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Conjecture

In two recent papers byBarry (2010) [29] and (2011) [30], it is conjec-

tured that Somos-4 admits a solution expressed in terms of Hankel

determinant with its elements satisfying a convolution recursion

relation. In this paper, Barry’s conjecture on Somos-4 is firstly con-

firmed. Actually, we present a more generalized result. The proof is

mainly based on new findings on properties for so-called

Block–Hankel determinants. The method can also be used to prove

another conjecture proposed by Michael Somos, which has been

solved by Guoce Xin.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A Somos-k (k � 4) sequence originally introduced by Michael Somos is a sequence of numbers

defined by a recurrence as follows:

SnSn−k =
[k/2]∑
i=1

xiSn−iSn−k+i, (1)

where the xi are given integers. In recent years, such sequences have attracted a great deal of interest

of researchers in number theory, algebraic combinatorics, statistical mechanics, as well as discrete

integrable systems.

∗ Corresponding author at: LSEC, Institute of Computational Mathematics and Scientific Engineering Computing, AMSS, Chinese

Academy of Sciences, P.O. Box 2719, Beijing 100190, PR China.

E-mail addresses: changxk@lsec.cc.ac.cn (X.-K. Chang), hxb@lsec.cc.ac.cn (X.-B. Hu).

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2012.01.016

http://dx.doi.org/10.1016/j.laa.2012.01.016
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2012.01.016


4286 X.-K. Chang, X.-B. Hu / Linear Algebra and its Applications 436 (2012) 4285–4295

For example, combinatorial interpretations for Somos-4 (A006720) and Somos-5 (A006721) have

been found by Speyer [1] and for Somos-6 (A006722) and Somos-7 (A006723) by Carroll and Speyer

[2]. For the case of k = 4, 5, 6, 7, if the coefficients are xi = 1 (1 � i � [k/2]) and the initial values are

given by Si = 1 (0 � i � k − 1), then quadratic relation (1) can produce a sequence of integers [3–5],

which is a property of what we call integrality. Such a property was first found by Michael Somos. It

was realized that the deeper reason behind this lay in the fact that the recurrence (1) satisfies Laurent

phenomenon,meaning that the iterates are polynomials in the four initial data, and their inverses, and

these Laurent polynomials have integer coefficients. The Gale–Robinson conjecture[6,7] confirmed

by Fomin and Zelevinsky [8] indicates that Somos-k (k = 4, 5, 6, 7) sequences exhibit the Laurent

property, which is an essential feature of Fomin and Zelevinsky’s theory of cluster algebras [9,10].

For the case k = 4 and k = 5, Hone constructed explicit solutions to the bilinear recurrence (1)

with complex numbers xi in terms of the Weierstrass sigma function in [11,12], respectively. He also

indicated that Somos-4 can be thought of as an integrable symplectic map [13,14] bymaking a change

of variables. But, unfortunately, it is not obvious from the form of the Weierstrass sigma function that

sequences have the Laurent phenomenon. For more details, please consult [15–24].

Furthermore, there also exist several conjectures about Somos-4 or Somos-5. For instance, Michael

Somos [25] observed that y(z) given by y − y2 = z − z3 yields the Somos-4 sequence, which has

been proved by Xin [26]. Gosper and Schroeppel [27] made two near-addition formulas for Somos-4

and Somos-5, which has been solved by Ma [28]. More recently, Barry proposed another conjecture

about Somos-4 in the paper [29,30], which is still open. We restate it as the following:

Conjecture 1.1. Assume that an satisfies a convolution recursion relation:

an =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if n = 0;
α, if n = 1;
αan−1 + βan−2 + γ

∑n−2
i=0 aian−2−i, if n > 1.

(2)

Then the Hankel determinant Hn = det(ai+j)0�i,j�n−1 is a (α2γ 2, γ 2(β + γ )2 − α2γ 3) Somos-4

sequence.

Herewe use the notation (x1, x2, . . . , x[ k
2
]) Somos-k sequence, which represents that the sequence

satisfies recursion relation (1).

The main purpose of this paper is to show the following result:

Theorem 1.2. For a fixed positive integer p, let a
(p)
n be computed via the following convolution recurrence:

a(p)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if n < 0;
1, if n = 0;
αa

(p)
n−1 + βa

(p)
n−2 + γ

∑[ n−2
p

]
i=0 a

(p)
pi a

(p)
n−2−pi, if n = kp + 1, k � 0

αa
(p)
n−1 + γ

∑[ n−2
p

]
i=1 a

(p)
pi a

(p)
n−2−pi, if n = kp + j, k � 0,2 � j � p.

(3)

Then we have

(i) h
(1)
n is a (α2γ 2, γ 2(β + γ )2 − α2γ 3) Somos-4 sequence.

(ii) h
(2)
n is a (α6γ 3 − α4γ 3(β + γ ), α6γ 4(β + γ )(β + 2γ ) − α8γ 5) Somos-5 sequence.
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(iii) If β + γ = 0, then h
(p)
n satisfies the relation:

h
(p)
n+p+3h

(p)
n = (αpγ )p+1h

(p)
n+p+2h

(p)
n+1 − (αpγ )2p+1

αp
h
(p)
n+p+1h

(p)
n+2,

where h
(p)
n = det

(
a
(p)
ip+j

)
0�i,j�n−1

.

Obviously, conclusion (i) confirms the conjecture due to Barry. Besides, conclusion (ii) indicates

that a Block–Hankel determinant solution to Somos-5 recurrences is obtained while conclusion (iii)

yields a solution for a special case of the Gale–Robinson recurrence.

This paper is organized as follows. In Section 2, the so-called Block–Hankel determinants are inves-

tigated. As a result, several new results on Block–Hankel determinants are achieved. We present the

proof of Theorem 1.2 in Section 3. Finally conclusions and discussions are given in Section 4.

2. Block–Hankel determinants and their properties

In order to complete the proof of Theorem 1.2, it is necessary to investigate the properties of deter-

minant h
(p)
n .

Aswe know,Hankel determinants [31] havewidely appeared in the theory of orthogonal polynomi-

als, Padé approximation, continued fractions and combinatorial mathematics. (See [32–36] for more

details.) In order to interpret a graph, Shingu and Kamioka [37] introduce the notion of Block–Hankel

determinant,which is an extension of Hankel determinant. Nowwe give the definition of Block–Hankel

determinant.

Ann×nBlock–Hankel determinant (p � 1,q � 1) is definedbyHn(a
(p,q)
r ) ≡ det(a

(p,q)
r+ip+jq)0�i,j�n−1.

When p = 1 and q = 1,

Hn(a
(1,1)
r ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1,1)
r a

(1,1)
r+1 · · · a

(1,1)
r+n−1

a
(1,1)
r+1 a

(1,1)
r+2 · · · a

(1,1)
r+n

...
...

. . .
...

a
(1,1)
r+n−1 a

(1,1)
r+n · · · a

(1,1)
r+2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4)

which is a conventional Hankel determinant. The following are two other examples:

Hn(a
(2,1)
r ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(2,1)
r a

(2,1)
r+1 · · · a

(2,1)
r+n−1

a
(2,1)
r+2 a

(2,1)
r+3 · · · a

(2,1)
r+n+1

...
...

. . .
...

a
(2,1)
r+2(n−1) a

(2,1)
r+2n−1 · · · a

(2,1)
r+3(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5)

and

Hn(a
(4,2)
r ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(4,2)
r a

(4,2)
r+2 · · · a

(4,2)
r+2(n−1)

a
(4,2)
r+4 a

(4,2)
r+6 · · · a

(4,2)
r+2n+2

...
...

. . .
...

a
(4,2)
r+4(n−1) a

(4,2)
r+4n−2 · · · a

(4,2)
r+6(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6)
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Obviously, h
(p)
n in Theorem 1.2 have the same structure as Hn(a

(p,1)
0 ). Thus, we concentrate on the

study of Block–Hankel determinants with q = 1, namely, Hn(a
(p,1)
r ). For simplicity, we abbreviate this

as Hn(a
(p)
r ).

In the sequel, we investigate some properties of Block–Hankel determinants Hn(a
(p)
r ) with the ele-

ments in (3). The proofs of the following lemmas can be completed by the same steps:

• Step 1: Perform column operations recursively.
• Step 2: If necessary, decompose the determinant obtained by Step 1 to two parts.
• Step 3: Perform row operations recursively in order to get a determinant in a simple expression.

Lemma 2.1. For n � 1, we have

Hn(a
(p)
0 ) = (αpγ )n−1Hn−1(a

(p)
−1) + (β + γ )(αpγ )n−2Jn−1(a

(p)
0 ), (7)

where

Jn(a
(p)
0 ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

A
(p)
p−1 a

(p)
0 a

(p)
1 · · · a

(p)
n−2

A
(p)
2p−1 a

(p)
p a

(p)
p+1 · · · a

(p)
n+p−2

...
...

...
. . .

...

A
(p)
np−1 a

(p)
(n−1)p a

(p)
(n−1)p+1 · · · a

(p)
n+(n−1)p−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(8)

and

Hn(a
(p)
−1) = −(αpγ )n−2Kn−1(a

(p)
−1), (9)

where

Kn(a
(p)
−1) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

A
(p)
p−1 a

(p)
−1 a

(p)
0 · · · a

(p)
n−3

A
(p)
2p−1 a

(p)
p−1 a

(p)
p · · · a

(p)
n+p−3

...
...

...
. . .

...

A
(p)
np−1 a

(p)
(n−1)p−1 a

(p)
(n−1)p · · · a

(p)
n+(n−1)p−3

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10)

Here A
(p)
kp−1 is defined by

A
(p)
kp−1 = a

(p)
kp−1 −

k−1∑
i=1

A
(p)
ip−1

a
(p)
(k+1−i)p

a
(p)
p

, A
(p)
p−1 = a

(p)
p−1. (11)

Proof. Here we only give the proof of Eq. (7). By making the appropriate substitutions, Eq. (9) can be

obtained in a similar manner without Step 2.

Step 1: We rewrite

Hn(a
(p)
0 ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
0 a

(p)
1 · · · a

(p)
n−1

a
(p)
p a

(p)
p+1 · · · a

(p)
n+p−1

...
...

. . .
...

a
(p)
(n−1)p a

(p)
(n−1)p+1 · · · a

(p)
n+(n−1)p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)
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by using the recursion relation (3) to obtain Eq. (7). We first subtract the (ip+ 1)th columnmultiplied

by γ a
(p)
n−3−ip from the nth column for i = 1, 2, . . . , [ n−3

p
]. Next, if n = kp + 2, k = 1, 2, . . ., subtract

the (n− 2)th columnmultiplied by (β + γ ) from the nth column. And then, subtracting the (n− 1)th
column multiplied by α, we have

Hn

(
a
(p)
0

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
0 · · · a

(p)
n−2 0

a
(p)
p · · · a

(p)
n+p−2 γ a

(p)
p a

(p)
n−3

a
(p)
2p · · · a

(p)
n+2p−2 γ

2∑
i=1

a
(p)
pi a

(p)
n+2p−3−pi

...
...

. . .
...

a
(p)
(n−1)p · · · a

(p)
n+(n−1)p−2 γ

n−1∑
i=1

a
(p)
pi a

(p)
n+(n−1)p−3−pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (13)

Applying a similar procedure to the (n − 1)th, . . ., 2nd columns, we obtain

Hn

(
a
(p)
0

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
0 0 · · · 0

a
(p)
p (β + γ )a

(p)
p−1 + γ a

(p)
p a

(p)
−1 · · · γ a

(p)
p a

(p)
n−3

a
(p)
2p (β + γ )a

(p)
2p−1 + γ

2∑
i=1

γ a
(p)
pi a

(p)
2p−1−pi · · · γ

2∑
i=1

a
(p)
pi a

(p)
n+2p−3−pi

.

.

.
.
.
.

. . .
.
.
.

a
(p)
(n−1)p (β + γ )a

(p)
(n−1)p−1 + γ

n−1∑
i=1

a
(p)
pi a

(p)
(n−1)p−1−pi · · · γ

n−1∑
i=1

a
(p)
pi a

(p)
n+(n−1)p−3−pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(14)

Step 2: Decompose Hn(a
(p)
0 ) into two parts, namely,

H̃n(a
(p)
0 ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
0 0 · · · 0

a
(p)
p (β + γ )a

(p)
p−1 · · · γ a

(p)
p a

(p)
n−3

a
(p)
2p (β + γ )a

(p)
2p−1 · · · γ

2∑
i=1

a
(p)
pi a

(p)
n+2p−3−pi

...
...

. . .
...

a
(p)
(n−1)p (β + γ )a

(p)
(n−1)p−1 · · · γ

n−1∑
i=1

a
(p)
pi a

(p)
n+(n−1)p−3−pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

Ĥn(a
(p)
0 ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
0 0 · · · 0

a
(p)
p γ a

(p)
p a

(p)
−1 · · · γ a

(p)
p a

(p)
n−3

a
(p)
2p γ

2∑
i=1

a
(p)
pi a

(p)
2p−1−pi · · · γ

2∑
i=1

a
(p)
pi a

(p)
n+2p−3−pi

...
...

. . .
...

a
(p)
(n−1)p γ

n−1∑
i=1

a
(p)
pi a

(p)
(n−1)p−1−pi · · · γ

n−1∑
i=1

a
(p)
pi a

(p)
n+(n−1)p−3−pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (15)
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Step 3: Lastly, we perform the same row operations to both the determinants H̃n(a
(p)
0 ) and Ĥn(a

(p)
0 ).

For k = 3, 4, . . . , we subtract the ith multiplied by a
(p)
(k−i+1)p/a

(p)
p for i = 2, . . . , k − 1. Then the

result in (7) obviously holds. �

In addition, Hn(a
(p)
−1) and Hn(a

(p)
0 ) respectively have another expression.

Lemma 2.2. For n � 1, we have

Hn(a
(p)
0 ) = γ n−1Hn−1(a

(p)
p−1) − βγ n−2Ln−1(a

(p)
p ), (16)

where

Ln(a
(p)
p ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

B
(p)
p−1 a

(p)
p a

(p)
p+1 · · · a

(p)
n+p−2

B
(p)
2p−1 a

(p)
2p a

(p)
2p+1 · · · a

(p)
n+2p−2

...
...

...
. . .

...

B
(p)
np−1 a

(p)
np a

(p)
np+1 · · · a

(p)
n+np−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

and

Hn(a
(p)
−1) = −γ n−2Ln−1(a

(p)
p−1), (18)

where

Ln(a
(p)
p−1) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

B
(p)
p−1 a

(p)
p−1 a

(p)
p · · · a

(p)
n+p−3

B
(p)
2p−1 a

(p)
2p−1 a

(p)
2p · · · a

(p)
n+2p−3

...
...

...
. . .

...

B
(p)
np−1 a

(p)
np−1 a

(p)
np · · · a

(p)
n+np−3

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (19)

Here B
(p)
kp−1(k � 1) is defined by

B
(p)
kp−1 = a

(p)
kp−1 −

k−1∑
i=1

B
(p)
ip−1

a
(p)
(k−i)p

a
(p)
0

, B
(p)
p−1 = a

(p)
p−1. (20)

Proof. Step 1: We start by performing column operations. Firstly, subtract the (ip + 1)th column

multiplied by a
(p)
n−3−ip from the nth column for i = 0, 1, . . . , [ n−3

p
]. Next, if n = kp+ 2, k = 1, 2, . . .,

subtract the (n−2)th columnmultiplied byβ from thenth column. And then, subtracting the (n−1)th

column multiplied by α and adding the (n − 2)th column multiplied by γ a
(p)
0 , we obtain

Hn(a
(p)
0 ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
0 0 · · · 0

a
(p)
p βa

(p)
p−1 + γ a

(p)
0 a

(p)
p−1 · · · γ a

(p)
0 a

(p)
n+p−3

a
(p)
2p βa

(p)
2p−1 + γ

1∑
i=0

a
(p)
pi a

(p)
2p−1−pi · · · γ

1∑
i=0

a
(p)
pi a

(p)
n+2p−3−pi

...
...

. . .
...

a
(p)
(n−1)p βa

(p)
(n−1)p−1 + γ

n−2∑
i=0

a
(p)
pi a

(p)
(n−1)p−1−pi · · · γ

n−2∑
i=0

a
(p)
pi a

(p)
n+(n−1)p−3−pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Next, following Step 2 and 3, we can easily obtain the result in (16).
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The proof of Eq. (18) is similar, the details of which is omitted here. �

Employing the similar procedure in the proof of Lemma 2.1 to Hn(a
(p)
r )(1 � r � p − 1) without

Step 2, we also have the following lemma.

Lemma 2.3. For n � 1, we have

Hn(a
(p)
r ) = αr(αpγ )n−1Hn−1(a

(p)
r−1), 1 � r � p − 1. (21)

At last, we analyze the term Hn(a
(p)
p ) and another expression of Hn(a

(p)
p−1).

Lemma 2.4. For n � 1, we have

Hn(a
(p)
p ) = αp(αpγ )n−1Hn−1(a

(p)
p−1) + αp(β + γ )(αpγ )n−2Jn−1(a

(p)
p ), (22)

where

Jn(a
(p)
p ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

A
(p)
2p−1 a

(p)
p a

(p)
p+1 · · · a

(p)
n+p−2

A
(p)
3p−1 a

(p)
2p a

(p)
2p+1 · · · a

(p)
n+2p−2

...
...

...
. . .

...

A
(p)
(n+1)p−1 a

(p)
np a

(p)
np+1 · · · a

(p)
n+np−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(23)

and

Hn(a
(p)
p−1) = −αp(αpγ )n−2Kn−1(a

(p)
p−1), (24)

where

Kn(a
(p)
p−1) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

A
(p)
2p−1 a

(p)
p−1 a

(p)
p · · · a

(p)
n+p−3

A
(p)
3p−1 a

(p)
2p−1 a

(p)
2p · · · a

(p)
n+2p−3

...
...

...
. . .

...

A
(p)
(n+1)p−1 a

(p)
np−1 a

(p)
np · · · a

(p)
n+np−3

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (25)

Proof. Likewise, we just give the detailed proof of Eq. (22), as Eq. (24) can be proved in a similar way

without Step 2.

Step 1:We start by performing columnoperations. Firstly, subtract the (ip+1)th columnmultiplied

by a
(p)
n−3−ip from the nth column for i = 1, 2, . . . , [ n−3

p
]. Next, if n = kp + 2, k = 1, 2, . . ., subtract

the (n − 2)th column multiplied by (β + γ ). And then, subtracting the (n − 1)th column multiplied

by α , we get

Hn(a
(p)
p ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(p)
p (β + γ )a

(p)
p−1 + γ a

(p)
p a

(p)
−1 · · · γ a

(p)
p a

(p)
n−3

a
(p)
2p (β + γ )a

(p)
2p−1 + γ

2∑
i=1

γ a
(p)
pi a

(p)
2p−1−pi · · · γ

2∑
i=1

a
(p)
pi a

(p)
n+2p−3−pi

...
...

. . .
...

a
(p)
(n−1)p (β + γ )a

(p)
(n−1)p−1 + γ

n∑
i=1

a
(p)
pi a

(p)
(n−1)p−1−pi · · · γ

n∑
i=1

a
(p)
pi a

(p)
n+(n−1)p−3−pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then the result in (22) can be obtained by following Step 2 and Step 3. �
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3. The proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. The following derivations hold for any positive

integer p as long as the expressions make sense.

Proof. We begin with four determinant identities. Define

D1 ≡ Kn(a
(p)
−1),

D2 ≡ Jn(a
(p)
0 ),

D3 ≡ Hn(a
(p)
−1),

D4 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0

B
(p)
p−1 a

(p)
p−1 a

(p)
p · · · a

(p)
n+p−3

B
(p)
2p−1 a

(p)
2p−1 a

(p)
p+1 · · · a

(p)
n+2p−3

...
...

...
. . .

...

B
(p)
np−1 a

(p)
np−1 a

(p)
np · · · a

(p)
n+np−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Employing the Jacobi determinant identity [38,39], we have four relations:

DiDi

⎛
⎝ 1 n

1 n

⎞
⎠ = Di

⎛
⎝ 1

1

⎞
⎠Di

⎛
⎝ n

n

⎞
⎠ − Di

⎛
⎝ 1

n

⎞
⎠Di

⎛
⎝ n

1

⎞
⎠ , i = 1, 2, 3, 4,

which are equivalent to

Kn(a
(p)
−1)Hn−2(a

(p)
p−1) = Kn−1(a

(p)
−1)Hn−1(a

(p)
p−1) − Kn−1(a

(p)
p−1)Hn−1(a

(p)
−1), (26)

Jn(a
(p)
0 )Hn−2(a

(p)
p ) = Jn−1(a

(p)
0 )Hn−1(a

(p)
p ) − Jn−1(a

(p)
p )Hn−1(a

(p)
0 ), (27)

Hn(a
(p)
−1)Hn−2(a

(p)
p ) = Hn−1(a

(p)
−1)Hn−1(a

(p)
p ) − Hn−1(a

(p)
0 )Hn−1(a

(p)
p−1), (28)

Ln−1(a
(p)
p )Hn−2(a

(p)
p−1) = Ln−2(a

(p)
p )Hn−1(a

(p)
p−1) + Ln−1(a

(p)
p−1)Hn−2(a

(p)
p ), (29)

respectively.

Actually, from Lemmas 2.1–2.4, we can conclude that terms Kn(a
(p)
−1), Kn(a

(p)
p−1), Jn(a

(p)
0 ), Jn(a

(p)
p ),

Ln−1(a
(p)
p ), Ln−1(a

(p)
p−1) andHn(a

(p)
p−1) are all linear combinationsof thevariablesHn(a

(p)
−1),Hn(a

(p)
0 ) and

Hn(a
(p)
p ). When these substitutions are applied to relations (26)–(29), it results in four equations (for

simplicity, here we shall abbreviate Hn(a
(p)
−1), Hn(a

(p)
0 ) and Hn(a

(p)
p ) to e

(p)
n , h

(p)
n and g

(p)
n , respectively):

e
(p)
n+1h

(p)
n−p−1 = (a(p)

p γ )pe(p)n h
(p)
n−p − γ (a(p)

p γ )2p−2e
(p)
n−1h

(p)
n−p+1, (30)

h
(p)
n+1g

(p)
n−2 = (a(p)

p γ )h(p)
n g

(p)
n−1 − γ h

(p)
n−1g

(p)
n , (31)
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e(p)n g
(p)
n−2 = e

(p)
n−1g

(p)
n−1 −

p−1∏
i=1

[a(p)
i (a(p)

p γ )n−1−i]h(p)
n−1h

(p)
n−p, (32)

e(p)n g
(p)
n−2 = 1

β

⎡
⎣γ

p−1∏
i=1

[
a
(p)
i (a(p)

p γ )n−1−i
]
h
(p)
n−1h

(p)
n−p

−
p−1∏
i=1

[
a
(p)
i (a(p)

p γ )n−2−i
]
h(p)
n h

(p)
n−p−1

⎤
⎦ . (33)

Now, we proceed to eliminate e
(p)
n and g

(p)
n from the equations above. From Eqs. (32) and (33), we

immediately obtain:

e
(p)
n−1g

(p)
n−1 =

(
1 + γ

β

) p−1∏
i=1

[a(p)
i (a(p)

p γ )n−1−i]h(p)
n−1h

(p)
n−p

− 1

β

p−1∏
i=1

[a(p)
i (a(p)

p γ )n−2−i]h(p)
n h

(p)
n−p−1. (34)

Additionally, according to relations (33) and (34), multiplying g
(p)
n−1 on both sides of Eq. (30), we get

e(p)n g
(p)
n−1 = γ (a(p)

p γ )p−2

(
1 + γ

β

) p−1∏
i=1

[a(p)
i (a(p)

p γ )n−1−i]h(p)
n−1h

(p)
n−p+1

− 1

β
(a(p)

p γ )−p
p−1∏
i=1

[a(p)
i (a(p)

p γ )n−1−i]h(p)
n+1h

(p)
n−p−1. (35)

In order to eliminate e
(p)
n and g

(p)
n , we need another two equations. One is obtained by multiplying

g
(p)
n on both sides of Eq. (30), namely,

e
(p)
n+1g

(p)
n h

(p)
n−p−1 = (a(p)

p γ )pe(p)n g(p)
n h

(p)
n−p − γ (a(p)

p γ )2p−2e
(p)
n−1g

(p)
n h

(p)
n−p+1, (36)

the other is obtained by multiplying e
(p)
n−1 on both sides of Eq. (31), namely,

h
(p)
n+1e

(p)
n−1g

(p)
n−2 = (a(p)

p γ )h(p)
n e

(p)
n−1g

(p)
n−1 − γ h

(p)
n−1e

(p)
n−1g

(p)
n . (37)

Note that e
(p)
n g

(p)
n−2, e

(p)
n−1g

(p)
n−1 and e

(p)
n g

(p)
n−1 can be expressed in terms of h

(p)
n in Eqs. (33), (34) and

(35), therefore, according to combining Eqs. (36) and (37) and eliminating e
(p)
n−1g

(p)
n , we obtain

γ (β + γ )(a(p)
p )2p−2h(p)

n h
(p)
n−1h

(p)
n−p+2h

(p)
n−p−1

−h
(p)
n+2h

(p)
n−1h

(p)
n−ph

(p)
n−p−1 + (a(p)

p γ )p+1h
(p)
n+1h

(p)
n−1h

(p)
n−p

2

= γ (β + γ )(a(p)
p )2p−2h

(p)
n+1h

(p)
n−2h

(p)
n−p+1h

(p)
n−p

−h
(p)
n+1h

(p)
n h

(p)
n−p+1h

(p)
n−p−2 + (a(p)

p γ )p+1h(p)
n

2
h
(p)
n−p+1h

(p)
n−p−1. (38)
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Dividing by h
(p)
n h

(p)
n−1h

(p)
n−p+1h

(p)
n−p on both sides and rearranging the relation above, for any positive

integer p, we have

γ (β + γ )(a
(p)
p )2p−2

p−2∑
i=0

h
(p)
n−p+2+ih

(p)
n−p−1+i

h
(p)
n−p+1+ih

(p)
n−p+i

+ h
(p)
n+1h

(p)
n−p−2−(a

(p)
p γ )p+1h

(p)
n h

(p)
n−p−1

h
(p)
n−1h

(p)
n−p

= γ (β + γ )(a
(p)
p )2p−2

p−2∑
i=0

h
(p)
n−p+3+ih

(p)
n−p+i

h
(p)
n−p+2+ih

(p)
n−p+1+i

+ h
(p)
n+2h

(p)
n−p−1−(a

(p)
p γ )p+1h

(p)
n+1h

(p)
n−p

h
(p)
n h

(p)
n−p+1

,

(39)

where
∑n

m ti means an empty sum, when m > n. This yields a quantity independent of n, namely,

γ (β + γ )(αpγ )2p−2
p−2∑
i=0

h
(p)
n−p+2+ih

(p)
n−p−1+i

h
(p)
n−p+1+ih

(p)
n−p+i

+ h
(p)
n+1h

(p)
n−p−2 − (αpγ )p+1h

(p)
n h

(p)
n−p−1

h
(p)
n−1h

(p)
n−p

= C(p).

(40)

As a result, (i) and (ii) in Theorem 1.2 can be obtained by putting p = 1 and p = 2, respectively,

where C(p) can be determined by initial values.

When β + γ = 0, from Lemmas 2.1, 2.3 and 2.4, we conclude that Hn(a
(p)
−1), Hn(a

(p)
p−1) and Hn(a

(p)
p )

all can be linearly expressed in terms of Hn(a
(p)
0 ). Then, substituting Hn(a

(p)
−1),Hn(a

(p)
p−1) and Hn(a

(p)
p )

into Eq. (28), we immediately obtain conclusion (iii). �

4. Conclusion and discussions

In this paper, we have presented Block–Hankel determinant solutions to a series of specific Somos

recurrences. The main results are summarized as follows:

(i) Conjecture 1.1 is confirmed.

(ii) A Block–Hankel determinant solution to Somos-5 is constructed.

(iii) Block–Hankel determinant solutions to other specified Somos recurrences are also given.

Noting that inourmain result theelementsa
(p)
n of theBlock–Hankeldeterminant solutions toSomos

recurrences satisfy recursion relation (3), it is natural to ask whether there exist Block–Hankel deter-

minant solutions, whose elements satisfy other recursion relations. These problems are still needed

to be considered in the future.

Actually, as for Somos-5 sequence, we have the following conjecture:

Conjecture 4.1. Let a
(2)
n be computed via the following convolution recurrence:

a(2)
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if n < 0;
1, if n = 0;
αa

(2)
n−1 + βa

(2)
n−2 + γ

∑[ n−2
2

]
i=0 a

(2)
2i a

(2)
n−2−2i if n � 1.

(41)

Then h
(2)
n = det(a

(2)
2i+j)0�i,j�n−1 is a (α6γ 3 + α2γ 2(β + γ )[α2γ + (β + γ )2], −α8γ 5 − α4γ 3

(β + γ )[3β(β + γ )2 + γ 2(β + γ ) + α2β(β − γ ))] Somos-5 sequence.

Numerical experiments indicate that the above conjecture holds, however, a rigorous proof still

remains open.

Additionally, as for Somos-4 sequence, there exists another conjecture made by Michael Somos

[25]. In [26], Xin solved it by use of continued fraction method. It is remarked that we can also give an

alternative proof to this conjecture by similar determinant technique in this paper. Here we omit the

details.
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