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Liouville integrability of conservative peakons

for a modified CH equation*

Xiangke Chang † Jacek Szmigielski ‡

Abstract

The modified Camassa-Holm equation (also called FORQ) is one of numer-

ous cousins of the Camassa-Holm equation possessing non-smoth solitons (

peakons) as special solutions. The peakon sector of solutions is not uniquely

defined: in one peakon sector (dissapative) the Sobolev H1 norm is not pre-

served, in the other sector (conservative), introduced in [2], the time evolution

of peakons leaves the H1 norm invariant. In this Letter, it is shown that the

conservative peakon equations of the modified Camassa-Holm can be given an

appropriate Poisson structure relative to which the equations are Hamiltonian

and, in fact, Liouville integrable. The latter is proved directly by exploiting the

inverse spectral techniques, especially asymptotic analysis of solutions, devel-

oped elsewhere [3].

1 Introduction

The partial differential equation with cubic nonlinearity

mt +
(

(u2 −u2
x )m)

)

x = 0, m = u−uxx , (1.1)

is a modification of the Camassa-Holm equation (CH) [1]

mt +umx +2ux m = 0, m = u−uxx , (1.2)

for the shallow water waves. The history of (1.1) is slightly convoluted: it appeared in

the papers of Fokas [7], Fuchssteiner [8], Olver and Rosenau[15] and was, later, redis-

covered by Qiao [16, 17]. Both equations have non-smooth solitons (called peakons)

as solutions. In our recent Letter [2] we pointed out that (1.1) has in fact two mean-

ingful types of peakon solutions: one type of peakon flows, based on the concept

of weak solutions to conservation laws, proposed in [9], does not preserve the H 1

norm ||u||H 1 , the other type put forward in [2] does. For this reason we will refer to

these two types of peakons as dissipative, conservative, respectively.
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In this Letter we amplify the message of [2] by showing that in fact the conser-

vative peakons form a Liouville integrable Hamiltonian system.

In the remainder of the introduction we argue why this is interesting, and cer-

tainly not automatic. Let us briefly recall the peakon setup for the CH equation (1.2),

essentially in its original formulation [1]. The peakon Ansatz

u =
n
∑

j=1

p j (t)e−
∣

∣x−x j (t )
∣

∣

substituted into (1.2) results in the Hamiltonian system of equations:

ẋ j =
∂H

∂p j
, ṗ j =−

∂H

∂x j
,

with the Hamiltonian

H =
1

2

n
∑

i , j=1

pi p j e−
∣

∣xi−x j

∣

∣

.

Its Liouville integrability was proven in [19] using the R-matrix formalism. We em-

pasize that in the CH case the amplitudes p j and positions x j form conjugate pairs

with respect to the canonical Poisson structure.

By contrast, in the case of equation (1.1), even though the peakon Ansatz looks

superficially the same, namely u =
∑

j=1 m j (t)e−
∣

∣x−x j (t )
∣

∣

, the candidates for momenta

m j (t) are constant and one only gets a system of equations on the positions x j as

shown in [9, 18] for dissipative peakons and in [2, 3] for conservative peakons. In

either case it is not clear from the reduction point of view what part of the smooth

structure survives the reduction to the peakon sector; for dissipative peakons, what

constitutes the Hamiltonian in the smooth sector, namely the square of the H 1 norm,

is not even a constant of motion in the peakon sector even though the norm is well

defined.

To better explain out motivation let us consider the tempting possibility of reach-

ing the conclusions of this paper by transforming (1.1) to one of the members of the

AKNS hierarchy by using the reciprocal transformation:

x = H(z, t), d z = md x − ((u2
x −u2)m)d t ,

discussed in [11, 5, 6] and also [13] (in [11] (1.1) is called Qiao’s equation). The suc-

cess of such an approach is predicated on finding the change of variables (x, t) →
(z = F (x, t),τ = t) and the inverse (z, t) → (x = H(z, t), t = τ). In the smooth sector

the existence of F (x, t) is guaranteed if (1.1) holds by elementary calculus of smooth

differential forms (Poincare’s Lemma). In our case, however, m is a distribution and

(1.1) would have to be taken as a distributional equation; what remains unclear is

which one as there is more than one distributional analog of (1.1). Either way if F

existed it would have to be piecewise constant in x since Fx = m and m is a discrete

measure, making the transformation hard to interpret as a coordinate transforma-

tion. The situation with the existence of H(z, t) is equally doubtful; were H(z, t) to

exist it would have to satisfy Hz = 1
m

, the inverse of the sum of the Dirac deltas does

not seem to have a natural definition. This state of affairs is not without precedent

both in the physics and mathematical literature. The case in point, in fact very per-

tinent to this discussion, is the 1-D Schrödinger equation

−yxx +uy = E y
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and the string equation:

−vξξ = Emv.

The transformation (see [4]) y = 4
p

mv, ξ=
∫x

0

√

m(ξ′)dξ′ makes both equations equiv-

alent, with u and m related by

u =
( 4
p

m)xx

m
,

provided m is C 2 and m > 0. When m is a discrete measure, as it is in our case, the

equivalence fails and these two equations are no longer equivalent, either physically,

or mathematically.

In summary, we find it more compelling to study the peakon sector of Equation 1.1

directly using well developed theory of distributions and then, if warranted, to in-

vestigate how, and if, to perform singular limits from the smooth sector of (1.1) (see

interesting comments about this procedure in [13]).

For conservative peakons studied in this Letter, one is tempted to expect Liou-

ville integrability based on the fact that the conservative peakon equations are de-

rived from the compatibility conditions for a certain distributional Lax pair which

was constructed in [3]. Indeed, we prove directly Liouville integrability by taking

advantage of the inverse spectral solution formulas obtained in [3].

2 Conservative peakons

Equation 1.1 reduces to the conservative peakon sector [2] defined by the Ansatz

u =
n
∑

j=1

m j (t)e−
∣

∣x−x j (t )
∣

∣

, (2.1)

and the multiplication rule

u2
x m

de f
= 〈u2

x 〉m, (2.2)

where 〈u2
x 〉m means that at a point x j of the singular support of m = 2

∑n
j=1 m jδx j

one multiplies by the arithmetic average of the right and left limits of u2
x at x j . The

ensuing reduction is captured by the system of ODEs

ṁ j = 0, ẋ j = u2(x j )−〈u2
x 〉(x j ), (2.3)

on the weights m j of the measure m and the points of singular support x j . For later

use we give two more explicit versions of of the nontrivial part of the equations of

motion:

ẋ j = 2
∑

1≤k≤n,
k 6= j

m j mk e−|x j −xk |+

∑

k 6= j ,i 6= j

mi mk (1− sgn(x j − xk )sgn(x j − xi ))e−|x j −xk |−|x j −xi |, (2.4)

and its more succinct form

ẋ j = 2
∑

1≤k≤n,
k 6= j

m j mk e−|x j −xk |+4
∑

1≤i< j<k≤n

mi mk e−|xi −xk |, 1 ≤ j ≤ n, (2.5)

valid when x1 < x2 < ·· · < xn .

Inspired by papers by Hone and Wang [10, 11] , we have
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Theorem 2.1. The equations (2.4) for the motion of n peakons in the PDE (1.1) (with

the condition (2.2) in place) are a Hamiltonian vector field:

ẋ j = {x j ,h}, ṁ j = {m j ,h}, (2.6)

for the Hamiltonian

h =
n
∑

i ,k=1

mi mk e−|xi−xk | =
∫

u(ξ)mdξ= ||u||2
H 1 .

Here the Poisson bracket is given by

{xi , xk } = sgn(xi − xk ), {mi ,mk } = {mi , xk } = 0. (2.7)

Proof. It is obvious that

{m j ,h} = 0

under the above Poisson bracket, which leads to

ṁ j = 0.

We proceed with the computation of {x j ,h}:

{x j ,h} =
{

x j ,
n
∑

i ,k=1

mi mk e−|xi −xk |
}

=
{

x j ,
n
∑

i=1

m2
i +2

∑

1≤i<k≤n

mi mk e−|xi−xk |
}

=
{

x j ,2
∑

1≤i<k≤n

mi mk e−|xi−xk |
}

= 2
∑

1≤i<k≤n

mi mk

{

x j ,e−|xi −xk |
}

= 2
∑

1≤i<k≤n

mi mk sgn(xk − xi )e−|xi −xk |
(

sgn(x j − xi )− sgn(x j − xk )
)

= 2
∑

1≤ j=i<k≤n

+2
∑

1≤i<k= j≤n

+2
∑

1≤ j<i<k≤n

+2
∑

1≤i<k< j≤n

+2
∑

1≤i< j<k≤n

,

where we suppressed displaying the actual terms in the summation, concentrating

on the ranges of summation instead. The first two summations give

2
∑

1≤ j=i<k≤n

+2
∑

1≤i<k= j≤n

= 2
∑

1≤k≤n,
k 6= j

m j mk e−|x j −xk |.

As for the last three three summations, we have

2
∑

1≤ j<i<k≤n

+2
∑

1≤i<k< j≤n

+2
∑

1≤i< j<k≤n

=
∑

k 6= j ,i 6= j

mi mk sgn(xk − xi )e−|xi−xk |
(

sgn(x j − xi )− sgn(x j − xk )
)

=
∑

k 6= j ,i 6= j

mi mk (1− sgn(x j − xk )sgn(x j − xi ))e−|x j −xk |−|x j −xi |,

where the last equality is based on the facts that the corresponding equality holds

for all the following cases

xi = xk , xi = x j , x j = xk ,

x j < xi < xk , xi < x j < xk , xi < xk < x j ,

x j < xk < xi , xk < x j < xi , xk < xi < x j .
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Thus, we eventually get

{x j ,h} = 2
∑

1≤k≤n,
k 6= j

m j mk e−|x j −xk |+
∑

k 6= j ,i 6= j

mi mk (1−sgn(x j−xk )sgn(x j−xi ))e−|x j −xk |−|x j −xi |,

which reproduces (2.4) and thus the proof is completed.

Remark 2.2. Observe that the Poisson bracket used above is a limiting case of a fam-

ily of Poisson brackets discussed in [11]. In our case, if we restrict our considerations

to the space of positions, then the Poisson bracket sgn(xi − xk ) is up to a scale the

skew-symmetric Green’s function of the operator Dx .

For the remainder of this Letter we will focus on the following Poisson manifold

(M ,π) defined with the help of the Poisson bracket (2.7).

Definition 2.3. Let

M =
{

x1 < x2 < ·· · < xn

}

(2.8)

and

π( f , g ) = { f , g } =
∑

1≤i< j≤n

{xi , x j }
∂ f

∂xi

∂g

∂x j
(2.9)

be defined for real valued functions f , g on M . The Poisson manifold M with the

Poisson structure π will be denoted (M ,π).

We will record the following result which trivially follows from (2.7) and the defi-

nition of rank of π (see e.g. [12]).

Lemma 2.4. Let n = 2K or n = 2K +1. Then the r ank(π) = 2K .

3 A manifold of conservative global peakons

To simplify the presentation we will focus mostly on the case n = 2K . We will use

m throughout this paper to denote the n-tuple of constant masses m j . First we

make a general observation about the nature of the vector field in (2.3): the vector

field is discontinuous on the hyperplanes x j = xk , j 6= k. Let us then denote by P

the set {m; x1 < x2 < ·· · < x2K } of masses and positions where the vector field (see

(2.4)) is Lipschitz, in fact smooth. The scattering map S used in [3] maps P to

the set of admissible scattering data R = {m;dµ,c ≥ 0} consisting of the spectral

measure dµ =
∑K

k=1
bkδζk

, bk > 0 and a constant c which is 0 if n = 2K and strictly

positive if n = 2K +1. The problem is isospectral with the evolution of the spectral

measure given by dµ(t) = e
2t
ζ dµ(0). For an arbitrary choice of masses m j > 0 and

initial positions x j (0) in (2.1) the flows are in general not global, since it can happen

that x j (t) = x j+1(t) for some j at some finite time t > 0. However, there exists a

family of open subsets of R (see the Theorem below) for which the peakon flows are

global, i.e. the solutions x j (t) exist for all t ∈ R. This is crucial to our argument as we

use the asymptotic behaviour of solutions to simplify the computations of Poisson

brackets.
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Theorem 3.1. [[3], Case n = 2K ] Given arbitrary spectral data

{b j > 0, 0 < ζ1 < ζ2 < ·· · < ζK : 1 ≤ j ≤ K },

and denoting by i ′ = n+1− i , suppose the masses mk satisfy

ζ
k−1

2

K

ζ
k+1

2

1

< m(k+1)′mk ′ , for all odd k, 1 ≤ k ≤ 2K −1, (3.1a)

m(k+2)′m(k+1)′

(1+m2
(k+1)′ζ1)(1+m2

(k+2)′ζ1)
<

ζ
k+1

2
1

ζ
k−1

2

K

2min j (ζ j+1 −ζ j )k−1

(k +1)(ζK −ζ1)k+1
,

for all odd k, 1 ≤ k ≤ 2K −3. (3.1b)

Then the positions obtained from inverse formulas in [3] are ordered x1 < x2 < ·· · <
x2K and the multipeakon solutions (2.1) exist for arbitrary t ∈ R.

Remark 3.2. The odd case of n = 2K +1 is similar, although it requires a special care

since in addition to K eigenvalues ζ j we also have an additional constant of motion,

called c in [3], which intuitively plays a role of an additional eigenvalue.

Finally, for computations, we will need the asymptotic form of global solutions.

The theorem below is a slightly abbreviated form of the theorem presented in [3] .

Theorem 3.3. Suppose the masses m j satisfy the conditions of Theorem 3.1. Then the

asymptotic position of a k-th (counting from the right) peakon as t →+∞ is given by

xk ′ =
2t

ζ k+1
2

+Ck +O(e−αk t ), for some positive αk ,Ck ∈ R, and odd k,

(3.2a)

xk ′ =
2t

ζ k
2

+Ck +O(e−αk t ), for some positive αk ,Ck ∈ R and even k,

(3.2b)

xk ′ − x(k+1)′ = lnm(k+1)′mk ′ζ k+1
2

+O(e−αk t ), for some positive αk and odd k.

(3.2c)

Likewise, as t →−∞, for convenience using the notation l∗ = K +1−l , the asymp-

totic position of the k-th peakon is given by

xk ′ =
2t

ζ
( k+1

2 )∗
+Dk +O(eβk t ), for some positive βk ,Dk ∈ R and odd k, (3.3a)

xk ′ =
2t

ζ
( k

2 )∗
+Dk +O(eβk t ), for some positive βk ,Dk ∈ R and even k, (3.3b)

xk ′ − x(k+1)′ = lnm(k+1)′mk ′ζ
( k+1

2 )∗ +O(eβk t ), for some positive βk and odd k.

(3.3c)

Remark 3.4. We emphasize that in spite of notational complexity the most essential

features of the theorem can be stated simply: asymptotically, particles form bound

states consisting of adjacent particles sharing asymptotic velocities 2
ζ j

, j = 1, . . . ,K
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and moving in pairs, each pair moving as if it were a free particle. This picture per-

sists if n = 2K +1 with the only exception that for large positive times the first par-

ticle, counting from the left, comes to a stop, while the remaining particles pair up

the same way they do for n = 2K . Likewise, for large negative times, the first particle,

counting from the right, comes to a stop, while the rest of particles pair up.

We end this subsection with the corollary which will be used in the proof of Li-

ouville integrability of the peakon system (2.5). We will state this lemma in a slightly

informal way by emphasizing the role of asymptotic pairs discussed in Remark 3.4.

Corollary 3.5. Let n = 2K then asymptotically pairs of peakons scatter, that is the

distances between particles from distinct pairs diverge to ∞. If n = 2K + 1 and one

counts the first particle, counting from the left, as a “ pair” then asymptotically, as

t →∞, the pairs scatter. Likewise, if one counts the first particle, counting from the

right, as a “ pair ” then asymptotically, as t →−∞, the pairs scatter.

3.1 Liouville integrability

We need to introduce a bit of notation to facilitate the presentation of formulas and

subsequent computations. Most of the computations in this Letter involve a choice

of j -element index sets I and J from the set [k] = {1,2, . . . ,k}. We will use the notation
([k]

j

)

for the set of all j -element subsets of [k], listed in increasing order; for example

I ∈
([k]

j

)

means that I = {i1, i2, . . . , i j } for some increasing sequence i1 < i2 < ·· · <
i j ≤ k. Furthermore, given the multi-index I we will abbreviate g I = gi1 gi2 . . . gi j

etc.

Definition 3.6. Let I , J ∈
([k]

j

)

, or I ∈
( [k]

j+1

)

, J ∈
([k]

j

)

.

Then I , J are said to be interlacing if

i1 < j1 < i2 < j2 < ·· · < i j < j j

or,

i1 < j1 < i2 < j2 < ·· · < i j < j j < i j+1,

in the latter case. We abbreviate this condition as I < J in either case, and, further-

more, use the same notation, that is I < J , for I ∈
([k]

1

)

, J ∈
([k]

0

)

.

1. Case n = 2K .

It was shown in [3] that the quantities

H j =
∑

I ,J∈
([2K ]

j

)

I<J

hI g J , 1 ≤ j ≤ K , (3.4)

with hi = mi exi , gi = mi e−xi , form a set of K constants of motion for the sys-

tem (2.5) in the even case n = 2K . In particular the Hamiltonian h in Theorem 2.1

satisfies

h = 2H1 +
n
∑

i=1

m2
i .

We need the following computational result.
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Lemma 3.7. Consider the Poisson bracket given in Definition 2.3. Then

{

∏

p∈I ,|I |=i

m2p−1m2p ex2p−1−x2p ,
∏

q∈J ,|J |= j

m2q−1m2q ex2q−1−x2q

}

= 0.

Proof. Let us denote

∏

p∈I ,|I |=i

m2p−1m2p ex2p−1−x2p = F,
∏

q∈J ,|J |= j

m2q−1m2q ex2q−1−x2q =G.

Then, by elementary properties of exponentials and basic properties of Pois-

son brackets, we have

{F,G} = FG
∑

p∈I ,q∈J

{

x2p−1 − x2p , x2q−1 − x2q

}

.

However,

{x2p−1 − x2p , x2q−1 − x2q } = {x2p−1, x2q−1}− {x2p−1, x2q }− {x2p , x2q−1}+ {x2p , x2q }

= sgn(p −q)− sgn(p −q)− sgn(p −q)+ sgn(p −q)= 0.

Thus the claim is proved.

Theorem 3.8. The Hamiltonians H1, · · · , HK Poisson commute.

Proof. The idea of the proof goes back at least to the work of J. Moser on the

finite Toda lattice [14]. In the nutshell it amounts to the following observation:

the Poisson bracket {Hi , H j }(x0) of two conserved quantities Hi , H j is a also

conserved and thus instead of the fixed point x0 it can be evaluated on the

orbit x(t) going through x0, in particular in the asymptotic region t →±∞, if

such is accessible. In our case both asymptotic regions can be used but for the

sake of argument we will focus on t →−∞.

Note that, in view of (3.4), and for large negative times, the only contributing

terms from individual Hi s are

∑

I∈
([K ]

i

)

∏

p∈I

m2p−1m2p ex2p−1−x2p , (3.5)

hence

{Hi , H j }(x0) = {Hi , H j }(x(t))= lim
t→−∞

{Hi , H j }(x(t))

= lim
t→−∞











∑

I∈
([K ]

i

)

∏

p∈I

m2p−1m2p ex2p−1−x2p ,
∑

J∈
([K ]

j

)

∏

q∈J

m2q−1m2q ex2q−1−x2q











(x(t))

= lim
t→−∞

∑

I∈
([K ]

i

)

∑

J∈
([K ]

j

)

{

∏

p∈I

m2p−1m2p ex2p−1−x2p ,
∏

q∈J

m2q−1m2q ex2q−1−x2q

}

(x(t)).

By using Lemma 3.7 the final conclusion follows.
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2. Case n = 2K +1.

Again, following [3],

H j =
∑

I ,J∈
([2K+1]

j

)

I<J

hI g J , 1 ≤ j ≤ K , (3.6)

with hi = mi exi , gi = mi e−xi , are constants of motion for the system (2.5) in

the odd case.

In the odd case, there is an extra constant of motion, which can be computed

from the value of the Weyl function at ∞ in the spectral variable. The compu-

tation is routine and produces (see Section III of [3] for details regarding the

Weyl function)

c =

∑

I∈
([2K+1]

K+1

)

,J∈
([2K+1]

K

)

I<J

hI g J

∑

I ,J∈
([2K+1]

K

)

I<J

hI g J
=

∑

I∈
([2K+1]

K+1

)

,J∈
([2K+1]

K

)

I<J

hI g J

HK
,

which, in turn, gives an extra constant of motion

Hc =
∑

I∈
([2K+1]

K+1

)

,J∈
([2K+1]

K

)

I<J

hI g J =
2K+1
∏

j=1

m j e(−1) j+1x j ,

so that {H1, H2, · · · , Hk , Hc } form a set of K +1 constants of motion for the sys-

tem (2.5) in this case.

Theorem 3.9. The Hamiltonians H1, · · · , HK , Hc Poisson commute .

Proof. Again, asymptotically for large negative times, the H j s simplify to

∑

I∈
([K ]

j

)

∏

j∈I

m2 j−1m2 j ex2 j−1−x2 j .

Then the argument from the previous theorem applies verbatim, proving that

{Hi , H j } = 0

holds.

We turn now to proving that the H j s and the Hc are in involution. A direct

computation gives:

9



{H j , Hc }(x0) = {H j , Hc }(x(t))= lim
t→−∞

{H j , Hc }(x(t))

= lim
t→−∞











∑

J∈
([K ]

j

)

∏

p∈J

m2p−1m2p ex2p−1−x2p ,
2K+1
∏

q=1

mq e(−1)q+1 xq











(x(t))

= lim
t→−∞

∑

J∈
([K ]

j

)

{

∏

p∈J

m2p−1m2p ex2p−1−x2p ,
2K+1
∏

q=1

mq e(−1)q+1xq

}

(x(t))

= lim
t→−∞

∑

J∈
([K ]

j

)

∏

p∈J

m2p−1m2p ex2p−1−x2p

2K+1
∏

q=1

mq e(−1)q+1xq

·
∑

p∈J ,

(

K
∑

q=1

{

x2p−1 − x2p , x2q−1 − x2q

}

+
{

x2p−1 − x2p , x2K+1

}

)

(x(t))

We have shown in the course of proving Lemma 3.7 that

{

x2p−1 − x2p , x2q−1 − x2q

}

= 0.

Furthermore,

{

x2p−1 − x2p , x2K+1

}

= sgn(x2p−1 − x2K+1)− sgn(x2p − x2K+1) = 0

holds. Thus, indeed

{H j , Hc }(x0) = 0,

and the proof is completed.

Theorem 3.10. The conservative peakon system given by Equation 2.5 is Liouville

integrable.

Proof. To prove Liouville integrability of a Hamiltonian system defined on an n-

dimensional Poisson manifold (M ,π) we need to show that the integrals of motion

are functionally independent, they commute and the number of them, say s, sat-

isfies 1
2

r ank(π)+ s = n [12]. In the case at hand, by Lemma 2.4, r ank(π) = K and

since we have s = K commuting Hamiltonians for n = 2K and s = K +1 commuting

Hamiltonians for n = 2K +1, the relation 1
2 r ank(π)+ s = n holds in both cases. To

prove the functional independence we proceed as follows. We need to prove that

Ω = d H1 ∧d H2 ∧ ·· · ∧d Hs is non-zero on a dense subset of M . Since Hi s are ra-

tional functions of ξl = exl , l = 1, . . . ,n, so is Ω. It is thus sufficient to show that Ω

is not identically zero. In the asymptotic regions used in the proofs of Theorem 3.8

and Theorem 3.9 H j s are asymptotically polynomials in the variables ex2p−1−x2p of

degree j (see e.g. (3.5)) and, conseqently, Ω is not identically zero in that region,

which concludes the proof.

We finish this section by observing that it is elementary to identify the Darboux

coordinates in the case n = 2K . Indeed, suppose we introduce coordinates

{pk , qk , k = 1,2, ...,K },
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by defining

pk = x2k − x2k−1, qk =
k
∑

j=1

(x2 j−1 − x2 j−2)

with the convention that x0 = 0. Then by a direct computation we obtain

{pk , qm } = δkm, {pk , pm } = 0, {qk , qm} = 0.

Thus {pk , qk , k = 1,2, ...,K } can be regarded as Darboux coordinates.

4 Concluding Remarks

The peakon sector of the modified Camassa-Holm equation mt + ((u2
x −u2)m)x = 0

is not uniquely defined. One way of defining it proposed in [9, 18] has a feature

that even though the Sobolev H 1 norm ||u||2
H 1 is one of the Hamiltonians of the bi-

Hamiltonian formulation of this equation in the smooth sector its peakon counter-

part does not have this property. In [2] we proposed a different definition of mCH

peakons, based on a different regularization of the ill-defined term u2
x m. For these

(conservative) peakons the H 1 norm is preserved . In this paper we amplify this

statement in the following way:

1. we introduce a Poisson structure relative to which the conservative peakon

equations are Hamiltonian with the Hamiltonian being the very norm ||u||2
H 1 ;

2. using the inverse spectral solutions to conservative peakons put forward in [3]

we show the Liouville integrability of the conservative peakon system.

We conclude this Letter by emphasizing that Equation 1.1 is the first equation known

to us which has two, natural, peakon sectors. It remains an open question if there

are other peakon equations exhibiting this property and, ultimately, what purpose,

mathematical or physical, the very existence of these two types of singular solitons

imparts to the subject.
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