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Abstract The molecule solution of an extended discrete Lotka–Volterra equation is
constructed, from which a new sequence transformation is proposed. A convergence
acceleration algorithm for implementing this sequence transformation is found. It is
shown that our new sequence transformation accelerates some kinds of linearly con-
vergent sequences and factorially convergent sequences with good numerical stability.
Some numerical examples are also presented.
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1 Introduction

Some intimate relations between certain numerical algorithms and integrable systems
have been revealed in recent years, which leads to a reinvestigation of both objects.
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786 J.-Q. Sun et al.

On the one hand, many algorithms in numerical analysis when considered as dynam-
ical systems, have a variety of interesting dynamical behavior (see [17]). One of the
intriguing properties is integrability, which distinguishes these numerical schemes
from others, and attracts workers in the field of integrable systems to study inte-
grable properties of numerical algorithms. In the literature, integrability of numerical
algorithms always appears in various guises such as properties of invariance, com-
patibility and identity. To be precise, the notion of invariance refers to the existence
of a sufficient number of conserved quantities, which is a key feature of the Liouville
integrability [4] in some sense. And the compatibility means that the equation can
be seen as the compatibility condition of some linear problems. Finally, the identity
property indicates that, essentially, integrable equations are some kind of determinan-
tal (or Pfaffian) identities on so-called τ -function level [23,39]. For example, Gauss
arithmetic-geometric mean algorithm [3,6,31] for computing the first elliptic integral
can be viewed as an illustration of invariance. In fact, this algorithm corresponds to a
discrete-time integrable equation, with the corresponding elliptic integral as its con-
served quantity. In addition, the qd-algorithm [21,38], which plays a significant role in
the theory of formal orthogonal polynomials and Padé approximants [5,9,35], is noth-
ing but the compatibility condition of the spectral problem related to the discrete-time
Toda equation [22]. For more examples, please consult [28–30,36,48] and references
therein.

On the other hand, some integrable equations can lead to new algorithms. For
instance, the discrete Lotka–Volterra equation can be used as an efficient algorithm
to compute singular values [25,26,50]. Moreover, from the identity property of inte-
grable systems, two new convergence acceleration algorithms have been constructed
in [13,19]. Based on the observation that the integrable equation provided by the new
algorithm given in [13] is only a special case of the extended Lotka–Volterra equation
which was first proposed in [32] (more results can be found in [24]), it is a natural ques-
tion whether new convergence acceleration algorithms may be obtained from other
cases. This is what we want to do in this article.

Our main tools are determinant techniques and Hirota’s bilinear method [23], which
was invented by Hirota to solve integrable nonlinear differential or difference evolution
equations having soliton solutions. The essence of Hirota’s bilinear method is to change
nonlinear differential or difference equations into a type of bilinear ones (often called
bilinear form) through dependent variables transformations. It should be pointed out
that there are various kinds of solutions to integrable equations, among which molecule
solutions are closely related to sequence transformation, and one should notice that the
terminology molecule solution specifically stands for the solutions of the semi-infinite
and the finite nonperiodic equation with boundary values. For example, the famous
Toda equation

d2xk

dt2 = exk−1−xk − exk−xk+1 . (1)

If k = 0, 1, 2, . . . with the boundary condition x0(t) = −∞, we call (1) the semi-
infinite Toda equation or infinite Toda molecule equation; if x0(t) = −∞ and xN+1 =
+∞, we call (1) the finite nonperiodic Toda equation or finite molecule Toda equation.
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An Extended Multistep Shanks Transformation 787

Solutions corresponding to the above two equations are called Toda molecule solutions.
Before presenting the extended discrete Lotka–Volterra equation, let us give a sketch
of convergence acceleration algorithms and sequence transformations.

Convergence acceleration algorithms are an important class of numerical algo-
rithms, which are used to accelerate the convergence of a given sequence. In numerical
analysis, many methods produce sequences, for example iterative methods, perturba-
tion methods, discretization methods and so on. Sometimes, the convergence of these
sequences is so slow that the corresponding numerical methods are ineffective in prac-
tice. This is why we study sequence transformations, which are based on the idea of
extrapolation [14,46]. Let (Sn) be a sequence converging to a limit S, satisfying

lim
n→

Sn+1 − S

Sn − S
= λ.

When 0 < |λ| < 1, we say that the sequence (Sn) converges linearly; when λ = 1, we
say that this sequence converges logarithmically; and when λ = 0, it converges super-
linearly. A sequence transformation T : (Sn) → (Tn), transforms this sequence to a
new sequence (Tn), which converges faster to the same limit S under some assump-
tions, that is,

lim
n→∞

Tn − S

Sn − S
= 0.

Sequence transformations are most useful in the case of linear and logarithmic con-
vergence and also for certain types of divergence. However, sequence transformations
normally accomplish little in the case of superlinear convergence. Fortunately, super-
linearly convergent sequences usually converge so well that there is no compelling
need to speed up their convergence by applying convergence acceleration techniques.
There are many sequence transformations (see e.g. [9–12,14,46,51,52] and the ref-
erence therein), among which the most well known is Aitken’s �2 process due to
Aitken [1], who used it to accelerate the convergence of Bernoulli’s method for com-
puting the dominant zero of a polynomial. Furthermore, Pennacchi [37] considered
transformations of the form

Cn(p, m) = Sn + Pm(�Sn, . . . ,�Sn+p−1)

Qm−1(�Sn, . . . ,�Sn+p−1)
, (2)

where Pm and Qm−1 are homogeneous polynomials of degree m and m − 1, respec-
tively, in p variables �Sn,�Sn+1, . . . ,�Sn+p−1, and p, m are positive integers. Such
a transformation is called rational transformation of type (p, m), denoted by Cn(p, m).
In this sense, Aitken’s �2 process is a rational transformation of type (2, 2), and Pen-
nacchi proved that any rational transformation of type (2, m) with m ≥ 2 which
accelerates the set of linearly convergent sequences is equivalent to Aitken’s process.
He also gave a rational transformation of type (3, 2)

Cn(3, 2) = Sn + �Sn[�Sn − �Sn+1] + [�Sn�Sn+2 − (�Sn+1)
2]

�Sn − 2�Sn+1 + �Sn+2
, (3)
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788 J.-Q. Sun et al.

which accelerates the set of linearly convergent sequences.
For many sequence transformations obtained by extrapolation methods, new

sequences can be expressed as ratios of two determinants. By using some determinan-
tal identities, we can obtain a recursive algorithm for implementing the correspond-
ing sequence transformation, such an algorithm is called extrapolation algorithm,
or convergence acceleration algorithm. So far, many convergence acceleration algo-
rithms have been found and investigated, such as the famous ε-algorithm proposed
by Wynn [53], and some of its generalizations [8,16]. It is worth mentioning that
sequence transformations are now also considered in the recently published NIST
Handbook of Mathematical Functions [33, Chapter 3.9]. For more results, please refer
to [14,46,51,52].

Then we return to the extended Lotka–Volterra equation, which is expressed as

d

dt

⎛
⎝

q−1∏
i=0

ak− q−1
2 +i

⎞
⎠ =

N−1∏
i=0

ak− q−1
2 +i −

N−1∏
i=0

ak+ q−1
2 −i ,

q, N = 1, 2, . . . , and q �= N , (4)

or

d

dt

⎛
⎝

q−1∏
i=0

ak− q−1
2 +i

⎞
⎠ =

−N−1∏
i=0

a−1
k− q+1

2 −i
−

−N−1∏
i=0

a−1
k+ q+1

2 +i
, q,−N = 1, 2, . . . .

(5)

In [13], a new convergence acceleration algorithm was obtained from the discretization
of (5) when N = −1. Now we consider equation (4), with N = q + 1. In this case, it
can be written as

d

dt

⎛
⎝

q−1∏
i=0

ak+i

⎞
⎠ =

⎛
⎝

q−1∏
i=0

ak+i

⎞
⎠ (ak+q − ak−1),

with the following difference equation as its time discretization:

⎛
⎝

Mk−1∏
m=0

1 + a(n+mp+p+1)
k−mq−1

1 + a(n+mp+1)
k−mq−1

⎞
⎠ (

1 + a(n+1)
k−1

) q−1∏
i=0

a(n+1)
k+i

=
⎛
⎝

Mk∏
m=0

1 + a(n+mp+p)
k−mq

1 + a(n+mp)
k−mq

⎞
⎠ (

1 + a(n)
k+q

) q−1∏
i=0

a(n)
k+i , (6)

while p = 0, 1, . . . , and the nonnegative integer Mk is defined as Mk = �k/q� + 1,
where �x� stands for the greatest integer not exceeding x .

In this article, we first derive the bilinear form of the discrete equation (6), and then
construct its molecule solution, from which we obtain a new sequence transformation.
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An Extended Multistep Shanks Transformation 789

We also show that there exists a two-dimensional difference equation, which shares
the same bilinear form with Eq. (6) and can be used as a recursive algorithm for the
implementation of the new sequence transformation.

Our article is organized as follows: In Sect. 2, we will derive the molecule solution
of Eq. (6) with the help of bilinear method and determinantal identities. In Sect. 3,
a new sequence transformation is constructed, and also its corresponding recursive
algorithm. In Sect. 4, we will give the convergence and stability analysis of the new
sequence transformation. In Sect. 5, some numerical examples are proposed. Section 6
is devoted to conclusion and discussions.

2 Molecule solution of Eq. (6)

In this section, we construct the molecule solution of the extended discrete Lotka–
Volterra equation by using Hirota’s bilinear method and determinantal identities [2,15].

It can be proved that under the dependent variable transformation

a(n)
k = f (n+p+1)

k−1 f (n)
k+q+1

f (n+p+1)
k f (n)

k+q

, (7)

with f (n)
k satisfying initial conditions f (n)

−q = · · · = f (n)
0 ≡ 1, the extended discrete

Lotka–Volterra equation (6) could be transformed into the following bilinear form

f (n+1)
k+q f (n+p)

k − f (n+p+1)
k f (n)

k+q = f (n)
k+q+1 f (n+p+1)

k−1 , k = −q + 1,−q + 2, . . . .

(8)

We now introduce an intermediate auxiliary variable g(n)
k , and give a class of bilinear

equations

f (n)
m(q+1)+i g

(n+1)
m(q+1)+i − f (n+1)

m(q+1)+i g
(n)
m(q+1)+i = f (n+1)

m(q+1)+i−1 f (n)
m(q+1)+i+1, (9)

f (n)
m(q+1)+1g(n+1)

m(q+1)+1 − f (n+1)
m(q+1)+1g(n)

m(q+1)+1 = − f (n+1)
m(q+1) f (n)

m(q+1)+2, (10)

f (n)
(m+1)(q+1)+i g

(n+p+1)

m(q+1)+i − f (n+p+1)

m(q+1)+i g
(n)
(m+1)(q+1)+i = f (n+p)

m(q+1)+i+1 f (n+1)
m(q+1)+i+q ,

(11)

f (n)
(m+1)(q+1)+1g(n+p+1)

m(q+1)+1 − f (n+p+1)

m(q+1)+1g(n)
(m+1)(q+1)+1 = − f (n+p)

m(q+1)+2 f (n+1)
(m+1)(q+1),

(12)

which can yield (8) by eliminating g(n)
k , where m is an arbitrary integer, i = 2, . . . , q+

1. In Sect. 3, we will see that the technique of introducing the auxiliary variable
g(n)

k play an important role in setting up a connection between Eq. (5) and sequence
transformation. In order to get the molecule solution of Eq. (6), we only need to study
the bilinear equations (9)–(12) instead, whose initial conditions are given by
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f (n)
−q = · · · = f (n)

0 = 1, (13)

g(n)
−q = 0, g(n)

−q+1 = · · · = g(n)
−1 = n, g(n)

0 = Sn, (14)

where n = 1, 2, . . ., and (Sn) is a given sequence.
In fact, if we set

�
(p,q)
m (vn) =

∣∣∣∣∣∣∣∣∣

vn+(m−1)p vn+(m−1)p+1 · · · vn+(m−1)(p+1)

�qvn+(m−2)p �qvn+(m−2)p+1 · · · �qvn+(m−2)p+m−1
...

...
...

�(m−1)qvn �(m−1)qvn+1 · · · �(m−1)qvn+m−1

∣∣∣∣∣∣∣∣∣
,

�
(p,q)
−1 (vn) = 0, �

(p,q)
0 (vn) = 1,

�
(p,q)
m (vn) =

∣∣∣∣∣∣∣∣∣

n + (m − 1)p n + (m − 1)p + 1 · · · n + (m − 1)(p + 1)

vn+(m−2)p vn+(m−2)p+1 · · · vn+(m−2)p+m+1
...

...
...

�(m−2)qvn �(m−2)qvn+1 · · · �(m−2)qvn+m−1

∣∣∣∣∣∣∣∣∣
,

�
(p,q)
−1 (vn) = 0, �

(p,q)
0 (vn) = 1,

then we have the following theorem.

Theorem 1 The molecule solutions to bilinear equations (9)–(12) with initial condi-
tions (13)–(14) can be expressed as

f (n)
m(q+1)+i = �m+1(�

i Sn), i = 1, . . . , q + 1,

g(n)
m(q+1) = �m+1(Sn), g(n)

m(q+1)+1 = �m(�q+2Sn),

g(n)
m(q+1)+i = �m+2(�

i−1Sn), i = 2, . . . , q.

where q, n = 1, 2, . . . , m = 0, 1, . . ., and the common upper index (p, q) of the �s
and �s has been dropped for the sake of simplicity.

Proof Firstly, we prove Eqs. (9) and (10), which are equivalent to the following iden-
tities:

�m+2(�
i−1Sn+1)�m+1(�

i Sn) − �m+2(�
i−1Sn)�m+1(�

i Sn+1)

= �m+1(�
i−1Sn+1)�m+1(�

i+1Sn), i = 2, . . . , q, (15)

�m+1(Sn+1)�m(�q+1Sn) − �m+1(Sn)�m(�q+1Sn+1)

= �m(�q Sn+1)�m+1(�Sn), (16)

�m+1(�Sn)�m(�q+2Sn+1) − �m+1(�Sn+1)�m(�q+2Sn)

= −�m(�q+1Sn+1)�m+1(�
2Sn). (17)

Since (17) can be obtained in a similar way to (16), here we only prove (15) and (16).
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An Extended Multistep Shanks Transformation 791

Set

D1 =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
Sn+mp Sn+mp+1 · · · Sn+mp+m+1

...
...

...

�mq Sn �mq Sn+1 · · · �mq Sn+m+1

∣∣∣∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
n + (m + 1)p n + (m + 1)p + 1 · · · n + (m + 1)p + m + 2
�i−1Sn+mp �i−1Sn+mp+1 · · · �i−1Sn+mp+m+2

...
...

...

�i−1+mq Sn �i−1+mq Sn+1 · · · �i−1+mq Sn+m+2

∣∣∣∣∣∣∣∣∣∣∣

.

If we use D

[
i1 · · · in

j1 · · · jn

]
to denote the determinant with the i1 < · · · < in -th rows

and the j1 < · · · < jn -th columns removed from the original determinant D, then the
Jacobi identity [2,15] can be written as

D · D

[
i1 i2
j1 j2

]
= D

[
i1
j1

]
· D

[
i2
j2

]
− D

[
i1
j2

]
· D

[
i2
j1

]
. (18)

Applying (18) to D1 and D2, and noticing that

D1 = �m+1(�Sn), D1

[
1 2
1 m + 2

]
= �m(�q Sn+1),

D1

[
1
1

]
= �m+1(Sn+1), D1

[
2
m + 2

]
= �m(�q+1Sn),

D1

[
1
m + 2

]
= �m+1(Sn), D1

[
2
1

]
= �m(�q+1Sn+1),

D2 = �m+1(�
i+1Sn), D2

[
1 2
1 m + 3

]
= �m+1(�

i−1Sn+1),

D2

[
1
1

]
= �m+2(�

i−1Sn+1), D2

[
2

m + 3

]
= �m+1(�

i Sn),

D2

[
1
m + 3

]
= �m+2(�

i−1Sn), D2

[
2
1

]
= �m+1(�

i Sn+1),

then we get (15) and (16) immediately.
Next, we consider Eqs. (11) and (12), which are equivalent to

�m+1(�
i Sn)�m+1(�

i−1Sn+p+1) − �m(�i Sn+p+1)�m+2(�
i−1Sn)

= �m(�i+1Sn+p)�m+1(�
i−1Sn+1), i = 2, . . . , q, (19)
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792 J.-Q. Sun et al.

�m(Sn+p+1)�m(�q+1Sn) − �m+1(Sn)�m−1(�
q+1Sn+p+1)

= �m(�Sn+p)�m(�q Sn+1), (20)

�m(�Sn+p+1)�m(�q+2Sn) − �m+1(�Sn)�m−1(�
q+2Sn+p+1)

= �m(�2Sn+p)�m(�q+1Sn+1). (21)

We use the Jacobi identity (18) to show the validity of (19) and (20). Set

D3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0
n + mp n + mp + 1 · · · n + mp + m 0

�i Sn+(m−1)p �i Sn+(m−1)p+1 · · · �i Sn+(m−1)p+m 0
...

...
...

...

�i+(m−2)q Sn+p �i+(m−2)q Sn+p+1 · · · �i+(m−2)q Sn+p+m 0
�i+(m−1)q Sn �i+(m−1)q Sn+1 · · · �i+(m−1)q Sn+m 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

D4 =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0
Sn+mp Sn+mp+1 · · · Sn+mp+m 0

...
...

...
...

�(m−1)q Sn+p �(m−1)q Sn+p+1 · · · �(m−1)q Sn+p+m 0
�mq Sn �mq Sn+1 · · · �mq Sn+m 1

∣∣∣∣∣∣∣∣∣∣∣

,

we have the following relations

D3 = �m−1(�
i+2Sn+p), D3

[
1 2
1 m + 2

]
= �m(�i Sn+1),

D3

[
1
1

]
= �m(�i Sn+p+1), D3

[
2
m + 2

]
= �m(�i+1Sn),

D3

[
1
m + 2

]
= �m+1(�

i Sn), D3

[
2
1

]
= �m−1(�

i+1Sn+p+1),

D4 = �m(�Sn+p), D4

[
1 2
1 m + 2

]
= �m(�q Sn+1),

D4

[
1
1

]
= �m(Sn+p+1), D4

[
2

m + 2

]
= �m(�q+1Sn),

D4

[
1
m + 2

]
= �m+1(Sn), D4

[
2
1

]
= �m−1(�

q+1Sn+p+1).

Then Eqs. (19) and (20) are obtained by applying Jacobi identity (18) to D3 and D4
(with i1 = 1, i2 = 2 ; j1 = 1, j2 = m + 2), respectively.

The proof of (21) is nearly the same as that of (20), thus we omit it.
Consequently, Eqs. (9)–(12) hold, which complete the proof.

From Theorem 1 and the dependent variable transformation (7), we obtain the
molecule solution of (6) immediately.
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An Extended Multistep Shanks Transformation 793

3 A new sequence transformation and the corresponding recursive algorithm

In this section, we construct a new sequence transformation related to the molecule
solution given by Theorem 1, and derive a convergence acceleration algorithm for its
implementation.

Let us consider a new sequence transformation defined by

T (p,q)
k (Sn) =

∣∣∣∣∣∣∣∣∣

Sn+kp Sn+kp+1 · · · Sn+k(p+1)

�q Sn+(k−1)p �q Sn+(k−1)p+1 · · · �q Sn+(k−1)p+k
...

...
...

�kq Sn �kq Sn+1 · · · �kq Sn+k

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
�q Sn+(k−1)p �q Sn+(k−1)p+1 · · · �q Sn+(k−1)p+k
...

...
...

�kq Sn �kq Sn+1 · · · �kq Sn+k

∣∣∣∣∣∣∣∣∣

, (22)

where k, p = 0, 1, . . . , q = 1, 2, . . . , and p ≤ q. Hereinafter, the values of p and
q will always be taken like this. Obviously, when k = 1, p = 1 and q = 2, (22) is
nothing but the rational transformation Cn(3, 2) given by (3), and when p = 0, it is
equivalent to the multistep Shanks’ transformation proposed in [13]. Thus, (22) is an
extension of the both. We mention that T (p,q)

k (Sn) can also be expressed as

T (p,q)
k (Sn) = �

(p,q)
k+1 (Sn)

�
(p,q)
k (�q+1Sn)

= g(n)
k(q+1)

f (n)
k(q+1)

,

which motivates us to implement the dependent variable transformation

u(n)
k = g(n)

k

f (n)
k

(23)

to the bilinear equations (9)–(12) to see whether there exists a recursive relation sat-
isfied by u(n)

k . In fact, we have the following theorem.

Theorem 2 If g(n)
k and f (n)

k satisfy the bilinear equations (9)–(12), then u(n)
k defined

by (23) can be computed recursively:

u(n)
k+1 = u(n+p+1)

k−q − (u(n+p+1)
k−q−1 − u(n)

k )(u(n+p+1)
k−q − u(n+p)

k−q )

u(n+1)
k − u(n)

k

, n, k = 1, 2, . . . ,

(24)

with the initial values

u(n)
−q =0, u(n)

−q+1 =· · ·=u(n)
−1 =n, u(n)

0 = Sn, u(n)
1 = 1

�Sn
, n =1, 2, . . . . (25)

123



794 J.-Q. Sun et al.

Proof It is obvious that the initial conditions (25) can be obtained directly from the
dependent variable transformation (23) and Theorem 1. Thus, we only need to prove
equation (24), which is equivalent to the following identity

(
u(n+1)

k+q −u(n)
k+q

) (
u(n+p+1)

k −u(n+1)
k+q+1

)
=

(
u(n+p+1)

k−1 −u(n)
k+q

) (
u(n+p+1)

k − u(n+p)
k

)
.

(26)

From the dependent variable transformation (23) and Eqs. (9)–(12), we obtain

u(n+1)
k − u(n)

k = f (n+1)
k−1 f (n)

k+1

f (n+1)
k f (n)

k

, (27)

u(n+p+1)
k − u(n)

k+q+1 = f (n+p)
k+1 f (n+1)

k+q

f (n+p+1)
k f (n)

k+q+1

, (28)

where k �= m(q + 1) + 1, and when k = m(q + 1) + 1, it only needs to change the
sign of the right hand side of (27) and (28).

Consider the case when k = m(q + 1) + i, i = 3, . . . , q + 1, in (26). We have

(
u(n+1)

k+q − u(n)
k+q

) (
u(n+p+1)

k − u(n+1)
k+q+1

)

= f (n+1)
k+q−1 f (n)

k+q+1

f (n+1)
k+q f (n)

k+q

· f (n+p)
k+1 f (n+1)

k+q

f (n+p+1)
k f (n)

k+q+1

= f (n+1)
k+q−1 f (n+p)

k+1

f (n+p+1)
k f (n)

k+q

,

(
u(n+p+1)

k−1 − u(n)
k+q

) (
u(n+p+1)

k − u(n+p)
k

)

= f (n+p)
k f (n+1)

k+q−1

f (n+p+1)
k−1 f (n)

k+q

· f (n+p+1)
k−1 f (n+p)

k+1

f (n+p+1)
k f (n+p)

k

= f (n+1)
k+q−1 f (n+p)

k+1

f (n+p+1)
k f (n)

k+q

,

which shows that (26) holds when k = m(q + 1) + i, i = 3, . . . , q + 1. The proofs of
this identity when k = m(q + 1) + 1, m(q + 1) + 2 are nearly the same, and thus be
omitted.

Consequently, (26) holds for all k ∈ N, which implies the validity of (24). This
completes the proof. ��

It is obvious that u(n)
kT is nothing but the new sequence transformation (22). Thus,

according to Theorem 2, T (p,q)
k : (Sn) → (u(n)

kT ) can be implemented via (24) with ini-
tial values (25). In other words, (24) together with (25) can be viewed as a convergence
acceleration algorithm corresponding to sequence transformation T (p,q)

k .
Since transformation (22) can be regarded as an extension of the multistep Shanks’

transformation, it is natural to investigate the relationship between their correspond-
ing recursive algorithms. In fact, the following corollary shows that the multistep
ε-algorithm given in [13] is just a special case of our new algorithm.
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Corollary 1 If we set p = 0 in the new algorithm (24), then it can be reduced to the
multistep ε-algorithm [13, p.5].

Proof In this case, (24) is written as

(
u(n)

k+1 − u(n+1)
k−q

) (
u(n+1)

k − u(n)
k

)
=

(
u(n)

k − u(n+1)
k−q−1

) (
u(n+1)

k−q − u(n)
k−q

)
.

Multiplying both sides of the above equation by
∏q−1

i=1

(
u(n+1)

k−i − u(n)
k−i

)
, we obtain

(
u(n)

k+1 − u(n+1)
k−q

) q−1∏
i=0

(
u(n+1)

k−i − u(n)
k−i

)
=

(
u(n)

k − u(n+1)
k−q−1

) q∏
i=1

(
u(n+1)

k−i − u(n)
k−i

)
,

which can be simplified further yielding

u(n)
k+1 = u(n+1)

k−q + 1
∏q−1

i=0

(
u(n+1)

k−i − u(n)
k−i

) .

This formula is nothing but the multistep ε-algorithm, corresponding to m = q. ��
As the end of this section, we give the kernel of the new sequence transformation,

that is the set of sequences which would be transformed into a constant.

Theorem 3 A necessary and sufficient condition for all n > N, T (p,q)
k (Sn) = S is

that for ∀n > N,

Sn+kp = S + a1�
q Sn+(k−1)p + · · · + ak�

kq Sn,

where N is a given positive integer, S = limn→∞ Sn, a1, . . . , ak are constants inde-
pendent of n and ak �= 0, k = 1, 2, . . ..

4 Convergence and stability analysis

The analysis of convergence and stability is an important topic in the theory of con-
vergence acceleration. In this section, we consider the convergence and stability of the
sequence transformation (22) as it is applied to the following three different sequences.

I. Logarithmically convergent model sequences where

Sn ∼ S +
∞∑

i=0

αi n
γ−i as n → ∞; α0 �= 0, γ < 0. (29)

II. Linearly convergent model sequences where

Sn ∼ S+ξn
∞∑

i=0

αi n
γ−i as n →∞; α0 �=0, |ξ | < 1 or ξ =−1, γ <0. (30)
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III. Factorially convergent model sequences where

Sn ∼ S + (n!)−rξn
∞∑

i=0

αi n
γ−i as n → ∞;α0 �= 0, r = 1, 2 . . . . (31)

4.1 Convergence analysis

We give the following two lemmas, which are useful in the subsequent proofs. In fact,
the first lemma is an obvious result of asymptotic expansions.

Lemma 1 Given (An) a sequence, assume An ∼ ∑∞
i=0 ai nγ−i , as n → ∞; a0 �= 0,

then we have

(i) if γ �= 0,�An ∼ ∑∞
i=0 âi nγ−i−1, as n → ∞; â0 = γ a0 �= 0;

(ii) if γ = 0,�An ∼ ∑∞
i=μ âi n−i−1, as n → ∞; âμ = −μaμ �= 0 (aμ is the first

nonzero ai with i ≥ 1);
(iii) if ξ �= 1,�k(ξn An) ∼ ξn ∑∞

i=0 âi nγ−i , as n → ∞; â0 = (ξ − 1)ka0 �= 0;

(iv) if r = 1, 2 . . . , �(
ξn

(n!)r An) ∼ ξn

(n!)r

∑∞
i=0 âi nγ−i , as n → ∞; â0 = −a0 �= 0;

(v) if r = 1, 2 . . . , �(
(n!)r

ξn An) ∼ (n!)r

ξn

∑∞
i=0 âi nγ+r−i , as n → ∞; â0 = 1

ξ
a0 �= 0.

Lemma 2 If u(n)
k is computed by algorithm (24), then u(n)

(k+1)(q+1) can be expressed
as

u(n)
(k+1)(q+1) = 1

q∏
i=1

�u(n)
k(q+1)+i

{
u(n+p+1)

k(q+1) �u(n)
k(q+1)+1

q∏
i=2

�u(n)
k(q+1)+i

+u(n)
k(q+1)+1�u(n+p)

k(q+1)

q∏
i=2

�u(n+p)

(k−1)(q+1)+i

−�u(n+p)

k(q+1)u
(n+p+1)

k(q+1)−q

q∏
i=2

�u(n+p)

(k−1)(q+1)+i

}

n = 1, 2, . . . , k = 0, 1 . . . , (32)

where the forward difference operator � is applied to superscripts.

Proof Equation (24) can be rewritten as

u(n)
m+1 − u(n+p+1)

m−q = �u(n+p)
m−q

�u(n)
m

(
u(n)

m − u(n+p+1)
m−q−1

)
.

Multiplying together these equations for m = (k + 1)(q + 1) − 1, (k + 1)(q + 1) −
2, . . . k(q + 1) + 1, we will obtain
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u(n)
(k+1)(q+1) − u(n+p+1)

k(q+1) =
∏q+1

i=2 �u(n+p)

(k−1)(q+1)+i∏q
i=1 �u(n)

k(q+1)+i

(
u(n)

k(q+1)+1 − u(n+p+1)

k(q+1)−q

)
,

which is equivalent to the expression (32).

Then we have the following convergence theorem.

Theorem 4 If we apply the new algorithm (24) together with the initial conditions
(25) to sequence (Sn), then for any nonnegative integer k, we have:

(i) If (Sn) behaves like (29), then

u(n)
k(q+1) − S ∼ (−1)kα0

qk · k!
(γ − q)(γ − 2q) · · · (γ − kq)

nγ as n → ∞. (33)

(ii) If (Sn) behaves like (30), then

u(n)
k(q+1) − S ∼ ξn

∞∑
i=0

α
(0)
k,i nγk−i as n → ∞, α

(0)
k,0 �= 0, (34)

u(n)
k(q+1)+1 ∼ ξ−n

∞∑
i=0

α
(1)
k,i n−γk−i as n → ∞, α

(1)
k,0 = 1

α
(0)
k,0(ξ − 1)

�= 0,

(35)

u(n)
k(q+1)+ j ∼ n +

∞∑
i=0

α
( j)
k,i n−i as n → ∞,

α
( j)
k,0 = (k + 1)

(
p + 1 + ξ

1 − ξ

)
, j = 2, 3 . . . q, (36)

with γ0 = γ, γk = γk−1 − 2 − μk, k = 1, 2 . . . , where μk are some nonnegative
integers.

(iii) If (Sn) behaves like (31), then

u(n)
k(q+1) − S ∼ ξn

(n!)r

∞∑
i=0

α
(0)
k,i nγk−i as n → ∞, α

(0)
k,0 �= 0, (37)

u(n)
k(q+1)+1 ∼ (n!)r

ξn

∞∑
i=0

α
(1)
k,i n−γk−i as n → ∞, α

(1)
k,0 = − 1

α
(0)
k,0

�= 0, (38)

u(n)
k(q+1)+ j ∼ n + p + 1 +

∞∑
i=0

α
( j)
k,i n−r−i as n → ∞,

α
( j)
k,0 = (k + 1)ξ, j = 2, 3 . . . q, (39)

with γ0 = γ, γk = γk−1 − r − 2 − μk when p = 0 and γk = γk−1 − (p + 1)r −
1 − μk when p �= 0, where μk are some nonnegative integers.
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Proof (i) For logarithmically convergent sequences in (29), the convergence results
can be obtained by following the similar steps given by Garibotti–Grinstein [18]
in the proof of ε-algorithm. Here we omit the details.

(ii) Now we prove the convergence results for linearly convergent sequences in (30).
We proceed by induction on k.

Base step. Consider the case when k = 0. On the one hand, since u(n)
0 = Sn and

u(n)
1 = 1/�Sn , it is obvious that (34) and (35) hold for k = 0 with γ0 = γ , α(0)

k,i = α0.
On the other hand, according to the recursive relation (24) and initial values (25),
expression (36) for k = 0 can be easily obtained with the help of Lemma 2.

Inductive step. Assume that expressions (34)–(36) hold for k = 1, 2, . . . , m, where
m is a positive integer. Next, we will prove that they also hold for k = m + 1.

Firstly, consider the proof of (34) when k = m + 1 . Subtracting S form both sides
of Eq. (32) in Lemma 2, we get

u(n)
(k+1)(q+1) − S = 1∏q

i=1 �u(n)
k(q+1)+i

{(
u(n+p+1)

k(q+1) − S
)

�u(n)
k(q+1)+1

q∏
i=2

�u(n)
k(q+1)+i

+u(n)
k(q+1)+1�

(
u(n+p)

k(q+1) − S
) q∏

i=2

�u(n+p)

(k−1)(q+1)+i

−�
(

u(n+p)

k(q+1) − S
)

u(n+p+1)

k(q+1)−q

q∏
i=2

�u(n+p)

(k−1)(q+1)+i

}
. (40)

For simplicity, set

A(n)
k =

(
u(n+p+1)

k(q+1) − S
)

�u(n)
k(q+1)+1

q∏
i=2

�u(n)
k(q+1)+i

+u(n)
k(q+1)+1�

(
u(n+p)

k(q+1) − S
) q∏

i=2

�u(n+p)

(k−1)(q+1)+i ,

B(n)
k = �

(
u(n+p)

k(q+1) − S
)

u(n+p+1)

k(q+1)−q

q∏
i=2

�u(n+p)

(k−1)(q+1)+i ,

C (n)
k =

q∏
i=1

�u(n)
k(q+1)+i ,

then (40) can be written as

u(n)
(k+1)(q+1) − S = A(n)

k − B(n)
k

C (n)
k

. (41)

Thus, in order to prove (34) for k = m + 1, we only need to analyze the asymptotic
behaviours of A(n)

m , B(n)
m and C (n)

m as n → ∞, respectively.
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In fact, according to the inductive hypothesis and Lemma 1, we have

�
(

u(n)
k(q+1) − S

)
∼ ξn

∞∑
i=0

α̂
(0)
k,i nγk−i , as n → ∞, α̂

(0)
k,0 = (ξ − 1)α

(0)
k,0, (42)

�u(n)
k(q+1)+1 ∼ ξ−n

∞∑
i=0

α̂
(1)
k,i n−γk−i , as n → ∞, α̂

(1)
k,0 =

(
1

ξ
− 1

)
α

(1)
k,0, (43)

�u(n)
k(q+1)+ j ∼ 1 +

∞∑
i=2

α̂
( j)
k,i n−i , as n → ∞, j = 2, 3 . . . q. (44)

Furthermore,

(
u(n+p)

k(q+1) − S
)

u(n)
k(q+1)+1 ∼

∞∑
i=0

bk,i n
−i , as n → ∞,

which leads to

�
[(

u(n+p)

k(q+1) − S
)

u(n)
k(q+1)+1

]
∼

∞∑
i=2

b̂k,i n
−i , as n → ∞,

where k = 1, . . . , m.
With the help of the above relations, we obtain

A(n)
m ∼

(
u(n+p+1)

m(q+1) − S
)

�u(n)
m(q+1)+1

q∏
j=2

(
1 +

∞∑
i=2

α̂
( j)
m,i n

−i

)

+u(n)
m(q+1)+1�

(
u(n+p)

m(q+1) − S
) q∏

j=2

(
1 +

∞∑
i=2

α̂
( j)
m−1,i (n + p)−i

)

∼
(

u(n+p+1)

m(q+1) − S
)

�u(n)
m(q+1)+1

(
1 + O(n−2)

)

+u(n)
m(q+1)+1�

(
u(n+p)

m(q+1) − S
) (

1 + O(n−2)
)

∼ �
[(

u(n+p)

m(q+1) − S
)

u(n)
m(q+1)+1

] (
1 + O(n−2)

)

∼
∞∑

i=2

βm,i n
−i , as n → ∞, (45)

B(n)
m ∼

[
ξ−n−p−1

∞∑
i=0

α
(1)
m−1,i (n + p + 1)−γm−1−i

]

·
[
ξn+p

∞∑
i=0

α̂
(0)
m,i (n + p)γm−i

] q∏
j=2

(
1 +

∞∑
i=2

α̂
( j)
m−1,i (n + p)−i

)
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∼
[
ξ−n−p−1

∞∑
i=0

α
(1)
m−1,i (n + p + 1)−γm−1−i

]
·

×
[
ξn+p

∞∑
i=0

α̂
(0)
m,i (n + p)γm−i

] (
1 + O(n−2)

)

∼
∞∑

i=0

θm,i n
γm−γm−1−i , as n → ∞, (46)

C (n)
m ∼

[
ξ−n

∞∑
i=0

α̂
(1)
m,i n

−γm−i

] q∏
j=2

(
1 +

∞∑
i=2

α̂
( j)
m,i n

−i

)

∼
[
ξ−n

∞∑
i=0

α̂
(1)
m,i n

−γm−i

] (
1 + O(n−2)

)

∼ ξ−n
∞∑

i=0

τm,i n
−γm−i , as n → ∞. (47)

If we substitute the expressions (45)–(47) into (41), and use γm − γm−1 ≤ −2, we
finally get the following result

u(n)
(m+1)(q+1) − S ∼ ξn

∞∑
i=0

ρ
(0)
m,i n

γm−2−i

= ξn
∞∑

i=0

α
(0)
m+1,i n

γm+1−i , as n → ∞, α
(0)
m+1,0 �= 0, (48)

with γm+1 = γm − 2 − μm+1 for some nonnegative integer μm+1, which implies that
(34) holds for k = m + 1.

Secondly, we prove (35) for k = m + 1. Replacing k by (m + 1)(q + 1), equation
(24) can be written as

u(n)
(m+1)(q+1)+1 = u(n+p+1)

m(q+1)+1 + �u(n+p)

m(q+1)+1

�u(n)
(m+1)(q+1)

(
u(n)

(m+1)(q+1) − u(n+p+1)

m(q+1)

)
.

Using the hypothesis and expression (48) we have just proved, we obtain

u(n)
(m+1)(q+1)+1 ∼ ξ−n

∞∑
i=0

α
(1)
m+1,i n

−γm+1−i as n → ∞,

where α
(1)
m+1,0 = 1

α
(0)
m,0(ξ−1)

, which can be derived by the relation α
(1)
m+1,0α

(0)
m+1,0 =

α
(1)
m,0α

(0)
m,0.
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Finally, we investigate the asymptotic behaviours of u(n)
(m+1)(q+1)+ j with j = 2,

. . . , q, as n → ∞. In fact, similar to the analysis of u(n)
(m+1)(q+1)+1 given above,

the asymptotic behaviour of u(n)
(m+1)(q+1)+ j can be easily derived from that of

u(n)
(m+1)(q+1)+ j−1 and the inductive hypothesis, that is

u(n)
(m+1)(q+1)+ j ∼ n +

∞∑
i=0

α
( j)
m+1,i n

−i as n → ∞, j = 2, 3 . . . q,

with α
( j)
m+1,0 = (m +2)(p +1+ ξ

1−ξ
), which can be obtained from α

( j+1)
m+1,0 −α

( j+1)
m,0 =

α
( j)
m+1,0 − α

( j)
m,0 = p + 1 + ξ

1−ξ
, j = 2, 3 . . . q − 1.

Consequently, expressions (34)–(36) hold for k = m +1, which complete the proof
of (ii) by inductive principle.

(iii) The proof of (37)–(39) to factorially convergent sequences in (31) can be achieved
in a similar way as we did in the case of linearly convergent sequences in part
(ii).

Thus proving the theorem.

From Theorem 4, we can easily see that

lim
n→∞

u(n)
k(q+1) − S

Sn − S
�= 0, k = 1, 2, . . .

for logarithmically convergent sequences (29), and

lim
n→∞

u(n)
k(q+1) − S

Sn − S
= 0, k = 1, 2, . . .

for both linearly convergent sequences (30) and factorially convergent sequences (31).
In other words, Theorem 4 indicates that our new method accelerate the convergence
of both linearly convergent sequences (30) and factorially convergent sequences (31),
but fails in logarithmically convergent sequences (29). This is the same as ε-algorithm.

Let us mention that there is a classical article on the convergence of ε-algorithm by
Wynn [54], whose results were later extended by Sidi [42]. They analyzed the behavior
of Shanks transformation on sequences (Sn) behaving as

Sn ∼ S +
∞∑

i=1

αiλ
n
i , as n → ∞ (49)

with some conditions. And it was showed to be effective, which was expected in view
of the fact that the derivation of Shanks transformation was actually based on a model
sequence obtained by a truncation of the infinite series in (49). In this section, we
presented some results pertaining to more general sequences for (29)–(31). These
results can exactly or similarly be reduced to those on ε-algorithm [18,46].
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4.2 Stability

We now turn to the investigation of stability. From equation (24), we obtain

u(n)
(k+1)(q+1) = λ

(n)
k u(n+p+1)

k(q+1) + μ
(n)
k u(n+p)

k(q+1), λ
(n)
k + μ

(n)
k = 1, (50)

where

λ
(n)
k = u(n+1)

k(q+1)+q − u(n+p+1)

(k−1)(q+1)+q

�u(n)
k(q+1)+q

, μ
(n)
k = −u(n)

k(q+1)+q − u(n+p+1)

(k−1)(q+1)+q

�u(n)
k(q+1)+q

. (51)

Using mathematical induction on k and noticing that u(n)
0 = Sn , we have

u(n)
k(q+1) =

k∑
i=0

γ
(n)
k,i Sn+kp+i ,

k∑
i=0

γ
(n)
k,i = 1. (52)

From the context of other extrapolation methods [40,43,44,47], the quantities of
relevance to stability are

�
(n)
k =

k∑
i=0

|γ (n)
k,i |.

In fact, if S̃n = Sn + εn , γ̃
(n)
k,i = γ

(n)
k,i + δ

(n)
k,i are the computed quantities with small

perturbations, then the calculated values ũ(n)
k(q+1) are given by

ũ(n)
k(q+1) =

k∑
i=0

γ̃
(n)
k,i S̃n+kp+i = u(n)

k(q+1) +
k∑

i=0

γ
(n)
k,i εn+kp+i +

k∑
i=0

δ
(n)
k,i S̃n+kp+i .

Assume the S̃n and the γ̃k,i have been computed with machine precision, that is,
|εi | = |Si ||ρi |, |δ(n)

k,i | = |γ (n)
k,i ||η(n)

k,i |, where |ρi |, |η(n)
k,i | ≤ ω, ω being the roundoff unit

of the arithmetic being used, then

|ũ(n)
k(q+1) − S| ≤ |u(n)

k(q+1) − S| + ω

[
k∑

i=0

|γ (n)
k,i ||Sn+kp+i | +

k∑
i=0

|γ (n)
k,i ||S̃n+kp+i |

]
.

Noticing that ω|S̃i | = ω|Si | + O(ω2), we have

|ũ(n)
k(q+1) − S| ≤≈ |u(n)

k(q+1) − S| + 2ω

k∑
i=0

|γ (n)
k,i ||Sn+kp+i |.
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In case Sn converges, then Si ≈ S for all large i . Therefore, when S �= 0,

|ũ(n)
k(q+1) − S|

|S| ≤≈ |u(n)
k(q+1) − S|

|S| + 2ω

k∑
i=0

|γ (n)
k,i | = |u(n)

k(q+1) − S|
|S| + 2ω�

(n)
k ,

which implies that �
(n)
k control the propagation of errors in computing process. When

supn�
(n)
k = ∞, the sequence

(
u(n)

k(q+1)

)∞
n=0

is unstable, and when supn�
(n)
k < ∞, it

is stable. Since
∑k

i=0 γ
(n)
k,i = 1, we hope these �

(n)
k are as close to 1 as possible to get

good numerical stability. Next, we will consider the asymptotic behaviour of �
(n)
k , as

n → ∞.
As the following lemma can be proved in a way similar to [45], we simply list it

without proof.

Lemma 3 Let P(n)
k (z) = ∑k

i=0 γ
(n)
k,i zi , then

P(n)
k+1(z) = λ

(n)
k z P(n+p+1)

k (z) + μ
(n)
k P(n+p)

k (z),

where γ
(n)
k,i , λ

(n)
k , μ

(n)
k are the same as (51)–(52), and k = 0, 1, . . . , n = 1, 2, . . ..

Lemma 4 For any nonnegative integer k,

(i) if (Sn) behaves like (30), then

λ
(n)
k ∼ 1

1 − ξ
and μ

(n)
k ∼ −ξ

1 − ξ
, as n → ∞.

(ii) if (Sn) behaves like (31), then

λ
(n)
k ∼ 1 and μ

(n)
k ∼ 0, as n → ∞, i f q = 1,

λ
(n)
k ∼ −p and μ

(n)
k ∼ p + 1, as n → ∞, i f q > 1.

where the quantities λ
(n)
k and μ

(n)
k are defined by (51).

Proof The proof can be easily obtained by using the expressions (51) and the results
of Theorem 4.

Theorem 5 For any nonnegative integer k,

(i) If (Sn) behaves like (30), then

P(n)
k (z) ∼

(
ξ − z

ξ − 1

)k

and �
(n)
k ∼

( |ξ | + 1

|ξ − 1|
)k

, as n → ∞. (53)
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(ii) If (Sn) behaves like (31), then

P(n)
k (z) ∼ zk and �

(n)
k ∼ 1, as n → ∞, i f q = 1, (54)

P(n)
k (z) ∼ (p + 1 − pz)k and �

(n)
k ∼ (2p + 1)k as n → ∞, i f q > 1.

(55)

Proof Combining Lemmas 3 and 4, expressions (53)–(55) hold immediately by induc-
tion on k.

Remark 1 Since our new method is ineffective on logarithmically convergent
sequences (29), we only consider the stability corresponding to linearly convergent
sequences (30) and factorially convergent sequences (31) in the above theorem.

We close this section by concluding that our new sequence transformation is stable
for both linearly convergent sequences (30) and factorially convergent sequences (31).
Concretely, for linearly convergent sequences, the stability is better when ξ is a real
negative number, while becomes weak when ξ approaches 1, since �

(n)
k → ∞ as

ξ → 1. Noticing that ξ l with some positive integer l ≥ 2 is farther away from
1, we propose to apply the method to the subsequences (Sln) for better numerical
stability. This strategy is APS [46], which was first proposed by Sidi [41]. As for
factorially convergent sequences, our new sequence transformation (22) with q = 1
has better stability than that with q > 1. In addition, for a fixed q > 1, the sequence
transformation becomes more and more stable as p shrinks to 0.

5 Numerical examples

In this section, we give some numerical examples, which illustrate the performance of
algorithm (24)–(25) numerically. We also use the ε-algorithm [53] and the multistep
ε-algorithm [20,13] to make comparisons.

Example 1 Consider the following alternating series

Sn =
n∑

k=1

(−1)k+1

2k − 1
,

with limn→∞ Sn = S = π/4. According to the Boole summation formula [27,33,49],
we have

Sn − π

4
∼ (−1)n

2

(
1

2n + 1
+ O(n−2)

)
, as n → ∞.

This asymptotic expansion is a special case of (30), with ξ = −1, γ = −1 and
α0 = 1

4 �= 0. The numerical results corresponding to different choices of p and q are
presented in the following table.
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n |Sn − S|
∣∣∣∣∣ε

(
n−2

⌊
n−1

2

⌋)

2
⌊

n−1
2

⌋ − S

∣∣∣∣∣
∣∣∣∣u

(
n−3

⌊ n
3
⌋+1

)
3
⌊ n

3
⌋ − S

∣∣∣∣
∣∣∣∣∣u

(
n−3

⌊
n−1

3

⌋)

3
⌊

n−1
3

⌋ − S

∣∣∣∣∣

∣∣∣∣∣u
(

n−3
⌊

n−2
3

⌋
−1

)

3
⌊

n−2
3

⌋ − S

∣∣∣∣∣
(p = 0, q = 1) (p = 0, q = 2) (p = 1, q = 2) (p = 2, q = 2)

5 0.0495 1.8742 × 10−4 1.7025 × 10−3 7.9837 × 10−4 2.2411 × 10−3

10 0.0249 3.7074 × 10−8 9.1074 × 10−6 7.4099 × 10−7 1.9801 × 10−5

15 0.0166 4.2286 × 10−12 1.3171 × 10−7 4.1011 × 10−10 2.0518 × 10−8

20 0.0125 3.3307 × 10−16 6.6784 × 10−9 4.3898 × 10−13 3.0118 × 10−11

Example 2 Consider the linearly convergent series

Sn =
n∑

k=1

(0.8)k

k
,

which converges to S = ln 5 = 1.60943791 . . . as n → ∞. As shown in [46, p.84],
Sn has the following asymptotic expansion

Sn − ln 5 ∼ (0.8)n

n

(
−4 + O(n−1)

)
, as n → ∞,

which is a special case of (30) with ξ = 0.8. The corresponding numerical results are
presented in the following table.

n |Sn − S|
∣∣∣∣∣ε

(
n−2

⌊
n−1

2

⌋)

2
⌊

n−1
2

⌋ − S

∣∣∣∣∣
∣∣∣∣u

(n−3� n
3 �+1)

3� n
3 � − S

∣∣∣∣
∣∣∣∣∣u

(
n−3

⌊
n−1

3

⌋)

3
⌊

n−1
3

⌋ − S

∣∣∣∣∣

∣∣∣∣∣u
(

n−3
⌊

n−2
3

⌋
−1

)

3
⌊

n−2
3

⌋ − S

∣∣∣∣∣
(p = 0, q = 1) (p = 0, q = 2) (p = 1, q = 2) (p = 2, q = 2)

10 3.0563 × 10−2 1.7538 × 10−4 7.9828 × 10−3 7.9491 × 10−3 6.0581 × 10−3

20 1.8920 × 10−3 1.3000 × 10−8 6.8015 × 10−5 3.3291 × 10−5 7.8235 × 10−6

30 1.4341 × 10−4 1.8610 × 10−10 8.7118 × 10−6 3.0440 × 10−7 1.6116 × 10−7

40 1.1916 × 10−5 2.9263 × 10−12 2.6159 × 10−6 2.1194 × 10−8 7.4446 × 10−10

Example 3 Consider the logarithmically convergent series

Sn =
n∑

k=1

1

k2 ,

which converges to S = π2/6 as n → ∞. Based on the Euler-Maclaurin summation
formula (see [7,27,34] for details), we have

Sn − π2

6
∼ n−1

⎛
⎝−1 + 1

2
n−1 −

∞∑
j=1

B2 j n
−2 j

⎞
⎠ , as n → ∞,
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where B2 j are Bernoulli numbers. It is obvious that (Sn) is a logarithmically convergent
sequence with the asymptotic expansion (29), and the corresponding numerical results
are shown in the following table.

n |Sn − S|
∣∣∣∣∣ε

(
n−2

⌊
n−1

2

⌋)

2
⌊

n−1
2

⌋ − S

∣∣∣∣∣
∣∣∣∣u

(n−3� n
3 �+1)

3� n
3 � − S

∣∣∣∣
∣∣∣∣∣u

(
n−3

⌊
n−1

3

⌋)

3
⌊

n−1
3

⌋ − S

∣∣∣∣∣

∣∣∣∣∣u
(

n−3
⌊

n−2
3

⌋
−1

)

3
⌊

n−2
3

⌋ − S

∣∣∣∣∣
(p = 0, q = 1) (p = 0, q = 2) (p = 1, q = 2) (p = 2, q = 2)

10 9.5166 × 10−2 3.0460 × 10−2 8.2278 × 10−2 7.8642 × 10−2 7.0766 × 10−2

20 4.8771 × 10−2 8.6462 × 10−3 3.5679 × 10−2 3.0728 × 10−2 2.5158 × 10−2

30 3.2784 × 10−2 5.3752 × 10−3 2.5080 × 10−2 1.8725 × 10−2 1.3836 × 10−2

40 2.4690 × 10−2 4.2544 × 10−3 2.1581 × 10−2 1.4261 × 10−2 1.0904 × 10−2

The above numerical examples indicate that our new algorithm indeed acceler-
ates the linearly convergent sequences having asymptotic expansion (30), but fails in
the logarithmically convergent sequences (29). That is to say, the numerical results
coincide with the theoretical results presented in Sect. 4.

We also see that the new algorithm is not as good as ε-algorithm but better than
multistep ε-algorithm (with the step size equals 2), while treating the linearly conver-
gent series considered in Examples 1 and 2. However, if we consider some sequences
which are very close to the kernel given in Theorem 3, the new algorithm may be faster
than the ε-algorithm. The reason is that given the same initial values, the maximal sub-
script k of the sequence transformation T (p,q)

k (Sn) computed by the new algorithm
is smaller than that of the Shanks transformation ek(Sn) computed by ε-algorithm,
which means less iterations in some sense.

Example 4 Consider the linearly convergent sequence

Sn = n2
(−1

2

)n

+ n2

4n
,

which converges to S = 0 as n → ∞. We give the numerical results corresponding to
the ε-algorithm and the new algorithm (24)–(25) (with p = q = 2) in the following
tables.

(i) ε-algorithm.

n |e0 − S| |e1 − S| |e2 − S| |e3 − S| |e4 − S| |e5 − S|

1 0.2500 0.3525 9.8263 × 10−2 4.4373 × 10−2 1.0125 × 10−3 1.9609 × 10−5

3 0.9844 9.9295 × 10−2 1.6620 × 10−2 1.0205 × 10−3 6.4315 × 10−5

5 0.7568 1.7071 × 10−2 2.3124 × 10−3 7.0607 × 10−5

7 0.3798 2.9025 × 10−3 2.6781 × 10−4

11 0.0591
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(ii) The new algorithm (24)–(25), where p = q = 2.

n |T (2,2)
0 − S| |T (2,2)

1 − S| |T (2,2)
2 − S| |T (2,2)

3 − S|

1 0.2500 3.0763 × 10−2 3.7866 × 10−4 2.1535 × 10−17

3 0.9844 2.4721 × 10−2 1.0110 × 10−4

5 0.7568 7.4612 × 10−3

7 0.3798 1.9328 × 10−3

11 0.0591

As indicated in the above tables, in this example, the new algorithm converges faster
than the ε-algorithm with smaller k.

6 Conclusion and discussions

In this article, we construct the molecule solution of an extended discrete Lotka–
Volterra equation by Hirota’s bilinear method, from which a new sequence transfor-
mation is derived. From the bilinear form of this extended discrete Lotka–Volterra
equation, a two dimensional difference equation which can be used as a convergence
acceleration algorithm to implement the new sequence transformation is generated. In
addition, our new transformation is nothing but an extension of the multistep Shanks’
transformation, and the multistep ε-algorithm is just a special case of our new algo-
rithm. Then we present a rigorous convergence and stability analysis, which implies
that our new method accelerates both linearly convergent sequences (30) and factori-
ally convergent sequences (31) with good numerical stability while fails in logarithmi-
cally convergent sequences (29). Finally, we give numerical examples to demonstrate
some of the preceding theoretical results.
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