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Finer filtration for matrix-valued cocycle based on Oseledeč’s
multiplicative ergodic theorem✩

Xiongping Dai

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Abstract

We consider a measurable matrix-valued cocycleA : Z+ × X → R
d×d, driven by a measure-

preserving transformationT of a probability space (X,F , µ), with the integrability condition
log+ ‖A(1, ·)‖ ∈ L1(µ). We show that forµ-a.e.x ∈ X, if lim n→∞

1
n log‖A(n, x)v‖ = 0 for all

v ∈ Rd \ {0}, then the trajectory{A(n, x)v}∞n=0 is far away from 0 (i.e. lim supn→∞ ‖A(n, x)v‖ > 0)
and there is some nonzerov such that lim supn→∞ ‖A(n, x)v‖ ≥ ‖v‖. This improves the classical
multiplicative ergodic theorem of Oseledeč. We here present an application to linear random
processes to illustrate the importance.

Keywords: Multiplicative ergodic theorem, conditional stability oflinear random process.
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1. Introduction

Throughout this paper, letRd×d, 1 ≤ d < ∞, represent the space of all reald × d matrices,
endowed with the matrix/operator norm‖‖‖ · ‖‖‖ induced by an arbitrarily given (but not necessarily
the usual Euclidean) vector norm‖ · ‖ onRd. By Z+ we mean the set of all nonnegative integers.
Let

T : X→ X

be a measure-preserving transformation of a probability space (X,F , µ), which is not necessar-
ily ergodic. If X is a Polish space andF is the Borelσ-field, then we call (X,F , µ) a Polish
probability space. In this paper, we consider a measurable matrix-valued cocycle

A : Z+ × X→ R
d×d, (1.1)

driven byT; that is, it holds the following cocycle property:

A(0, x) = Id×d, A(m+ n, x) = A(n,Tm(x))A(m, x) ∀x ∈ X andm, n ∈ Z+.

Here and in the sequel, Id×d stands for the unit matrix inRd×d, and we will identifyB ∈ R
d×d

with its induced linear transformationu 7→ Bu fromR
d into itself. Write

log+ ‖‖‖A(1, x)‖‖‖ := max
{

0, log‖‖‖A(1, x)‖‖‖
}
.

Then the classical Oseledeč multiplicative ergodic theorem may be stated as:
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Oseleděc’s multiplicative ergodic theorem ([19]). If log+ ‖‖‖A(1, ·)‖‖‖ ∈ L1(µ), then there exists
B ∈ F with T(B) ⊆ B andµ(B) = 1 such that:

(a) There is a measurable function s: B→ N with s◦ T = s.
(b) If x belongs to B there are s(x) numbers−∞ = λ1(x) < λ2(x) < · · · < λs(x)(x) < ∞.

(c) There are measurable linear subspaces ofR
d:

∅ = V(0)(x) ⊂ V(1)(x) ⊂ · · · ⊂ V(s(x))(x) = R
d ∀x ∈ B.

(d) If x ∈ B and1 ≤ i ≤ s(x) then for all v∈ V(i)(x) \ V(i−1)(x),

lim
n→∞

1
n

log‖A(n, x)v‖ = λi(x).

(e) The functionλi(x) is defined and measurable on{x | s(x) ≥ i} andλi(T(x)) = λi(x) on this
set.

(f) A(1, x)V(i)(x) ⊆ V(i)(T(x)) if i ≤ s(x).

We note here that in our statement of Oseledeč’s theorem above, we see−∞ as the smallest
Lyapunov exponent ofA at x for the zero vector. Sos(x) ≤ d + 1 and sometimesV(1)(x) = {0}.
In Oseledeč’s original statement ([19] also [24, Theorem 10.2]), ones do not care the zero vector
and thenV(0)(x) = {0} for this case.

1.1. Motivation

With the above Oseledeč multiplicative ergodic theorem inmind, we will further consider
the following two important questions:

(1) Does it hold that for 2≤ i ≤ s(x),

lim sup
n→∞

e−λi(x)n‖A(n, x)v‖ > 0
(

or lim inf
n→∞

e−λi(x)n‖A(n, x)v‖ > 0
)

for all v ∈ V(i)(x) \ V(i−1)(x)?

(2) Does it hold that
lim sup

n→∞
e−λi(x)n‖‖‖A(n, x)|V(i)(x)‖‖‖ ≥ 1

and
lim sup

n→∞
e−λi(x)n‖A(n, x)v‖ ≥ ‖v‖ v ∈ V(i)(x) \ V(i−1)(x)

for 2 ≤ i ≤ s(x)?

Even in the invertible case, the above two properties are already beyond the improved multiplica-
tive ergodic theorem of Froyland, LLoyd and Quas [12].

These properties (1) and (2) are important to the stabilizability problem of linear switching
dynamical systems; see, e.g., [10, 11] and an application presented later.
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1.2. Main statement

In this paper, our aim is to further employ the filtration given by Oseledeč’s theorem. Our
main theorem is stated as follows.

Theorem 1.1 (MET). Let T be a measure-preserving transformation of a probability space
(X,F , µ) and A : Z+ × X→ R

d×d measurable such thatlog+ ‖‖‖A(1, ·)‖‖‖ ∈ L1(µ). Then there exists
a set B∈ F with T(B) ⊆ B andµ(B) = 1 such that:

(a) There is a measurable function s: B→ N with s◦ T = s.
(b) If x belongs to B there are s(x) numbers−∞ = λ1(x) < λ2(x) < · · · < λs(x)(x) < ∞.
(c) There are measurable linear subspaces ofR

d:

∅ = V(0)(x) ⊂ V(1)(x) ⊂ · · · ⊂ V(s(x))(x) = R
d ∀x ∈ B.

(d) If x belongs to B, then
(i) for 1 ≤ i ≤ s(x),

lim
n→∞

1
n

log‖A(n, x)v‖ = λi(x) ∀v ∈ V(i)(x) \ V(i−1)(x);

(ii) for 2 ≤ i ≤ s(x),

lim sup
n→∞

e−λi(x)n‖A(n, x)v‖ > 0 ∀v ∈ V(i)(x) \ V(i−1)(x)

and

lim sup
n→∞

e−λi(x)n‖‖‖A(n, x)|V(i)(x)‖‖‖ ≥ 1;

(iii) if we additionally let T be measure-preserving on a Polish probability space(X,F , µ),
then for2 ≤ i ≤ s(x) one can find some vi ∈ V(i)(x) \ V(i−1)(x) such that

lim sup
n→∞

e−λi(x)n‖A(n, x)vi‖ ≥ ‖vi‖.

(e) The functionλi(x) is defined and measurable on{x | s(x) ≥ i} andλi(T(x)) = λi(x) on this
set.

(f) For any x∈ B and all1 ≤ i ≤ s(x),
(i) A(1, x)V(i)(x) ⊆ V(i)(T(x)) and
(ii) dim V(i)(T(x)) = dimV(i)(x).

This result improves the classical Oseledeč multiplicative ergodic theorem and its recent
improved version of Froyland, LLoyd and Quas [12, Theorem 4.1] by the items (d)-(ii), (iii) and
(f)-(ii). If µ is ergodic, thens(x) andλi(x), for 1 ≤ i ≤ s(x), all are constants mod 0 under the
sense of the probability measureµ.

Remark 1. Although for eachv ∈ V(i)(x) \ V(i−1)(x) for 2 ≤ i ≤ s(x), e−λi (x)n A(n, x)v has the
Lyapunov exponent zero, yete−λi (x)nA(n, x)v might converge asymptotically to 0 for some base
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pointsx ∈ B. Even if we additionally impose the condition thatA is uniformly product-bounded,1

i.e.,
∃ β ≥ 1 such that‖‖‖A(n, x)‖‖‖ ≤ β ∀n ∈ Z+ andx ∈ X,

this phenomenon still possibly happens (cf. Example2.5 in Section2.1) for i = s(x). Thus the
properties (d)-(ii) and (iii) of Theorem1.1 are the main nontrivial new points here; and our
theorem is more finer than Oseledeč’s theorem.

On the other hand, without the uniform product-boundednesscondition our Theorem1.1 is
also beyond the situation of Morris [18, Theorems 2.1 and 2.2].

Remark 2. For anyx ∈ B and 1≤ i ≤ s(x), we write

V̂(i)(x) = V(i)(x) ∩ V(i−1)(x)⊥.

Now for anyv ∈ V̂(i)(x) andn ≥ 1, let Â
(i)

(n, x)v be the projection ofA(n, x)v onto V̂(i)(Tn(x)).

It is easy to see that̂A
(i)

(m+ n, x)v = Â
(i)

(n,Tm(x)) Â
(i)

(m, x)v. Thus we can define the linear
transformations

Â
(i)

(n, x) : V̂(i)(x)→ V̂(i)(Tn(x)).

Based on the property (f) of Theorem1.1we have

R
d = V̂(1)(x) ⊕ · · · ⊕ V̂(s(x))(x).

Moreover from the property (f) of Theorem1.1,

Â(n, x) : V̂(1)(x) ⊕ · · · ⊕ V̂(s(x))(x)→ V̂(1)(Tn(x)) ⊕ · · · ⊕ V̂(s(x))(Tn(x)),

defined by

v = v1 + · · · + vs(x) 7→ Â(n, x)v = Â
(1)

(n, x)v1 + · · · + Â
(s(x))

(n, x)vs(x),

induces a natural cocyclêA : Z+ × X → R
d×d, for µ-a.e.x ∈ X which has the same Lyapunov

exponents−∞ = λ1(x) < λ2(x) < · · · < λs(x)(x) < ∞ associated to thêA-invariant direct
decomposition̂V(1)(x)⊕ · · ·⊕ V̂(s(x))(x) and the same stability asA according to Liao’s version of
the multiplicative ergodic theorem (cf. [17] and also see [9]).

Since our driving systemT is not necessarily to be invertible, there is no such anA-invariant
direct decomposition ofRd corresponding to the Lyapunov exponents, the induced cocycle Â
should be useful.

Remark 3. For the filtration given by Theorem1.1, it is possible that

lim inf
n→∞

e−λi(x)n‖‖‖A(n, x)|V̂(i)(x)‖‖‖min = 0, 2 ≤ i ≤ s(x),

for µ-a.e.x ∈ X; for example,A(n, x) ≡
[

1 n
0 1

]
for all x ∈ X andn ≥ 1. For whichλ2(x) ≡ 0 is a

Lyapunov exponent of multiplicity 2 andV(1)(x) ≡ {0}, V̂(2)(x) ≡ R
2.

1It should be noted that since here
⊔

n≥0{A(n, x) | x ∈ X} does not need to be a semigroup under the matrix mul-
tiplication, we cannot choose a “good” norm‖ · ‖∗ on R

d so that‖‖‖A(1, x)‖‖‖∗ ≤ 1 for all x ∈ X under this uniform
product-boundedness condition.
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1.3. Outline

The remains of this paper will be simply organized as follows. We shall prove our main result
Theorem1.1 in Section2 based on Oseledeč’s theorem and its improved version of Froyland,
LLoyd and Quas [12, Theorem 4.1], and a series of lemmas. We will present an application to
asymptotical stability of linear random processes (Theorem 3.5) in Sections3.

2. Finer filtration of a linear cocycle

This section will be devoted to proving our main results Theorem 1.1 stated in Section1.
Besides Oseledeč’s multiplicative ergodic theorem stated in Section1, we will need a series of
independently interesting lemmas here including the measurability of stable manifolds and the
non-oscillatory behavior of subadditive random process.

2.1. The measurability of stable manifolds

Let T : X→ X be a measurable transformation on a measurable space (X,F ), whereX does
not need to be a topological space, and we simply writeT t(x) = t · x for all t ∈ Z+. From now
on, let A : Z+ × X → R

d×d be a measurable matrix-valued cocycle driven byT, which is not
necessarily to satisfy the integrability condition.

For an arbitrary integerp with 0 ≤ p ≤ d, byG (p,Rd) we denote the set of allp-dimensional
subspaces ofRd and set

G (Rd) =
d⊔

p=0

G (p,Rd),

where
⊔

means the disjoint union. We equipG (Rd) with the standard compact topology induced
by the Hausdorffmetric DH(·, ·), i.e., for anyV,W ∈ G (Rd),

DH(V,W) = max

{
sup
v∈V♯

min
w∈W♯
‖v− w‖, sup

w∈W♯
min
v∈V♯
‖w− v‖

}

whereV♯ = {v ∈ V : ‖v‖ = 1} if dim V > 0 andV♯ = {0} if dim V = 0. Here‖ · ‖ is the given
vector norm onRd as before.

For anyx ∈ X, we set

Vs(x) =
{

u ∈ Rd : ‖A(t, x)u‖ → 0 ast→ ∞
}
. (2.1)

It is a linear subspace ofRd with the invariance

A(t, x)Vs(x) ⊆ Vs(t · x) ∀t ∈ Z+ (2.2)

and we call it the “stable manifold/direction” of A over the driving base pointx.
As to be shown by Example2.5 below,Vs(x) is not necessarily equal to the exponentially

stable space

Es(x) =

{
u ∈ Rd : lim

n→∞

1
n

log‖A(n, x)u‖ < 0

}
. (2.3)

Hence the measurability ofVs(x) with respect to the base pointx is not an obvious consequence
of the classical multiplicative ergodic theorem.

To prove Theorem1.1stated in Section1, we need to use the following preliminary result on
the regularity ofVs(x) respectingx in the natural measure-theoretic sense.
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Theorem 2.1. Under the situation above and given any probability measureµ on (X,F ), there
exists anF -measurable functionη : X→ G (Rd) such that

η(x) = Vs(x) and dimVs(x) ≥ dimVs(n · x) ∀n ≥ 1

for µ-a.e. x∈ X.

To prove this theorem, we first introduce some classical results in measure theory. For a prob-
ability measureµ on the measurable space (X,F ), let Fµ be the “completion” ofF respecting
µ, as theσ-field Fµ = σ(F ∪Nµ), whereNµ denotes the class of all subsets of arbitraryµ-null
sets inF . Then, the “universal completion” ofF is defined as theσ-field F ∗ =

⋂
µFµ, where

the intersection extends over all probability measuresµ onF .
Then not onlyµ has a unique extension fromF to theσ-field Fµ but alsoT is a measure-

preserving transformation of (X,Fµ, µ). This completion enables us using some classical results
in measure theory.

Lemma 2.2(Completion). Let (Y,BY) be a Borel measurable space andµ a probability measure
on (X,F ). Then, a function f: X → Y is Fµ/BY-measurable if and only if there exists some
F/BY-measurable function g: X→ Y such that f(x) = g(x) for µ-a.e. x∈ X.

This result is well known and can be found in many textbooks onreal analysis and probability,
for example, in [14, Lemma 1.25]. The following is another classical result needed.

Lemma 2.3 (Projection and Sections; Lusin, Choquet, Meyer; see [14, Theorem A1.4]). Let
(Y,BY) be an arbitrary Borel measurable space andπ : X × Y → X the canonical projection
defined by(x, y) 7→ x. Then for any B∈ F ⊗BY,

(i) π(B) belongs toF ∗;
(ii) for any probability measureµ on F , there exists aFµ-measurable elementη : X → Y,

which is such that(x, η(x)) ∈ B for µ-a.e. x∈ π(B).

As a result, we can obtain the following from Lemma2.3.

Lemma 2.4. Let (Y,BY) be an arbitrary Borel measurable space,µ a probability measure on
(X,F ), andπ : X × Y→ X the canonical projection. Then for any B∈ Fµ ⊗BY,

(i) π(B) belongs toFµ;
(ii) there exists aFµ-measurable elementη : X→ Y such that(x, η(x)) ∈ B forµ-a.e. x∈ π(B).

Proof. This result follows from Lemma2.3 with Fµ in place ofF and the simple fact that
(Fµ)µ = Fµ.

We think ofR+ = [0,+∞) ∪ {+∞} as the one-point compactification ofR+; thenR+ is an
open subset ofR+. We are now ready to complete the proof of Theorem2.1.

Proof of Theorem2.1. Based on the measurable cocycleA, let fn : X × G (Rd)→ R+ be defined
as fn(x, L) = ‖‖‖A(n, x)|L‖‖‖ for all (x, L) ∈ X × G (Rd), for n = 1, 2, . . . . Clearly, fn is naturally
measurable. Set

f̄ (x, L) = lim sup
n→∞

fn(x, L) ∀(x, L) ∈ X × G (Rd).
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Then f̄ : X × G (Rd)→ R+ is also naturally measurable. Let

æ=
{

f̄ = 0
}
=
⊔

x∈X
æx, where æx =

{
L : f̄ (x, L) = 0

}
.

Then æ is aF ⊗BG (Rd)-set and æx is aBG (Rd)-set.
We note thatVs(x) ∈ æx, L ⊆ Vs(x) for L ∈ æx, and dimVs(x) = max{dimL : L ∈ æx} for

eachx ∈ X. As the function (x, L) 7→ dimL is measurable fromX × G (Rd) into the discrete-
topological space{0, 1, . . . , d}, from repeatedly using the item (i) of Lemma2.3 we can easily
obtain thatB := {(x,Vs(x)) | x ∈ X} is aF ∗/BG (Rd)-set.

Now from Lemma2.4 with Y = G (Rd), it follows that there is an æ̂ :X → G (Rd) that is
Fµ/BG (Rd)-measurable such that æ̂(x) = Vs(x) for µ-a.e.x ∈ X. Then from Lemma2.2, one can
find someF/BG (Rd)-measurableη : X→ G (Rd) satisfying the requirement of Theorem2.1.

Finally we note that dim(Vs(x))⊥ ≤ dim(Vs(t · x))⊥ and hence dimVs(x) ≥ dimVs(t · x) for
all t ≥ 1 andx ∈ X.

This completes the proof of Theorem2.1.

If Vs(x) = Es(x) mod 0, then for Theorem2.1 there is nothing needed to prove from the
property (c) of Oseledeč’s multiplicative ergodic theorem. The following example shows that
the proof of Theorem2.1 is nontrivial even though under an additional condition—the uniform
product-boundedness.

Let Σ+2 = {σ : Z+ → {0, 1}} be the one-sided symbolic space and

T : σ = (σ(n))n≥0 7→ σ(· + 1) = (σ(n+ 1))n≥0

the classical one-sided shift transformation onΣ+2 .

Example 2.5. Driven by the shift transformationT, let A : Z+×Σ+2 → R
2×2 be naturally induced

by A = {A0, A1} with

A0 =

[
1 0
0 1

]
and A1 =

[
1
2 0
0 1

]
, i.e., A(n, σ) = Aσ(n−1) · · ·Aσ(0) ∀n ≥ 1.

Clearly A is uniformly product-bounded. By induction we now construct a switching sequence
σ over whichA(t,σ)v converges to 0 but not exponentially fast ast → ∞ for some initial state
v , 0.

To this end, for a wordw = (i0, . . . , ik−1) ∈ {0, 1}k, let |w| = k denote the length of the word
w and Ok stand for thek-length word consisting ofk numbers of 0, i.e, Ok = (0, . . . , 0) ∈ {0, 1}k.
For any pair of wordsu = (u1, . . . , uk) andw = (w1, . . . ,wm), we set

uw= (u1, . . . , uk,w1, . . . ,wm) ∈ {0, 1}k+m

Letσ1 = (1),σ2 = (σ1O|σ1|2σ1). Inductively, forn ≥ 2, let

σn = (σn−1O|σn−1|2σn−1) and σ = lim
n→∞
σn.

A routine check shows that forv =

(
1
0

)
∈ R2,

lim
n→∞
‖Aσ(n−1) · · ·Aσ(0)v‖ = 0
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and

lim sup
n→∞

1
n

log‖Aσ(n−1) · · ·Aσ(0)v‖ = lim
n→∞

n
n2

log
1
2
= 0.

So the convergence is not exponentially fast based on the switching sequenceσ.

This completes the construction of Example2.5.

2.2. Non-oscillatory behavior of a subadditive random process

To prove our Theorem1.1, we will need a result similar to Giles Atkinson’s theorem onaddi-
tive cocycles [2]. Atkinson’s theorem (together with a result of K. Schmidt)asserts the following.

Lemma 2.6 (Atkinson). If T : (X,F , µ) → (X,F , µ) is an ergodic measure-preserving auto-
morphism and f: X → R is an integrable function with

∫
X f dµ = 0, then forµ-a.e. x∈ X the

sum
∑n−1

k=0 f (Tkx) returns arbitrarily close to zero infinitely often.

The following similar lemma has not previously been formally published, but arose in discus-
sion between Dr. Vaughn Climenhaga and Dr. Ian Morris on the MathOverflow internet forum,
where their proof is adapted from G. Atkinson’s argument.2

Lemma (Climenhaga and Morris). Let T be an ergodic measure-preserving transformation of
a probability space(X,F , µ), and let( fn)n≥1 be a sequence of integrable functions from X toR,
which satisfies the subadditivity relation:

fn+m(x) ≤ fn(Tmx) + fm(x) for µ-a.e. x∈ X and n,m≥ 1.

Suppose thatlimn→∞ fn(x) = −∞ for µ-a.e. x∈ X. Thenlimn→∞n−1
∫

X fn(x)dµ(x) < 0.

Now we will introduce a general result of independent interest, which is a generalization of
the above lemma and [10, Theorem 2.4].

Theorem 2.7. Let T be a measure-preserving, not necessarily ergodic, transformation of a prob-
ability space(X,F , µ), and let( fn)n≥1 be a sequence of measurable functions from X toR∪{−∞}
with f+1 ∈ L1(µ), which satisfies the subadditivity relation:

fn+m(x) ≤ fn(Tmx) + fm(x) for µ-a.e. x∈ X and n,m≥ 1.

Let F(x) = lim supn→∞ fn(x) for x ∈ X. Then the symmetric difference

{x ∈ X | F(x) < 0} △
{

x ∈ X | limn→∞n−1 fn(x) < 0
}

hasµ-measure0.

2Cf. http://mathoverflow.net/questions/70676/ for the details. We would like to thank those authors for agreeing to the
inclusion of this lemma in the present document.
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Proof. By the Kingman subadditive ergodic theorem (cf. [24, Theorem 10.1]), there exists a
measurable functionf : X→ R ∪ {−∞} such that

lim
n→∞

1
n

fn(x) = f (x) for µ-a.e.x ∈ X.

LetΛ = {x ∈ X | F(x) < 0}. It is a measurable subset ofX, sinceF(x) is measurable. Then from
Λ ⊇ {x ∈ X | f (x) < 0}, our task is to show that

µ({x ∈ X | f (x) < 0}) ≥ µ(Λ). (2.4)

Without loss of generality, assumeµ(Λ) > 0; otherwise we need to prove nothing.
Let ε > 0 be arbitrarily given withε ≪ µ(Λ). BecauseF(x) < 0 for all x ∈ Λ, we can find a

constantα > 0 for whichΛ1 = {x ∈ Λ | F(x) ≤ −2α} is anF -set such thatµ(Λ1) ≥ µ(Λ) − ε3.
Sinceε is arbitrary, to prove (2.4) it is sufficient to show that

µ({x ∈ X | f (x) < 0}) > µ(Λ) − ε. (2.5)

To this end, givenx ∈ Λ1, let Mx = {n | fn(x) ≥ −α}, and observe thatMx is only finite for all
x ∈ Λ1. Thus writingAn = {x ∈ Λ1 | #(Mx) < n} where # stands for the cardinality of a set, we
see thatAn is anF -set and that there exists an integerN > 1 such thatµ(AN) ≥ µ(Λ1) − ε3.

From the Birkhoff ergodic theorem, we have that

lim inf
n→∞

1
n

n−1∑

j=0

1AN(T j(x)) = 1∗AN
(x) a.e. and

∫

X
1∗AN

(x)dµ(x) = µ(AN).

Let X1 = {x ∈ X | 1∗AN
(x) > 0}. Since 0≤ 1∗AN

(x) ≤ 1, we haveµ(X1) ≥ µ(AN). Thus to prove
(2.5), we need only prove thatf (x) < 0 for all x ∈ X1.

For that, we fix such anx ∈ X1 from now on. SinceAn ⊆ An+1 and 1∗An
≤ 1∗An+1

mod 0 for all
n ≥ 1, we can take an integerK > N such that 1∗AK

(x) > 1
K . Write Lx = {k ≥ 0 |Tk(x) ∈ AK }. So,

#(Lx ∩ [1, n]) ≥ n
K

(2.6)

for all sufficiently largen.
Let k0 be the smallest element ofLx and definef0 ≡ 0 mod 0. We define integerski ∈ Lx, for

i = 1, 2, · · · , recursively with the property that

fki (x) < fk0(x) − iα, (2.7)

as follows. LetJi be theK smallest elements ofLx ∩ (ki ,∞). BecauseTki (x) ∈ AK , there exists
ki+1 ∈ Ji such thatki+1 − ki < MTki (x). In particular, we have

fki+1−ki (T
ki (x)) < −α. (2.8)

Now subadditivity gives

fki+1(x) ≤ fki (x) + fki+1−ki (T
ki (x)) < fk0(x) − (i + 1)α.

The next observation to make is that by (2.6), we can obtain

ki ≤ K2i for all sufficiently largei (2.9)
9



by consideringn = K2i in (2.6). Thus by (2.7) we have

1
ki

fki (x) ≤ 1
K2i

(
fk0(x) − iα

)
,

and lettingi → ∞ we obtainf (x) ≤ − αK2 , as desired.
This completes the proof of Theorem2.7.

Remark 4. We note that checkingF(x) < 0 in Theorem2.7 is relatively easier than checking
limn→∞ fn(x) = −∞. In addition, it should be noted here that since (X,F , µ) is not necessarily
a Lebesgue space, Rohlin’s ergodic decomposition theorem does not work forT here and then
Theorem2.7is not a corollary of the above lemma proposed by Ian Morris. Our proof is mainly
adapted from that of [10, Theorem 2.4] and V. Climenhaga.

Remark 5. In Lemma2.6, the condition of f belonging toL1(µ) is a technical obstruction
for us to use Atkinson’s theorem; for example, lettingA: X → R

d×d being measurable with
supx∈X ‖‖‖A(x)‖‖‖ < ∞ then the characteristic functionϕ(x, v) = log‖A(x)v‖ defined on the trivial
unit-vector bundleX × Sd−1 is not necessarily integrable butϕ+(x, v) = log+ ‖A(x)v‖ and hence
ϕ+ is integrable, as in the proof of Theorem2.13later.

2.3. The trajectory starting from nonstable direction is far away from zero

Let T : X→ X be a measure-preserving transformation on a probability space (X,F , µ) and
A : Z+ × X → R

d×d a measurable cocycle driven byT, whereµ is not necessarily to be ergodic
with respect toT. For anyx ∈ X, as in (2.1) we set

Vs(x) =
{

v ∈ Rd : ‖A(t, x)v‖ → 0 ast → ∞
}
. (2.10)

Clearly A(t, x)Vs(x) ⊆ Vs(T t(x)) for all t ≥ 1. From Theorem2.1, there is no loss of generality
in assuming

X ∋ x 7→ Vs(x) ∈ G (Rd)

is a measurable function, replacingX by someT-invariantB-set ofµ-measure 1 if necessary.
We will utilize the following simple result.

Lemma 2.8. For any linear subspace L⊆ R
d and x∈ X, the following statements are equivalent

to each other:

(a) limt→∞ ‖‖‖A(t, x)|L‖‖‖ = 0.
(b) limt→∞ ‖A(t, x)v‖ = 0 for all v ∈ L.

In the following theorem the new element needed to be proved is only the property (2.13)
from the viewpoint of Oseledeč’s multiplicative ergodic theorem.

Theorem 2.9. Let A : Z+ × X → R
d×d be measurable such thatlog+ ‖‖‖A(1, ·)‖‖‖ ∈ L1(µ). Then

there exists a set B′ ∈ F with Tt(B′) ⊆ B′ for all t ≥ 1 andµ(B′) = 1, such that for any x∈ B′,

λ(x, v) = lim
t→∞

1
t

log‖A(t, x)v‖ < 0 ∀v ∈ Vs(x) (2.11)

λ(x, v) = lim
t→∞

1
t

log‖A(t, x)v‖ ≥ 0 ∀v ∈ Rd \ Vs(x), (2.12)
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and if Vs(x) , R
d then

lim sup
t→∞

‖A(t, x)v‖ > 0 ∀v ∈ Rd \ Vs(x), (2.13a)

lim sup
t→∞

‖‖‖A(t, x)‖‖‖ ≥ 1. (2.13b)

Proof. First it easily follows, from Oseledeč’s multiplicative ergodic theorem, that one can find
anF -setB′ ⊂ X with T t(B′) ⊆ B′ for all t ∈ Z+ andµ(B′) = 1 such that there exists an invariant
measurable function

B′ ∋ x 7→ Es(x) ∈ G (Rd) (2.14)

with the properties:

λ(x, v) = lim
t→∞

1
t

log‖A(t, x)v‖ < 0 ∀v ∈ Es(x)

and

λ(x, v) = lim
t→∞

1
t

log‖A(t, x)v‖ ≥ 0 ∀v ∈ Rd \ Es(x).

From Lemma2.8and (2.10), it follows that for allx ∈ B′,

lim
t→∞
‖‖‖A(t, x)|Vs(x)‖‖‖ = 0 (2.15)

and

Es(x) ⊆ Vs(x). (2.16)

Then from Theorem2.7with fn(x) = log‖‖‖A(t, x)|Vs(x)‖‖‖ for all x ∈ X andn ≥ 1, it follows that
for µ-a.e.x ∈ X,

lim
t→∞

1
t

log‖‖‖A(t, ω)|Vs(x)‖‖‖ < 0.

ThereforeEs(x) = Vs(x) for µ-a.e.x ∈ X. This proves (2.13a).
The property (2.13b) follows from (2.13a) and Theorem2.7 with fn(x) = log‖‖‖A(t, x)‖‖‖ and

X = {x: Vs(x) , R
d}.

This thus completes the proof of Theorem2.9.

The property (2.13) of Theorem2.9 shows that over almost every driving pointsx, for any
nonzero initial statev0 < Vs(x), the state trajectoryA(t, x)v0 would be far away from the equilib-
rium 0 as timet passes.

2.4. Finer filtration of Matrix-valued cocycles

To prove the property (f)-(ii) of Theorem1.1, we need the following lemma.

Lemma 2.10. Let T be a measure-preserving transformation of(X,F , µ) and h: X → R be a
random variable. If h◦ T ≤ h a.e. then h◦ T = h a.e.

Proof. If the statement fails, there is a rationalr with µ({x: h > r > h ◦ T}) > 0. Then we have
µ({x: h > r}) > µ({x: h ◦ T > r}), but these measures are equal sinceT is measure-preserving
andT−1({x: h > r}) ⊆ {x: h ◦ T > r}, a contradiction, proving the assertion.
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As a result of this lemma, we can easily get the following.

Corollary 2.11. Under the same situation of Theorem2.1, dimVs(x) = dimVs(n · x) for µ-a.e.
x ∈ X and for any n> 0.

Now we are ready to prove our Theorem1.1. We will first prove the following elementary
version except the item (d)-(iii).

Theorem 2.12.Let T be a measure-preserving transformation of the probability space(X,F , µ)
and A : Z+ × X → R

d×d measurable such thatlog+ ‖‖‖A(1, ·)‖‖‖ ∈ L1(µ). Then there exists a set
B ∈ F with T(B) ⊆ B andµ(B) = 1 such that:

(a) There is a measurable function s: B→ N with s◦ T = s.
(b) If x belongs to B there are s(x) numbers−∞ = λ1(x) < λ2(x) < · · · < λs(x)(x) < ∞.
(c) There are measurable linear subspaces ofR

d:

∅ = V(0)(x) ⊂ V(1)(x) ⊂ · · · ⊂ V(s(x))(x) = R
d ∀x ∈ B.

(d) If x belongs to B, then
(i) for 1 ≤ i ≤ s(x),

lim
n→∞

1
n

log‖A(n, x)v‖ = λi(x) ∀v ∈ V(i)(x) \ V(i−1)(x);

(ii) for 2 ≤ i ≤ s(x),

lim sup
n→∞

e−λi(x)n‖A(n, x)v‖ > 0 ∀v ∈ V(i)(x) \ V(i−1)(x)

and

lim sup
n→∞

e−λi(x)n‖‖‖A(n, x)|V(i)(x)‖‖‖ ≥ 1.

(e) The functionλi(x) is defined and measurable on{x | s(x) ≥ i} andλi(T(x)) = λi(x) on this
set.

(f) For any x∈ B and all1 ≤ i ≤ s(x),
(i) A(1, x)V(i)(x) ⊆ V(i)(T(x)) and
(ii) dim V(i)(T(x)) = dimV(i)(x).

Proof. Let −∞ = λ1(x) < λ2(x) < · · · < λs(x)(x) < ∞ be the Lyapunov exponents ofA at x ∈ B
in the sense of Oseledeč’s multiplicative ergodic theorem.

First, by applying Theorem2.9and Corollary2.11to theλs(x)(x)-weighted cocycle

A(s(x))(n, x) = e−λs(x)nA(n, x)

driven still byT, we can see that forµ-a.e.x ∈ B, the property (d)-(ii) of Theorem2.12holds for
i = s(x), if s(x) ≥ 2.

Next for A(s(x)−1)(n, x) restricted toV(s(x)−1)(x), by the same argument we can see that the
property (d)-(ii) of Theorem2.12holds fori = s(x) − 1, if s(x) ≥ 3.

Repeating the above argument completes the proof of Theorem2.12.
12



To prove the item (d)-(iii) of Theorem1.1, we need to use Froyland, LLoyd and Quas [12,
Theorem 4.1] to obtain the following, in which the property (d)-(iii) is the main point.

Theorem 2.13.Let T be a measure-preserving invertible transformation ofa Polish probability
space(X,F , µ) and assumeA : Z+ × X → R

d×d is measurable such thatlog+ ‖‖‖A(1, ·)‖‖‖ ∈ L1(µ).
Then there exists a set B∈ F with T(B) = B andµ(B) = 1 such that:

(a) There is a measurable function s: B→ N with s◦ T = s.
(b) If x belongs to B there are s(x) numbers−∞ = λ1(x) < λ2(x) < · · · < λs(x)(x) < ∞.
(c) There are measurable decompositions ofR

d into linear subspaces:

R
d = E(1)(x) ⊕ · · · ⊕ E(s(x))(x) ∀x ∈ B,

where E(1)(x) = {0}may be permitted.
(d) If x belongs to B, then

(i) for i = 1, limn→∞
1
n log‖A(n, x)v‖ = λ1(x) for all v ∈ E(1)(x);

(ii) for 2 ≤ i ≤ s(x), limn→∞
1
n log‖A(n, x)v‖ = λi(x) for all v(, 0) ∈ E(i)(x);

(iii) for 2 ≤ i ≤ s(x), one can find some vi ∈ E(i)(x) \ {0} such that

lim sup
n→∞

e−λi(x)n‖A(n, x)vi‖ ≥ ‖vi‖.

(e) The functionλi(x) is defined and measurable on{x | s(x) ≥ i} andλi(T(x)) = λi(x) on this
set.

(f) For any x∈ B and all1 ≤ i ≤ s(x),
(i) A(1, x)E(i)(x) ⊆ E(i)(T(x)) and
(ii) dim E(i)(T(x)) = dimE(i)(x).

Proof. Since (X,F , µ) be a Polish probability space, there is no loss of generality in assum-
ing T is ergodic. Based on Theorem2.12proved above and the improved multiplicative ergodic
theorem of Froyland, LLoyd and Quas [12], we only need to prove the property (d)-(iii) of The-
orem2.13. For that, there is no loss of generality is assuming that there is an invariant linear
subbundle ofX × Rd

Ec =
⊔

x∈X
Ec

x

such thatx 7→ Ec
x is measurable, dimEc

x ≡ k, and forµ-a.e.x ∈ X

λ(v) := lim
n→∞

1
n

log‖A(n, x)v‖ = 0, ∀v ∈ Ec
x \ {0}.

To prove Theorem2.13, it is sufficient to prove that forµ-a.e.x ∈ X, there is a vectorv = v(x) in
Ec

x \ {0} such that
lim sup

n→∞
‖A(n, x)v‖ ≥ ‖v‖.

For that we letSk−1 =
⊔

x∈X Sk−1
x whereSk−1

x :=
{

v ∈ Ec
x : ‖v‖ = 1

}
and then define a random

dynamical system on this random unit sphere bundle

F : Sk−1→ Sk−1; (x, v) 7→
(

T x,
A(1, x)v
‖A(1, x)v‖

)
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driven by the ergodic metric system (X, µ,T).
Forµ-a.e.x ∈ X and for anyv ∈ Sk−1

x , λ(v) = 0 implies thatA(1, x)v is not equal to 0. Hence
F is well defined such thatFx : Sk−1

x → Sk−1
T x is (linear) continuous with respect tov ∈ Sk−1

x ,
for µ-a.e.x ∈ X. We need to note that sinceT x is only measurable inx, F is not necessarily
continuous on the bundleSk−1.

Let Iµ(F) be the set of allF-invariant Borel probability measures onSk−1 coveringµ by
the natural projectionπ : (x, v) 7→ x from Sk−1 ontoX. By the standard theorem of existence of
invariant measures (cf., e.g., [1, Theorem 1.5.10]),Iµ(F) is a non-void, compact and convex set.

SinceA(1, x) is measurable inx, we can define a measurable characteristic function

ϕ : Sk−1→ R; (x, v) 7→ log‖A(1, x)v‖ ∀(x, v) ∈ Sk−1,

which is such that

log‖A(n, x)v‖ =
n−1∑

i=0

ϕ(F i(x, v)) ∀(x, v) ∈ Sk−1.

Let µ̃ ∈ Iµ(F) be arbitrarily given. By{µ̃x}x∈X we denote the standard disintegration of ˜µ givenµ
via the projectionπ. Sinceϕ+(x, v) ≤ log+ ‖A(1, x)‖ for all (x, v) ∈ Sk−1, we have

∫

Sk−1
ϕ+dµ̃ =

∫

X

(∫

Sk−1
x

ϕ+(x, v)dµx(v)

)
dµ(x) ≤

∫

X
log+ ‖A(1, x)‖dµ(x) < ∞.

Henceϕ+ belongs toL1(µ̃) butϕ does not need to be inL1(µ̃).
Then applying Theorem2.7 with fn(x, v) =

∑n−1
i=0 ϕ(F

i(x, v)) for all (x, v) ∈ Sk−1, it follows
that

lim sup
n→∞

log‖A(n, x)v‖ ≥ 0 and thus lim sup
n→∞

‖A(n, x)v‖ ≥ 1 µ̃-a.e. (x, v) ∈ Sk−1.

This completes the proof of Theorem2.13.

We note here that in the proof of Theorem2.13, since the characteristic functionϕ is not
necessarily to be ˜µ-integrable, we cannot use Atkinson’s Lemma2.6; see Remark5.

Finally, combining Theorems2.12and2.13we can complete the proof of Theorem1.1.

Proof of Theorem1.1. According to Theorem2.12, we only need to prove the item (d)-(iii) of
Theorem1.1. However, this property can also be easily induced from Theorem2.13by using the
natural extension of the cocycleA; see, e.g., [8, Section 6.2].

3. Conditional stability of linear random processes

In this section, we shall give an application of Theorem1.1to the study of conditional stabil-
ity of linear random system.

SupposeX = {x
·
: Z+ → S} is the Cartesian productSZ+ of a fixed measurable space (S,S).

HereX possesses a naturalσ-algebraSZ+ generated by cylindrical sets of the form

A =
{

x
·
∈ X | xi1 ∈ C1, . . . , xir ∈ Cr

}
(3.1)

where 1≤ r < ∞, 0 ≤ i1 < · · · < ir < ∞ are integers andC1, . . . ,Cr ∈ S. Supposeµ be a
probability measure onSZ+ andSZ+µ is the completion ofSZ+ with respect toµ. In probability
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theory the tripleξ = (X,SZ+µ , µ) is said to be adiscrete-time random process, whereX is the
sample-path space andS the state space of this process.

If, for any setA of the form (3.1), the measureµ({x
·
∈ X | xi1+n ∈ C1, . . . , xir+n ∈ Cr }) does not

depend uponn, 0 ≤ n < ∞, then the processξ is calledstationary. Let us express the stationary
condition in another way. Define the shift transformation

T : X → X; x
·
= (x0, x1, x2, . . . ) 7→ x

·+1 = (x1, x2, x3, . . . ). (3.2)

Then if A is a set of the form (3.1) we haveT−1(A) = {x
·
∈ X | xi1+1 ∈ C1, . . . , xir+1 ∈ Cr }, and the

stationarity condition may be written in the formµ(T−1(A)) = µ(A). Sinceµ is uniquely deter-
mined by its values on cylindrical sets, stationarity condition means that the shift transformation
T preservesµ, i.e.,T is a measure-preserving transformation of the probabilityspace (X,SZ+µ , µ).

The followings are three important stationary random processes which often serve as our
driving dynamical systems.

Example 3.1(Bernoulli process). Let ξ be the Cartesian product

(X,SZ+µ , µ) =
∞∏

n=0

(Sn,Sn, ̺n),

where (Sn,Sn, ̺n) = (S,S, ̺) is a probability space. The measureµ =
⊗∞

n=0 ̺n is the countable
product-measure generated by the measure̺. Then the shift transformationT is ergodic and
mixing (cf. [7, Theorem 8.1]).

Example 3.2(Markov process). A stochastic operatoron the state space (S,S) is a function
P(s,C) of the variabless ∈ S,C ∈ S with the following properties:

(1) P(s, ·), for any fixeds ∈ S, is a probability measure on the measurable space (S,S);
(2) P(s,C), for any fixedC ∈ S, is a measurable function onS.

A probability measureν on (S,S) is said to be aninvariant measure for the stochastic operator
P if for any C ∈ S we have

ν(C) =
∫

S
P(s,C)dν(s).

Given a stochastic operatorP and an invariant probability measureν, we can define a measure
µν,P on the sample-path space (X,SZ+) in the following way: First for the cylindrical sets

A = {x
·
∈ X | xi ∈ C0, xi+1 ∈ C1, . . . , xi+r ∈ Cr } , wherer ≥ 0, i ≥ 0,C0, . . . ,Cr ∈ S,

we set

µν,P(A) =
∫

C0

dν(xi)
∫

C1

P(xi , dxi+1) · · ·
∫

Cr

P(xi+r−1, dxi+r).

Then, using the Kolmogorov extension theorem, uniquely extendµν,P to the entireσ-algebraSZ+
and then toSZ+µν,P . The invariance ofν implies that the probability measureµν,P, which is called a
Markovian measure, is stationary. In this case,ξ = (X,SZ+µν,P , µν,P) is called aMarkov process.

We should note that the ergodic properties of a Markov processξmay differ for various initial
distributionν and stochastic operatorP. It is easy to construct examples of non-ergodic Markov
processes even if the state spaceS is finite.
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Let BR be the standard Borelσ-algebra ofR. The following is just the discretization of the
classical stationary 1D-Brownian process.

Example 3.3(1D-Brownian motion). Let X = R
Z+ andB = B

Z+

R
. We now define a stochastic

operatorP on (R,BR) as follows: For anyy ∈ R andC ∈ BR, let

P(y,C) =
∫

C

1√
2π

e−
(z−y)2

2 dz.

Let ν be a probability measure (R,BR), which is invariant forP. Then as in Example3.2, we
can get a Markovian measureµν,P. In this case,ξ = (RZ+ ,B, µν,P) is called a discrete-time 1-
dimensionalBrownian motion.

From now on, we letA: S → R
d×d be a matrix-valued measurable function, which is

bounded, i.e.,‖‖‖A(s)‖‖‖ ≤ β for all s ∈ S for some constantβ. Then based on a stationary ran-
dom processξ = (X,SZ+µ , µ) with the state space (S,S), it gives rise to a linear random system:

Aξ : Z+ × X → R
d×d; (n, x

·
) 7→

{
A(xn−1) · · ·A(x0) if n ≥ 1,

Id×d if n = 0.
(3.3)

It is just a linear cocycle driven by the shift transformation T as in (3.2).
We will consider the following two kinds of stability ofAξ, which may be regarded as the

random versions of [21, 6].

Definition 3.4. LetL be a linear subspace ofRd. The linear random systemAξ is said to be:

• L-conditionally Lyapunov stable, if µ(
{

x
·
∈ X | limn→∞ ‖‖‖Aξ(n, x·)|L‖‖‖ = 0

}
) > 0;

• L-conditionally exponentially stable, if µ(
{

x
·
∈ X | limn→∞ n−1 log‖‖‖Aξ(n, x·)|L‖‖‖ < 0

}
> 0.

These two types of stability seem, at the first glance, to be different from each other even in
the 1-dimensional case as is shown by Example2.5 in Section2.

Conceptually the conditional Lyapunov stability ofAξ is easier to check than the conditional
exponential stability; but the latter is more popular than the former in the theory of multi-rate
sampled-data control systems, multi-modal linear controlsystems, numerical calculus, and for
some control optimization problems; see, for example, [20, 3, 21, 13, 6, 22, 4, 23, 15, 16, 10]
and so on. An explicit simple example of application is givenas follows:

Let V : Rd → [0,∞) be a continuous function, which is locally Lipschitz at theorigin zero,
that is,V(u) ≤ γ‖u‖ for all u ∈ Rd with ‖u‖ ≤ δ, for someδ > 0. Associated toV we consider the
infinite-time cost index of (ξ,A) given onS by

L (u, x
·
) =

+∞∑

n=0

V(Aξ(n, x·)u), ∀u ∈ L andx
·
∈ X.

Because

0 ≤ L (u, x
·
) ≤ ∆x

·

+ γ‖u‖
+∞∑

n=Nx·

‖‖‖Aξ(n, x·)|L‖‖‖,

if Aξ isL-conditionally exponentially stableL (u, x
·
) is finite for somex

·
of µ-positive measure.

Then we can study theoptimal costof ξ associated toL at u ∈ L that may be defined as
J(u) = µ-ess. infx

·
∈X L (u, x

·
).
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So how to characterize the exponential stability ofAξ from the Lyapunov stability has be-
come more and more interesting recently. Now we will prove the following equivalent relation-
ship using Theorem1.1, which generalizes [10, Theorem B′].

Theorem 3.5. Given any linear subspaceL ⊆ R
d and based on a stationary random processξ,

Aξ isL-conditionally Lyapunov stable if and only ifAξ isL-conditionally exponentially stable.

Proof. We need only prove the necessity. AssumeAξ isL-conditionally Lyapunov stable; i.e., if
write

Λ =
{

x
·
∈ X | limn→∞‖‖‖Aξ(n, x·)|L‖‖‖ = 0

}

thenµ(Λ) > 0. Forµ-a.e.x
·
∈ Λ, let−∞ = λ1(x

·
) < · · · < λr(x

·
)(x·) < · · · < λs(x

·
)(x·) < ∞ be the

Lyapunov exponents ofAξ at the base pointx
·
given by Theorem1.1.

If λs(x
·
)(x·) is less than 0, then limn→∞ n−1 log‖‖‖Aξ(n, x·)|L‖‖‖ < 0 from the property (d)-(i) of

Theorem1.1. So from now on, without loss of generality we may assumeλs(x
·
)(x·) ≥ 0 and let

λr(x
·
)(x·) < 0 ≤ λr(x

·
)+1(x

·
) for µ-a.e.x

·
∈ Λ. Then the property (d)-(ii) of Theorem1.1 implies

thatL ⊆ V(r(x
·
))(x
·
) for µ-a.e.x

·
∈ Λ. This thus completes the proof of Theorem3.5.

The most interesting case of Theorem3.5is thatξ is a Markov process or a Brownian motion
in the theory of control and optimizations.

We note that becauseL ⊂ R
d is not necessarilyAξ-invariant, fn(x

·
) = log‖‖‖Aξ(n, x·)|L‖‖‖ is

not necessarily to be subadditive onX with respect to the shift transformationT : X → X and
then we can not directly employ Theorem2.7 here. In addition for many control optimization
problemsL , R

d because of constraint conditions.
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