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1. Introduction

Hankel determinants of path counting numbers have appeared frequently in the literature. For

example, the first three Hankel determinants of the well known Catalan numbers (cf. e.g. [1]) are

det(Ci+j)
n−1
i,j=0 = 1,

det(Ci+j+1)
n−1
i,j=0 = 1,

det(Ci+j+2)
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where the nth Catalan number is Cn = 1
n+1

(
2n

n

)
. As for Motzkin numbers (cf. e.g. [2,3]) generated by

Mn = Mn−1 + ∑n−2
i=0 MiMn−2−i withM0 = 1, we have

det(Mi+j)
n−1
i,j=0 = 1,

det(Mi+j+1)
n−1
i,j=0 = Fibn+1(1, −1),

det(Mi+j+2)
n−1
i,j=0 = ∑n

j=0

(
Fibj+1(1, −1)

)2
,

where Fibn(x, s) is the Fibonacci polynomial defined by the recurrence Fibn(x, s) = xFibn−1(x, s) +
sFibn−2(x, s) with values Fib0(x, s) = 0 and Fib1(x, s) = 1. Besides, the Hankel determinants of the

Schröder numbers (cf. e.g. [4]) are

det(Si+j)
n−1
i,j=0 = 2(

n
2),

det(Si+j+1)
n−1
i,j=0 = 2(

n+1
2 ),

det(Si+j+2)
n−1
i,j=0 = (2n+1 − 1)2(

n+1
2 ),

where Sn = Sn−1 + ∑n−1
i=0 SiSn−1−i with S0 = 1 and

(·
·
)
is a binomial symbol. It is remarked that Krat-

tenthaler hasdescribed severalmethods to evaluatedeterminants and listedmanyknowndeterminant

evaluations in [5,6]. For more information, please consult [7–14] and so on.

Recently, Cigler [3] consideredHankel determinants of three sequences {c(n,m, a, b)}∞n=0, {C(n,m,
a, b, t)}∞n=0 and {g(n,m, a, b)}∞n=0, whose generating functions respectively satisfy equations

fm(z, a, b) = ∑
n�0

c(n,m, a, b)zn

= 1 + azfm(z, a, b) + bzmfm(z, a, b)2, (1)

Fm(z, a, b, t) = ∑
n�0

C(n,m, a, b, t)zn

= 1 + (a + t)zFm(z, a, b, t) + bzmFm(z, a, b, t)fm(z, a, b), (2)

Gm(z, a, b) = ∑
n�0

g(n,m, a, b)zn

= 1 + azGm(z, a, b) + 2bzmGm(z, a, b)fm(z, a, b). (3)

Here a, b, t are arbitrary given complex numbers and m is a fixed positive integer. Obviously, {c(n, 1,
0, 1)}∞n=0, {c(n, 2, 1, 1)}∞n=0 and {c(n, 1, 1, 1)}∞n=0 give Catalan numbers, Motzkin numbers and

Schröder numbers, respectively.

It is noted that the coefficients c(n,m, a, b), C(n,m, a, b) and g(n,m, a, b) can be regarded as

weights of some lattice paths set. As is known, wemay define the weightw of a path as the product of

all steps of the path and the weight of a set of paths as the sum of their weights. For givenm, consider

lattice paths from (0, 0) to (n, 0) with horizontal steps H = (1, 0) , up-steps U = (1, 1) and down-

steps D = (m − 1, −1) of widthm − 1. Then c(n,m, a, b) is the weight of the set of all non-negative

lattice paths from (0, 0) to (n, 0) and g(n,m, a, b) is the weight of the set of all lattice paths, where

w(U) = 1, w(H) = a and w(D) = b. If w(H) = a + t when H lies on height 0 andw(H) = a in other

cases, then C(n,m, a, b) is the weight of the set of all non-negative lattice paths from (0, 0) to (n, 0).
Cigler considered Hankel determinants

d
(m)
r (n, a, b) = det(c(i + j + r,m, a, b))n−1

i,j=0,

D
(m)
r (n, a, b, t) = det(C(i + j + r,m, a, b, t))n−1

i,j=0,

dd
(m)
r (n, a, b) = det(g(i + j + r,m, a, b))n−1

i,j=0
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for r = 0, 1, 2. He used well-known orthogonal polynomials approach (cf. e.g. [3,6,15]), Gessel–

Viennot–Lindström theorem (cf. e.g. [16–18]) and the continued fractions method [18,19] to compute

theHankel determinants and successfully obtained some results for special cases. However, for general

cases, he only listed several conjectures (i.e. Conjecture 6.8, 7.5, 7.6, 7.7 in [3]). To the best of our

knowledge, it still remains to be open as to how to prove these four conjectures [20].

The purpose of this paper is to give a direct method to compute Hankel determinants. This method

works for generating functions satisfying a certain type of quadratic function. Then we apply this

method to give rigorous proofs to Cigler’s four conjectures.

2. Hankel determinants for some quadratic generating functions

Consider the sequences {c(n,m, a, b)}∞n=0, whose generating function satisfies (1). In this case, it

is easy to see that c(n,m, a, b) satisfy the recurrence relation

cn = acn−1 + b

n−m∑
i=0

cicn−m−i (4)

with c0 = 1. Here we use the abbreviations without a, b,m. If we let cn = 0 for n < 0, then (4) hold

for any integer n.

In this section, we will evaluate the Hankel determinants d
(m)
0 (n), d

(m)
1 (n), d

(m)
2 (n). It is also noted

that some results in this section have been proved in [3], but here we will prove them again by our

method.

To begin with, we show several lemmas, which give some relations on Hankel determinants. All

the proofs can be completed by three steps:

• Step 1: Perform column operations recursively.
• Step 2: If necessary, decompose the determinant obtained by Step 1 to several parts.
• Step 3: Perform row operations recursively in order to get a determinant in a simple expression.

It is noted that we will use the conventions

d
(m)
−r (0) = 1,

d
(m)
−r (n) = 0 for n < 0,

(5)

in the following lemmas.

Lemma 2.1. For all n ∈ Z,m � 1, and r � 0, there holds

d
(m)
−r (n) − (−1)(

r+1
2 )bn−r−1d

(m)
r+2−m(n − r − 1) = [n = 0]. (6)

Here we use the Iverson bracket [ ] defined as

[P] =
⎧⎪⎨
⎪⎩

1 if P is true;
0 otherwise.

(7)

Proof. Here we only give the detailed proof for the case of n > r, as the result for the case of n � r

obviously hold by the convention (5).

Step 1: Perform column operations. Let C0, C1, . . . , Cn−1 denote the columns of the corresponding

matrix. Change CN to CN − aCN−1 − b
∑N−m

i=0 ciCN−m−i for N = n− 1, n− 2, . . . , r + 1, then, by using

the recursion relation (4), we have
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d
(m)
−r (n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−r . . . c0 0 . . . 0

c−r+1 . . . c1 0 . . . 0

...
. . .

...
...

. . .
...

c0 . . . cr 0 . . . 0

c1 . . . cr+1 bc0cr−m+2 . . . bc0cn−m

c2 . . . cr+2 b

1∑
i=0

cicr−m+3−i . . . b

1∑
i=0

cicn−m+1−i

...
. . .

...
...

. . .
...

c−r+n−1 . . . cn−1 b

−r+n−2∑
i=0

cic−m+n−i . . . b

−r+n−2∑
i=0

cic2n−r−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)(
r+1
2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bc0cr−m+2 . . . bc0cn−m

b

1∑
i=0

cicr−m+3−i . . . b

1∑
i=0

cicn−m+1−i

...
. . .

...

b

−r+n−2∑
i=0

cic−m+n−i . . . b

−r+n−2∑
i=0

cic2n−r−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here we use the equivalent recurrence relation cn = acn−1 + b
∑n−1

i=0 cicn−m−i, as ck = 0 for k < 0

hold .

Step 3: Perform row operations for the above determinant. For k = 2, 3, . . . , n− r−1, we subtract

the ith row multiplied by ck−i/c0 for i = 1, . . . , k − 1. Then it follows that (6) holds. �

By this lemma, we list some obvious formulae in the following, which will be useful later.

Corollary 2.2. Let n > 0. Then, for m � 1,

d
(m)
0 (n) = bn−1d

(m)
2−m(n − 1), (8)

d
(m)
−1 (n) = −bn−2d

(m)
3−m(n − 2), (9)

d
(m)
−2 (n) = −bn−3d

(m)
4−m(n − 3), (10)

d
(m)
−m(n) = (−1)(

m+1
2 )bn−m−1d

(m)
2 (n − m − 1), (11)

d
(m)
1−m(n) = (−1)(

m
2)bn−md

(m)
1 (n − m), (12)

For m � 2,

d
(m)
2−m(n) = (−1)(

m−1
2 )bn−m+1d

(m)
0 (n − m + 1). (13)

For m � 3,

d
(m)
3−m(n) = (−1)(

m−2
2 )bn−m+2d

(m)
−1 (n − m + 2), (14)

For m � 4,

d
(m)
4−m(n) = (−1)(

m+1
2 )bn−m+3d

(m)
−2 (n − m + 3). (15)
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Lemma 2.3.

d
(m)
1 (n) = abn−1d

(m)
3−m(n − 1) + bnd

(m)
1−m(n) (16)

holds for m � 1, n ∈ Z.

Proof. Obviously, the result holds for n � 0. We will prove the result for the case n > 0 in the

following.

Step 1: Perform column operations. Let C0, C1, . . . , Cn−1 denote the columns of the corresponding

matrix. Change CN to CN − aCN−1 − b
∑N−m

i=0 ciCN−m−i for N = n − 1, n − 2, . . . , 1, then, by using

the recursion relation (4), we have

d
(m)
1 (n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 bc0c2−m . . . bc0cn−m

c2 b

1∑
i=0

cic3−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

. . .
...

cn b

n−1∑
i=0

cicn+1−m−i . . . b

−m+n−2∑
i=0

cic2n−m−1−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ac0 + bc0c1−m bc0c2−m . . . bc0cn−m

ac1 + b

1∑
i=0

cic2−m−i b

1∑
i=0

cic3−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

. . .
...

acn−1 + b

n−1∑
i=0

cicn−m−i b

n−1∑
i=0

cicn+1−m−i . . . b

n−1∑
i=0

cic2n−m−1−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Step 2: Decompose d
(m)
1 (n) into two parts along the first column, namely,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ac0 bc0c2−m . . . bc0cn−m

ac1 b

1∑
i=0

cic3−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

. . .
...

acn−1 b

n−1∑
i=0

cicn+1−m−i . . . b

n−1∑
i=0

cic2n−m−1−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bc0c1−m bc0c2−m . . . bc0cn−m

b

1∑
i=0

cic2−m−i b

1∑
i=0

cic3−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

. . .
...

b

n−1∑
i=0

cicn−m−i b

n−1∑
i=0

cicn+1−m−i . . . b

n−1∑
i=0

cic2n−m−1−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Step 3: Perform row operations for the above two determinants. For k = 2, 3, . . . , n, we subtract

the ith row multiplied by ck−i/c0 for i = 1, . . . , k − 1. Then it follows that (16) holds. �

Lemma 2.4.

d
(m)
0 (n) = d

(m)
2 (n − 1) + bnd

(m)
−m(n) − a2bn−2d

(m)
4−m(n − 2) − 2abn−1d̃

(m)
1−m(n − 1) (17)

holds for n � 2, m � 1, where

d̃
(m)
1−m(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1−m c2−m . . . cn−m

c3−m c4−m . . . cn+2−m

c4−m c5−m . . . cn+3−m

...
...

. . .
...

cn+1−m cn+2−m . . . c2n−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

with d̃
(m)
1−m(0) = 1 and d̃

(m)
1−m(n) = 0 for n < 0.

Proof. Obviously we have d
(m)
0 (n) = d

(m)
2 (n − 1) + H, where

H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 c1 c2 · · · cn−1

c1 c2 c3 · · · cn

c2 c3 c4 · · · cn+1

...
...

...
. . .

...

cn−1 cn cn+1 · · · c2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Based on this observation, in order to show that (17) holds, it suffices to prove that H = bnd
(m)
−m(n) −

a2bn−2d
(m)
4−m(n − 2) − 2abn−1d̃

(m)
1−m(n − 1).

Step 1: Perform column operations. Let C0, C1, . . . , Cn−1 denote the columns of the corresponding

matrix. Change CN to CN − aCN−1 − b
∑N−m

i=0 ciCN−m−i for N = n − 1, n − 2, . . . , 1, then, by using

the recursion relation (4), we have

H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ac0 + bc0c1−m bc0c2−m . . . bc0cn−1−m

c1 bc0c2−m bc0c3−m . . . bc0cn−m

c2 b

1∑
i=0

cic3−m−i b

1∑
i=0

cic4−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

...
. . .

...

cn−1 b

n−2∑
i=0

cicn−m−i b

n−2∑
i=0

cicn−m+1−i . . . b

n−2∑
i=0

cic2n−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ac0 + bc0c1−m bc0c2−m . . . bc0cn−1−m

ac0 + bc0c1−m bc0c2−m bc0c3−m . . . bc0cn−m

ac1 + b

1∑
i=0

cic2−m−i b

1∑
i=0

cic3−m−i b

1∑
i=0

cic4−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

...
. . .

...

acn−2 + b

n−2∑
i=0

cicn−m−1−i b

n−2∑
i=0

cicn−m−i b

n−2∑
i=0

cicn−m+1−i . . . b

n−2∑
i=0

cic2n−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Step 2: Let A + B be the first column of H and C + D be the first row with A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ac0

ac1
...

acn−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ac0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

. Then by multilinearity, we have

H = �(A + B, C + D) = �(A, C) + �(B, C) + �(A,D) + �(B,D) = H1 + H2 + H3 + H4,

where

H1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ac0 0 . . . 0

ac0 bc0c2−m bc0c3−m . . . bc0cn−m

ac1 b

1∑
i=0

cic3−m−i b

1∑
i=0

cic4−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

...
. . .

...

acn−2 b

n−2∑
i=0

cicn−m−i b

n−2∑
i=0

cicn−m+1−i . . . b

n−2∑
i=0

cic2n−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

H2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ac0 0 . . . 0

bc0c1−m bc0c2−m bc0c3−m . . . bc0cn−m

b

1∑
i=0

cic2−m−i b

1∑
i=0

cic3−m−i b

1∑
i=0

cic4−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

...
. . .

...

b

n−2∑
i=0

cicn−m−1−i b

n−2∑
i=0

cicn−m−i b

n−2∑
i=0

cicn−m+1−i . . . b

n−2∑
i=0

cic2n−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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H3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 bc0c1−m bc0c2−m . . . bc0cn−1−m

ac0 bc0c2−m bc0c3−m . . . bc0cn−m

ac1 b

1∑
i=0

cic3−m−i b

1∑
i=0

cic4−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

...
. . .

...

acn−2 b

n−2∑
i=0

cicn−m−i b

n−2∑
i=0

cicn−m+1−i . . . b

n−2∑
i=0

cic2n−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and

H4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 bc0c1−m bc0c2−m . . . bc0cn−1−m

bc0c1−m bc0c2−m bc0c3−m . . . bc0cn−m

b

1∑
i=0

cic2−m−i b

1∑
i=0

cic3−m−i b

1∑
i=0

cic4−m−i . . . b

1∑
i=0

cicn−m+1−i

...
...

...
. . .

...

b

n−2∑
i=0

cicn−m−1−i b

n−2∑
i=0

cicn−m−i b

n−2∑
i=0

cicn−m+1−i . . . b

n−2∑
i=0

cic2n−m−2−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Step 3: Perform row operations for the determinants H1,H2,H3,H4. For k = 3, 4, . . . , n, we subtract

the ith rowmultiplied by ck−i/c0 for i = 2, 3, . . . , k− 1. we can see thatH1 = −a2bn−2d
(m)
4−m(n− 2),

H4 = bnd
(m)
−m(n) and

H2 = H3 = −abn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1−m c2−m . . . cn−1−m

c3−m c4−m . . . cn+1−m

c4−m c5−m . . . cn+2−m

...
...

. . .
...

cn−m cn+1−m . . . c2n−2−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus, (17) is proved. �

Lemma 2.5.

d̃
(m)
1−m(n) − (−1)(

m−1
2 )b2n−2m(bd̃

(m)
1−m(n − m) + ad

(m)
4−m(n − m − 1))

= [n = 0] − (−1)(
m−1
2 )b[n = m] (18)

holds for all n ∈ Z and m � 3.

Proof. Obviously, the result for n � m can be obtained by noting that d̃
(m)
1−m(i) = 0 for i = 1, 2, . . . ,

m − 1 because the elements of the first row are zeros and d̃
(m)
1−m(m) = 0 because the (m − 1)th

column is a multiple of the (m − 2)th column. In the following, we give a detailed proof for the case

n > m.
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First, let’s consider d̃
(m)
1−m(n). Let C0, C1, . . . , Cn−1 denote the columns of the correspondingmatrix.

Change CN to CN − aCN−1 − b
∑N−m

i=0 ciCN−m−i for N = n − 1, n − 2, . . . ,m, then, by using the

recursion relation (4), we have, for m � 3 and n > m,

d̃
(m)
1−m(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1−m . . . c−2 c−1 c0 0 . . . 0

c3−m . . . c0 c1 c2 0 . . . 0

c4−m . . . c1 c2 c3 0 . . . 0

...
. . .

...
...

. . .
...

c0 . . . cm−3 cm−2 cm−1 0 . . . 0

c1 . . . cm−2 cm−1 cm bc0c1 . . . bc0cn−m

c2 . . . cm−1 cm cm+1 b

1∑
i=0

cic2−i . . . b

1∑
i=0

cicn−m+1−i

...
. . .

...
...

. . .
...

cn−m+1 . . . cn−2 cn−1 cn b

n−m∑
i=0

cicn−m+1−i . . . b

n−m∑
i=0

cic2n−2m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Subtracting the (m − 2)th column multiplied by a from the (m − 1)th column, we see

d̃
(m)
1−m(n)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1−m . . . c−2 0 c0 0 . . . 0

c3−m . . . c0 0 c2 0 . . . 0

c4−m . . . c1 0 c3 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

c0 . . . cm−3 0 cm−1 0 . . . 0

c1 . . . cm−2 bc0c−1 cm bc0c1 . . . bc0cn−m

c2 . . . cm−1 b

1∑
i=0

cic−i cm+1 b

1∑
i=0

cic2−i . . . b

1∑
i=0

cicn−m+1−i

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

cn−m+1 . . . cn−2 b

n−m∑
i=0

cicn−m−1−i cn b

n−m∑
i=0

cicn−m+1−i . . . b

n−m∑
i=0

cic2n−2m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding the above determinant along the firstm − 1 rows and the 1, 2, . . . ,m − 2,mth columns,

we get

d̃
(m)
1−m(n) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 c0

0 0 . . . c0 c2

0 0 . . . c1 c3
...

...
. . .

...
...

c0 c1 . . . cm−3 cm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bc0c−1 bc0c1 . . . bc0cn−m

b

1∑
i=0

cic−i b

1∑
i=0

cic2−i . . . b

1∑
i=0

cicn−m+1−i

...
...

. . .
...

b

n−m∑
i=0

cicn−m−1−i b

n−m∑
i=0

cicn−m+1−i . . . b

n−m∑
i=0

cic2n−2m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −(−1)(
m−1
2 )bn−m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−1 c0 . . . cn−m−1

c1 c2 . . . cn−m+1

...
...

. . .
...

cn−m cn+1−m . . . c2n−2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −(−1)(
m−1
2 )bn−m+1d̃

(m)
−1 (n − m + 1). (19)

Here the second identity is a consequence of performing rowoperations and taking the transpose. That

is, for k = 2, 3, . . . , n − m + 1, we subtract the ith row multiplied by ck−i/c0 for i = 1, . . . , k − 1,

then, transpose the result.

Next,we consider the determinant d̃
(m)
−1 (n−m+1). Let C0, C1, . . . , Cn−m denote the columns of the

correspondingmatrix. Change CN to CN −aCN−1−b
∑N−m

i=0 ciCN−m−i forN = n−m, n−m−1, . . . , 2,
then, by using the recursion relation (4), we have

d̃
(m)
−1 (n − m + 1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−1 c0 0 0 . . . 0

c1 c2 bc0c3−m bc0c4−m . . . bc0cn−2m+1

c2 c3 b

1∑
i=0

cic4−m−i b

1∑
i=0

cic5−m−i . . . b

1∑
i=0

cicn−2m+2−i

...
...

...
. . .

...

cn−m cn−m+1 b

n−m−1∑
i=0

cicn−2m+2−i b

n−m−1∑
i=0

cicn−2m+3−i . . . b

n−m−1∑
i=0

cic2n−3m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 bc0c3−m bc0c4−m . . . bc0cn−2m+1

c2 b

1∑
i=0

cic4−m−i b

1∑
i=0

cic5−m−i . . . b

1∑
i=0

cicn−2m+2−i

...
...

. . .
...

cn−m b

n−m−1∑
i=0

cicn−2m+2−i b

n−m−1∑
i=0

cicn−2m+3−i . . . b

n−m−1∑
i=0

cic2n−3m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Noting the first column can be written A+ Bwith A =

⎛
⎜⎜⎜⎜⎜⎜⎝

ac0

ac1
...

acn−m−1

⎞
⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bc0c1−m

b

1∑
i=0

cic2−m−i

...

b

n−m−1∑
i=0

cicn−2m−i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we can decompose the determinant into two parts by linearity:

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ac0 bc0c3−m bc0c4−m . . . bc0cn−2m+1

ac1 b

1∑
i=0

cic4−m−i b

1∑
i=0

cic5−m−i . . . b

1∑
i=0

cicn−2m+2−i

...
...

. . .
...

acn−m−1 b

n−m−1∑
i=0

cicn−2m+2−i b

n−m−1∑
i=0

cicn−2m+3−i . . . b

n−m−1∑
i=0

cic2n−3m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bc0c1−m bc0c3−m bc0c4−m . . . bc0cn−2m+1

b

1∑
i=0

cic2−m−i b

1∑
i=0

cic4−m−i b

1∑
i=0

cic5−m−i . . . b

1∑
i=0

cicn−2m+2−i

...
...

. . .
...

b

n−m−1∑
i=0

cicn−2m−i b

n−m−1∑
i=0

cicn−2m+2−i b

n−m−1∑
i=0

cicn−m+3−i . . . b

n−m−1∑
i=0

cic2n−3m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then, perform row operations for the above two determinants. For k = 2, 3, . . . , n − m, we subtract

the ith row multiplied by ck−i/c0 for i = 1, . . . , k − 1, we can get

d̃
(m)
−1 (n − m + 1) = −bn−md̃

(m)
1−m(n − m) − abn−m−1d

(m)
4−m(n − m − 1). (20)

With the help of (19) and (20), the result (18) follows. �

Applying these lemmas, we can obtain the following result. It is noted that we care about the

determinants of nonnegative order in the following theorems.

Theorem 2.6. For m � 2, we have

d
(m)
0 (mn) = (−1)(

m−1
2 )nbn(mn−1),

d
(m)
0 (mn + 1) = (−1)(

m−1
2 )nbn(mn+1)

(21)

and d
(m)
0 (n) = 0 else.

For m � 3, we have

d
(m)
1 (mn) = (−1)(

m
2)nbmn2 ,

d
(m)
1 (mn + 1) = (−1)(

m
2)n(n + 1)abmn2+2n,

d
(m)
1 (mn − 1) = −(−1)(

m
2)nnabmn2−2n

(22)
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and d
(m)
1 (n) = 0 else.

For m � 4, we have

d
(m)
2 (mn) = (−1)(

m−1
2 )n(n + 1)bmn2+n,

d
(m)
2 (mn + 1) = (−1)(

m−1
2 )n(n + 1)2a2bmn2+3n,

d
(m)
2 (mn − 1) = (−1)(

m−1
2 )nnbmn2−n,

d
(m)
2 (mn − 2) = −(−1)(

m−1
2 )nn2a2bmn2−3n

(23)

and d
(m)
2 (n) = 0 else.

Remark: Since (23) includes the content of Conjecture 7.5 in [3], this conjecture can be solved as a

corollary of Theorem 2.6.

Proof. First, let us compute d
(m)
0 (n). From (8) and (13), we obtain

d
(m)
0 (n) = (−1)(

m−1
2 )b2n−m−1d

(m)
0 (n − m) (24)

form � 2. Noting that d
(m)
0 (0) = d

(m)
0 (1) = 1,we can derive d

(m)
0 (mn) and d

(m)
0 (mn+1) by induction.

Additionally, from the recurrence relation of cn, we see that ci = ai for i = 0, 1, . . . ,m − 1. This lead

to d
(m)
0 (n) = 0, 2 � n � m − 1 because the second column is a multiple of the first. From (24), we

can confirm that d
(m)
0 (mn + i) = 0 for 2 � i � m − 1 by induction. Thus, (21) is proved.

Next, let us consider d
(m)
1 (n). From (12), (14) and (16), we obtain

d
(m)
1 (n) = (−1)(

m−2
2 )ab2n−md

(m)
−1 (n − m + 1) + (−1)(

m
2)b2n−md

(m)
1 (n − m) (25)

for m � 3. Thus, it is possible to compute d
(m)
1 (n) if d

(m)
−1 (n) is known.

From (9) and (14), we have

d
(m)
−1 (n) = −(−1)(

m−2
2 )b2n−m−2d

(m)
−1 (n − m) (26)

for m � 3. It is easy to see that d
(m)
−1 (0) = 1, d

(m)
−1 (1) = 0, d

(m)
−1 (2) = −1 and it is also noted that

d
(m)
−1 (n) = 0 for 3 � n � m − 1 because the third column is a multiple of the second. By induction,

we get

d
(m)
−1 (mn) = −(−1)(

m−2
2 )bmn2−2n,

d
(m)
−1 (mn + 2) = (−1)(

m−2
2 )bmn2−2n,

d
(m)
−1 (mn + i) = 0, 1 � i � m − 1, i �= 2.

(27)

Obviously, d
(m)
1 (0) = 1, d

(m)
1 (1) = a hold. It is also noted that d

(m)
1 (n) = 0 for 2 � n � m − 2

because the second column is amultiple of the first, and d
(m)
1 (m−1) = −(−1)(

m
2)abm−2 after simple

column operations. Then, using (25), (27) and the initial values, we can prove (22) by induction.

Finally, we turn to d
(m)
2 (n). From the condensation formula for determinants (cf. [6,21,22]) we get

d
(m)
0 (n)d

(m)
2 (n − 2) = d

(m)
0 (n − 1)d

(m)
2 (n − 1) − (d

(m)
1 (n − 1))2. (28)

Replacing n by mn + 2 and mn respectively, we have
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d
(m)
0 (mn + 1)d

(m)
2 (mn + 1) − (d

(m)
1 (mn + 1))2 = 0, (29)

d
(m)
0 (mn)d

(m)
2 (mn − 2) + (d

(m)
1 (mn − 1))2 = 0, (30)

from which we can calculate d
(m)
2 (mn + 1) and d

(m)
2 (mn − 2).

From (10) and (15), we see

d
(m)
4−m(n) = (−1)(

m−1
2 )b2n−2m+3d

(m)
4−m(n − m), (31)

form � 4. Thus, by noting that the initial values d
(m)
4−m(i) = 0 for 1 � i � m−4 because the elements

of the first row are zeros and d
(m)
4−m(i) = 0, i = m − 2,m − 1 because the (m − 1)th column is a

multiple of the (m − 2)th column, it is easy to get

d
(m)
4−m(mn + i) = 0, 1 � i � m − 1, i �= m − 3. (32)

Besides, noting that d̃
(m)
1−m(i) = 0 for i = 1, 2, . . . ,m − 1 because the elements of the first row are

zeros and d̃
(m)
1−m(m) = 0 because the (m− 1)th column is a multiple of the (m− 2)th column, we also

have d̃
(m)
1−m(mn + i) = 0 for 2 � i � m, i �= m − 2 by use of (18) and (32). Then, with the help of (11)

and (17), we have

d
(m)
0 (mn + i) = d

(m)
2 (mn + i − 1) + (−1)(

m+1
2 )b2nm+2i−m−1d

(m)
2 (nm + i − m − 1)

for m � 4 and 0 � i � m − 2 and i �= 2. Noting that d
(m)
2 (0) = 1, d

(m)
2 (n) = 0, 2 � n � m − 3

because the second column is a multiple of the first and noting that d
(m)
0 (n) is already known, we can

derive d
(m)
2 (mn + i) for 0 � i � m − 3 and i �= 1 by induction.

As for d
(m)
2 (mn − 1), because d

(m)
0 (n), d

(m)
1 (mn) and d

(m)
2 (mn) are known and d

(m)
0 (mn + 1) �= 0,

we can compute them by

d
(m)
0 (mn + 1)d

(m)
2 (mn − 1) = d

(m)
0 (mn)d

(m)
2 (mn) − (d

(m)
1 (mn))2,

which is obtained by replacing n by mn + 1 in (28). Therefore, (23) is proved and we complete the

proof. �

The above theorem gives the results for most of the cases. Now we consider other cases. As for the

casem = 1, we begin with the following lemma:

Lemma 2.7.

d
(1)
0 (n) = bn−1(a + b)n−1d

(1)
0 (n − 1) + [n = 0] (33)

holds for all n ∈ Z.

Proof. We consider the case of n � 1. First, we rewrite the recurrence relation (4) for {cn} of case

m = 1 as

cn = (a + b)cn−1 + b

n−2∑
i=0

cicn−1−i (34)

with c0 = 1.

Step 1: Let C0, C1, . . . , Cn−1 denote the columns of the corresponding matrix. Change CN to CN −
(a + b)CN−1 − b

∑N−2
i=0 ciCN−1−i for N = n − 1, n − 2, . . . , 1, then, by using the recursion relation

(4), we have
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d
(1)
0 (n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 0 . . . 0

c1 bc1c0 . . . bc1cn−2

c2 b

2∑
i=1

cic2−i . . . b

2∑
i=1

cicn−i

...
...

. . .
...

cn−1 b

n−1∑
i=1

cicn−1−i . . . b

n−1∑
i=1

cic2n−3−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= c0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bc1c0 . . . bc1cn−2

b

2∑
i=1

cic2−i . . . b

2∑
i=1

cicn−i

...
. . .

...

b

n−1∑
i=1

cicn−1−i . . . b

n−1∑
i=1

cic2n−3−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Step 3: Perform row operations for the above determinant. For k = 2, 3, . . . , n − 1, we subtract

the ith row multiplied by ck+1−i/c1 for i = 1, . . . , k − 1. Then it follows that (33) holds. �

With the help of this lemma, we have

Theorem 2.8.

d
(1)
0 (n) = b(

n
2)(a + b)(

n
2), (35)

d
(1)
1 (n) = b(

n
2)(a + b)(

n+1
2 ), (36)

d
(1)
2 (n) = b(

n
2)(a + b)(

n+1
2 ) (a + b)n+1 − bn+1

a
(37)

Proof. Applying the above lemma and noting that d
(1)
0 (0) = 1,we can derive d

(1)
0 (n) = a(

n
2)(a+b)(

n
2)

by induction.

Replacing mwith 1 in (12), namely,

d
(1)
0 (n) = bn−1d

(1)
1 (n − 1),

we can see (36) obviously follows.

Using the condensation formula

d
(1)
0 (n)d

(1)
2 (n − 2) = d

(1)
0 (n − 1)d

(1)
2 (n − 1) − (d

(1)
1 (n − 1))2

and the initial value d
(1)
2 (0) = 1, (37) can be confirmed by induction. Therefore, the proof is com-

pleted. �

For the casem = 2, here we only need to calculate d
(2)
1 (n) and d

(2)
2 (n).

Noting that (9) and (16) give

d
(2)
1 (n) = abn−1d

(2)
1 (n − 1) − b2n−2d

(2)
1 (n − 2),



X.-K. Chang et al. / Linear Algebra and its Applications 438 (2013) 2523–2541 2537

and the initial values d
(2)
1 (0) = 1 and d

(2)
1 (1) = a, we can express d

(2)
1 (n) by the Fibonacci polynomial,

where the Fibonacci polynomial Fibn(x, s) is defined by the recurrence Fibn(x, s) = xFibn−1(x, s) +
sFibn−2(x, s) with values Fib0(x, s) = 0 and Fib1(x, s) = 1.

Using the condensation formula

d
(2)
0 (n)d

(2)
2 (n − 2) = d

(2)
0 (n − 1)d

(2)
2 (n − 1) − (d

(2)
1 (n − 1))2

and the initial value d
(2)
2 (0) = 1, d

(2)
2 (n) can be obtained by induction. Thus, we have

Theorem 2.9.

d
(2)
0 (n) = b(

n
2),

d
(2)
1 (n) = b(

n
2)Fibn+1(a, −b),

d
(2)
2 (n) = b(

n
2)

∑n
j=0 b

n−j
(
Fibj+1(a, −b)

)2
.

For the case m = 3, Theorem 2.6 states the result for d
(3)
0 (n) and d

(3)
1 (n). Using (18) with m = 3,

we have

d̃
(3)
−2(n) = −b2n−5d̃

(3)
−2(n − 3) − ab2n−6d

(3)
1 (n − 4) + [n = 0] + b[n = 3],

from which we can firstly obtain

d̃
(3)
−2(3n) = (−1)n+1 n(n−1)

2
a2b3n

2−2n−1 + [n = 0],
d̃
(3)
−2(3n + 1) = (−1)nnab3n

2−1,

d̃
(3)
−2(3n + 2) = (−1)n n(n+1)

2
a2b3n

2+2n−1.

by induction and the initial values d̃
(3)
−2(0) = 1, d̃

(3)
−2(1) = 0, d̃

(3)
−2(2) = 0.

With the help of (11) and (17), we have

d
(3)
0 (n) = d

(3)
2 (n − 1) + b2n−4d

(3)
2 (n − 4) − a2bn−2d

(3)
1 (n − 2) − 2abn−1d̃

(3)
−2(n − 1),

using which and the initial value d
(3)
2 (0) = 1, d

(3)
2 (1) = a2 and d

(3)
2 (0) = a3b − b2, then, we can

derive the result for d
(3)
2 (n) by induction.

Theorem 2.10.

d
(3)
2 (3n) = (−1)n+1b3n

2+n−1
(
a3

∑n
i=0 i

2 − (n + 1)b
)
,

d
(3)
2 (3n + 1) = (−1)n(n + 1)2a2b3n

2+3n,

d
(3)
2 (3n + 2) = (−1)nb3n

2+5n+1
(
a3

∑n+1
i=0 i2 − (n + 1)b

)
.

3. Determinants D
(m)
r (n, a, b, t) and dd

(m)
r (n, a, b) for r = 0, 1, 2

In this section, we consider Hankel determinants D
(m)
r (n, a, b, t) and dd

(m)
r (n, a, b) for r = 0, 1, 2,

whichwewill abbreviate asD
(m)
r (n) and dd

(m)
r (n), respectively. The steps are similar to those in Section

2.

First, from (2) and (3), it is easy to see that the following recurrence relations hold:
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Cn = (a + t)Cn−1 + b

n−m∑
i=0

Cicn−m−i, (38)

gn = agn−1 + 2b

n−m∑
i=0

gicn−m−i (39)

with C0 = 1 and g0 = 1. Here we omit parameters a, b, t,m for simplicity.

Similar to the proofs of lemmas and corollary in Section 2, we can also prove the following results.

Here we omit the details.

Lemma 3.1. Let n be large enough. Then,

D
(m)
0 (n) = bn−1d

(m)
2−m(n − 1),

dd
(m)
0 (n) = (2b)n−1d

(m)
2−m(n − 1),

D
(m)
1 (n) = (a + t)bn−1d

(m)
3−m(n − 1) + bnd

(m)
1−m(n),

dd
(m)
1 (n) = a(2b)n−1d

(m)
3−m(n − 1) + (2b)nd

(m)
1−m(n),

D
(m)
0 (n) = D

(m)
2 (n − 1)+bnd

(m)
−m(n)−(a + t)2bn−2d

(m)
4−m(n − 2)−2(a + t)bn−1d̃

(m)
1−m(n − 1),

dd
(m)
0 (n) = dd

(m)
2 (n − 1)+(2b)nd

(m)
−m(n)−a2(2b)n−2d

(m)
4−m(n − 2)−2a(2b)n−1d̃

(m)
1−m(n − 1),

D
(1)
0 (n) = bn−1(a + b + t)n−1d

(1)
0 (n − 1),

dd
(1)
0 (n) = (2b)n−1(a + 2b)n−1d

(1)
0 (n − 1).

Employing Corollary 2.2 and Lemma 3.1, we can evaluate D
(m)
r (n, a, b, t) and dd

(m)
r (n, a, b) for

r = 0, 1, 2. The proofs are similar to those of theorems in Section 2. Some results can be achieved

more easily when using the known results in Section 2.

Theorem 3.2. For m � 2, we have

D
(m)
0 (mn) = (−1)(

m−1
2 )nbn(mn−1),

D
(m)
0 (mn + 1) = (−1)(

m−1
2 )nbn(mn+1)

and D
(m)
0 (n) = 0 else.

For m � 3, we have

D
(m)
1 (mn) = (−1)(

m
2)nbmn2 ,

D
(m)
1 (mn + 1) = (−1)(

m
2)n(t + (n + 1)a)bmn2+2n,

D
(m)
1 (mn − 1) = −(−1)(

m
2)n(t + na)bmn2−2n

and D
(m)
1 (n) = 0 else.

For m � 4, we have

D
(m)
2 (mn) = (−1)(

m−1
2 )n(n + 1)bmn2+n,

D
(m)
2 (mn + 1) = (−1)(

m−1
2 )n(t + (n + 1)a)2bmn2+3n,

D
(m)
2 (mn − 1) = (−1)(

m−1
2 )nnbmn2−n,

D
(m)
2 (mn − 2) = −(−1)(

m−1
2 )n(t + na)2bmn2−3n

and D
(m)
2 (n) = 0 else.
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Theorem 3.3. For m � 2, we have

dd
(m)
0 (mn) = (−1)(

m−1
2 )n2mn−1bn(mn−1),

dd
(m)
0 (mn + 1) = (−1)(

m−1
2 )n2mnbn(mn+1)

and dd
(m)
0 (n) = 0 else.

For m � 3, we have

dd
(m)
1 (mn) = (−1)(

m
2)n2mnbmn2 ,

dd
(m)
1 (mn + 1) = (−1)(

m
2)n(2n + 1)abmn2+2n,

dd
(m)
1 (mn − 1) = −(−1)(

m
2)n(2n − 1)2mn−2abmn2−2n

and dd
(m)
1 (n) = 0 else.

For m � 4, we have

dd
(m)
2 (mn) = (−1)(

m−1
2 )n(2n + 1)2mnbmn2+n,

dd
(m)
2 (mn + 1) = (−1)(

m−1
2 )n(2n + 1)22mna2bmn2+3n,

dd
(m)
2 (mn − 1) = (−1)(

m−1
2 )n(2n − 1)2mn−1bmn2−n,

dd
(m)
2 (mn − 2) = −(−1)(

m−1
2 )n(2n − 1)22mn−3a2bmn2−3n

and dd
(m)
2 (n) = 0 else.

Theorem 3.4.

D
(1)
0 (n) = b(

n
2)(a + b)(

n
2),

D
(1)
1 (n) = b(

n
2)(a + b)(

n
2)

(
(a + b)n + t

(a+b)n−bn

a

)
,

D
(1)
2 (n) = b(

n
2)(a + b)(

n
2)

∑n
j=0(a + b)n−jbn−j

(
(a + b)j + t

(a+b)j−bj

a

)2

.

dd
(1)
0 (n) = 2n−1b(

n
2)(a + b)(

n
2),

dd
(1)
1 (n) = 2n−1b(

n
2)(a + b)(

n
2) ((a + b)n + bn) ,

dd
(1)
2 (n) = 2nb(

n+1
2 )(a + b)(

n+1
2 )

(
1 + ∑n

j=1
((a+b)j+bj)

2

2(a+b)jbj

)
.

Theorem 3.5.

D
(2)
0 (n) = b(

n
2),

D
(2)
1 (n) = b(

n
2) (Fibn+1(a, −b) + tFibn(a, −b)) ,

D
(2)
2 (n) = b(

n
2)

∑n
j=0 b

n−j
(
Fibj+1(a, −b) + tFibj(a, −b)

)2
.

dd
(2)
0 (n) = 2n−1b(

n
2),

dd
(2)
1 (n) = 2n−1b(

n
2)

(
aFibn(a, −b) − 2n−1bFibn−1(a, −b)

)
,

dd
(2)
2 (n) = 2nb(

n+1
2 )

(
1 + ∑n

j=1
(Fibj(a,−b)−2j−1bFibj−1(a,−b))

2

2bj

)
.
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Theorem 3.6.

D
(3)
2 (3n) = (−1)nb3n

2+n−1
(
a3

∑n
i=0 i

2 − (n + 1)b + nat(t + (n + 1)a)
)
,

D
(3)
2 (3n + 1) = (−1)n (t + (n + 1)a)2 b3n

2+3n,

D
(3)
2 (3n + 2) = (−1)nb3n

2+5n+1
(
a3

∑n+1
i=0 i2 − (n + 1)b + (n + 1)at(t + (n + 2)a)

)
.

dd
(3)
2 (3n) = (−1)n

(
(2n + 1)223nb3n

2+n −
(
2n+1

3

)
23n−1a3b3n

2+n−1
)
,

dd
(3)
2 (3n + 1) = (−1)n(2n + 1)223na2b3n

2+3n,

dd
(3)
2 (3n + 2) = (−1)n+1

(
(2n + 1)23n+2b3n

2+5n+2 −
(
2n+3

3

)
23n+1a3b3n

2+5n+1
)
.

Remark: We solve Conjecture 7.6 and Conjecture 7.7 in [3], as the content of Conjecture 7.6 is a

part of Theorem 3.2 and Conjecture 7.7 is just Theorem 3.3. We also prove Conjecture 6.8 in [3], which

states the results about dd
(3)
r (n) for r = 0, 1, 2.

4. Conclusion and discussions

In this paper,weevaluate thefirst threeHankel determinants for three sequences,whosegenerating

functions satisfy a certain type of quadratic functions. As a result, we have confirmed four conjectures

proposed by Cigler in [3].
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