
Γ̂

γ
αβ

)

= gkl ∂y
α

∂xk

∂yβ

∂xl

(
∂

∂yα

(
∂X

∂xi

∂xi

∂yβ

)
− ∂X

∂xi

∂xi

∂yγ
Γ̂

γ
αβ

)

= gkl ∂2X

∂xk∂xl
+ gkl ∂y

α

∂xk

∂yβ

∂xl

∂X

∂xi

∂2xi

∂yα∂yβ
− gkl ∂X

∂xi

(
Γ i

kl − ∂xi

∂yγ

∂2yγ

∂xk∂xl

)

= gkl∇k∇lX = �gX,

we have

∂2X

∂t2
= ∂2X̂

∂yα∂yβ

∂yα

∂t

∂yβ

∂t
+ 2

∂2X̂

∂t∂yβ

∂yβ

∂t
+ ∂2X̂

∂t2
+ ∂X̂

∂yα

∂2yα

∂t2

= ∂2X̂

∂yα∂yβ

∂yα

∂t

∂yβ

∂t
+ 2

∂2X̂

∂t∂yβ

∂yβ

∂t
+ �ĝX̂ + ∂X

∂xk

∂xk

∂yα

∂2yα

∂t2

= �gX + ∂X

k
gij

(
Γ k

ij − Γ̃ k
ij

) + ∂2X̂

α β

∂yα ∂yβ

+ 2
∂2X̂

β

∂yβ
∂x ∂y ∂y ∂t ∂t ∂t∂y ∂t
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= gij

(
∂2X

∂xi∂xj
− ∂X

∂xk
Γ k

ij

)
+ ∂X

∂xk
gij

(
Γ k

ij − Γ̃ k
ij

) + ∂2X̂

∂yα∂yβ

∂yα

∂t

∂yβ

∂t
+ 2

∂2X̂

∂t∂yβ

∂yβ

∂t

= gij ∂2X

∂xi∂xj
− gij Γ̃ k

ij

∂X

∂xk
+ ∂2X̂

∂yα∂yβ

∂yα

∂t

∂yβ

∂t
+ 2

∂2X̂

∂t∂yβ

∂yβ

∂t
.

By the standard theory of hyperbolic equations (see [7]), we have the following result.

Theorem 2.1 (Local existences and uniqueness). Let M be an n-dimensional smooth compact
manifold, and X0 be a smooth hypersurface immersion of M into R

n+1. Then there exists a
constant T > 0 such that the initial value problem

⎧⎪⎪⎨
⎪⎪⎩

∂2

∂t2
X(x, t) = H(x, t)�n(x, t),

X|t=0 = X0(x),
∂X

∂t
(x, t)

∣∣∣∣
t=0

= X1(x)

(2.6)

has a unique smooth solution X(x, t) on M × [0, T ), where X1(x) is a smooth vector-valued
function on M .

3. Exact solutions

In order to understand further the hyperbolic mean curvature flow, in this section we investi-
gate some exact solutions. These exact solutions play an important role in applied fields. To do
so, we first consider the following initial value problem for an ordinary differential equation

⎧⎨
⎩ rtt = −1

r
,

r(0) = r0 > 0, rt (0) = r1.

(3.1)

For this initial value problem, we have the following lemma.

Lemma 3.1. For arbitrary initial data r0 > 0, if the initial velocity r1 � 0, then the solution
r = r(t) decreases and attains its zero point at time t0 (in particular, when r1 = 0, we have

t0 =
√

π
2 r0); if the initial velocity is positive, then the solution r increases first and then decreases

and attains its zero point in a finite time t0.

Proof. The proof is similar to the arguments in [14]. The following discussion is divided into
two cases.

Case I. The initial velocity is nonpositive, i.e., r1 � 0.

We argue by contradiction. Let us assume that r(t) > 0 for all time t > 0. Then rtt < 0 and
rt (t) < rt (0) = r1 � 0 for t > 0. Hence there exists a time t0 such that r(t0) = 0 (see Fig. 1). This
is a contradiction.
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Fig. 1. r1 � 0.

Moreover, for the case r1 = 0, we can derive the explicit expression for t0 according to
Eq. (3.1). Multiplying both side of rtt = − 1

r
by rt , integrating, applying the initial condition

rt (0) � 0 and r(t0) = 0, integrating once again yields

t0∫
0

√
2

2r0
dt =

∞∫
0

e−u2
du =

√
π

2
,

where u =
√

ln r0
r
. Thus we obtain

t0 =
√

π

2
r0.

Case II. The initial velocity is positive, i.e., r1 > 0.

By (3.1), we obtain

r2
t = −2 ln r + 2 ln r0 + r2

1 .

Then we have

r � e
r2
1
2 r0.

If r increases for all time, i.e., rt > 0 for all time t , we have r0 < r � e
r2
1
2 r0 and − 1

r0
< rtt �

−e− r2
1
2 1

r0
. Thus, the curve rt can be bounded by two straight lines rt = − 1

r0
t + r1 and rt =

− 1
r0

e− r2
1
2 t + r1. On the other hand, rt is a convex function since

(rt )tt = rt

r2
> 0.
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Fig. 2. r1 > 0.

Therefore, rt will change sign and becomes negative at certain finite time, this contradicts to the
hypothesis that r is always increasing. Thus, in this case, r increases first and then decreases and
attains its zero point in a finite time (see Fig. 2). The proof is finished. �

In what follows, we are interested in some exact solutions of hyperbolic mean curvature flow
(2.1).

Example 1. Consider a family of spheres

X(x, t) = r(t)(cosα cosβ, cosα sinβ, sinα), (3.2)

where α ∈ [−π
2 , π

2 ], β ∈ [0,2π].
Clearly, the induced metric and the second fundamental form are, respectively,

g11 = r2, g22 = r2 cos2 α, g12 = g21 = 0

and

h11 = r, h22 = r cos2 α, h12 = h21 = 0.

The mean curvature is

H = 2

r
.

On the other hand, the Christoffel symbols read

Γ 1
11 = Γ 1

12 = 0, Γ 1
22 = cosα sinα,

Γ 2
11 = Γ 2

22 = 0, Γ 2
12 = − sinα

cosα
.

Thus, we obtain from (2.1) or (2.2) that

rtt = −2
. (3.3)
r
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By Lemma 3.1, it can be easily observed that, for arbitrary r(0) > 0, if rt (0) � 0, the evolving
sphere will shrink to a point; if rt (0) > 0, the evolving sphere will expand first and then shrink
to a point.

In fact, this phenomena can also be interpreted by physical principles. From (3.2), we have

Xt(x, t) = rt (t)(cosα cosβ, cosα sinβ, sinα) (3.4)

and

Xtt (x, t) = rtt (t)(cosα cosβ, cosα sinβ, sinα). (3.5)

By (3.3) and (3.5), the direction of acceleration is always the same as the inner normal vector.
Thus, due to (3.4), if rt (0) � 0, i.e., the initial velocity direction is the same as inner normal
vector, then evolving sphere will shrink to a point; if rt (0) > 0, i.e., the initial velocity direction
is opposite to inner normal vector, then the evolving sphere will expand first and then shrink to a
point.

Example 2. We now consider an exact solution with axial symmetry. In other words, we focus
on the cylinder solution for the hyperbolic mean curvature flow which takes the following form

X(x, t) = (
r(t) cosα, r(t) sinα,ρ

)
,

where α ∈ [0,2π], ρ ∈ [0, ρ0].
Obviously, the induced metric and the second fundamental form read, respectively,

g11 = r2, g22 = 1, g12 = g21 = 0

and

h11 = r, h22 = 0, h12 = h21 = 0.

The mean curvature is

H = 1

r
.

Moreover, the Christoffel symbols are

Γ k
ij = 0, ∀i, j, k = 1,2.

Then, we obtain from (2.1) or (2.2) that

rtt = −1

r
.

By Lemma 3.1, it can be easily found that the evolving cylinder will always shrink to a straight
line for arbitrary ρ0 > 0, r(0) > 0 and rt (0).
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4. Nonlinear stability

In this section, we consider the nonlinear stability of the hyperbolic mean curvature flow
defined on the Euclidean space with the dimension larger than 4.

Let M be an n-dimensional (n > 4) complete Riemannian manifold. Given the hypersurfaces
X1(x) and X2(x) on M , we consider the following initial value problem

⎧⎪⎪⎨
⎪⎪⎩

∂2

∂t2
X(x, t) = H(x, t)�n(x, t),

X(x,0) = X0(x) + εX1(x),
∂X

∂t
(x,0) = εX2(x),

(4.1)

where ε > 0 is a small parameter.
A coordinate chart (x1, . . . , xn) on a Riemannian manifold (M , g) is called harmonic if

�xj = 0 (j = 1, . . . , n).

DeTurck [3] showed that a coordinate function xk is harmonic if and only if

�xk = gij ∂2xk

∂xi∂xj
− gijΓ l

ij

∂xk

∂xl
= −Γ k

ij g
ij = −Γ k = 0.

He also proved the following theorem on the existence of harmonic coordinates.

Lemma 4.1. Let the metric g on a Riemannian manifold (M , g) be of class Ck,α (for k � 1)

(resp. Cω) in a local coordinate chart about some point p. Then there is a neighborhood of p

in which harmonic coordinates exist, these new coordinates being Ck+1,α (resp. Cω) functions
of the original coordinates. Moreover, all harmonic coordinate charts defined near p have this
regularity.

By Lemma 4.1 and Theorem 2.1, we can choose the harmonic coordinates around a fixed
point p ∈ M and for a fixed time t ∈ R

+. Then the hyperbolic mean curvature flow (2.2) can be
equivalent by written as

∂2X

∂t2
= gij ∂2X

∂xi∂xj
.

Definition 4.1. X0(x) possesses the (locally) nonlinear stability with respect to (X1(x),X2(x)),

if there exists a positive constant ε0 = ε0(X1(x),X2(x)) such that, for any ε ∈ (0, ε0], the initial
value problem (4.1) has a unique (local) smooth solution X(x, t).

X0(x) is said to be (locally) nonlinear stable if it possesses the (locally) nonlinear stability
with respect to arbitrary X1(x) and X2(x).

Theorem 4.1. X0(x) = (x1, x2, . . . , xn,0) (n > 4) is nonlinearly stable.
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Proof. Choose the harmonic coordinates around a fixed point p ∈ M and for a fixed time
t ∈ R

+. Then Eq. (4.1) can be written as

⎧⎪⎪⎨
⎪⎪⎩

∂2

∂t2
X(x, t) = gij ∂2X

∂xi∂xj
,

X(x,0) = X0(x) + εX1(x),
∂X

∂t
(x,0) = εX2(x).

(4.2)

Define Y(x, t) = (y1, . . . , yn, yn+1) in the following way

X(x, t) = X0(x) + Y(x, t).

Then for small Y(x, t), we have

gij =
(

∂X

∂xi
,

∂X

∂xj

)
= δij + ∂yj

∂xi
+ ∂yi

∂xj
+ yij (4.3)

and

gij = δij − ∂yj

∂xi
− ∂yi

∂xj
− yij + O

(‖λ‖2), (4.4)

where

δij =
{

1, i = j (i, j = 1, . . . , n),

0, i �= j (i, j = 1, . . . , n),

yij =
(

∂Y

∂xi
,

∂Y

∂xj

)
=

n+1∑
p=1

∂yp

∂xi

∂yp

∂xj
,

λ =
(

∂yp

∂xq

)
(p = 1,2, . . . , n + 1; q = 1,2, . . . , n).

Eq. (4.2) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

∂2

∂t2
Y(x, t) =

(
δij − ∂yj

∂xi
− ∂yi

∂xj
− yij + O

(‖λ‖2)) ∂2Y

∂xi∂xj
,

Y (x,0) = εX1(x),
∂Y

∂t
(x,0) = εX2(x).

(4.5)

Define

λ̂ =
(

∂ym

∂xk
,

∂2ym

∂xk∂xl

)
(m = 1, . . . , n + 1; k, l = 1, . . . , n),

then for all p we have
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∂2yp

∂t2
= ∂2yp

∂xi∂xi
+

(
−∂yj

∂xi
− ∂yi

∂xj
− yij + O

(‖λ‖2)) ∂2yp

∂xi∂xj

= ∂2yp

∂xi∂xi
+ O

(‖λ̂‖2).
By the well-known result on the global existence for nonlinear wave equations (e.g., see [2,7,
12]), there exists a unique global smooth solution Y = Y(x, t) for the Cauchy problem (4.5).
Thus, the proof is completed. �
5. Evolution of metric and curvatures

From the evolution equation (2.1) for the hyperbolic mean curvature flow, we can derive the
evolution equations for some geometric quantities of the hypersurface X(·, t), these equations
will play an important role in the future study on the hyperbolic mean curvature flow.

Lemma 5.1. Under the hyperbolic mean curvature flow, the following identities hold

�hij = ∇i∇jH + Hhilg
lmhmj − |A|2hij , (5.1)

�|A|2 = 2gikgjlhkl∇i∇jH + 2|∇A|2 + 2H tr
(
A3) − 2|A|4, (5.2)

where

|A|2 = gij gklhikhjl, tr
(
A3) = gij gklgmnhikhlmhnj .

Lemma 5.1 can be found in Zhu [16].

Theorem 5.1. Under the hyperbolic mean curvature flow, it holds that

∂2gij

∂t2
= −2Hhij + 2

(
∂2X

∂t∂xi
,

∂2X

∂t∂xj

)
, (5.3)

∂2�n
∂t2

= −gij ∂H

∂xi

∂X

∂xj
+ gij

(
�n,

∂2X

∂t∂xi

)

×
[

2gkl

(
∂X

∂xj
,

∂2X

∂t∂xl

)
∂X

∂xk
+ gkl

(
∂X

∂xl
,

∂2X

∂t∂xj

)
∂X

∂xk
− ∂2X

∂t∂xj

]
(5.4)

and

∂2hij

∂t2
= �hij − 2Hhilhmjg

lm + |A|2hij + gklhij

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)

− 2
∂Γ k

ij

∂t

(
�n,

∂2X

∂t∂xk

)
. (5.5)
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Proof. With the aids of the definitions of the metric, the second fundamental form and the
Gauss–Weingarten relations, we can give a complete proof of Theorem 5.1. In fact, by the defi-
nition of the metric, we have

∂2gij

∂t2
= ∂2

∂t2

(
∂X

∂xi
,

∂X

∂xj

)
=

(
∂3X

∂t2∂xi
,

∂X

∂xj

)
+ 2

(
∂2X

∂t∂xi
,

∂2X

∂t∂xj

)
+

(
∂X

∂xi
,

∂3X

∂t2∂xj

)

=
(

∂

∂xi
(H �n),

∂X

∂xj

)
+ 2

(
∂2X

∂t∂xi
,

∂2X

∂t∂xj

)
+

(
∂X

∂xi
,

∂

∂xj
(H �n)

)

= H

(
−hikg

kl ∂X

∂xl
,

∂X

∂xj

)
+ 2

(
∂2X

∂t∂xi
,

∂2X

∂t∂xj

)
+ H

(
∂X

∂xi
,−hjkg

kl ∂X

∂xl

)

= −2Hhij + 2

(
∂2X

∂t∂xi
,

∂2X

∂t∂xj

)
.

This gives the proof of (5.3).
On the other hand,

∂ �n
∂t

=
(

∂ �n
∂t

,
∂X

∂xi

)
gij ∂X

∂xj
= −

(
�n,

∂2X

∂t∂xi

)
gij ∂X

∂xj
,

then

∂2�n
∂t2

= −
(

∂ �n
∂t

,
∂2X

∂t∂xi

)
gij ∂X

∂xj
−

(
�n,

∂3X

∂t2∂xi

)
gij ∂X

∂xj

+
(

�n,
∂2X

∂t∂xi

)
gikgjl ∂gkl

∂t

∂X

∂xj
− gij

(
�n,

∂2X

∂t∂xi

)
∂2X

∂t∂xj

= gij gkl

(
�n,

∂2X

∂t∂xk

)(
∂X

∂xl
,

∂2X

∂t∂xi

)
∂X

∂xj
−

(
�n,

∂

∂xi
(H �n)

)
gij ∂X

∂xj

+ gikgjl

(
�n,

∂2X

∂t∂xi

)[(
∂2X

∂t∂xk
,
∂X

∂xl

)
+

(
∂X

∂xk
,

∂2X

∂t∂xl

)]
∂X

∂xj
−

(
�n,

∂2X

∂t∂xi

)
gij ∂2X

∂t∂xj

= −gij ∂H

∂xi

∂X

∂xj
− gij

(
�n,

∂2X

∂t∂xi

)
∂2X

∂t∂xj

+ gij gkl

(
�n,

∂2X

∂t∂xi

)[(
∂2X

∂t∂xj
,
∂X

∂xl

)
+ 2

(
∂X

∂xj
,

∂2X

∂t∂xl

)]
∂X

∂xk
.

This proves (5.4).
By virtue of

∂hij

∂t
= ∂

∂t

(
�n,

∂2X

∂xi∂xj

)
=

(
∂ �n
∂t

,
∂2X

∂xi∂xj

)
+

(
�n,

∂3X

∂t∂xi∂xj

)
,

we have
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∂2hij

∂t2
=

(
∂2�n
∂t2

,
∂2X

∂xi∂xj

)
+ 2

(
∂ �n
∂t

,
∂3X

∂t∂xi∂xj

)
+

(
�n,

∂4X

∂t2∂xi∂xj

)

= −gkl

(
∂H

∂xk

∂X

∂xl
,

∂2X

∂xi∂xj

)
− gkl

(
�n,

∂2X

∂t∂xk

)(
∂2X

∂t∂xl
,

∂2X

∂xi∂xj

)

+ gpqgkl

(
�n,

∂2X

∂t∂xp

)[(
∂X

∂xl
,

∂2X

∂t∂xq

)
+ 2

(
∂X

∂xq
,

∂2X

∂t∂xl

)](
∂X

∂xk
,

∂2X

∂xi∂xj

)

− 2gkl

(
�n,

∂2X

∂t∂xk

)(
∂X

∂xl
,

∂3X

∂t∂xi∂xj

)
+

(
�n,

∂2

∂xi∂xj
(H �n)

)

= − ∂H

∂xk
Γ k

ij − gklΓ m
ij

(
�n,

∂2X

∂t∂xk

)(
∂X

∂xm
,

∂2X

∂t∂xl

)
− gklhij

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)

+ gpqΓ l
ij

(
�n,

∂2X

∂t∂xp

)[(
∂X

∂xl
,

∂2X

∂t∂xq

)
+ 2

(
∂X

∂xq
,

∂2X

∂t∂xl

)]

− 2gklΓ m
ij

(
�n,

∂2X

∂t∂xk

)(
∂X

∂xl
,

∂2X

∂t∂xm

)
− 2

∂Γ k
ij

∂t

(
�n,

∂2X

∂t∂xk

)

+ 2gklhij

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)
+

(
�n,

∂

∂xi

(
∂H

∂xj
�n − Hhjkg

kl ∂X

∂xl

))

= ∇i∇jH − Hhjkg
klhil + gklhij

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)
− 2

∂Γ k
ij

∂t

(
�n,

∂2X

∂t∂xk

)
.

Using (5.1), we obtain

∂2hij

∂t2
= �hij − 2Hgklhilhjk + |A|2hij + gklhij

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)

− 2
∂Γ k

ij

∂t

(
�n,

∂2X

∂t∂xk

)
.

This proves (5.5). Thus, the proof of Theorem 5.1 is completed. �
Theorem 5.2. Under the hyperbolic mean curvature flow,

∂2H

∂t2
= �H + H |A|2 − 2gikgjlhij

(
∂2X

∂t∂xk
,

∂2X

∂t∂xl

)
+ Hgkl

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)

− 2gij
∂Γ k

ij

∂t

(
�n,

∂2X

∂t∂xk

)
+ 2gikgjpglqhij

∂gpq

∂t

∂gkl

∂t
− 2gikgjl ∂gkl

∂t

∂hij

∂t
, (5.6)

∂2

∂t2
|A|2 = �

(|A|2) − 2|∇A|2 + 2|A|4 + 2|A|2gpq

(
�n,

∂2X

∂t∂xp

)(
�n,

∂2X

∂t∂xq

)

+ 2gij gkl ∂hik ∂hjl − 8gimgjngklhjl

∂gmn ∂hik
∂t ∂t ∂t ∂t
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− 4gimgjngklhikhjl

(
∂2X

∂t∂xm
,

∂2X

∂t∂xn

)
+ 2gim ∂gpq

∂t

∂gmn

∂t
hikhjl

× (
2gjpgnqgkl + gjngkpglq

) − 4gij gklhjl

∂Γ
p
ik

∂t

(
�n,

∂2X

∂t∂xp

)
. (5.7)

Proof. Noting

ghmgml = δh
l ,

we get

∂gij

∂t
= −gikgjl ∂gkl

∂t
,

∂2gij

∂t2
= 2gikgjpglq ∂gpq

∂t

∂gkl

∂t
− gikgjl ∂

2gkl

∂t2
.

By a direct calculation, we have

∂2H

∂t2
= ∂2gij

∂t2
hij + 2

∂gij

∂t

∂hij

∂t
+ gij ∂2hij

∂t2

=
(

2gikgjpglq ∂gpq

∂t

∂gkl

∂t
− gikgjl ∂

2gkl

∂t2

)
hij − 2gikgjl ∂gkl

∂t

∂hij

∂t
+ gij ∂2hij

∂t2

= 2gikgjpglqhij

∂gpq

∂t

∂gkl

∂t
− 2gikgjl ∂gkl

∂t

∂hij

∂t

− gikgjlhij

[
−2Hhkl + 2

(
∂2X

∂t∂xk
,

∂2X

∂t∂xl

)]

+ gij

[
∇i∇jH − Hhilhjkg

lk + gklhij

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)
− 2

∂Γ k
ij

∂t

(
�n,

∂2X

∂t∂xk

)]

= �H + H |A|2 − 2gikgjlhij

(
∂2X

∂t∂xk
,

∂2X

∂t∂xl

)
+ Hgkl

(
�n,

∂2X

∂t∂xk

)(
�n,

∂2X

∂t∂xl

)

− 2gij
∂Γ k

ij

∂t

(
�n,

∂2X

∂t∂xk

)
+ 2gikgjpglqhij

∂gpq

∂t

∂gkl

∂t
− 2gikgjl ∂gkl

∂t

∂hij

∂t
.

This is nothing but the desired (5.6).
On the other hand, by the definition of |A|2 and the formula (5.2), a direct calculation gives

∂2

∂t2
|A|2 = 2

∂2gij

∂t2
gklhikhjl + 2

∂gij

∂t

∂gkl

∂t
hikhjl + 8

∂gij

∂t
gkl ∂hik

∂t
hjl

+ 2gij gkl ∂
2hik

∂t2
hjl + 2gij gkl ∂hik

∂t

∂hjl

∂t

= 2

(
2gimgjpgnq ∂gpq ∂gmn − gimgjn ∂2gmn

2

)
gklhikhjl
∂t ∂t ∂t
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+ 2gimgjngkpglqhikhjl

∂gmn

∂t

∂gpq

∂t
− 8gimgjn ∂gmn

∂t
gkl ∂hik

∂t
hjl

+ 2gij gkl ∂hik

∂t

∂hjl

∂t
+ 2gij gklhjl

[
∇i∇kH − Hhiphkqgpq

+ gpqhik

(
�n,

∂2X

∂t∂xp

)(
�n,

∂2X

∂t∂xq

)
− 2

∂Γ
p
ik

∂t

(
�n,

∂2X

∂t∂xp

)]

= 4gimgjpgnqgkl ∂gpq

∂t

∂gmn

∂t
hikhjl

− 2gimgjn

[
−2Hhmn + 2

(
∂2X

∂t∂xm
,

∂2X

∂t∂xn

)]
gklhikhjl

+ 2gimgjngkpglqhikhjl

∂gpq

∂t

∂gmn

∂t
− 8gimgjngkl ∂gmn

∂t

∂hik

∂t
hjl

+ 2gij gklhjl∇i∇kH − 2H tr
(
A3) + 2gpq |A|2

(
�n,

∂2X

∂t∂xp

)(
�n,

∂2X

∂t∂xq

)

− 4gij gklhjl

∂Γ
p
ik

∂t

(
�n,

∂2X

∂t∂xp

)
+ 2gij gkl ∂hik

∂t

∂hjl

∂t

= �
(|A|2) − 2|∇A|2 + 2|A|4 + 2|A|2gpq

(
�n,

∂2X

∂t∂xp

)(
�n,

∂2X

∂t∂xq

)

+ 2gij gkl ∂hik

∂t

∂hjl

∂t
− 8gimgjngklhjl

∂gmn

∂t

∂hik

∂t

− 4gimgjngklhikhjl

(
∂2X

∂t∂xm
,

∂2X

∂t∂xn

)

+ 2gim ∂gpq

∂t

∂gmn

∂t
hikhjl

(
2gjpgnqgkl + gjngkpglq

)

− 4gij gklhjl

∂Γ
p
ik

∂t

(
�n,

∂2X

∂t∂xp

)
.

This proves (5.7). �
6. Relations between hyperbolic mean curvature flow and the equations for extremal
surfaces in the Minkowski space RRR

1,n

In this section, we study the relations between the hyperbolic mean curvature flow and the
equations for extremal surfaces in the Minkowski space R

1,n.
Let v = (v0, v1, . . . , vn) be a position vector of a point in the (1 + n)-dimensional Minkowski

space R
1,n. The scalar product of two vectors v and w = (w0,w1, . . . ,wn) is

〈v,w〉 = −v0w0 +
n∑

viwi.
i=1
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The Lorentz metric of R
1,n reads

ds2 = −dt2 +
n∑

i=1

(
dxi

)2
.

A massless n-dimensional surface moving in (1 + n)-dimensional Minkowski space can be
defined by letting its action be proportional to the (1 + n)-dimensional volume swept out in the
Minkowski space. It is a natural generalization of the massless string theory, and it is interesting
in its own right, as an example in which geometry, classical relativity and quantum mechanics
are deeply connected. Hoppe et al. [1,8] and Huang and Kong [9] have obtained some interesting
results about it.

We are interested in the following motion of an n-dimensional Riemannian manifold in R
1,n+1

with the following parameter

(
t, x1, . . . , xn

) → X̂ = (
t,X

(
t, x1, . . . , xn

))
, (6.1)

where (x1, . . . , xn) ∈ M and X̂(·, t) be a positive vector of a point in the Minkowski space
R

1,n+1. The induced Lorentz metric reads
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ĝ00 = −1 +
(

∂X

∂t
,
∂X

∂t

)
,

ĝ0i = ĝi0 =
(

∂X

∂t
,
∂X

∂xi

)
, (i, j = 1, . . . , n).

ĝij = gij =
(

∂X

∂xi
,

∂X

∂xj

)
(6.2)

By the variational method or by vanishing mean curvature of the sub-manifold M , we can
obtain the following equation for the motion of M in the Minkowski space R

1,n+1

ĝαβ∇α∇βX̂ = ĝαβ

(
∂2X̂

∂xα∂xβ
− Γ̂

γ
αβ

∂X̂

∂xγ

)
= 0, (6.3)

where α,β = 0,1, . . . , n. It is convenient to fix the parametrization partially (see Bordemann and
Hoppe [1]) by requiring

ĝ0i = ĝi0 =
(

∂X

∂t
,
∂X

∂xi

)
= 0. (6.4)

It is easy to see that Eq. (6.3) is equivalent to the following system

(
∂2X

∂t2
,
∂X

∂t

)
− gij

(|Xt |2 − 1
)( ∂2X

∂t∂xi
,

∂X

∂xj

)
= 0, (6.5)

∂2X

∂t2
+ gij

(
∂2X

∂xi∂xj
− Γ k

ij

∂X

∂xk

)(|Xt |2 − 1
) − 1

|Xt |2 − 1

(
∂2X

∂t2
,
∂X

∂t

)
∂X

∂t

+ gkl

(
∂2X

l
,
∂X

)
∂X

k
+ gij

(
∂2X

i
,

∂X

j

)
∂X = 0, (6.6)
∂t∂x ∂t ∂x ∂t∂x ∂x ∂t
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where

|Xt |2 =
(

∂X

∂t
,
∂X

∂t

)
.

We observe that, when ∂X
∂t

→ 0, the limit of Eq. (6.5) reads

gij

(
∂2X

∂t∂xi
,

∂X

∂xj

)
= 0, (6.7)

i.e.,

∂

∂t
det(gij ) = 0. (6.8)

Moreover, Eq. (2.2) is nothing but the limit of Eq. (6.6) as ∂X
∂t

approaches to zero.

Acknowledgments

The authors thank the referee for his/her pertinent comments and valuable suggestions.
C.-L. He would like to thank the Center of Mathematical Sciences at Zhejiang University for
the great support and hospitality. The work of Kong was supported in part by the NNSF of China
(Grant No. 10671124), the NCET of China (Grant No. NCET-05-0390) and the Qiu-Shi Profes-
sor Fellowship from Zhejiang University, China. The work of Liu was supported in part by the
NSF and NSF of China.

References

[1] M. Bordemann, J. Hoppe, The dynamics of relativistic membranes, II: Nonlinear waves and covariantly reduced
membrane equations, Phys. Lett. B 325 (1994) 359–365.

[2] D. Christodoulou, Global solution of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl.
Math. 39 (1986) 267–282.

[3] D. DeTurck, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. 14 (1981) 249–260.
[4] M. Gage, R. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986) 417–491.
[5] M.E. Gurtin, P. Podio-Guidugli, A hyperbolic theory for the evolution of plane curves, SIAM J. Math. Anal. 22

(1991) 575–586.
[6] R. Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215–226.
[7] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl., vol. 26, Springer-Verlag,

Berlin, 1997.
[8] J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, MIT PhD

thesis, 1982, and Elem. Part. Res. J. (Kyoto) 80 (1982) 145.
[9] S.-J. Huang, D.-X. Kong, Equations for the motion of relativistic torus in the Minkowski space R

1+n, J. Math.
Phys. 48 (2007) 083510-1–083510-15.

[10] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990)
285–299.

[11] G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential
Geom. 59 (2001) 353–437.

[12] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980) 43–101.
[13] D.-X. Kong, K.-F. Liu, Wave character of metrics and hyperbolic geometric flow, J. Math. Phys. 48 (2007) 103508-

1–103508-14.
[14] H.G. Rotstein, S. Brandon, A. Novick-Cohen, Hyperbolic flow by mean curvature, J. Cryst. Growth 198–199 (1999)

1256–1261.



390 C.-L. He et al. / J. Differential Equations 246 (2009) 373–390
[15] S.-T. Yau, Review of geometry and analysis, Asian J. Math. 4 (2000) 235–278.
[16] X.-P. Zhu, Lectures on Mean Curvature Flows, Stud. Adv. Math., vol. 32, AMS/IP, 2002.


	Hyperbolic mean curvature flow
	Introduction
	Hyperbolic mean curvature flow
	Exact solutions
	Nonlinear stability
	Evolution of metric and curvatures
	Relations between hyperbolic mean curvature flow and the equations for extremal surfaces in the Minkowski space R- .4 1,n
	Acknowledgments
	References


