
Lie Access Neural Turing Machine

Greg Yanga ∗
aHarvard University

September 7, 2016

Abstract

Following the recent trend in explicit neural memory structures, we present a new design
of an external memory, wherein memories are stored in an Euclidean key space Rn. An LSTM
controller performs read and write via specialized read and write heads. It can move a head by
either providing a new address in the key space (aka random access) or moving from its previous
position via a Lie group action (aka Lie access). In this way, the “L” and “R” instructions of
a traditional Turing Machine are generalized to arbitrary elements of a fixed Lie group action.
For this reason, we name this new model the Lie Access Neural Turing Machine, or LANTM.

We tested two different configurations of LANTM against an LSTM baseline in several
basic experiments. We found the right configuration of LANTM to outperform the baseline in
all of our experiments. In particular, we trained LANTM on addition of k-digit numbers for
2 ≤ k ≤ 16, but it was able to generalize almost perfectly to 17 ≤ k ≤ 32, all with the number
of parameters 2 orders of magnitude below the LSTM baseline.

1 Introduction

Recurrent neural networks (RNNs) are powerful devices that, unlike conventional neural networks,
are able to keep state across time. They achieved great results in diverse fields like machine trans-
lation [22, 3, 1], speech recognition [5, 2], image captioning [17, 12, 23], and many others. However,
despite such advances, traditional RNNs still have trouble maintaining memory for long periods of
time, presenting an obstacle to attaining human-like general intelligence.

Following the pioneering work of Graves et al. [6] and Weston et al. [25], researchers have stud-
ied many variations of external memories equipped to RNNs or explicit memory structures which
ameliorate the problem discussed above and obtained great results in applications like question an-
swering [25, 21, 13], algorithm learning [6, 11, 10, 14, 27, 7], machine translation [11], and others.
In this paper we propose a new variation of external memory.

In a conventional RAM used in personal computers, memory is stored at integer addresses, and
access is either random or sequential. Here we replace the integers with Rn, and to retrieve memory,
the controller can either issue a brand new address or “drag” the previous address in some chosen
“direction” (formally, apply a Lie group action to the previous address). The former is the analog
of random access, and the latter is the analog of sequential access. We call the latter “Lie access,”
with the meaning parametrized by a Lie group G which specifies how this “dragging” is to be done.
We call a model built around this concept of “Lie access” a Lie Access Neural Turing Machine,
or LANTM. We give two specific implementations in section 3 and explore them in section 4 with
several experiments. While we will refer to these implementations also as LANTMs, we want to
stress they are certainly not the only ways of instantiating the “Lie access” concept.

∗email: gyang@college.harvard.edu

1

ar
X

iv
:1

60
2.

08
67

1v
3

 [
cs

.N
E

]
 6

 S
ep

 2
01

6

2 Background

2.1 Lie groups

We assume the reader has a basic knowledge of groups and group actions and the passing notion
that Lie groups are just groups with “differentiable” operations. Such a background should enable
one to understand the rest of this paper other than section 6. We defer readers who need slightly
more exposition on these topics to Appendix B.1.

2.2 Recurrent Neural Networks

Unlike the conventional feedforward neural network, a recurrent neural network (RNN) has self-
connections. Mathematically, an RNN is a function ρ : X × H → Y × H, where X is the input
space, Y the output space, and H the space of internal states. On input (x(1), . . . , x(T)) ∈ XT and
with initial state h(0) ∈ H, the RNN transitions into states h(1), . . . , h(T) (internally) and returns a
sequence (y(1), . . . , y(T)) (externally) defined recursively by

(y(t), h(t)) = R(x(t), h(t−1)).

In this work, we use a particular variant of RNN called the Long Short Term Memory (LSTM)
[8]. LSTM’s hidden state consists of two variables (c(t), h(t)), where h(t) is also the output to the
external world (i.e. it fills the role of y(t) in the above description). The c(t) is the “memory” of
the machine, designed to be maintained for a long time when necessary. There are many variants of
LSTM. In this paper we define the function LSTM : (x(t), c(t−1), h(t−1)) 7→ (y(t), c(t), h(t)) as follows:

i(t) := σ(Wxix
(t) +Whih

(t−1) + bi)

f (t) := σ(Wxfx
(t) +Whfh

(t−1) + bf)

c(t) := f (t)c(t−1) + i(t) tanh(Wxcx
(t) +Whch

(t−1) + bc)

o(t) := σ(Wxox
(t) +Whoh

(t−1) + bo)

h(t) := o(t) tanh(c(t))

y(t) := h(t)

where σ is the logistic function. i(t), f (t), o(t) are called the input, forget, and output gates, respec-
tively, which modulate multiplicatively different quantities in the computation. The weights W·· are
trainable through backpropagation through time (BPTT) [24]. The undashed parts of figure 1 show
a schematic of the equations above.

In models with external memories, LSTM often serves as the controller [6, 7, 27]. This means
that 1) the entire system carries state over time from both the LSTM and the external memory,
2) the LSTM controller collects reading from and computes additional instructions to the external
memory, and 3) the LSTM possibly performs extra processing F to return the desired output at
each time point. The dashed parts of figure 1 demonstrate a typical such arrangement, in which Σ(t)

represents the state of the memory, ρ(t) represents the reading from the memory, RW represents a
subroutine used for reading from and writing to the memory. The entire system is now described
by the recurrence TM : (x(t),Σ(t−1), c(t−1), ρ(t−1), h(t−1)) 7→ (y(t),Σ(t), c(t), ρ(t), h(t)) defined by

(e(t) ⊕ h(t), c(t), e(t) ⊕ h(t)) := LSTM(x(t), c(t−1), ρ(t−1) ⊕ h(t−1))

y(t) := F (h(t))

(Σ(t), ρ(t)) := RW(Σ(t−1), e(t)),

where e(t) is a set of instructions to read from and write to the memory, as illustrated in figure 1. F
is usually a softmax layer that produces a distribution over all possible symbols in a language task

2

x(t)

h(t−1)

c(t−1)

σ σ σtanh

tanh

y(t)

RW

F

ρ(t−1)

h(t)

ρ(t)

c(t)

h(t)o(t)i(t)f (t)

Σ(t−1) Σ(t)

e(t)

Figure 1: LSTM schematics, with and without external memory. A plain LSTM is illustrated by the undashed part of the
diagram. LSTM as a controller of an external memory is illustrated by including the dashed parts. The � gate indicates
concatenating inputs and applying a linear transformation given by the weights of the network. The ≺ gate indicates the

splitting of a vector. F is any processing of h(t) to produce the final output y(t), e.g. a softmax to produce a distribution
over vocabulary.

such as those explored in this paper, and this is indeed the case with LANTM. In the next section,
we show how LANTM implements RW.

3 Lie Access Memory

The Lie Access Neural Turing Machine (LANTM) is inspired by the external memory architecture
of Neural Turing Machine (NTM): a neural network controller reads from and writes to a memory
structure via specially designed, differentiable functions called “heads”. The heads themselves do
not have any trainable parameters, so the only learning done is by the controller, and the entire
network can be trained by gradient descent.

In a LANTM, the memory structure is a dictionary, with keys in an Euclidean space Rn for a
fixed n, called the key space or address space; and with values (called memory vectors) in another
Euclidean space Rm for a fixed m (m is called the memory width). At time step t, each read head

converts instructions from the controller to a read address k
(t)
r ∈ Rn that retrieves a reading ρ(t)

from the memory by a weighted inverse squared law, to be elaborated below. Each write head
converts instructions from the controller to a new memory vector m(t) ∈ Rm and a new address

k
(t)
w ∈ Rn, along with a scalar s(t) ∈ [0, 1], called the memory strength of the vector. Such a triple

(k
(t)
w ,m(t), s(t)) is essentially appended to the memory.

The most important hyperparameter of a LANTM is its choice of Lie group G that acts on Rn.
At time t + 1, the controller may emit new addresses for each head (random access) or issue Lie
actions g ∈ G that change the old addresses (Lie access). One may imagine the key space to be
a piece of paper, and the read and write heads to be stones placed on this paper. The controller
is a hand that moves the stones from turn to turn. Sometimes it may lift a stone up and place it
somewhere completely unrelated to its original position (random access); other times it may drag
a stone along a chosen direction (Lie access). Thus Lie access generalizes sequential access in a
conventional memory array to a continuous setting.

In the design discussed in this paper, there is no explicit erasure. However, the machine can

3

mem. vec.
M (t)(j)

read value
ρ(t)

address
a(t)(j)

key space Rn

read key

k
(t)
r

weight scheme

Figure 2: Retrieval of value from memory via a key. Weightings with unit sum are assigned to different memories depending
on the distances from the addresses to the read key. The weighted arithmetic mean is emitted as the final read value. Both
InvNorm and SoftMax schemes follow this method, but each with a different way of computing the weightings. In particular,

the SoftMax scheme requires another input, the temperature T (t).

theoretically store the exact negation of a memory vector at the same location to cancel out that
memory, albeit the required precision to do so would probably be overwhelming.

What follows are details of the overview given above.

3.1 Read

Let M (t) denote the set of memory vectors stored in the key space by time t. We choose a canonical
ordering on this set, for example by time added, and write M (t)(i) for the ith vector in this order.
Denote by a(t)(i) the corresponding addresses of M (t)(i) and by S(t)(i) the corresponding memory
strength of M (t)(i). In this section we introduce two weight schemes for retrieving a value from the
memory via an address. The main idea of both is summarized by figure 2.

The read key k
(t)
r produces weightings w

(t)
r (i) over all memory vectors M (t)(i), each with address

a(t)(i), by normalizing their inverse squared distances and multiplying by their strengths S(t)(i):

w(t)
r (i) :=

S(t)(i)‖k(t)
r − a(t)(i)‖−2∑

j ‖k
(t)
r − a(t)(j)‖−2

with the convention that it takes the limit value when k
(t)
r → a(t)(i) for some i. 1

The reading is then defined as

ρ(t) :=
∑
j

w(t)
r (j)M (t)(j)

1 In practice, as the formula for w
(t)
r can induce numerical instability as k

(t)
r → a(t)(i) for some i, we adjust the

formula with a small ε, e.g. 10−9, so that

w
(t)
r (i) :=

S(t)(i)(‖k(t)r − a(t)(i)‖2 + ε)−2∑
j(‖k(t)r − a(t)(j)‖2 + ε)−2

.

4

We call this method of converting a read key to a set of weighting via a polynomial law InvNor-
malize, or InvNorm for short, in contrast with the use of exponential law in the case of SoftMax

weight scheme, which computes the weights w
(t)
r (i) as

w(t)
r (i) :=

S(t)(i) exp(−‖k(t)
r − a(t)(i)‖2/T (t))∑

j exp(−‖k(t)
r − a(t)(j)‖2/T (t))

where T (t) is a temperature emitted by the controller at time t that represent the certainty of its

reading. The higher T (t) is, the more w
(t)
r tends to be uniform.

Given the ubiquity of SoftMax in the machine learning literature, one may consider it a natural
choice for the weight scheme. But as will be seen in the experiments, InvNorm is crucial in making
the Euclidean space work as an address space.

3.2 Write

There is no extra ingredient to writing other than adding the produced memory vector m(t), its

strength s(t), and its address k
(t)
w to the collection of memory vectors, strengths, and addresses. To

ensure that memory selection by weighted average works well, we squash the values of m(t) to [−1, 1]
by tanh, but squashing by the logistic sigmoid function is also conceivable. Without such squashing,
a memory vector M (t)(i) with large values can dominate the output of a weight method despite

having low weight w
(t)
r (i).

3.3 Addressing procedure

Here we describe how the keys k
(t)
r and k

(t)
w are produced. The procedure is the same for both read

and write keys, so we assume that we are to compute a single key k(t). We describe the abstraction
of the process over a fixed Lie group G acting smoothly on the key space Rn.

The controller emits 3 things: a candidate key k̃(t) ∈ Rn, a mixing coefficient, or gate, g(t) ∈ [0, 1]
(via the sigmoid function), and an action v(t) ∈ G that we also call step. The gate g mixes the
previous key k(t−1) with the candidate key to produce a pre-action key k̄(t), which is transformed
by v(t) to produce the final key k(t): (here · denotes group action)

k̄(t) := g(t)k̃(t) + (1− g(t))k(t−1)

k(t) := v(t) · k̄(t).

Figure (3) summarizes the addressing procedure.
In our experiments, the Lie group is R2 acting additively on R2. This means that the controller

outputs 2 numbers a = a(t), b = b(t), so that v = (a, b) acts upon a key k = (x, y) by

v · k = (x, y) + (a, b) = (x+ a, y + b).

Section C in the Appendix gives example implementations for the scaling rotation R∗ × SO(2) and
the rotation groups SO(2) acting on R2.

3.4 Interpolation of Lie action

For readers unfamiliar with the Lie group examples mentioned below, we recommend a visit to
section C in the Appendix.

For groups like (Rn,+), there is a well-defined convex interpolation between two elements that
stays in the group. For some others like R∗ × SO(2), the straight-line interpolation tv + (1 − t)w

5

Mix

candidate
address
k̃(t)

gate/mix coef.
g(t)

last key
k(t−1) Mix

candidate
action
ṽ(t)

last action
v(t−1)

gate/mix coef.
h(t)

pre-action key
k̄(t)

final
action
v(t)

k(t)

Addressing Mechanism

from controller

Transform

Figure 3: addressing mechanism.

for t ∈ [0, 1], v, w ∈ G sometimes produce elements outside the group (in this case sometimes the
elements cancel out and get 0), but does so with probability zero in a suitable sense.

Then, as for keys, we can let the controller output a candidate action ṽ(t) ∈ G and a mixing
coefficient h(t) to smoothly mix with the previous action v(t−1) to produce a final action

v(t) := h(t)ṽ(t) + (1− h(t))v(t−1).

This allows the controller to “move in a straight line within the group of actions” by merely
left saturating (i.e. squash to 0) the gates g(t) and h(t) for all t, so that v(1) = v(2) = v(3) = · · · .
Of course, the “straight line” can be actually curved depending on the group. For example, when
G = R∗× SO(2), a typical “straight line” will be a spiral tending exponentially toward the origin or
growing exponentially unbounded.

Even if a group doesn’t have a natural straight-line interpolation, there may be another way to
mix two actions. In the case of G = SO(2) ∼= S1, we can just project a straight-line interpolation
onto the circle (barring a measure zero chance of intepolating into (0, 0) ∈ R2). 2

The final addressing mechanism is shown in figure 3. All together, the interaction of the controller
with the external memory is shown in figure 4.

2 There is, in fact, a canonical way to interpolate the most common Lie groups, including all of the groups
mentioned above, based on the exponential map and the Baker-Campbell-Hausdorff formula [16], but the details are
outside the scope of this paper and the computational cost, while acceptable in control theory settings, is too hefty
for us. Interested readers are referred to [20] and [18].

6

(k
(t−1)
r , v

(t−1)
r)

(k
(t−1)
w , v

(t−1)
w)

Controller ρ(t)

ρ(t)

(k
(t)
r , v

(t)
r)

(k
(t)
w , v

(t)
w)

Addressing
Mechanism

Addressing
Mechanism

k
(t)
w

(k̃
(t)
r , g

(t)
r , ṽ

(t)
r , h

(t)
r)

(k̃
(t)
w , g

(t)
w , ṽ

(t)
w , h

(t)
w)

(m(t), s(t))

k
(t)
r

e(t)

RW

Σ(t−1) Σ(t)

ρ(t−1)

Figure 4: Summary of controller interaction with external memories. The dashed boxes correspond to dashed parts in figure

1. Note that all input, output and the states of the LSTM other than ρ(t) have been omitted.

4 Experiments

In our experiments, the Lie group for both types of LANTM is the translation group R2 acting
on R2 3, and we used Lie action interpolation as specified above. We outline the most important
experimental setup in the main text below but defer other details to the Appendix section A.

4.1 permutation and arithmetic tasks

We tested the two variations of LANTM along with a baseline LSTM in an encoder-decoder setup
(cf. [22]) on the copy, reverse, and bigram flip tasks as done in [7], as well as the double and addition
tasks designed in a similar vein. Table 1 shows input/output templates for each permutation task.

Table 1: Input/output templates for permutation tasks

task input output

copy a1a2a3 · · · ak a1a2a3 · · · ak
reverse a1a2a3 · · · ak akak−1ak−2 · · · a1
bigramFlip a1a2a3a4 · · · a2k−1a2k a2a1a4a3 · · · a2ka2k−1

Each arithmetic tasks have all numbers, input or output, formatted with the least significant
digits on the left and with zero padding. The double task takes an integer x ∈ [0, 10k) padded to
k digits and outputs 2x in k + 1 digits, zero padded to k + 1 digits. The addition task takes two
integers x, y ∈ [0, 10k) padded to k digits and interleaved, forming a length 2k input sequence and

3We early on experimented with the scaling rotation group R∗ × SO(2), which produced acceptable results when
input lengths were small but encountered numerical problems when input lengths were large due to exponentiating
scale.

7

M M M M M Minit
state

〈s〉 1 9 〈/s〉 〈/s〉 〈/s〉

1 9 〈e〉

Figure 5: example in/out schematic.

outputs x+ y zero padded to k + 1 digits. Table 2 show example input/outputs for each task with
k = 3.

Table 2: Input/output examples for arithmetic
tasks

task input output explanation

double 928 8561 2 ∗ 829 = 1658
addition 439204 7150 423 + 94 = 517

Table 3: Input sequence lengths or operand digits for each task.

task min train max train min test max test

copy 2 64 65 128
reverse 2 64 65 128
bigramFlip 2 32 33 64
double 2 40 41 80
addition 2 16 17 32

The machines are first fed a learnable initial state and then provided with the input sequence,
flanked by a start-of-input (SOI) symbol 〈s〉 and a repetition of an end-of-input (EOI) symbol 〈/s〉.
The machines are to output the correct sequence during the response phase, which starts when
they receive the first 〈/s〉. The repetition of 〈/s〉 effectively means that the correct symbols are
not shown to the machines during answering, i.e. we do not use teacher forcing. The machine also
must correctly emit an end-of-output (EOO) symbol 〈e〉 to terminate their answers. Figure (5) is
an example of inputs and correct outputs during a copy task.

As usual, prediction is performed via argmax but training is done by minimizing negative log
likelihood. To evaluate the performance of the models, we compute the fraction of characters cor-
rectly predicted and the fraction of all answers completely correctly predicted, respectively called
“fine score” and “coarse score” following [7].

Task parameters and hyperparameters. We trained the models on the above tasks for input
sizes summarized by table 3. For all tasks, the LANTM has a single-layer, 50-cell or 100-cell LSTM
controller. The memory width (i.e. the size of each memory vector) is 20. For all tasks, the LSTM
baseline has 4 layers, each with 256 cells. In the Appendix, the exact parameters for each model in
each task are listed in table A.1, and other experimental details are given in section A. Notice that
the LSTM has 2 orders of magnitude more parameters than the LANTM models.

Results. LANTM-InvNorm was able to master all tasks and generalize nearly perfectly to 2x
the training sizes, as shown in table 4. LANTM-SoftMax did as well on the copy and double tasks
but failed at all the others, having performed worse than the LSTM baseline. The baseline itself
learned tasks with smaller training input sizes (bigramFlip, double, addition) almost flawlessly, but
generalization to 2x training size was inadequate on all tasks, with coarse score not exceeding 6%.

We tested the learned InvNorm model on larger, arbitrarily selected input sizes. The results
are summarized by table 5. On permutation tasks, it generalized quite well when challenged by 4
times the training size, able to get more than 90% of test problems correct. On the double task,
its extrapolation performance was similar, with 86% coarse score on 4x training size. Notice that
LANTM-InvNorm on several of the tasks (8x bigramFlip, 8x double, 4x addition) achieved high fine
scores when extrapolating to large input sizes despite having low coarse scores. This suggests that
the extrapolation errors systematically occur at the end of each output on those tasks.

We have created videos of the read and write locations of LANTM-InvNorm and LANTM-
SoftMax while learning each of the 5 tasks, tracking their progress over time. They are available

8

Table 4: Permutation and arithemetic task results. “n x” indicates tested sequence length compared to the trained length.
All values are rounded to the nearest integer percent.

task model 1x coarse 1x fine 2x coarse 2x fine

copy
LANTM-InvNorm 100% 100% 100% 100%
LANTM-SoftMax 100% 100% 99% 100%
LSTM 58% 97% 0% 52%

reverse
LANTM-InvNorm 100% 100% 100% 100%
LANTM-SoftMax 1% 12% 0% 4%
LSTM 65% 95% 0% 44%

bigramFlip
LANTM-InvNorm 100% 100% 99% 100%
LANTM-SoftMax 12% 40% 0% 10%
LSTM 98% 100% 4% 58%

double
LANTM-InvNorm 100% 100% 100% 100%
LANTM-SoftMax 100% 100% 100% 100%
LSTM 98% 100% 2% 60%

addition
LANTM-InvNorm 100% 100% 99% 100%
LANTM-SoftMax 17% 61% 0% 29%
LSTM 97% 100% 6% 64%

Table 5: Exploring the Generalizability of LANTM-InvNorm.

task 4x coarse 4x fine 5x coarse 5x fine 8x coarse 8x fine

copy 100% 100% 91% 100%
reverse 91% 98% 12% 65%
bigramFlip 96% 100% 12% 96%
double 86% 99% 21% 90%
addition 2% 95%

in the Supplementary Materials, with details explained in appendix D. In appendix E, we look at
the behaviors of trained LANTM-InvNorm through their read and write locations, gate values, and
example input/output to analyze what exactly they learned and where their extrapolation errors
come from when challenged by extreme input lengths.

4.2 Python programs

The above problem setting is highly structured and favors the design of LANTM. In this task we
trained the models on generated python programs, following [26], that is more natural. The dataset
comprises of 6 types of programs of integers: addition/subtraction, identity, multiplication with
one small operand, small for loops, variable substitution, and ternary “a if b else c” statements, as
illustrated in table A.2.

The models are required to read the input program, which terminates with a “print” statement,
and output the correct integer response, in reverse sequence, without being fed the correct answer
(same as in our last experiment, but different from [26], which used teacher forcing). We performed
curriculum learning, using the “mixed” strategy of [26], starting from 2 digits operands up to 4
digits operands. We evaluated the models on their coarse and fine scores on randomly sampled 4
digit programs. Training was done by RMSProp with learning rate 0.002, which was multiplied by
0.8 whenever the validation accuracy became lower than the highest of the last four.

Here the LSTM baseline is a single layer of 128 cells, and the LANTM models also have controllers
who have the same size. In addition, each LANTM model has memory size 128.

The results are summarized by table 6. We noted that the small loop programs were the most
difficult program type, for which all models predicted less than half of the characters correctly, so
we trained them in a separate experiment only on small loop programs. The results are given in
table 7

Table 6: Results for learning python programs

model coarse fine

LSTM 35% 66%
LANTM-InvNorm 39% 74%
LANTM-SoftMax 35% 67%

Table 7: Results for learning small loop programs

model coarse fine

LSTM 0% 51%
LANTM-InvNorm 0% 55%
LANTM-SoftMax 0% 55%

9

Here the advantage of LANTM over LSTM is not as dramatic. The memory access of LANTM
were not nearly as orderly and neat as in the previous experiment, but rather erratic looking. An
interactive plot of example read and write locations and other state data of LANTM-InvNorm while
learning small loops can be found in the Supplementary Materials.

4.3 language modelling

Finally, we tested the models on the Penn treebank corpus. To train and predict continuously,
whenever the external memories of LANTMs were fill up to 100 memory vectors, the oldest 60
vectors were discarded. As in the last experiment, the LSTM baseline is a single layer of 128 cells,
and the LANTM models also have controllers with the same size. In addition, each LANTM model
has memory size 128. We unrolled BPTT to 20 steps, and trained with Adagrad with learning rate
0.05, which was halved each time the validation perplexity exceeded that of the previous epoch.

Table 8: Perplexity for language modelling corpus

model validation test

LSTM 130 124
LANTM-InvNorm 128 123
LANTM-SoftMax 134 130

We observed that LANTM-InvNorm had its read and write locations at two distant clusters, so
that its read weights were all diffuse across the entire memory. This may be due to the repeated
application of a (approximately) single Lie action over the long course of training, blowing up
the magnitude of keys, which degrades random access, as the typical squashing functions of the
controller limits the range of keys it can produce. This means that, rather than storing useful
information at particular locations, the machine stored deltas at each time step, so that the whole
memory averaged together gave the desired information. LANTM-SoftMax also exhibited the same
behavior, but because high fidelity access only required the read key to be closer to the desired key
k much more than to other keys (rather than that its distance to k be absolutely small as with
InvNorm), we cannot immediately infer that it also only stored deltas.

5 Related Works

Zaremba et al. [26] taught LSTM to evaluate simple python programs via curriculum learning,
which formed the basis of one of our experiments. Kalchbrenner et al. [11] arranged LSTM cells in a
multidimensional grid to form the grid long short term memory, and learned copy and addition tasks
as well. Graves et al. [6] created NTM which has inspired much of the design in our work. Zhang
et al. [29] found several tweaks to NTM to improve its convergence and performance. Grefenstette
et al. [7] designed smooth versions of stack, queue, and deque as external memories to an LSTM
controller. Their unbounded memory and experimental setups were direct influences on this paper.
Zaremba et al. [27] used reinforcement learning to absolve the need of the NTM to involve the entire
memory during memory retrieval. Weston et al. [25] came upon similar ideas in the memory network
as the NTM at around the same time, but with less focus on sequence learning and more on question
answering tasks (QA). Sukhbaater et al. [21] improved on their results to give a memory network
trainable via gradient descent end-to-end and allowing multiple adaptive memory queries (“multiple
hops”) which help in complex relational reasoning. Dynamic memory network of Kumar et al. [13]
added an episodic memory module similar to the multiple hops feature of Sukhbaatar et al.’s model,
but which dynamically chose when to stop accessing memory rather than after a fixed number of
times. They achieved state of art results in several tasks such as QA and sequence modelling.
Danihelka et al. [4] designed an external memory based on holographic reduced representations,
which can store unlimited memory but the larger the size the more noisy the retrieval. Kaiser et

10

al. [10] created the neural GPU based on convolutional kernels, which learned long multiplication of
binary numbers up to 20 bits but were able to generalize to 2000 bits. Kurach et al. [14] generalized
tha random access of conventional RAMs to create the Neural Random Access Machine, which
learned simple algorithm and was able to generalize to larger lengths, and memory access during
inference can be done in constant time. Neelakantan et al. [19] investigated adding gradient noise
to training, and found that in many of the models mentioned above, this method improved the
performance or allowed a greater percentage of random initializations to converge to the optimum.

6 Generalization and Theoretical Considerations 4

We want to stress that the model explained 3 is but one way to implement Lie access memory.
Indeed, the Euclidean key space could be generalized to any Riemannian manifold equipped with
a subgroup of its isometry group, as 1) a notion of metric is required in Lie access memory (hence
the Riemannian part), and 2) one wants the ability to store and retrieve information in a “straight
line” which suggests that the Lie action be invariant with respect to the metric (hence the isometry
part).

A potentially useful Riemannian manifold other than Rn is the hyperbolic space, specifically the
Poincare disk model [15]. As seen in the language modelling task, repeated application of Lie action
on Rn may blow up the magnitude of keys, degrading random access. The Poincare disk model has
its points in the (open) unit ball that prevents this problem from occurring. The other standard
Riemannian model, the sphere, is not quite as desirable in this setting, because it “wraps around”
(i.e. is not acyclic, in homological/homotopic terms), which can confuse gradient descent.

7 Conclusion

In this paper we introduced Lie access memory and explored two different implementations in the
experiments. The LANTM model with the InvNorm weight scheme in all tasks performed better
than the baseline, and spectacularly so in sequence and addition tasks where it learned to generalize
to extraordinary lengths, whereas that with the SoftMax weight scheme failed to outperform the
baseline in the reverse, bigramFlip, addition, and language modelling tasks. LANTM-InvNorm held
its largest advantage over LSTMs in case of long, structured tasks.

The Python program experiment shows that in less structured environments or environments with
redundant or useless information, our LANTM designs could not utilize their memory as impressively
as in more structure environments. Thus further work needs to be done toward combining logical
reasoning with natural language processing.

We adopted a simple way to turn the episodic nature of our unbounded memory to continuous
use, but it was far from perfect. In the language modelling experiment, the LANTM models did
not seem to use the memory in a remarkable way. Future work should explore different options for
adapting Lie access memory to continuous tasks, for example, by bounding the memory or by using
the Poincare disk model as the underlying manifold as suggested in section 6.

4This part mentions some advanced mathematical concepts but is not necessary to the understanding of the rest
of the paper

11

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align

and Translate. arXiv:1409.0473 [cs, stat], September 2014. arXiv: 1409.0473.

[2] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing Multimedia Content using Attention-based Encoder–
Decoder Networks. arXiv:1507.01053 [cs], July 2015. arXiv: 1507.01053.

[3] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv:1406.1078 [cs, stat], June 2014. arXiv: 1406.1078.

[4] Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative Long Short-Term Memory.
arXiv:1602.03032 [cs], February 2016. arXiv: 1602.03032.

[5] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech Recognition with Deep Recurrent Neural Networks.
arXiv:1303.5778 [cs], March 2013. arXiv: 1303.5778.

[6] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv:1410.5401 [cs], October 2014. arXiv:
1410.5401.

[7] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to Transduce with Un-
bounded Memory. arXiv:1506.02516 [cs], June 2015. arXiv: 1506.02516.

[8] Sepp Hochreiter and Jrgen Schmidhuber. Long Short-Term Memory. Neural Comput., 9(8):1735–1780, November 1997.

[9] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An Empirical Exploration of Recurrent Network Architectures.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2342–2350, 2015.

[10] ukasz Kaiser and Ilya Sutskever. Neural GPUs Learn Algorithms. arXiv:1511.08228 [cs], November 2015. arXiv:
1511.08228.

[11] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid Long Short-Term Memory. arXiv:1507.01526 [cs], July 2015.
arXiv: 1507.01526.

[12] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. arXiv:1412.2306
[cs], December 2014. arXiv: 1412.2306.

[13] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, and Richard Socher. Ask
Me Anything: Dynamic Memory Networks for Natural Language Processing. arXiv:1506.07285 [cs], June 2015. arXiv:
1506.07285.

[14] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural Random-Access Machines. arXiv:1511.06392 [cs],
November 2015. arXiv: 1511.06392.

[15] John Lee. Riemannian Manifolds: An Introduction to Curvature. Number 176 in Graduate Texts in Mathematics.
Springer-Verlag, 1997.

[16] John Lee. Introduction to Smooth Manifolds. Number 218 in Graduate Texts in Mathematics. Springer, 2 edition,
2012.

[17] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. Deep Captioning with Multimodal
Recurrent Neural Networks (m-RNN). arXiv:1412.6632 [cs], December 2014. arXiv: 1412.6632.

[18] A. Marthinsen. Interpolation in Lie Groups. SIAM Journal on Numerical Analysis, 37(1):269–285, January 1999.

[19] Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and James Martens.
Adding Gradient Noise Improves Learning for Very Deep Networks. arXiv:1511.06807 [cs, stat], November 2015.
arXiv: 1511.06807.

[20] Tatiana Shingel. Interpolation in special orthogonal groups. IMA Journal of Numerical Analysis, 29(3):731–745, July
2009.

[21] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-To-End Memory Networks. arXiv:1503.08895
[cs], March 2015. arXiv: 1503.08895.

[22] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks. arXiv:1409.3215
[cs], September 2014. arXiv: 1409.3215.

[23] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and Tell: A Neural Image Caption Generator.
arXiv:1411.4555 [cs], November 2014. arXiv: 1411.4555.

[24] Paul J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990.

[25] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory Networks. arXiv:1410.3916 [cs, stat], October 2014. arXiv:
1410.3916.

12

[26] Wojciech Zaremba and Ilya Sutskever. Learning to Execute. arXiv:1410.4615 [cs], October 2014. arXiv: 1410.4615.

[27] Wojciech Zaremba and Ilya Sutskever. Reinforcement Learning Neural Turing Machines - Revised. arXiv:1505.00521
[cs], May 2015. arXiv: 1505.00521.

[28] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural Network Regularization. arXiv:1409.2329 [cs],
September 2014. arXiv: 1409.2329.

[29] Wei Zhang, Yang Yu, and Bowen Zhou. Structured Memory for Neural Turing Machines. arXiv:1510.03931 [cs],
October 2015. arXiv: 1510.03931.

13

Appendices

A Experimental details

A.1 permutation and arithmetic tasks

The baselines of our experiments are LSTMs in an encoder-decoder setup as described in [22]. We
tested 2 variations of LANTM with an InvNorm and a SoftMax address mechanism, along with the
LSTM baseline, on the permutation and arithmetic tasks to be described. The Lie group for both
types of LANTM is the translation group R2 acting on R2 5. For both LANTMs and LSTM, we
embed the input vocabulary continuously via a real embedding matrix into an Euclidean space before
feeding into the models; we also pass the outputs through a softmax layer to arrive at probability
distributions over the vocabulary set (this is the F box in figure 1). As usual, prediction is performed
via argmax but training is done by minimizing negative log likelihood.

The machines are first fed a learnable initial state and then provided with the input sequence,
flanked by a start-of-input (SOI) symbol 〈s〉 and a repetition of an end-of-input (EOI) symbol 〈/s〉.
The machines are to output the correct sequence during the response phase, which starts when they
receive the first 〈/s〉. The repetition of 〈/s〉 effectively ensures that the correct symbols are not
shown to the machines during answering. The machine also must correctly emit an end-of-output
(EOO) symbol 〈e〉 to terminate their answers. The LANTM models are not allowed to write to the
memory during the response phase, so that there is more emphasis on collecting the right information
during the input phase. Figure (5) is an example of inputs and correct outputs during a copy task.

Tasks. Each task has a length parameter k. The permutation tasks include

1. copy

input: a1a2a3 · · · ak
output: a1a2a3 · · · ak

2. reverse

input: a1a2a3 · · · ak
output: akak−1ak−2 · · · a1

3. bigramFlip

input: a1a2a3a4 · · · a2k−1a2k

output: a2a1a4a3 · · · a2ka2k−1

The arithmetic tasks include the following. Note that all numbers, input or output, are formatted
with the least significant digits on the left and with zero padding.

1. double. Let x be an integer in the range [0, 10k], with zero padding in front (on the right) to
make up k digits.

input: x in base 10, zero padded to k digits

output: 2x in base 10, zero padded to k + 1 digits

5We early on experimented with the scaling rotation group R∗ × SO(2), which produced acceptable results when
input lengths were small but encountered numerical problems when input lengths were large due to exponentiating
scale.

14

2. addition. Let x and y be integers in the range [0, 10k], with zero padding in front (on the right)
to make up k digits. If they have digits x1x2 · · ·xk and y1y2 · · · yk, respectively, with the least
significant digits on the left, then

input: x1y1x2y2 · · ·xkyk
output: x+ y in base 10, zero padded to k + 1 digits, with least significant digits on the left

In other words, we interleave the inputs. Thus this is a different encoding of the addition
problem from previous works like [26] and [9].

Task parameters and hyperparameters. We trained the models on the above tasks for input
sizes summarized by table 3. For all tasks, the LANTM has a single-layer, 50-cell or 100-cell LSTM
controller. The Lie group for all LANTMs is the translation group R2 acting on the key space R2.
The memory width (i.e. the size of each memory vector) is 20. For all tasks, the LSTM baseline has
4 layers, each with 256 cells. The exact setting of parameters for each model in each task is listed
in table A.1.

Table A.1: Parameters in each model.

Model Task LSTM size Vocab Embed. Mem. width LR #Param

LANTM
InvNorm

copy 50 128 7 20 0.02 26105
reverse 50 128 7 20 0.02 26105
bigramFlip 100 128 7 20 0.02 70155
addition 50 14 14 20 0.01 20291
double 50 14 7 20 0.02 18695

LANTM
SoftMax

copy 50 128 7 20 0.02 26156
reverse 50 128 7 20 0.02 26156
bigramFlip 100 128 10 20 0.02 72123
addition 50 14 14 20 0.01 20291
double 50 14 14 20 0.02 20291

LSTM

copy 4 × 256 128 7 NA 0.0002 1918222
reverse 4 × 256 128 7 NA 0.0002 1918222
bigramFlip 4 × 256 128 7 NA 0.0002 1918222
addition 4 × 256 14 64 NA 0.0002 1918222
double 4 × 256 14 64 NA 0.0002 1918222

“Vocab” is the size of the vocabulary (i.e. the total number of possible characters of each input sequence). “Embed” is
the dimension of the embedding space. For example, if “Embed” is 7, then each character is mapped to a vector in R7.
“Mem. width” is the size of each memory vector. “LR” is the learning rate. “#Param” gives the total number of trainable
parameters.

Training and testing. We seek to minimize the negative log likelihood of the individual output
characters given the input. All models are trained through RMSProp with momentum .95. Every
epoch has 10 batches, and every batch has 32 instances of the task. For the LANTM models, after
100 epochs, we half the learning rate if the best error so far is not improved in 30 epochs. The
LSTMs are trained with learning rate 0.0002, with no learning rate adjustments during training.

Since the training sets are large and separate from the test sets, we train until convergence,
testing the models periodically — every 20 epochs for the LANTM models, and every 200 epochs
for the LSTM baseline. After training is complete, the best test scores are tabulated.

We tested the models by drawing 100 batches of random problems and computing fine and coarse
scores as in [7]. Fine score refers to the percentage of digit or characters (including the EOO marker)
that the model correctly outputs. Coarse score refers to the percentage of total problems that the
model answers completely correctly.

Tweaks to the LANTM model. We applied two tweaks to the LANTM model: 1) we
initialized the mix coefficients for write address and action to strong negative values. This means that
the LANTM would tend to write in a straight line. 2) We normalized the step sizes to approximately
1 but did not normalize the initial state step sizes. We found that these two tweaks improved
convergence speed and consistency 6. Note that with the second tweak, the “group” of actions is no
longer a group. This is akin to restricting the head shifts of an NTM to +1 and −1 [6].

6A video of the read and writes of a LANTM-InvNorm learning the copy task with no biases (tweak 1) is available

15

A.2 python programs

There are 6 types of programs of integers: addition/subtraction, identity, multiplication with one
small operand, small for loops, variable substitution, and ternary “a if b else c” statements, as
illustrated in table A.2.

Table A.2: Example input/output for different types of python programs

Input Target

identity print(4103) 3014.
small mult. print((14*5608)) 21587.
if then else print((4242 if 8302>6721 else 3716)) 2424.
var. subst. f=3184;print((f-29)) 33728-
addition print((3547+7004)) 15501.
small loop b=1398;for x in range(10):b-=6843;print(b) 23076-.

The models were required to read the input program, which terminates with a “print” statement,
and output the correct integer response, in reverse sequence, without being fed the correct answer
(same as in sequence and arithmetic tasks, but different from [26], which used teacher forcing). The
LANTM models were prohibited from writing during the answer phase, as above. All input symbols
were embedded into R100 before being fed to the machines.

We performed curriculum learning, using the “mixed” strategy of [26], starting from 2 digits
operands up to 4 digits operands. We evaluated the models on their coarse and fine scores on
randomly sampled 4 digit programs. Training was done by RMSProp with learning rate 0.002,
which was multiplied by 0.8 whenever the validation accuracy became lower than the highest of the
last four. BPTT was always performed over the entire input and response phase.

The LSTM baseline had a single layer of 128 cells, as did the controllers of LANTM-InvNorm and
LANTM-SoftMax, which also had memory width of 128. This comes out to be 127,890 parameters
for the LSTM baseline and 212,149 parameters for the LANTM models. The LSTM was initialized
to have weights uniformly in [−0.08, 0.08] except that the forget gates are set to 1. The controllers
of the LANTM models have weights initialized uniformly in [−0.0008, 0.0008] and the forget gates
set to 1 as well. There were no write biases or normalization of step sizes.

A.3 language modelling

The Penn tree-bank corpus consists of 929k/73k/82k train/validation/test words, with a total vo-
cabulary of 10k words. We followed [28] for preprocessing the corpus. We used batch size of 32.

We embed the words into R256 before feeding into the models. The LSTM baseline is 1 layer of
128 cells, and the LANTM models have controllers of the same size, along with memory vectors in
R100. This translates to 4,047,632 parameters for LSTM and 4,323,329 parameters for the LANTM
models. The LSTM was initialized to have weights uniformly in [−0.08, 0.08] except that the forget
gates are set to 1. The controllers of the LANTM models have weights initialized uniformly in
[−0.008, 0.008] and the forget gates set to 1 as well. The write biases were set to -10 as in the
sequence and arithmetic tasks, but there is no normalization of step sizes. Whenever the external
memories filled up to 100, the oldest 60 memory vectors were discarded.

The number of BPTT steps is 20, and we used Adagrad with learning rate 0.05, which was halved
each time the validation perplexity exceeded that of the previous epoch.

B Background

B.1 Lie groups

We here review basic concepts of (Lie) group theory.

in the Supplementary Materials. Compare with the corresponding video with biases. Details of the videos can be
found in appendix D.

16

A group is a set S with operations ∗ (multiplication), (.)
−1

(inverse), and e (unit) of arity
respectively 2, 1, 0, such that

• (associativity) for all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)
• (inverse) for all a ∈ G, a ∗ a−1 = a−1 ∗ a = e

• (identity) for all a ∈ G, a ∗ e = e ∗ a = a

The classical examples are (Zn,+,−(.), 0), (Rn,+,−(.), 0), matrix groups like GL(n), and cyclic
groups Z/nZ.

A group often “acts on” another object or set, like a hand twists a rubik’s cube. For example,
imagine an equilateral triangle with its vertices colored differently. Rotating the triangle by 120
degrees permutes the vertex color but leaves the overall shape unchanged. If we let 0, 1, 2 ∈ Z/3Z
correspond respectively to rotations of the equilateral triangle by 0, 120, or 240 degrees, and addition
in Z/3Z corresponds to applying two such rotations consecutively, then Z/3Z is said to act on the set
of color permutations of the triangle, because it maps one such permutation to another by a rotation.
Or, consider A = R2 as a set of vectors and B = R2 as a set of points. One may drag an element of
B by a vector from A, thus mapping it to another element of B. Then we say A acts on B by vector
addition. As this example illustrates, a group G always acts on itself by the group multiplication (in
the example, this is addition of R2 vectors). So in fact, every group acts on another set. Formally, a
group action of group G on set X is defined as a mapping φ : G×X → X : (g, x) 7→ g · x such that

• e · x = x for all x ∈ X
• (a ∗ b) · x = a · (b · x) for all a, b ∈ G, x ∈ X.

It is the ubiquity of group action that explains the ubiquity of groups in mathematics. In this
paper, we only borrow the language of groups and group actions to the extent it neatly expresses
many ideas central to our design. No advanced ideas from mathematics are used.

A Lie group is a group with a smooth manifold structure such that multiplication and inverse
operations are smooth maps. Similarly, a smooth group action of a Lie group G on smooth manifold
M is just a group action φ : G×M →M that is smooth. In the context of smooth Lie group action,
we also call elements of G Lie actions.

The reader who has had no experience with smooth topology need not worry too much about
the precise meaning of these definitions beyond the intuition that “Lie group is a group such that
most things you do to it are differentiable” and “smooth Lie group action is a differentiable group
action”. Indeed, the only reason we require a Lie group rather than a group is so that its group action
yields to gradient descent. (To that end, it is not strictly necessary for the groups to be infinitely
differentiable, but as all common differentiable groups are Lie groups and all groups explored in this
paper are Lie group, this distinction is not needed.) The reader hoping to learn the basics of smooth
manifolds and Lie groups can consult John Lee’s excellent Introduction to Smooth Manifolds [16].

C Example representation of Lie group actions on the key
space

C.1 Example: The scaling rotation group R∗ × SO(2)

The scaling rotation group R∗×SO(2) is the group of linear transformations of R2 that decomposes
into a rotation followed by a dilation (or contraction).

In the specific case of G = R∗×SO(2), the controller would produce 2 numbers a = a(t), b = b(t),
which represents the element

v =

(
a −b
b a

)

17

of the group. The matrix acts on a key k = (x, y)T ∈ R2 by left matrix multiplication

v · k =

(
a −b
b a

)(
x
y

)
This is the same as scaling by the scalar c =

√
‖a‖2 + ‖b‖2 and then rotating (i.e. left multipli-

cation) by the orthogonal matrix (
a/c −b/c
b/c a/c

)
Another viewpoint is to treat (a, b) ∈ R2 − {0} as the complex number a+ bi ∈ C− {0}. Then

one can view the action v · k for k = (x, y)T ∈ R2 as the complex multiplication (a+ bi)(x+ yi).

C.2 Example: The rotation group SO(2)

The rotation, or special orthogonal, group SO(2) is as its name suggests, the group of all linear
transformations of R2 expressable as a rotation.

When G = SO(2), we can just modify the scheme from the last example by scaling (a, b) to unit
norm, (ā, b̄) = (a, b)/c. The rest will follow just the same.

D Videos of read/write

For each task and each of LANTM-InvNorm and LANTM-SoftMax, we created a video of sample
read and writes over the course of learning; the entire album is available in the Supplementary
Materials. Each video was created as follows:

1. At the end of each epoch, we randomly selected an input of the maximium training length spe-
cific to that task (for example, in the case of addition task, two 16-digit numbers interleaved).

2. We ran the model, with all weights set as trained so far, on this input and record the read and
write locations in the key space, along with the strength of each memory vector.

3. When training is complete, we plot the recording of each epoch in a separate frame, and string
them together into a video file. The write locations are marked by red circles, and filled so
that a darker fill color means higher memory strength. The read locations are marked by blue
disks and connected together by a blue line chronologically (the read line).

Even though we did not explicitly indicate the directionality of the read line, one may infer the
directionality of the write sequence by noting that a red circle with white filling marks the beginning
of the writes. Then the read sequence will follow this directionality in all tasks other than the reverse
task.

Analysis. One sees clearly that LANTM-InvNorm learned to write in a straight line (which is
not surprising given our tweaks to the model) and then read along that same line. On the other
hand, LANTM-SoftMax tended to quarantine its read locations to one end of the write line in the
reverse, bigramFlip, and addition tasks. In the copy and double tasks, the read line doesn’t stick to
the write line as closely with LANTM-Softmax as with LANTM-InvNorm. This is expected since
SoftMax assigns a memory vector with high value just if its location a is closer to the read location
k than any other memory vector, whereas InvNorm requires k to be very close to a.

E Close analysis

In this section, we discuss the performance of LATNM-InvNorm through various statistics and
example input/outputs.

18

E.1 Permutation tasks

E.1.1 copy

Figure E.1a shows the read and write locations of such a LANTM-InvNorm, trained on length 1 to
64 input, running on a typical length 320 input. As one might expect, the reads and writes proceed
along straight lines in the key space. The actual read locations keep close to the corresponding write
locations. In this execution, the LANTM made no errors (figure E.1c).

Figure E.1b shows the values of the 4 gates governing the computation of read and write keys.
A value of 0 means the gate takes the previous step or key location, while a value of 1 means the
gate takes the newly computed step or key location. While the write location gates during the input
phase and the read location gates during the response phase were as expected pushed to 0, the write
step and read step gates were unexpectedly pushed to 1. Thus the LANTM must have memorized
a fixed step size and used it for both reads and writes.

E.1.2 reverse

The counterparts of these graphs for the reverse task are exhibited in figure E.2. On the left we
have data for length 128 input, demonstrating a correct execution, while on the right we have data
for length 300 input, demonstrating what goes on when extrapolating to higher input sizes.

We see that LANTM trained on the reverse task functions much like that trained on the copy
task, with read and write heads traversing on straight lines, except now the directionalities are
opposed. However, when running on length 300 input, the read line, i.e. the curve connecting the
read locations in sequence, bends suddenly toward the end, causing almost all reads at the end to
diverge from the writes and making almost all outputs at the end to be incorrect. This is somewhat
surprising, for one might have expected error to come in the form of the accumulation of a small
difference between the slopes of the read and write lines. Along with the sudden dip in read step
gate value at the end (blue line in figure E.2d), the bending of the read line suggests that the LSTM
controller started to forget its learned program as the answering phase drew toward a conclusion.

E.1.3 bigramFlip

The same phenomena appear with the bigramFlip task, where reads and writes happen along 2
closely aligned lines, but when tested by a long input, the reads will abruptly fall out of order: while
in the reverse task, the read line visibly bends away from the write line, here the lines stay straight
but each step in the read line is elongated, starting around the 187th read (figure E.3b).

One might be surprised to see that the read happens along a line instead of zigzagging inside the
write line. On closer inspection, we find that LANTM works as follows:

1. LANTM stores representations of the inputs in input order.

2. Meanwhile it memorizes the first two input characters and outputs them in the reverse order
after reading the first two EOI symbols.

3. When it sees the first EOI symbols, it starts reading the second bigram, i.e. it reads characters 3
and 4 (or their representations in memory; this corresponds to the 5th and 6th memory vectors)
after seeing the first and second EOI symbols. This effectively allows it to “look ahead” and
have each bigram on hand before having to output the flipped image of it.

4. The LSTM flips each “look ahead” bigram and outputs it in order. Repeat for each bigram.

Unique to the LANTM trained on bigramFlip is the oscillation of the read step gate between 0
and 1 (figure E.3c and E.3d). This seems like more an artifact of the learning process than a feature
of the learned computation, as it would also imply that the controller memorized a single fixed read

19

step, and that the error that occurs with extrapolation seems to stem from the adulteration of this
memory.

E.2 Arithmetic tasks

In the double task, the LANTM behaved much like it did in the copy task. It stored the input in a
line and then computed the doubling with carry digitwise.

In the addition task, the LANTM learned to compress each pair of digits of the input numbers
(which, as mentioned above, are interleaved) and store them in the odd write locations; the even
write locations had vanishing memory strength (figure E.5a and E.5b). The LANTM then read off
the information by skipping through the odd memory locations.

As with copy and reverse tasks, the read step gate values during the response phase were all close
to 1, meaning that the LANTM kept the read step in the LSTM controller memory. This suggests
that the read step gate might be an unnecessary design.

20

(a)

(b)

(c)

Figure E.1: Copy task with length 320 input. Here, a LANTM-InvNorm trained on the copy task of length 1-64 inputs
is executed on a length 320 input. (a) read and write locations. These are 3 views of the read and write locations of the
LANTM. Red represents write locations, and blue represents read locations. Only the read locations during the response
phase and which are used to compute nonmarker outputs are shown here. For each red dot, the darker the color the higher
the corresponding memory strength. The scale ratios are all approximately 1:1, i.e. a 1x1 square according to the ticks on the
x and y axes should appear as a square. The subplots, top to bottom, respectively show an overview, the beginning, and the
end of the read and write locations in chronological order. Numbers 0 to 319 label the read keys in this order. More precisely,
read key i is emitted when the LANTM reads the ith EOI symbol (so that the actual value read is fed back into the LANTM
at time i + 1). (b) gate values during the execution The vertical dashed line in the middle (slightly hard to see due to
overlap with the green trace) marks the time when the LANTM reads the EOI symbol. (c) correct answer, LANTM’s
prediction, and the difference. Each different color represents one of the 128 possible values of the vocabulary. The first
row is the correct answer, the second row LANTM’s prediction, and the third the difference between the two. In the third
row, at most two colors are present: blue means LANTM’s response is correct; red means incorrect. In this case there are no
red bars because the LANTM was able to perfectly copy the input.

21

(a) (b)

(c) (d)

(e) (f)

Figure E.2: Reverse task with length 128 and 300 inputs. The left side shows data on length 128 input; the right side,
length 300. Graph formats are the same as in figure E.1, except that in subfigure E.2b, there is now a fourth plot showing
keys around where LANTM made the first mistake. This spot is marked by a yellow dot.

(a) (b)

(c) (d)

(e) (f)

Figure E.3: Bigram flip task with length 128 and 256 inputs. The left side shows data on length 128 input; the
right side, length 256. Graph formats are the same as in figure E.1, except that in subfigure E.3b, there is now a fourth plot
showing keys around where the reads start to diverge from the writes. In the gate value plots, the write step lines (orange)
are almost constant at 0, hidden behind the red lines (write location).

22

(a) (b)

(c) (d)
problem

2 x

19405944699084738804681122807647896060125309533161058781560471151464278983184417

=

$038811889398169477609362245615295792120250619066322117563120942302928557966368834

LANTM prediction

$038811889398169477609362245615295792120250619066322117563120942302928557966368834

diff

__

(e)
problem

2 x

1168008529246365494001163765851968108385917130977679634159993953145055040607051735753912407298503487088205933788143138139895600272...

=

$02336017058492730988002327531703936216771834261955359268319987906290110081214103471507824814597006974176411867576286276279791200544...

LANTM prediction

$$2233601615442732988800322531703937236677034261955359368319987996290110081214103471507824814597006974176411866576286276279791200544...

diff

**_*******_*___*___*_*__*________*_*_*_**___________*_________*___*_____________________...

(f)

Figure E.4: Double task with length 80 and 320 inputs. The subfigures a, c, e show data on length 80 input; the
subfigures b, d, f, length 320. Graph formats for the first two rows are the same as in figure E.1, except that in the first row,
the overview plots are magnified horizontally to accentuate the divergence of the read and write lines, demonstrating that
the divergence is a gradual build up of difference in slope. In the gate value plots, the write step lines (orange) are almost
constant at 0, hidden behind the red lines (write location). E.4e and E.4f. We show the doubling problems given to the
LANTM and its response. Dollar signs ($) represent the end symbol. Asterisks (*) mark points where LANTM’s answers
are incorrect. In e, only the first (most significant) 130 digits are shown, as there are no errors in the remaining digits.

23

(a) (b)

(c) (d)
problem

12073190535916485602949518287285

+ 86090378999878149582784619496855

=

$098163569535794635185734137784140

LANTM prediction

$098163569535794635185734137784140

diff

(e)

problem

7551725121767466617753259624470709413611531758233121189170215537

+ 6546773181603442580771303866863379302959060107624784946180377555

=

$14098498303370909198524563491334088716570591865857906135350593092

LANTM prediction

$$$$18498303370909198524563491334088716570591865857906135350593092

diff

_****___

(f)

Figure E.5: Addition task with 32-digit and 64-digit inputs. The subfigures a, c, e show data on 32-digit input; the
subfigures b, d, f, 64-digit. Graph formats for the first two rows are the same as in figure E.1. In the gate value plots, the
write step lines (orange) are almost constant at 0, hidden behind the red lines (write location). E.5e and E.5f. We show
the addition problems given to the LANTM and its responses. Dollar signs ($) represent the end symbol. Asterisks (*) mark
points where LANTM’s answers are incorrect.

24

	1 Introduction
	2 Background
	2.1 Lie groups
	2.2 Recurrent Neural Networks

	3 Lie Access Memory
	3.1 Read
	3.2 Write
	3.3 Addressing procedure
	3.4 Interpolation of Lie action

	4 Experiments
	4.1 permutation and arithmetic tasks
	4.2 Python programs
	4.3 language modelling

	5 Related Works
	6 Generalization and Theoretical Considerations
	7 Conclusion
	A Experimental details
	A.1 permutation and arithmetic tasks
	A.2 python programs
	A.3 language modelling

	B Background
	B.1 Lie groups

	C Example representation of Lie group actions on the key space
	C.1 Example: The scaling rotation group R* SO(2)
	C.2 Example: The rotation group SO(2)

	D Videos of read/write
	E Close analysis
	E.1 Permutation tasks
	E.1.1 copy
	E.1.2 reverse
	E.1.3 bigramFlip

	E.2 Arithmetic tasks

