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Abstract

We consider a measurable matrix-valued cocykteZ, x X — R%™9 driven by a measure-
preserving transformatiom of a probability spaceX, .#, i), with the integrability condition
log" IA(L, ")l € L*(u). We show that fop-a.e.x € X, if lim . 2log]|A(n, x)vl| = 0 for all

v e RY\ {0}, then the trajectoryA(n, X)v}2, is far away from O (i.e. lim syp, ., [|A(n, X)vi| > 0)
and there is some nonzevesuch that lim sup, ., [IA(n, X)vi| > [|v||. This improves the classical
multiplicative ergodic theorem of Oselede¢. We here prea@ application to linear random
processes to illustrate the importance.
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1. Introduction

Throughout this paper, 1&%9, 1 < d < oo, represent the space of all rehk d matrices,
endowed with the matrjgperator nornff - || induced by an arbitrarily given (but not necessarily
the usual Euclidean) vector nofim| onRRY. By Z, we mean the set of all nonnegative integers.
Let

T:X—>X

be a measure-preserving transformation of a probabiligeX, .7, 1), which is not necessar-
ily ergodic. If X is a Polish space an& is the Borelo-field, then we call X, .#, 1) a Polish
probability space. In this paper, we consider a measurabtexxvalued cocycle

A: Z, x X — R™, (1.1)
driven byT; that is, it holds the following cocycle property:
A0, X) = lgxd, A(M+n,x) = AN, T"(X)A(M, X) ¥xe XandmneZ,.

Here and in the sequelyd stands for the unit matrix ilR%d, and we will identifyB € R
with its induced linear transformatian— Bufrom RY into itself. Write

log* 1AL, X)Il := max{0, logllA(L, Xl } -

Then the classical Oseledec multiplicative ergodic theomay be stated as:
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Oseledé&’s multiplicative ergodic theorem ([19]). If log* |A(L, Il € L(u), then there exists
B € .# with T(B) € B andu(B) = 1 such that:

(a) There is a measurable function B — N with so T = s.
(b) If x belongs to B there are(¥) numbers-co = 21(X) < A2(X) < -+ < Agy(X) < 0.
(c) There are measurable linear subspaceR6f

2 =VOX) cVOKX) c--- cVEI(x) =RY vxeB.

(d) If x e Bandl < i < s(x) then for all ve VO (x) \ Vi-3)(x),
rLim % log[IA(n, X)VI| = Ai(X).

(e) The functiom;(x) is defined and measurable ¢x| s(x) > i} and A;(T (X)) = 4;(X) on this
set.
M A@X)VO(x) c VOT(x) ifi < S(x).

We note here that in our statement of OseledeC’s theoreneale see-« as the smallest
Lyapunov exponent of at x for the zero vector. Se(x) < d + 1 and sometime¥®(x) = {0}.
In OseledecC’s original statemeni € also [24, Theorem 10.2]), ones do not care the zero vector
and therv©)(x) = {0} for this case.

1.1. Motivation

With the above Oseledet multiplicative ergodic theoremmind, we will further consider
the following two important questions:

(1) Does it hold that for Z i < §(x),

lim supe™ @M A(n, X)v|| > 0 (or liminf e ™M A(n, X)v|| > O)
N—oo

N—oo
forall ve VO(x) \ Vi-D(x)?

(2) Does it hold that _
lim supe "™ A(n, YIVO Il > 1
nN—oo
and ‘ ‘
lim supe "M AN, V| > M v e VOx) \ VETD(x)

nN—oo

for2 <i< s(x)?

Even in the invertible case, the above two properties aeadir beyond the improved multiplica-
tive ergodic theorem of Froyland, LLoyd and Quag||

These properties (1) and (2) are important to the stabiligaproblem of linear switching
dynamical systems; see, e.d.0[11] and an application presented later.



1.2. Main statement

In this paper, our aim is to further employ the filtration givey Oseledec’s theorem. Our
main theorem is stated as follows.

Theorem 1.1(MET). Let T be a measure-preserving transformation of a probgb#pace
(X,.Z,u) and A: Z, x X — R4 measurable such théag® ||A(1, )l € L*(u). Then there exists
a set Be .# with T(B) ¢ B andu(B) = 1 such that:

(a) There is a measurable function B — N with so T = s.
(b) If x belongs to B there are(%) numbers-co = 21(X) < A2(X) < -+ < Agx(X) < 0.
(c) There are measurable linear subspace®R6f

7 =VOX) cVvOX) c---cVEI () =R? vxeB.

(d) If x belongs to B, then
(i) forl<i< g(x),

lim % log AN, )Vl = 4i(X) Yve VO(x)\ VITD(x);

(i) for2 <i < s(x),

lim supe™ O A(n, v > 0 v e VO(x) \ VI ()

n—oo

and

lim supe " AN, YIVOXI > 1;
n—oo
(iii) if we additionally let T be measure-preserving on a Polisstyaility spacéX, .7, u),
then for2 < i < §(x) one can find someg € VO (x) \ Vi-9(x) such that

lim supe™ M| A(n, x)Vil| > [Ivill.
N—oo
(e) The functiom;(x) is defined and measurable ¢x| s(x) > i} and4;(T(x)) = 4i(X) on this
set.
(f) Forany xe Band alll <i < §(x),
() AL, x)_V(i)(x) c V(i)(T(x)) and
(i) dim VO(T(x)) = dimVO(x).

This result improves the classical Oselede¢ multiph@agrgodic theorem and its recent
improved version of Froyland, LLoyd and Qud®] Theorem 4.1] by the items (d)-(ii), (iii) and
(H-(ii). If w is ergodic, thers(x) and;(x), for 1 < i < (), all are constants mod O under the
sense of the probability measuyre

Remark 1. Although for eachv € VO (x) \ Vi-D(x) for 2 < i < s(x), e i®"A(n, x)v has the
Lyapunov exponent zero, yet®"A(n, x)v might converge asymptotically to O for some base



pointsx € B. Even if we additionally impose the condition thais uniformly product-bounded
ie.,
A > 1suchthal An, Xl < VneZ, andx € X,

this phenomenon still possibly happens (cf. Exanfhiein Section2.1) for i = §(x). Thus the
properties (d)-(ii) and (iii) of Theorem.1 are the main nontrivial new points here; and our
theorem is more finer than Oseledec’s theorem.

On the other hand, without the uniform product-boundedoesslition our Theorem.1is
also beyond the situation of Morri&®, Theorems 2.1 and 2.2].

Remark 2. Foranyx € Band 1< i < §(x), we write
VO(x) = VO(x) 0 VI-D(x)*.

Now for anyv € VO(x) andn > 1, let K(i?(n, )V be the projection oA(n, X)v onto VO (T"(x)).

It is easy to see thab(m+ n,x)v = A" (n, T"))A" (m, x)v. Thus we can define the linear
transformations () o -
A’ (n,%): VO(x) - VOT(x).

Based on the property (f) of Theorell we have
RY = \7(1)()() DD \A/(S(X))(x),
Moreover from the property (f) of Theoreinl,
A(n, X): \7(1)()() B \7(S(X))(X) N \7(1)(1'“()()) @@ \VEX) (T"(X),

defined by

+ A(S(X))

~ ~(1
V=Vi+- -+ Vg = AN XV = A( )(n, X)Vp + - -+ (N, X)Vsrx

induces a natural cocyclﬁ: Z. x X — R4 for y-a.e.x € X which has the same Lyapunov
exponents-co = A3(X) < A2(X) < --- < Agn(X) < oo associated to thé-invariant direct
decompositioVA(x) & - - - & V¥ (x) and the same stability as according to Liao’s version of
the multiplicative ergodic theorem (cfL]] and also seeq)).

Since our driving systenh is not necessarily to be invertible, there is no suchainvariant
direct decomposition oR? corresponding to the Lyapunov exponents, the induced t®dyc
should be useful.

Remark 3. For the filtration given by Theoreh ], it is possible that

lim inf e OMMAMN, YVOOmin =0, 2<i < (X),

for y-a.e.x € X; for example A(n, x) = [§17] for all x e X andn > 1. For whichiz(x) = O is a
Lyapunov exponent of multiplicity 2 and®(x) = {0}, V@ (x) = R2.

1|t should be noted that since herg,.of A(n, X) | x € X} does not need to be a semigroup under the matrix mul-
tiplication, we cannot choose a “good” norin |l on RY so that|| A(L X)ll. < 1 for all x € X under this uniform
product-boundedness condition.
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1.3. Outline

The remains of this paper will be simply organized as follows shall prove our main result
Theoreml.1lin Section2 based on Oseledec’s theorem and its improved version gidma,
LLoyd and Quas12, Theorem 4.1], and a series of lemmas. We will present aricgtiogn to
asymptotical stability of linear random processes (The@3e) in Sections3.

2. Finer filtration of a linear cocycle

This section will be devoted to proving our main results Tieeol.1 stated in Sectior.
Besides Oseledet’s multiplicative ergodic theorem dtateSectionl, we will need a series of
independently interesting lemmas here including the nreddity of stable manifolds and the
non-oscillatory behavior of subadditive random process.

2.1. The measurability of stable manifolds

LetT: X — X be a measurable transformation on a measurable sgag€)(whereX does
not need to be a topological space, and we simply wWiritg) = t - x for all t € Z,. From now
on, letA: Z, x X — R¥9 be a measurable matrix-valued cocycle drivenThywhich is not
necessarily to satisfy the integrability condition.

For an arbitrary integep with 0 < p < d, by%(p, RY) we denote the set of aii-dimensional
subspaces dk? and set

d
YR = | |%(p.RY),
p=0

where| | means the disjoint union. We equ{R®) with the standard compact topology induced
by the Hausddf metric D4(-, -), i.e., for anyV, W € ¢ (RY),

Du(V, W) = max{supmin IV —wj|, supmin|jw — v||}
veVvH We wew# VeV
whereV# = (v e V: |M| = 1} ifdimV > 0 andV* = {0} if dimV = 0. Here| - || is the given
vector norm orRY as before.
For anyx € X, we set

V(%) = {ue R ||A(t, x)ull — O ast — oo} . (2.1)
It is a linear subspace @ with the invariance
A, X)VS(X) C VS(t-x) VYteZ, (2.2)

and we call it the “stable manifoldirection” of A over the driving base point
As to be shown by Exampl2.5 below, V5(x) is not necessarily equal to the exponentially
stable space

ES(X) = {u e RY: lim % log||A(n, X)ul| < o}. (2.3)

Hence the measurability &fS(x) with respect to the base poiris not an obvious consequence
of the classical multiplicative ergodic theorem.
To prove Theorem.1stated in Sectiof, we need to use the following preliminary result on
the regularity ofVS(x) respectingc in the natural measure-theoretic sense.
5



Theorem 2.1. Under the situation above and given any probability meagune (X, .%), there
exists anZ -measurable function: X — ¢(RY) such that

n(x) =V3(x) and dimVS(x) > dimV®n-x)¥n>1
for u-a.e. xe X.

To prove this theorem, we first introduce some classicaltesumeasure theory. For a prob-
ability measure: on the measurable spacg (), let.#, be the “completion” of# respecting
u, as theo-field .#, = o(# U .1), where.4, denotes the class of all subsets of arbityaryull
sets in7. Then, the “universal completion” of is defined as the-field 7* = [, .7, where
the intersection extends over all probability measures .7 .

Then not onlyu has a unique extension fro# to theo-field .%, but alsoT is a measure-
preserving transformation oK(.#,, u). This completion enables us using some classical results
in measure theory.

Lemma 2.2(Completion) Let(Y, %y) be a Borel measurable space gmd probability measure
on (X,.#). Then, a function f X — Y is.#,/%y-measurable if and only if there exists some
F | By-measurable function:gX — Y such that x) = g(x) for u-a.e. xe X.

This resultis well known and can be found in many textbooksahanalysis and probability,
for example, in 14, Lemma 1.25]. The following is another classical resultdesk

Lemma 2.3 (Projection and Sections; Lusin, Choquet, Meyer; ske Theorem Al.4]) Let
(Y, #y) be an arbitrary Borel measurable space amd X x Y — X the canonical projection
defined by(x,y) — x. Then for any B .% ® Ay,

(i) m(B) belongs taZ*;
(i) for any probability measurg on.#, there exists a#,-measurable element X — Y,
which is such thafx, n(x)) € B for u-a.e. xe n(B).

As aresult, we can obtain the following from Lem23.

Lemma 2.4. Let (Y, y) be an arbitrary Borel measurable spagea probability measure on
(X,.#), andr: X x Y — X the canonical projection. Then for anyeB%, ® Ay,

(i) n(B)belongs taZ,;
(i) there exists & ,-measurable element X — Y such thafx, n(x)) € B foru-a.e. xe n(B).

Proof. This result follows from Lemm&.3 with .#, in place of.# and the simple fact that
(Fu = Fy. O

We think 01K+ = [0, +0) U {+0o0} as the one-point compactification Bf, ; thenR, is an
open subset dR, . We are now ready to complete the proof of Theoz

Proof of Theoren2.1 Based on the measurable cocyglglet f,: X x 4(RY) — R, be defined
as fo(x, L) = [JA(n, X)|L|| for all (x,L) € X x Z(RY), forn = 1,2,.... Clearly, f, is naturally
measurable. Set _

f(x, L) = limsupfy(x,L) V¥(x L) e XxZ(RY.

n—oo



Thenf: X x 2(RY) — R, is also naturally measurable. Let
= {f_z 0} = |_|X€Xaa<, where &g = {L: f(x L) = 0}.

Then & is & ® By re)-set and geis a By gro)-set.

We note thavs(x) € ag, L € V3(x) for L € &g, and dimV3(x) = maXdimL: L € ag} for
eachx € X. As the function ¢, L) — dimL is measurable fronX x ¢(RY) into the discrete-
topological spacg0, 1, ..., d}, from repeatedly using the item (i) of Lemn2a3 we can easily
obtain thatB := {(x, V(X)) | x € X} is .7/ By ra)-Set.

Now from Lemma2.4with Y = ¢(RY), it follows that there is an &X — %(RY) that is
F] By rey-measurable such that & V(x) for y-a.e.x € X. Then from Lemm&.2, one can
find some% | Z4 wes-measurablg: X — 4 (RY) satisfying the requirement of Theoreari.

Finally we note that dim\{3(x))* < dim(V3(t - x))* and hence divs(x) > dimVs(t - x) for
allt > 1andx e X.

This completes the proof of TheoreznlL O

If V3(x) = ES(X) mod 0, then for Theoreri.1 there is nothing needed to prove from the
property (c) of Oseledec’s multiplicative ergodic thantelhe following example shows that
the proof of Theoren2.1is nontrivial even though under an additional condition-e-timiform
product-boundedness.

Let2y = {o: Z, — {0, 1}} be the one-sided symbolic space and

T:o=(0(Mh0o = o(-+1) = (c(n+ L))o
the classical one-sided shift transformationgn

Example 2.5. Driven by the shift transformatioh, let A: Z, x ¥ — R?? be naturally induced
by A = {Ag, A1} with

10 1 0 )
Ao = |:0 1:| and A; = |:(2) 1:| , lLe, A(n, O') = Acr(n—l) . "Acr(O) vn> 1.

Clearly A is uniformly product-bounded. By induction we now constraswitching sequence
o over whichA(t, o)v converges to 0 but not exponentially fasttas o for some initial state
v 0.

To this end, for a worav = (ig, ..., ix.1) € {0,1}%, let\w| = k denote the length of the word
w and Q stand for thek-length word consisting dé numbers of 0, i.e, @= (0,...,0) € {0, 1}.
For any pair of wordsl = (ug, ..., Ux) andw = (wa, ..., Wp), we set

UW = (Ug, . .., U Wi, .. ., W) € {0, 1}
Letoy = (1), 02 = (010,5,201). Inductively, forn > 2, let

on = (0n-10p, ,p0n-1) and o = r|1im On.
A routine check shows that far= (é) e R?,

r![[]c lA(-1) - AcoMIl = O
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and

. 1 ..n 1
lim supﬁ 10g91|Ar(n-1) - - Ac VIl = r!m = log 5= 0.

n—oo

So the convergence is not exponentially fast based on thelsng sequence.
This completes the construction of Examflé.

2.2. Non-oscillatory behavior of a subadditive random e

To prove our Theorerh.1, we will need a result similar to Giles Atkinson’s theoremamidi-
tive cocycles?]. Atkinson’s theorem (together with a result of K. Schmiakjserts the following.

Lemma 2.6 (Atkinson). If T: (X, #,u) — (X,.%,u) is an ergodic measure-preserving auto-
morphism and f X — R is an integrable function wittf, fdu = 0, then foru-a.e. xe X the

sumZE;é f(TX) returns arbitrarily close to zero infinitely often.

The following similar lemma has not previously been formalliblished, but arose in discus-
sion between Dr. Vaughn Climenhaga and Dr. lan Morris on tlahi@verflow internet forum,
where their proof is adapted from G. Atkinson’s argunrent.

Lemma (Climenhaga and Morris)Let T be an ergodic measure-preserving transformation of
a probability spacdX, .7, i), and let(f,)n>1 be a sequence of integrable functions from XRto
which satisfies the subadditivity relation:

frem(X) < fo(T™X) + fy(x)  for y-a.e. xe X andnm> 1.

Suppose thatmp e fa(X) = —co for p-a.e. xe X. Thenlimp_,n™* [§ fu(x)du(x) < 0.

Now we will introduce a general result of independent indgrevhich is a generalization of
the above lemma and (, Theorem 2.4].

Theorem 2.7.Let T be a measure-preserving, not necessarily ergodinsfaamation of a prob-
ability space(X, .7, ), and let(f,)n-1 be a sequence of measurable functions from Kd—co}
with f; € LY(u), which satisfies the subadditivity relation:

frem(X) < fo(T™X) + fy(x) for y-a.e. xe X andnm> 1.
Let F(X) = limsup,_,., fa(X) for x € X. Then the symmetric/rence
{xe X|F(x) <0} & {xeX|limyun™f(x) <0}

hasu-measure.

2¢f. httpy/mathoverflow.ngtuestiong70678 for the details. We would like to thank those authors for agng to the
inclusion of this lemma in the present document.



Proof. By the Kingman subadditive ergodic theorem (&4, Theorem 10.1]), there exists a
measurable functiofi: X — R U {—co} such that

r!im %fn(x) = f(x) foru-a.e.xe X

Let A = {x e X|F(X) < 0}. It is a measurable subset Xf sinceF(x) is measurable. Then from
A 2 {xe X|f(x) <0}, our task is to show that

p(fx € X[ F(x) < 0}) 2 u(A). (2.4)

Without loss of generality, assuné€A) > 0; otherwise we need to prove nothing.

Lete > 0 be arbitrarily given withe < u(A). Becausd-(x) < O for all x € A, we can find a
constantr > 0 for whichA; = {x € A|F(X) < —2a} is an.#-set such that(A1) > u(A) - 5.
Sincee is arbitrary, to proveZ.4) it is sufficient to show that

u(ix e X1 £(x) < 0}) > u(A) — . (2.5)

To this end, giverx € Ay, let My = {n| f,(X) > —a}, and observe thatly is only finite for all
X € A1. Thus writingA, = {x € A1|#(My) < n} where # stands for the cardinality of a set, we
see that, is an.#-set and that there exists an inte§ier 1 such thaf(An) > u(A1) - 5.

From the Birkhdf ergodic theorem, we have that

n-1
lim inf %Z 1a(T/(®) = 13, (x) ae. and / 15, (0du(¥) = u(A).
n—oo j:O X

Let X3 = {x € X|14,(X) > O} Since 0< 1 (X) < 1, we haveu(X;) > u(An). Thus to prove
(2.5, we need only prove thdt(x) < 0 for all x € X;.

For that, we fix such am € X; from now on. Sincé, € Ap,pand I, < 1,  mod O for all
n> 1, we can take an integ&r > N such that 1 (X) > . Write Ly = {k > 0| T(x) € Ac}. So,

#(Lyx N [L,0]) > % (2.6)

for all sufficiently largen.
Letky be the smallest element bf and definef, = 0 mod 0. We define integeks e Ly, for
i=1,2,---, recursively with the property that

fio (%) < fio (X) — i, 2.7)

as follows. LetJ; be theK smallest elements df, N (ki, ). Becauser(x) € Ag, there exists
ki;1 € Ji such thaki,1 — ki ¢ My (. In particular, we have

fie - (TH() < —a. (2.8)
Now subadditivity gives
fie (%) < Fig (%) + Fieso (TH) < Fig () = (i + Lo
The next observation to make is that I/), we can obtain

ki < K% for all sufficiently largei (2.9)
9



by consideringy = K?i in (2.6). Thus by 2.7) we have

%fh(x)s % (fo() —ia),

and lettingi — co we obtainf(x) < -, as desired.
This completes the proof of Theorezry. O

Remark 4. We note that checking(x) < 0 in Theoren?.7 is relatively easier than checking
liMmpoe fa(X) = —oo. In addition, it should be noted here that singe.#, 1) is not necessarily
a Lebesgue space, Rohlin’s ergodic decomposition theoss dot work forT here and then
Theorem2.7is not a corollary of the above lemma proposed by lan Morrig. @oof is mainly
adapted from that ofl[0, Theorem 2.4] and V. Climenhaga.

Remark 5. In LemmaZ2.6, the condition off belonging toL(x) is a technical obstruction
for us to use Atkinson’s theorem; for example, lettiag X — R%? being measurable with
supx Al < oo then the characteristic functias(x, v) = log||A(X)v{| defined on the trivial
unit-vector bundleX x S9-1 is not necessarily integrable byt (x, v) = log" ||A(X)VI| and hence
¢* isintegrable, as in the proof of Theoréhi3later.

2.3. The trajectory starting from nonstable direction is &vay from zero

LetT: X — X be a measure-preserving transformation on a probabilageg, .7, 1) and
A: Z, x X — R™d a measurable cocycle driven By whereu is not necessarily to be ergodic
with respect tar . For anyx € X, as in @.1) we set

V() = {veR?: |A(t,X)Vi| - O ast — oo} . (2.10)

Clearly A(t, X)VS(x) € VS(TY(x)) for all t > 1. From Theoren?2.1, there is no loss of generality
in assuming
X3 x - VS(X) € 2(RY)

is a measurable function, replaciXgoy somer -invariant#-set ofu-measure 1 if necessary.
We will utilize the following simple result.

Lemma 2.8. For any linear subspace £ RY and xe X, the following statements are equivalent
to each other:

(a) Iimt%oo "A(t, X)“—" =0.
(b) limio [JA(t, X)V|| = Oforall v e L.

In the following theorem the new element needed to be provenhly the propertyZ.13
from the viewpoint of Oseledec’s multiplicative ergodi@brem.

Theorem 2.9. Let A: Z, x X — R%d pe measurable such thaig" || A(L, )|l € L(x). Then
there exists a set’B: .# with T'(B’) ¢ B’ for all t > 1 andu(B’) = 1, such that for any x B,

AX V) = tIim % logllA(t, X)VI| <0 Vv e VS(x) (2.12)
A(X, V) = tIim % log||A(t, )Vl > 0 Vv e R\ V5(x), (2.12)
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and if V3(x) # RY then

limsupllA(t, V| >0  Yve RI\ VS(x), (2.13a)
t—oo
limsupllA(t, X)Il > 1. (2.13b)
t—oo

Proof. First it easily follows, from Oseledec’s multiplicativegedic theorem, that one can find
an.Z-setB’ ¢ X with TY(B’) ¢ B for all t € Z, andu(B’) = 1 such that there exists an invariant
measurable function

B’ 5 x — ES(X) € (RY) (2.14)

with the properties:
A(X, V) = tILr?c % log|lA(t, X)v]| < 0 Vv e ES(X)
and
A(x.v) = lim % log|lA(t, )V[| > 0 ¥ve RY\ ES(X).

From Lemma2.8and @.10), it follows that for allx € B’,

tIim 1AL, X)IV(X)) = 0 (2.15)
and

ES(X) € VS(X). (2.16)

Then from Theoren2.7 with f,(X) = log|lA(t, X)[VS(X)|| for all x € X andn > 1, it follows that
for u-a.e.x € X,

lim %IogIIA(t, W)Vl < 0.

ThereforeES(x) = V3(x) for u-a.e.x € X. This proves2.133.

The property 2.130 follows from (2.133 and Theoren2.7 with f,(x) = log|lA(t, X)|| and
X = {x: V(x) # RY}.

This thus completes the proof of Theor@nmd. O

The property 2.13 of Theorem2.9 shows that over almost every driving poing¢sfor any
nonzero initial statey ¢ V3(x), the state trajectoni(t, x)vo would be far away from the equilib-
rium O as time passes.

2.4. Finer filtration of Matrix-valued cocycles
To prove the property (f)-(ii) of Theoreh 1, we need the following lemma.

Lemma 2.10. Let T be a measure-preserving transformatior{Xf.#, u) and h. X - R be a
random variable. Ifb T <ha.e.thenh T =h a.e.

Proof. If the statement fails, there is a ratiomabith u({x: h > r > ho T}) > 0. Then we have

u(fx: h>r}) > u({x: hoT > r}), but these measures are equal siiide measure-preserving

andT~%({x: h>r}) C {x: ho T > r}, a contradiction, proving the assertion. O
11



As a result of this lemma, we can easily get the following.

Corollary 2.11. Under the same situation of Theor@n, dimV3(x) = dimV3(n . x) for u-a.e.
x € X and for any n> 0.

Now we are ready to prove our Theordmi We will first prove the following elementary
version except the item (d)-(iii).

Theorem 2.12.Let T be a measure-preserving transformation of the prdiigispace(X, .7, u)
and A: Z, x X — R%d measurable such thaog® ||A(L, )|l € L(x). Then there exists a set
B € .# with T(B) € B andu(B) = 1 such that:

(a) There is a measurable function B - Nwith so T = s.
(b) If x belongs to B there are(%) numbers-co = 21(X) < A2(X) < -+ < Agx(X) < 0.
(c) There are measurable linear subspace®6f

2 =VOX) cVvOX) c---cVEI(x)=R? vxeB.

(d) If x belongs to B, then
(i) forl<i< s(x),

lim % log||A(n, XVl = Ai(x)  Yve VI(x)\ Vi-D(x);

(i) for2<i< g(x),

lim supe i ®M AN, )V > 0 Vv e VO(x)\ VITD(x)

n—oo

and

lim supe™ XM A(n, IV > 1.
N—oo
(e) The function;(x) is defined and measurable x| s(x) > i} and A;(T(X)) = Ai(X) on this
set.
(f) Forany xe Band alll <i < §(x),
(i) AL x)VO(x) c VO(T(x)) and
(i) dim VO(T(x)) = dimV(x).

Proof. Let —oo = 11(X) < 22(X) < -+ < Agx(X) < oo be the Lyapunov exponents éfat x € B
in the sense of Oseledec’s multiplicative ergodic theorem
First, by applying Theorerd.9and Corollary2.11to the gy (X)-weighted cocycle

AN (n, x) = e 1" A(n, X)

driven still by T, we can see that for-a.e.x € B, the property (d)-(ii) of Theorer.12holds for
i = s(x), if S(x) > 2.
Next for ACX-D(n, x) restricted toV(s¥-1)(x), by the same argument we can see that the
property (d)-(ii) of Theoren2.12holds fori = s(x) — 1, if s(x) > 3.
Repeating the above argument completes the proof of The®rEn O
12



To prove the item (d)-(iii) of Theorerh.1, we need to use Froyland, LLoyd and Quag,|[
Theorem 4.1] to obtain the following, in which the properdy-(iii) is the main point.

Theorem 2.13.Let T be a measure-preserving invertible transformatioa Bblish probability
space(X, 7, u) and assumé\: Z, x X — R4 is measurable such thég" || A(L, Il € L1(w).
Then there exists a set8.%# with T(B) = B andu(B) = 1 such that:

(a) There is a measurable function B - Nwith so T = s.
(b) If x belongs to B there are(%) numbers-co = 21(X) < A2(X) < -+ < Agx(X) < 0.
(c) There are measurable decomposition&8finto linear subspaces:

RI=EDx) @ - - EE(x) Vxe B,

where EY(x) = {0} may be permitted.
(d) If x belongs to B, then
(i) fori =1, limnse 2 logllA(n, X)VI| = A1(x) for all v € ED(x);
(i) for2<i < s(x), limye 2 logllA(n, x)VI| = 4i(X) for all v(= 0) € EO(x);
(iii) for2 <i < s(x), one can find somg e EO(x) \ {0} such that

lim supe™ M A(n, Vil = [vill.
n—oo
(e) The functiom;(x) is defined and measurable ¢x| s(x) > i} and A;(T (X)) = Ai(X) on this
set.
(f) Forany xe Band alll <i < §(x),
(i) AL, x)E(i)(x) c E(i)(T(x)) and
(i) dim EO(T(x)) = dimED(x).

Proof. Since ,.#,u) be a Polish probability space, there is no loss of gengradibssum-
ing T is ergodic. Based on Theoreil2proved above and the improved multiplicative ergodic
theorem of Froyland, LLoyd and QuakZ], we only need to prove the property (d)-(iii) of The-
orem2.13 For that, there is no loss of generality is assuming thattigean invariant linear
subbundle o x R¢

E°=| | ES

XeX

such thatx — ES is measurable, dif§ = k, and foru-a.e.x € X
1 c
A(V) = rI1|m - log|lA(n, x)vil =0, VveE;\({O}.

To prove Theoren2.13 it is suficient to prove that fop-a.e.x € X, there is a vectov = v(x) in
ES \ {0} such that
lim supl||A(n, X)v|| = |IV|.
nN—oo
For that we leS*"! = | |, S¥"*whereSk™ := {v e ES: |Vl = 1} and then define a random
dynamical system on this random unit sphere bundle

F:Skt 58l (xv) - (Tx, AL v )

IA(L, )Vl
13



driven by the ergodic metric syste,, T).

Foru-a.e.x € X and for any € Sk™%, A(v) = 0 implies thatA(1, x)v is not equal to 0. Hence
F is well defined such thay: SK*1 — Sklis (linear) continuous with respect toe Sk,
for u-a.e.x € X. We need to note that sindex is only measurable i, F is not necessarily
continuous on the bund@ .

Let 7,,(F) be the set of alF-invariant Borel probability measures @& coveringu by
the natural projection: (x,Vv) — x from Sk-! onto X. By the standard theorem of existence of
invariant measures (cf., e.gl, [Theorem 1.5.10])7 ,(F) is a non-void, compact and convex set.

SinceA(1, x) is measurable ixx, we can define a measurable characteristic function

0: ST SR (% V) - logllA(L VI Y(x, V) € SK2,

which is such that )
ne

loglIA(N, YVl = > @(F'(x,V))  V(x V) e S
i=0
Letj € 7,(F) be arbitrarily given. By{fix}xex We denote the standard disintegratiopa@ivenyu
via the projectionr. Sincep™ (x,V) < log® [|A(L, X)|| for all (x,v) € Sk, we have

L= [ ( / go*(x,v)dﬂx(w) (0 < [ 10" IACL Rk < o

Hencey* belongs to *(fi) buty does not need to be in'(i).
Then applying Theorer.7 with f,(x,v) = Zi"z’ol o(Fi(x,v)) for all (x,v) € S¥1, it follows

that

lim suplog||A(n, )Vl > 0 andthus limsupA(n, xvi| > 1 j-a.e. & V) e SK1.

N—oo n—oo
This completes the proof of Theoreil3 O

We note here that in the proof of Theorérl3 since the characteristic functignis not
necessarily to bg-integrable, we cannot use Atkinson’s Lem&§ see Remark.
Finally, combining Theorem®.12and2.13we can complete the proof of Theordni

Proof of Theoreni.1 According to Theoren2.12 we only need to prove the item (d)-(iii) of
Theoreml.1l However, this property can also be easily induced from Tém®@.13by using the
natural extension of the cocycke see, e.g.,§, Section 6.2]. O

3. Conditional stability of linear random processes

In this section, we shall give an application of Theorkrhto the study of conditional stabil-
ity of linear random system.

SupposeX = {x.: Z, — S} is the Cartesian produ&f of a fixed measurable spacg §).
HereX possesses a naturalalgebraS?+ generated by cylindrical sets of the form

A={x € X|x, €Cy,...,%, €C} (3.2)

where 1< r < 00,0 < i1 < -+ < iy < oo are integers an€,,...,C; € S. Suppose: be a
- 7. z. . 20 o
probability measure o™+ andS, - is the colrzplenon ofS”+ with respect tqu. In probability



theory the triple¢ = (X,Sfmu) is said to be aliscrete-time random processhereX is the
sample-path space adthe state space of this process.

If, for any setA of the form @.1), the measurg({x. € X|Xi,+n € C1,..., X, +n € C}) does not
depend upom, 0 < n < oo, then the processis calledstationary Let us express the stationary
condition in another way. Define the shift transformation

T: X - X; X=X, X1, X2,...) > Xq1 = (Xg, X2, X3, ...). (3.2)

ThenifAis a set of the form3.1) we haveT ~(A) = {x. € X|X,+1 € Cy,..., %, +1 € C;}, and the
stationarity condition may be written in the foyfT ~1(A)) = u(A). Sinceu is uniquely deter-
mined by its values on cylindrical sets, stationarity ctiodimeans that the shift transformation
T preserveg, i.e., T is a measure-preserving transformation of the probalsiigce ){(,Sﬁny).

The followings are three important stationary random psses which often serve as our
driving dynamical systems.

Example 3.1(Bernoulli process) Let £ be the Cartesian product

(X9 SI%+ 9#) = H(Sn’ Sn’ Qn)»
n=0

where G, Sh,0n) = (S, S, 0) is a probability space. The measyre- ), on is the countable
product-measure generated by the meagurEhen the shift transformatioh is ergodic and
mixing (cf. [7, Theorem 8.1]).

Example 3.2(Markov process) A stochastic operatoon the state spacé&,(S) is a function
P(s, C) of the variables € S, C € S with the following properties:

(1) P(s,+), for any fixeds € S, is a probability measure on the measurable sp&ac8)(
(2) P(s C), for any fixedC € S, is a measurable function &

A probability measure on (S, S) is said to be ainvariant measure for the stochastic operator
P if forany C € S we have

Y(C) = /S P(s, C)dn(s).

Given a stochastic operat®and an invariant probability measurewe can define a measure
i, p on the sample-path spack,(S%+) in the following way: First for the cylindrical sets

A={x € X|x €Cq,Xiz1 €Cq,....%Xisr €C;}, wherer >0,i >0,Co,...,C; €S,

we set

i p(A) = /C dv(x) | PO, dxe) - / P(Xr_1. dXur).

Cy r
Then, using the Kolmogorov extension theorem, uniquelgred, p to the entirer-algebraS?-
and then tQSf:P. The invariance of implies that the probability measuggep, which is called a
Markovian measure, is stationary. In this case;, (X, vafp, 1y.p) is called aMarkov process

We should note that the ergodic properties of a Markov pg¢esy diter for various initial
distributiony and stochastic operatéX. It is easy to construct examples of non-ergodic Markov
processes even if the state sp&ads finite.
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Let #r be the standard Boret-algebra ofR. The following is just the discretization of the
classical stationary 1D-Brownian process.

Example 3.3(1D-Brownian motion) Let X = R% and% = %ﬁ*. We now define a stochastic
operatorP on (R, #g) as follows: For any € R andC € %, let

1 @2
P(y,C =/—e‘sz
vO= | Vo

Let v be a probability measurdR( %), which is invariant forP. Then as in Exampl8.2, we
can get a Markovian measuigp. In this case¢ = (R%+, %, u, p) is called a discrete-time 1-
dimensionaBrownian motion

From now on, we letA: S — R%d be a matrix-valued measurable function, which is
bounded, i.e.|A(s)|| < B for all s € S for some constang. Then based on a stationary ran-
dom procesg = (X, SZ*,#) with the state spaces(S), it gives rise to a linear random system:

AXn-1) - AlX0) ifn>1,

3.3
ldxd if n=0. (33)

Ap: Zy x X — R™Y (n,x) - {
It is just a linear cocycle driven by the shift transformatibas in 3.2).
We will consider the following two kinds of stability of;, which may be regarded as the
random versions of1, 6].

Definition 3.4. LetLL be a linear subspace Bf'. The linear random syster; is said to be:
o L-conditionally Lyapunov stabléf /({x € X| limn_e llAz(n, X)[LI| = 0}) > 0;
e L-conditionally exponentially stablé u({x € X| limp_e n~tlogll A¢(n, x)IL|l < 0} > 0.

These two types of stability seem, at the first glance, to fieréint from each other even in
the 1-dimensional case as is shown by Exan2pien Section2.

Conceptually the conditional Lyapunov stability Af is easier to check than the conditional
exponential stability; but the latter is more popular thiaa tormer in the theory of multi-rate
sampled-data control systems, multi-modal linear corgystems, numerical calculus, and for
some control optimization problems; see, for exam{#6, B, 21, 13, 6, 22, 4, 23, 15, 16, 10|
and so on. An explicit simple example of application is giasrfollows:

LetV: RY — [0, o) be a continuous function, which is locally Lipschitz at tégin zero,
that is,V(u) < yl|ull for all u € RY with ||ul| < &, for somes > 0. Associated t&/ we consider the
infinite-time cost index of4, A) given onS by

+00
L(u,x) =D V(Ag(n.x)u), YuelLandx € X.
n=0

Because

+00
0<.2(ux) < A +yllull D AN, X)L,
n=Ny,
if A is L-conditionally exponentially stablé’(u, x.) is finite for somex. of u-positive measure.
Then we can study theptimal costof ¢ associated toZ atu € L that may be defined as
J(u) = p-ess.infex Z(u, X).
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So how to characterize the exponential stability’ffrom the Lyapunov stability has be-
come more and more interesting recently. Now we will proveftilowing equivalent relation-
ship using Theorert.1, which generalizesl0, Theorem B].

Theorem 3.5. Given any linear subspade c R and based on a stationary random procéss
A¢ is L-conditionally Lyapunov stable if and onlyAf; is L-conditionally exponentially stable.

Proof. We need only prove the necessity. Assufeis L-conditionally Lyapunov stable; i.e., if
write
A= {x € X|lmnllA¢(n. x)ILI| = 0}

thenu(A) > 0. Forp-a.e.x. € A, let—oo = A3(X) < -+ < Ai)(X) < -+ < Agx)(X) < oo be the
Lyapunov exponents oA, at the base point given by Theoreni.1

If Agx)(x) is less than 0, then lip,. N~ logl|Ag(n, x)ILI| < O from the property (d)-(i) of
Theoreml.1 So from now on, without loss of generality we may assutgg(x.) > 0 and let
Arx)(X) < 0 < Arx)41(x) for p-a.e.x. € A. Then the property (d)-(ii) of Theoreflimplies
that. ¢ V&) (x) for u-a.e.x. € A. This thus completes the proof of Theor&b. O

The most interesting case of Theor8rbis that¢ is a Markov process or a Brownian motion
in the theory of control and optimizations.

We note that because c RY is not necessarilyAg-invariant, f,(x) = logllAg(n, x)IL|| is
not necessarily to be subadditive &nwith respect to the shift transformatidn X — X and
then we can not directly employ TheorehV here. In addition for many control optimization
problemsL # RY because of constraint conditions.
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