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SOME REMARKS ON CIRCLE ACTION ON MANIFOLDS

PING LI AND KEFENG LIU

Abstract. This paper contains several results concerning circle action on almost-complex

and smooth manifolds. More precisely, we show that, for an almost-complex manifold

M2mn(resp. a smooth manifold N4mn), if there exists a partition λ = (λ1, · · · , λu) of weight

m such that the Chern number (cλ1
· · · cλu

)n[M ] (resp. Pontrjagin number (pλ1
· · · pλu

)n[N ])

is nonzero, then any circle action on M2mn (resp. N4mn) has at least n + 1 fixed points.

When an even-dimensional smooth manifold N2n admits a semi-free action with isolated

fixed points, we show that N2n bounds, which generalizes a well-known fact in the free case.

We also provide a topological obstruction, in terms of the first Chern class, to the existence

of semi-free circle action with nonempty isolated fixed points on almost-complex manifolds.

The main ingredients of our proofs are Bott’s residue formula and rigidity theorem.

1. Introduction and main results

Unless otherwise stated, all the manifolds (smooth or almost-complex) mentioned in the

paper are closed, connected and oriented. For almost-complex manifolds, we take the canonical

orientations induced from the almost-complex structures. We denote by superscripts the

corresponding real dimensions of such manifolds. WhenM is a smooth (resp. almost-complex)

manifold, we say M has an S1-action if M admits a circle action which preserves the smooth

(resp. almost-complex) structure.

Given a manifold M and an S1-action, the study of the fixed point set MS1
is an important

topic in geometry and topology. In ([13], p.338), Kosniowski proposed the following conjecture,

which relates the number of fixed points to the dimension of the manifold.

Conjecture 1.1 (Kosniowski). Suppose that M2n is a unitary S1-manifold with isolated

fixed points. If M is not a boundary then this action has at least [n2 ] + 1 fixed points.

Remark 1.2. A weakly almost-complex structure on a manifold M2n is determined by a

complex structure in the vector bundle τ(M2n)⊕R2k for some k, where τ(M2n) is the tangent

bundle of M2n and R2k denotes a trivial real 2k-dimensional vector bundle over M2n. A

unitary S1-manifold means that M2n has a weakly almost-complex structure and S1 acts on

M2n preserving this structure.

Recently, Pelayo and Tolman showed that ([19], Theorem 1), if a symplectic manifold

(M2n, ω) has a symplectic S1-action and the weights induced from the isotropy representations

on the fixed points satisfy some subtle condition, then this action has at least n+1 fixed points.

Remark 1.3. If a symplectic manifold (M2n, ω) has an Hamiltonian S1-action, then the fact

that this action must have at least n+ 1 fixed points is quite well-known. The reason is that
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the fixed points are exactly the critical points of the corresponding momentum map (a perfect

Morse-Bott function) and the even-dimensional Betti numbers of M are all positive. The

conclusion then follows from the Morse inequality. This reason has been explained in details

in the Introduction of [19].

We recall that a partition is a finite sequence λ = (λ1, · · · , λu) of unordered positive integers.

We call
∑u

i=1 λi the weight of this partition λ.

Inspired by the techniques from [19], we will show the following theorem in Section 3, which

is our first main result.

Theorem 1.4. (1) Suppose M2mn is an almost-complex manifold. If there exists a parti-

tion λ = (λ1, · · · , λu) of weight m such that the corresponding Chern number (cλ1 · · · cλu
)n[M ]

is nonzero, then any S1-action on M must have at least n+ 1 fixed points.

(2) Suppose N4mn is a smooth manifold. If there exists a partition λ = (λ1, · · · , λu) of

weight m such that the corresponding Pontrjagin number (pλ1 · · · pλu
)n[M ] is nonzero,

then any S1-action on N must have at least n+ 1 fixed points.

Corollary 1.5. (1) If the Chern number cnm[M ] is nonzero, then for any S1-action on

almost-complex manifold M2mn, it has at least n + 1 fixed points. In particular, if

cn1 [M ] is nonzero, then any S1-action on almost-complex manifold M2n must have at

least n+ 1 fixed points.

(2) If the Pontrjagin number pnm[N ] is nonzero, then for any S1-action on smooth manifold

N4mn, it has at least n + 1 fixed points. In particular, if pn1 [N ] is nonzero, then any

S1-action on N4n must have at least n+ 1 fixed points.

It is a well-known fact that, if a smooth manifold Nn has a free S1-action, then Nn bounds,

i.e., Nn can be realized as the oriented boundary of some smooth, oriented, (n+1)-dimensional

manifold with boundary. Using the language of cobordism theory, [Nn] = 0 ∈ ΩSO
∗ , where

ΩSO
∗ is the oriented cobordism ring. In particular, all the Pontrjagin numbers and Stiefel-

Whitney numbers vanish. This well-known fact is not difficult to prove: Nn is the total space

of the principal S1-bundle over the quotient manifold Nn/S1, of which the structure group is

S1 = SO(2). Then we can extend the action of SO(2) to the 2-disk D2 to get the associated

D2-bundle Nn ×SO(2) D
2, of which the boundary is exactly Nn.

We recall that a circle action is called semi-free if it is free outside the fixed point set or

equivalently, the isotropic subgroup of any point is either trivial or the whole circle. In ([18],

Theorem 1.1), the authors showed that the Pontrjagin numbers of manifolds admitting a

semi-free action with isolated fixed points are all zero. Our following result is a generalization

of both the well-known fact mentioned above and ([18], Theorem 1.1).

Theorem 1.6. If an even-dimensional smooth manifold N2n admits a semi-free S1-action

with isolated fixed points, then N2n bounds. In particular, all the Pontrjagin numbers and

Stiefel-Whitney numbers vanish.

Remark 1.7. In this theorem, the semi-free hypothesis is essential. For example, we can

look at the S1-action on complex projective plane CP 2 given by

[z0 : z1 : z2] → [z0 : t · z1 : t
2 · z2]

for t ∈ S1, where [z0 : z1 : z2] denotes the homogeneous coordinates of CP 2.
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The fixed points of this action are [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. The isotropy subgroup

of the non-fixed point [1 : 0 : 1] is {1,−1} = Z2, which is nontrivial. Hence this action is not

semi-free.

This result tells us that Pontrjagin numbers and Stiefel-Whitney numbers are numerical ob-

structions to the existence of semi-free actions with isolated fixed points on smooth manifolds.

However, in contrast to the smooth case, when an almost-complex manifold (M2n, J) has a

semi-free S1-action with nonempty isolated fixed points, the Chern numbers of (M2n, J) don’t

vanish (see Lemma 3.6). One may ask, in the almost-complex case, whether there still exist

some topological obstructions to the existence of semi-free S1-actions. We know that the first

Chern class plays an important role in complex (almost-complex) manifolds. The following

result provides such an obstruction to the existence of semi-free S1-action on almost-complex

manifolds.

Theorem 1.8. Let (M2n, J) be an almost-complex manifold admitting a semi-free S1-action

with nonempty isolated fixed points. Then the first Chern class c1(M) ∈ H2(M ;Z) is either

primitive or twice a primitive element.

Remark 1.9. For almost-complex manifolds, in the semi-free case with isolated fixed points,

the only known examples are (CP 1)n, equipped with the diagonal S1-action. Note that these

examples are even Hamiltonian S1-actions on symplectic manifolds. In fact, Hattori showed

that ([8]), if a symplectic manifold (M2n, ω) admits a Hamiltonian, semi-free S1-action with

isolated fixed points, then the cohomology ring and the Chern classes of (M2n, ω) are the

same as (CP 1)n. Recently, Gonzalez showed that ([6]) such (M2n, ω) has the same quantum

cohomology ring as (CP 1)n. Moreover, if n = 3, Gonzalez showed that ([7]) (M6, ω) is

equivariantly symplectomorphic to (CP 1)3. While in the almost-complex case, much less is

known. It would be very interesting to find some more topological obstructions.

In Section 2, we will review the Bott’s residue formula and prove a rigidity proposition.

Then in Section 3, the three subsections will be devoted to the proofs of Theorems 1.4, 1.6

and 1.8 respectively.

2. Preliminaries

2.1. Bott’s residue formula.

2.1.1. almost-complex case. Let (M2n, J) be an almost-complex manifold with a circle action

with isolated fixed points, say {P1, · · · , Pr}. In each fixed point Pi, there are well-defined n

integer weights k
(i)
1 , · · · , k

(i)
n (not necessarily distinct) induced from the isotropy representation

of this S1-action on the holomorphic tangent space TpiM in the sense of J . Note that these

k
(i)
1 , · · · , k

(i)
n are nonzero as the fixed points are isolated. Let f(x1, · · · , xn) be a symmetric

polynomial in the variables x1, · · · , xn. Then f(x1, · · · , xn) can be written in an essentially

unique way in terms of the elementary symmetric polynomials f̃(e1, · · · , en), where ei =

ei(x1, · · · , xn) is the i-th elementary symmetric polynomial of x1, · · · , xn.

Now we can state a version of the Bott residue formula
(
cf. [4] or ([2], p.598)

)
which reduces

the computations of Chern numbers of (M2n, J) to {k
(i)
j }, as follows.
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Theorem 2.1 (Bott residue formula). With above notations understood and moreover suppose

the degree of f(x1, · · · , xn) is not greater than n (deg(xi) = 1). Then

(2.1)

r∑

i=1

f(k
(i)
1 , · · · , k

(i)
n )

∏n
j=1 k

(i)
j

= f̃(c1, · · · , cn) · [M ],

where ci is the i-th Chern class of (M2n, J) and [M ] is the fundamental class of M induced

from J .

Remark 2.2. If the degree of f(x1, · · · , xn) is less than n, then the left-hand side of (2.1)

vanishes. If the action has no fixed points (though not necessarily free) it follows that all

Chern numbers are zero.

2.1.2. smooth case. Let N2n be a smooth manifold with a circle action with isolated fixed

points, say {P1, · · · , Pr}. In each fixed point Pi, the tangent space TpiN splits as an S1-

module induced from the isotropy representation as follows

TpiN =

n⊕

j=1

V
(i)
j ,

where each V
(i)
j is a real 2-plane. We choose an isomorphism of C with V

(i)
j relative to which

the representation of S1 on V
(i)
j is given by e

√
−1θ 7→ e

√
−1k

(i)
j θ with k

(i)
j ∈ Z − {0}. We can

assume the rotation numbers k
(i)
1 , · · · , k

(i)
n be chosen in such a way that the usual orientations

on the summands V
(i)
j

∼= C induce the given orientation on TpiN . Note that these k
(i)
1 , · · · , k

(i)
n

are uniquely defined up to even number of sign changes. In particular, their product
∏n

j=1 k
(i)
j

is well-defined.

Let f(x21, · · · , x
2
n) be a symmetric polynomial in the variables x21, · · · , x

2
n. Let σi = σi(x

2
1, · · · , x

2
n)

be the i-th elementary symmetric polynomial in the variables x21, · · · , x
2
n. Then f(x21, · · · , x

2
n)

can be written in an essentially unique way in terms of σ1, · · · , σn, say f̃(σ1, · · · , σn). Then

we have

Theorem 2.3 (Bott residue formula). With above notations understood and moreover suppose

the degree of f(x21, · · · , x
2
n) is not greater than n (deg(xi) = 1). Then

(2.2)
r∑

i=1

f((k
(i)
1 )2, · · · , (k

(i)
n )2)

∏n
j=1 k

(i)
j

= f̃(p1, · · · , pn) · [N ],

where pi is the i-th Pontrjagin class of N and [N ] is the fundamental class of N determined

by the orientation.

Remark 2.4. Since deg(f(x21, · · · , x
2
n)) ≤ n, what possible appear in f̃(p1, · · · , pn) are

p1, · · · , p[n
2
]. f̃(p1, · · · , pn) · [N ] is nonzero only if n is even. If deg(f(x21, · · · , x

2
n)) < n, then

the left-hand side of (2.2) vanishes. If the action has no fixed points (though not necessarily

free), it follows that all Pontrjagin numbers are zero.

2.2. A rigidity result. In this subsection we want to prove a special rigidity result for circle

actions on almost-complex manifolds with isolated fixed points. For more details on the

rigidity of elliptic complexes, see [16] and [17].

For more details on the following paragraphs in this subsection, we recommend the readers

the references [10] or Appendix III of [11]. Let (M2n, J) be an almost-complex manifold with
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first Chern class c1 ∈ H2(M ;Z) divisible by a positive integer d > 1. Then there exists a

complex line bundle L over M such that L⊗d = K, where K is the canonical complex line

bundle of M in the sense of J . Let χ(M,L) be the complex genus ([11], p.18) corresponding

to the characteristic power series

(2.3)
x

1− e−x
· e−

x
d .

Note that the Todd genus corresponds to the characteristic power series x
1−e−x , which means

(2.4) χ(M,L) =
(
ch(L) · td(M)

)
[M ].

Here ch(L) is the Chern character of L and td(M) is the Todd class of M . By (2.4), χ(M,L)

can be realized as the index of a suitable elliptic operator twisted by L (cf. [11], p.167).

Now suppose we have an S1-action on (M2n, J). Consider the d-fold covering S1 → S1

with µ 7→ λ = µd. Then µ acts on M and K through λ. This action can be lifted to L. Then

for any g ∈ S1, we can define the equivariant index χ(g;M,L), which is a finite Laurent series

in g.

Now suppose this circle action on M has isolated fixed points. Using the notations in

Section 2.1.1, we have

Proposition 2.5. Suppose the first Chern class of M is divisible by d > 1. Then the rational

function

r∑

i=1

g

∑n
j=1 k

(i)
j

d

∏n
j=1(1− gk

(i)
j )

is identically equal to 0, where g is an indeterminate.

Proof. Suppose g ∈ S1 is a topological generator. Then the fixed points of the action g are

exactly {P1, · · · , Pr}. Note that the characteristic power series corresponding to χ(M,L) is

(2.3), then the Lefschetz fixed point formula of Atiyah-Bott-Segal-Singer ([2], p.562) tells us

that

χ(g;M,L) =

r∑

i=1

n∏

j=1

g
k
(i)
j

d

1− gk
(i)
j

.

The rigidity result of almost-complex manifolds on the level of d
(
cf. (p.43 and p.58 of [10])

or (p.173 and p.183 of [11])
)
tells us that, for any topological generator g ∈ S1,

χ(g;M,L) ≡ χ(M,L).

Since the topological generators in S1 are dense, we have an identity

χ(M,L) ≡

r∑

i=1

n∏

j=1

g
k
(i)
j

d

1− gk
(i)
j

for any indeterminate g.

For any k
(i)
j ∈ Z− {0}, we have

lim
g→∞

g
k
(i)
j

d

1− gk
(i)
j

= 0.

Therefore,
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r∑

i=1

n∏

j=1

g
k
(i)
j

d

1− gk
(i)
j

≡ 0

for any indeterminate g, which completes the proof. �

Remark 2.6. The appendix III of [11] is only a copy of [10]. Although the results in [10] are

formulated for complex manifolds, the tools and methods can also been applied to almost-

complex manifolds. Hence the results in [10] are also valid for almost-complex manifolds,

which have been pointed out by Hirzebruch himself in his original paper (p.38 of [10] or p.170

of [11]).

3. Proof of main results

3.1. Proof of Theorem 1.4. Now suppose (M2mn, J) is an almost-complex manifold with

some Chern number (cλ1 · · · cλu
)n[M ] 6= 0. Note that any S1-action on M must have at least

one fixed point, otherwise all the Chern numbers of M vanish by Remark 2.2. If the fixed point

set of the S1-action is not isolated, then at least one connected component is a submanifold of

positive dimension. In this case there are infinitely many fixed points. To complete the proof

of the first part of Theorem 1.4, it suffices to consider the S1-actions with nonempty isolated

fixed points.

Like the notations in Section 2.1.1, we assume the isolated fixed points are {P1, · · · , Pr}.

In each fixed point Pi we have mn integer weights k
(i)
1 , k

(i)
2 · · · , k

(i)
mn. Given any partition

λ = (λ1, · · · , λu) of weight m, We define

cλ(i) :=
u∏

t=1

( ∑

1≤j1<j2<···<jλt≤mn

k
(i)
j1
k
(i)
j2

· · · k
(i)
jλt

)
.

Let

(3.1) {cλ(i) | 1 ≤ i ≤ r} = {s1, · · · , sl} ⊂ Z

and define

At :=
∑

1≤i≤r
cλ(i)=st

1
∏mn

j=1 k
(i)
j

, 1 ≤ t ≤ l.

Lemma 3.1. If the Chern number (cλ1 · · · cλu
)n[M ] 6= 0, then at least one of At is nonzero.

Proof. Suppose At = 0 for all t = 1, · · · , l. Then Bott residue formula (2.1) tells us

(cλ1 · · · cλu
)n[M ] =

l∑

t=1

(st)
n ·At = 0.

�

The following lemma is inspired by ([19], Lemma 8).

Lemma 3.2. If r, the number of the fixed points, is no more than n, then At = 0 for all

t = 1, · · · , l.
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Proof. For each i = 0, 1, · · · , r − 1, take

fi(x1, · · · , xmn) =
[ u∏

t=1

( ∑

1≤j1<···<jλt≤mn

xj1xj2 · · · xjλt
)]i

.

Here f0(x1, · · · , xmn) = 1. Note that the degree of fi(x1, · · · , xmn) is mi as the weight of

λ is m, and therefore is less than mn as r ≤ n by assumption. Replacing f(x1, · · · , xmn) in

Theorem 2.1 by fi(x1, · · · , xmn) for i = 0, 1, · · · , r − 1, we have




A1 +A2 + · · ·+Al = 0

s1A1 + s2A2 + · · ·+ slAl = 0
...

(s1)
r−1A1 + (s2)

r−1A2 + · · · + (sl)
r−1Al = 0

(3.2)

Note that l is no more than r by (3.1) and s1, · · · , sl are mutually distinct, which means the

coefficient matrix of the first l lines of (3.2) is the nonsingular Vandermonde matrix. Hence

the only possibility is

A1 = · · · = Al = 0.

�

Combining Lemma 3.1 with Lemma 3.2 will lead to the proof of the first part of Theorem

1.4. The proof of the second part is similar and so we omit it.

Remark 3.3. It is not surprise that Bott’s residue formula we used here is similar to the

Atiyah-Bott-Berline-Vergne localization formula used in [19]. In fact it turns out that Bott’s

residue formula can be put into the framework of the equivariant cohomology theory ([1],

[3]). But Bott’s original formula is more suitable for our purpose. Note that our sufficient

condition (vanishing of some characteristic number) guaranteeing an explicit lower bound of

the number of fixed points relies only on the manifold itself while the sufficient condition in

([19], Theorem 1) relies on the data near the fixed points of the action. But it seems to us

that our result is independent of that of Pelayo-Tolman.

3.2. Proof of Theorem 1.6. In this section we assume that N2n has a circle action with

isolated fixed points and keep the notations of Section 2.1.2 in mind.

The following proposition says, if the action is semi-free, then [N2n] is at most a torsion

element in the oriented cobordism ring ΩSO
∗ .

Proposition 3.4 (Pantilie-Wood). Suppose N2n has a semi-free S1-action with isolated fixed

points. Then all the Pontrjagin numbers of N2n vanish. Equivalently,

[N2n] = 0 ∈ ΩSO
∗ ⊗Q.

The proof of ([18], Theorem 1.1) also uses Bott residue formula, in the language of differ-

ential geometry. Here we give a quite direct topological proof, although the essential is the

same.

Proof. When n is odd, this proposition obviously holds for dimensional reason.

Suppose n is even, say 2q. As noted in Section 2.1.2, in each fixed point Pi, the weights

k
(i)
1 , · · · , k

(i)
n are unique up to even number of sign changes. Since the action is semi-free, all

these k
(i)
j are ±1. Let ρ0 (resp. ρ1) be the number of fixed points with even (resp. odd) −1.
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Take f = 1 in (2.2), we have

(3.3) ρ0 − ρ1 = 0,

which means the number of the fixed points are even.

Let λ = (λ1, · · · , λl) be a partition of q. According to (2.2), the corresponding Pontrjagin

number pλ[N ] = pλ1 · · · pλl
[N ] equals to

(
2q

λ1

)
· · ·

(
2q

λl

)
(ρ0 − ρ1) = 0.

This completes the proof of this proposition. �

In their famous book [5], Conner and Floyd have developed several bordism techniques

and found many interesting applications in manifolds with group actions. In [12], by using

the techniques in [5], Kawakubo and Uchida proved several interesting results related to the

signature of manifolds admitting semi-free circle actions. Among other things, they proved a

result ([12], Lemma 2.2), which localizes the cobordism class of the global manifold to those

of the connected components of the fixed point set. This result is purely constructive and the

key ideas are taken from [5]. For more details, please consult the original paper [12]. Here,

for our purpose, from ([12], Lemma 2.2) we have

(3.4) [N2n] =
∑

Pi

[CPn
∣∣
Pi
] ∈ ΩSO

∗ ,

where CPn
∣∣
Pi

is the n-dimensional complex projective space associated to the fixed point Pi

and given a suitable orientation.

When n is odd, [CPn] = 0 ∈ ΩSO
∗ (cf. [11], p.1) and therefore [N2n] = 0.

When n is even, say 2q, Proposition 3.4 and (3.4) imply

(3.5)
∑

Pi

[CP 2q
∣∣
Pi
] = 0 ∈ ΩSO

∗ ⊗Q.

It is well-known that [CP 2q] is not a torsion element. From (3.3) we have known the number

of the fixed points {Pi} are even. Hence the only possibility that (3.5) holds is that half of the

orientations of such CP 2q
∣∣
Pi

are canonical and half are opposite to the canonical orientation,

which means the right-hand side, and therefore the left-hand side of (3.4) are zero. This

completes the proof of Theorem 1.6.

Remark 3.5. In a recent paper [15], we have generalized some results of [12] and explored

some vanishing results by using the rigidity of elliptic genus.

3.3. Proof of Theorem 1.8. In this subsection, (M2n, J) is an almost-complex manifold

with a semi-free circle action with isolated fixed points. Let ρt be the number of fixed points

of the circle action with exactly t negative weights. In fact these ρt are all related to each

other ([20], Lemma 3.1)

ρt = ρ0 ·

(
n

t

)
, 0 ≤ t ≤ n.

This fact can also be derived from a rigidity result (cf. [14], Theorem 3.2). This fact means

the isolated fixed point set is nonempty if and only if ρ0 > 0.

The following lemma shows that the first Chern class of (M2n, J) is nonzero.
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Lemma 3.6. The Chern number c1cn−1[M ] is equal to ρ0 ·n ·2
n. In particular, if the isolated

fixed points set is nonempty, then c1(M) is nonzero.

Proof. In each fixed point Pi, the n weights k
(i)
1 , · · · , k

(i)
n are all ±1. If the number of −1

among k
(i)
1 , · · · , k

(i)
n is t, then it is easy to check

e1(k
(i)
1 , · · · , k

(i)
n )en−1(k

(i)
1 , · · · , k

(i)
n )

∏n
j=1 k

(i)
j

= (n − 2t)2.

By Bott’s residue formula (2.1) we have

c1cn−1[M ] =

n∑

t=0

ρt(n− 2t)2 = ρ0

n∑

t=0

(
n

t

)
(n− 2t)2 = ρ0 · n · 2n.

�

Now we can prove our last main result, Theorem 1.8.

Proof. Since c1(M) 6= 0, we can assume c1(M) = d · x, where d is a positive integer and

x ∈ H2(M ;Z) is a primitive element. It suffices to show, if d > 1, then d must be 2.

Using Proposition 2.5 we have

0 ≡
n∑

t=0

ρtg
n−2t

d
(−g)t

(1− g)n

= ρ0
g

n
d

(1− g)n

n∑

t=0

(
n

t

)
(−1)tg

(d−2)t
d

= ρ0
g

n
d

(1− g)n
(1− g

d−2
d )n.

If the isolated fixed point set is nonempty, then ρ0 > 0. In this case, the last expression is

identically zero if and only if d = 2. �
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Math. J. 50 (1983), 539-549.

4. R. Bott: Vector fields and characteristic numbers, Michigan Math. J. 14 (1967), 231-244.

5. P.E. Conner, E.E. Floyd: Differential periodic maps, Springer, Berlin, 1964.

6. E. Gonzalez: Quantum cohomology and S1 actions with isolated fixed points , Trans. Amer. Math. Soc.

358 (2006), 2927-2948.

7. E. Gonzalez: Classifying semi-free Hamiltonian S1-manifolds, arXiv: math/0502364, to appear in Int.

Math. Res. Not.

8. A. Hattori: Symplectic manifolds with semifree S1 actions, Tokyo J. Math. 15 (1992), 281-296.

http://arxiv.org/abs/math/0502364


10 PING LI AND KEFENG LIU

9. F. Hirzebruch: Topological methods in algebraic geometry, 3rd Edition, Springer, Berlin (1966).

10. F. Hirzebruch: Elliptic genera of level N of complex manifolds, Elliptic genera of level N for complex

manifolds. Differential geometrical methods in theoretical physics, Kluwer Acad. Publ., Dordrecht, (1988),

37-63.

11. F. Hirzebruch, T. Berger, R. Jung: Manifolds and modular forms, Aspects of Mathematics, E20, Friedr.

Vieweg and Sohn, Braunschweig, 1992.

12. K. Kawakubo, F. Uchida: On the index of a semi-free S1-action, J. Math. Soc. Japan. 23 (1971), 351-355.

13. C. Kosniowski: Some formulae and conjectures associated with circle actions, Topology Symposium,

Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), pp. 331-339, Lecture Notes in Math., 788,

Springer, Berlin, 1980.

14. P. Li: The rigidity of Dolbeault-type operators and symplectic circle actions , arXiv: 1007.4665.

15. P. Li, K. Liu: Circle action and some vanishing results on manifolds, arXiv: 1012.1507.

16. K. Liu: On elliptic genera and theta-functions, Topology. 35 (1996), 617-640.

17. K. Liu: On modular invariance and rigidity theorems, J. Differential Geom. 41 (1995), 343-396.

18. R. Pantilie, J.C. Wood: Topological restrictions for circle actions and harmonic morphisms, Manuscripta

Math. 110 (2003), 351-364.

19. A. Pelayo, S. Tolman: Fixed points of symplectic periodic flows, arXiv: 1003.4787, to appear in Ergodic

Theory and Dynamical Systems.

20. S. Tolman, J. Weitsman: On semifree symplectic circle actions with isolated fixed points, Topology. 39

(2000), 299-309.

Department of Mathematics, Tongji University, Shanghai 200092, China

E-mail address: pingli@tongji.edu.cn

Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095,

USA and Center of Mathematical Science, Zhejiang University, 310027, China

E-mail address: liu@math.ucla.edu


	1. Introduction and main results
	2. Preliminaries
	2.1. Bott's residue formula
	2.2. A rigidity result

	3. Proof of main results
	3.1. Proof of Theorem ??
	3.2. Proof of Theorem ??
	3.3. Proof of Theorem ??

	References

