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Abstract

In this paper we give a combinatorial proof of an addition formula for weighted
partial Motzkin paths. The addition formula allows us to determine the LDU de-
composition of a Hankel matrix of the polynomial sequence defined by weighted
partial Motzkin paths. As a direct consequence, we get the determinant of the Han-
kel matrix of certain combinatorial sequences. In addition, we obtain an addition
formula for weighted large Schröder paths.

Keywords: lattice paths; Catalan numbers; Motzkin numbers; Large Schröder
numbers; Hankel determinant

1 Introduction

For a sequence {an}n>0, its nth Hankel matrix is defined to be the matrix (ai,j)06i,j6n−1,
where ai,j = ai+j. There are many applications of Hankel matrices in combinatorics and
in coding theory(see for instance [17, 22]). The problem of evaluating the determinants of
Hankel matrices (also called Hankel determinans for short) of a given sequence has been
widely studied.

First, let’s recall some classic results for sequences arising from enumerations of lattice
paths. A Dyck path is a lattice path starting at (0, 0), ending at (2n, 0), and never going

∗Corresponding author.
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below the x-axis, consisting of up steps (1, 1) and down steps (1,−1). Let cn = 1
n+1

(
2n
n

)
be the Catalan number, it counts the number of Dyck paths from (0, 0) to (2n, 0). The
Hankel determinants associated to the Catalan numbers are well studied (see [9, 15]). It
is well known that

det
06i,j6n−1

(ci+j) = 1,

det
06i,j6n−1

(ci+j+1) = 1,

det
06i,j6n−1

(ci+j+m) =
∏

16i6j6m−1

2n+ i+ j

i+ j
.

A Motzkin path is a lattice path starting at (0, 0), ending at (n, 0), and never going
below the x-axis, consisting of up steps (1, 1), horizontal steps (1, 0) and down steps
(1,−1). Let mn =

∑
k>0

(
n
2k

)
ck be the Motzkin number, it counts the number of Motzkin

paths from (0, 0) to (n, 0). Let M(z) =
∑

n>0mnz
n be the generating function, it is well

known that

M(z) =
1− z −

√
1− 2z − 3z2

2z2
.

The Hankel determinants associated to the Motzkin numbers are well studied by Aigner[1]

det
06i,j6n−1

(mi+j) = 1,

det
06i,j6n−1

(mi+j+1) =


1 if n ≡ 0, 1 (mod 6)

0 if n ≡ 2, 5 (mod 6)

−1 if n ≡ 3, 4 (mod 6).

A large Schröder path is similar but allowing up steps (1, 1), double horizontal steps
(2, 0) and down steps (1,−1). The large Schröder numbers rn counts the number of large
Schröder paths from (0, 0) to (2n, 0). It was proved in [3, 11] that

det
06i,j6n−1

(ri+j) = 2(n
2),

det
06i,j6n−1

(ri+j+1) = 2(n+1
2 ).

For Hankel determinants on small Schröder numbers please see [11]. Notice that by the
Desnanot-Jacobi identity it is possible to determine det06i,j6n−1 (ai+j+m) by
det06i,j6n−1 (ai+j) and det06i,j6n−1 (ai+j+1). For more results on Hankel determinants of
sequences related to the above sequences the reader may consult [4, 5, 7, 8, 12, 13, 19, 21].

In [18], C. Radoux presented several addition formulas for some polynomials building
on combinatorial sequences. The formulas were proved by algebraic methods. In this
paper, we mainly study the weighted partial Motzkin paths, also called weighted Motzkin
path from (0, 0) to (n, k) (see [6]). We generalize the addition formulas given by C. Radoux
and provide a combinatorial proof. See Theorem 3 for our main result.
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The present paper is organized as follows. In Section 2, we define a unique decompo-
sition of a lattice path into three parts. In Section 3, we first establish a bijection, and
then prove the addition formula for the weighted partial Motzkin paths. In Section 4,
by the addition formula, we obtain the LDU decompositions of the Hankel matrices of
the polynomial sequences, and evaluate the corresponding Hankel determinants. Then
we specialize the parameters and get the Hankel determinants of several combinatorial
sequences. Some of them are classic results but the others are new. In the last section,
we deduce an addition formula for large Schröder paths, despite the lack of applications.

2 Preliminaries

In this article, let Z be the set of integers. For two points P1, P2 ∈ Z×Z, let
−−→
P1P2 denote

the vector from P1 to P2.

Definition 1. Let S be a finite set of vectors of Z×Z. A lattice path P with step set S,
denoted by (P0, P1, . . . , Pn), is a path connecting the point sequence P0, P1, . . . , Pn such

that each point Pi ∈ Z×Z and each step
−−−−→
Pi−1Pi ∈ S. The number n is referred to as the

length of P .

For a lattice path, the leftmost point and the rightmost point are called the start point

and the end point respectively. The reverse path of a lattice path P , denoted by
←−
P , is a

lattice path obtained by reading P from right to left with the same start point as P .
The y-coordinate of a point Pi is called its height, denoted by h(Pi). The concatenation

of two lattice paths P = (P0, P1, . . . , Pm) and P ′ = (P ′0, P
′
1, . . . , P

′
n), denoted by P ◦P ′, is

defined to be the path (P0, P1, . . . , Pm, Pm +
−−→
P ′0P

′
1, Pm +

−−→
P ′0P

′
2, . . . , Pm +

−−−→
P ′0P

′
n). For two

sets of lattice paths P and P ′, let P ◦ P ′ := {P ◦ P ′ | P ∈ P , P ′ ∈ P ′}.
For a given step set S, let Pk

n denote the set of lattice paths from (0, 0) to (n, k)
constructed by steps in S which never pass below the x-axis. Let

P>r
n :=

⋃
k>r

Pk
n.

Notice that the end point of each path in P>r
n is on or above the line y = r.

For P = (P0, P1, . . . , Pn) ∈ Pk
n and 0 6 i 6 n, let Li(P ) denote the partial path of P

consisting of the first i steps, i.e. Li(P ) = (P0, P1, . . . , Pi). For each i ∈ {0, 1, 2, . . . , n},
there is a unique decomposition of P :

P = Li(P ) ◦Mi(P ) ◦Ri(P ). (1)

where Mi(P ) = (Pi, Pi+1, . . . , Pj), Ri(P ) = (Pj, Pj+1, . . . , Pn) and Pj is the rightmost
point of the partial path (Pi, Pi+1, . . . , Pn) with the smallest height. See Figure 1 for an
illustration.
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Figure 1: For i = 3, P = L3(P ) ◦M3(P ) ◦R3(P )

3 An addition formula for weighted partial Motzkin paths

In this section, we study weighted partial Motzkin paths. Let the step set S = {(1, 1),
(1,−1), (1, 0)}. A path in Pk

n is called a weighted partial Motzkin path if each step has
been assigned a weight. In the following, we let

w(1, 1) = xy, w(1, 0) = ux, w(1,−1) = vx/y. (2)

For a path P ∈ Pk
n, the weight should be urvsxnyk, where x and y mark the coordinates

of the end point, u marks the horizontal steps (1,0), and v marks the down steps (1,−1).
We immediately have w(P ◦ P ′) = w(P )w(P ′) for any two lattice paths P and P ′. The
weight of a lattice path set is the sum of the weights of all its paths.

Let

an,k :=
1

xnyk
w(Pk

n).

For the case u = v = 1, an,0 is the nth Motzkin number and the matrix (ai,j)06i,j6n−1
is the Motzkin triangle (the sequence A026300 in [20]). For the case u = 0 and v = 1,
a2n,0 is the nth Catalan number and (ai,j)06i,j6n−1 is the Catalan triangle (the sequence
A053121 in [20]).

For the path set P>r
n , define its generating function as

an,r(y) :=
1

xnyr
w(P>r

n ).

It is obvious that an,r(y) =
∑

k>r an,ky
k−r. Here y marks the distance from the end point

of each path in P>r
n to the line y = r.

For fixed nonnegative integers m and n, we denote by Qr the set of all the paths
P = (P0, P1, . . . , Pm+n) in P>0

m+n satisfying that

h(Pm)− h(Pj) = r,
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where j is determined by setting i = m and replacing n by m+ n in (1). It’s easy to see
that {Q0,Q1, . . . ,Qmin(m,n)} is a partition of P>0

m+n.
The next lemma provides the key bijection of our main theorem.

Lemma 2. For 0 6 r 6 min(m,n), define φr : Qr → P>r
m ◦ P>r

n by

P → φr(P ) = Lm(P ) ◦
←−−−−
Mm(P ) ◦Rm(P ).

Then φr is a bijection and w(P ) = vr

y2r
w(φr(P )).

Proof. Since the decomposition (1) is unique for i = m, it is obvious that φr is an injection.
We only need to find φ−1r . Given two paths P ∈ P>r

m and P ′ ∈ P>r
n , we first split P ′ into

two subpaths P ′1 and P ′2 at its rightmost point with height r such that P ′ = P ′1 ◦P ′2. Then

φ−1r (P ◦ P ′) = P ◦
←−
P ′1 ◦ P ′2. See Figure 2 for an example.

Observe that P has r more down steps than φr(P ), and the same number of horizontal
steps, so we have w(P ) = vr

y2r
w(φr(P )).

)(4 PL )(4 PR)(4 PM

1=r

4=m 9=n

)(4 PL )()( 44 PRPM o
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Figure 2: 1). P ∈ Q1; 2). φ(P ) ∈ P>1
4 ◦ P>1

9
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Now we prove the main theorem of this paper.

Theorem 3. For nonnegative integers m and n, we have

am+n,0(y) =

min(m,n)∑
r=0

vram,r(y)an,r(y). (3)

Proof. By Lemma 2, we have

w(Qr) =
vr

y2r
w(P>r

m )w(P>r
n ).

Therefore

am+n,0(y) =
1

xm+n
w(P>0

m+n) =
1

xm+n

min(m,n)∑
r=0

w(Qr)

=

min(m,n)∑
r=0

vr
(

1

xmyr
w(P>r

m )

)(
1

xnyr
w(P>r

n )

)

=

min(m,n)∑
r=0

vram,r(y)an,r(y).

Example 4. Let u = v = 1. Then ai,j is the number of lattice paths with step set
S = {(1, 1), (1, 0), (1,−1)} begin at the origin and end at (i, j) that never pass below the
x-axis. By direct calculation we have

(ai,j)06i,j64 =


1 0 0 0 0
1 1 0 0 0
2 2 1 0 0
4 5 3 1 0
9 12 9 4 1

 ,

(ai,j(y))06i,j64 =
1 0 0 0 0
y + 1 1 0 0 0
y2 + 2y + 2 y + 2 1 0 0
y3 + 3y2 + 5y + 4 y2 + 3y + 5 y + 3 1 0
y4 + 4y3 + 9y2 + 12y + 9 y3 + 4y2 + 9y + 12 y2 + 4y + 9 y + 4 1

 ,

and a5,0(y) = y5 + 5y4 + 14y3 + 25y2 + 30y + 21. It is direct to check that

a5,0(y) =

min(m,n)∑
r=0

am,r(y)an,r(y)

is true for each (m,n) ∈ {(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)}.
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A direct consequence of Theorem 3 is the following result involving Catalan numbers.
It was proved in [18] by algebraic method.

Corollary 5. [18] Let cn,k be the number of lattice paths from (0, 0) to (2n, 2k) using steps
(1, 1) and (1,−1) that never pass below the x-axis. In particular, cn,0 is the nth Catalan
number. Let

cn,r(y) :=
n∑

i=r

cn,iy
i−r.

Then

cm+n,0(y) = cm,0(y)cn,0(y) + (y + 1)

min(m,n)∑
r=1

cm,r(y)cn,r(y),

for nonnegative integers m and n.

Proof. Let u = 0 and v = 1 in (2), then a2n,2i = cn,i. Since a2n,j = 0 for odd j, then
a2n,2r(y) = cn,r(y

2) and a2n,2r−1(y) = ya2n,2r(y) for r > 1. By Theorem 3, we have

cm+n,0(y
2) = a2m+2n,0(y) =

min(2m,2n)∑
r=0

a2m,r(y)a2n,r(y)

= a2m,0(y)a2n,0(y) +

min(m,n)∑
r=1

(a2m,2r−1(y)a2n,2r−1(y) + a2m,2r(y)a2n,2r(y))

= cm,0(y
2)cn,0(y

2) + (y2 + 1)

min(m,n)∑
r=1

cm,r(y
2)cn,r(y

2).

Replacing y2 by y completes the proof.

4 Applications

In this section, we show that equation (3) can be used to evaluate many Hankel determi-
nants of certain sequences.

Theorem 6. Let An(y) denote the nth Hankel matrix of the sequence {an,0(y)}n>0, i.e.

An(y) = (ai+j,0(y))06i,j6n−1 .

Then
det(An(y)) = v

n(n−1)
2 .

Proof. By Theorem 3, we have

An(y) = A · diag(v0, v1, . . . , vn−1) · AT ,
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where A is the following lower triangular matrix:

A =


a0,0(y)
a1,0(y) a1,1(y)
a2,0(y) a2,1(y) a2,2(y)
· · · · · · · · · · · ·

an−1,0(y) an−1,1(y) an−1,2(y) · · · an−1,n−1(y)

 .

So that

det(An(y)) = det(diag(v0, v1, . . . , vn−1))(det(A))2 = v
n(n−1)

2

(
n−1∏
i=0

ai,i(y)

)2

,

and the proof follows immediately from the fact that ai,i(y) = ai,i = 1 for 0 6 i 6 n−1.

For the weighted partial Motzkin paths, the above result shows that the determinant
of An(y) is independent of u and y. Now in the following corollaries we specialize y, u
and v in Theorem 6, and the we obtain the Hankel determinants of several combinatorial
sequences. Some results are known, only partial of them are listed. We also get some
new results(see Corollary 8(2), (3) and Corollary 9(4)). The proofs are not difficult, so
we leave them to the reader.

Corollary 7. Let y = 0 in Theorem 6, then an,0(0) = an,0 and xnan,0 is the weight of
Motzkin paths of length n. Furthermore,

(1) [2] let u = 0 and v = 1, then a2n,0 is the nth Catalan number, a2n−1 = 0 for n > 1,
and

det
06i,j6n−1

(ai+j,0) = 1;

(2) [1] let u = 1 and v = 1, then an,0 is the nth Motzkin number, and

det
06i,j6n−1

(ai+j,0) = 1;

(3) [10] let u = 1 and v = 2, then an,0 is the number of increasing unary-binary trees with
associated permutation that avoids 231 (the sequence A025235 in [20]), and

det
06i,j6n−1

(ai+j,0) = 2
n(n−1)

2 ;

(4) [14] let u = 1 and v = 3, then an,0 is the number of lattice paths within N2 starting
at the origin and ending on the y-axis with step set {(−1,−1),(−1, 0),(−1, 1), (0, 1),
(1, 1)}. Also, an,0 is the number of lattice paths within N3 starting at the origin and
consisting of n steps taken from {(−1,−1, 1),(−1, 0, 1),(−1, 1, 1),(0, 0,−1),(1, 1, 0)}
(the sequence A025237 in [20]), and

det
06i,j6n−1

(ai+j,0) = 3
n(n−1)

2 .
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Corollary 8. Let y = 1 in Theorem 6, then an,0(1) =
∑n

k=0 an,k. Furthermore,

(1) [16] let u = 1 and v = 1, then an,0(1) is the number of permutations on [n + 1] that
avoid the patterns 1-23-4 and 1-3-2, where the omission of a dash in a pattern means
the permutation entries must be adjacent (the sequence A005773 in [20]), and

det
06i,j6n−1

(ai+j,0(1)) = 1;

(2) let u = 1 and v = 3, then an,0(1) is the number of lattice paths within N2 starting at
the origin and consisting of n steps taken from {(−1,−1),(−1, 1), (−1, 0), (0, 1),(1, 1)}
(the sequence A151292 in [20]), and

det
06i,j6n−1

(ai+j,0(1)) = 3
n(n−1)

2 ;

(3) let u = 2 and v = 2, then an,0(1) is the number of lattice paths within N3 starting at
the origin and consisting of n steps taken from {(−1,−1,−1), (−1,−1, 0), (0, 0, 1),
(0, 1, 0), (1, 1, 1)} (the sequence A151090 in [20]), and

det
06i,j6n−1

(ai+j,0(1)) = 2
n(n−1)

2 .

The most interesting case is y = −1. If u = 2 and v = 1, then an,0(−1) is the nth
Catalan number. If u = 3 and v = 2, then an,0(−1) is the nth large Schröder number.
We list some of the other cases below.

Corollary 9. Let y = −1 in Theorem 6, then an,0(−1) =
∑n

k=0(−1)kan,k. Furthermore,

(1) [16] let u = 1 and v = 1, then an,0(−1) is the number of ordered trees with n edges and
no vertices of outdegree 1. Also, an,0(−1) is number of 321-avoiding permutations on
[n] in which each left-to-right maximum is a descent (the sequence A005043 in [20]),
and

det
06i,j6n−1

(ai+j,0(−1)) = 1;

(2) [16] let u = 3 and v = 1, then an,0(−1) is the number of binary trees of weight
n where leaves have positive integer weights. Also, an,0(−1) is the number of 321-
avoiding partitions of [n] (the sequence A007317 in [20]), and

det
06i,j6n−1

(ai+j,0(−1)) = 1;

(3) (by Paul Barry, see A052709 in [20]) let u = 2 and v = 2, then an,0(−1) is the
number of lattice paths starting from the origin to (n, 0) with step set {(1, 1), (1,−1),
(0,−1)}, and

det
06i,j6n−1

(ai+j,0(−1)) = 2
n(n−1)

2 ;

(4) let u = 4 and v = 4, then an,0(−1) is the number of Dyck paths with 2n + 2 steps in
which each up step not at the x-axis has two colors (the sequence A064062 in [20]),
and

det
06i,j6n−1

(ai+j,0(−1)) = 4
n(n−1)

2 .
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5 Another addition formula

In this section, we give an addition formula for weighted large Schröder paths, despite the
lack of applications. Let the step set S = {(1, 1), (1,−1), (2, 0)}. The weights of the steps
are given by

w(1, 1) = xy, w(2, 0) = ux2, w(1,−1) = vx/y.

In this case, we denote

rn,k :=
1

xnyk
w(Pk

n), rn,r(y) :=
1

xnyr
w(P>r

n ).

Then rn,s(y) =
∑n

k=s rn,ky
k−s. For the case u = v = 1, r2n,0 is the nth large Schröder

number (the sequence A006318 in [20]).
Next we have the addition formula for large Schröder numbers.

Theorem 10. For m,n > 1,

rm+n,0(y) = u

min(m−1,n−1)∑
s=0

vsrm−1,s(y)rn−1,s(y) +

min(m,n)∑
s=0

vsrm,s(y)rn,s(y). (4)

Proof. The proof is very similar to that of Theorem 3. We divide P>0
m+n into two subsets:

the first one is the set of paths crossing the line x = m by a (2, 0)-step, and the other one
contains paths touching the line x = m. Then the first term of the right hand side of (4)
represents the first subset and the second term represents the other subset. See Figure 3
for an illustration for the bijection of the first subset. The second one is the same as in
Lemma 2.

Example 11. Let u = v = 1, rn,k is the number of lattice paths with step set S = {(1, 1),
(2, 0), (1,−1)} begin at the origin and end at (n, k) that never pass below the x-axis. By
direct calculation we have

(ri,j)06i,j65 =


1 0 0 0 0 0
0 1 0 0 0 0
2 0 1 0 0 0
0 4 0 1 0 0
6 0 6 0 1 0
0 16 0 8 0 1

 ,

(ri,j(y))06i,j65 =
1 0 0 0 0 0
y 1 0 0 0 0
y2 + 2 y 1 0 0 0
y3 + 4y y2 + 4 y 1 0 0
y4 + 6y2 + 6 y3 + 6y y2 + 6 y 1 0
y5 + 8y3 + 16y y4 + 8y2 + 16 y3 + 8y y2 + 8 y 1

 ,
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Figure 3: A lattice path P ∈ P3
13
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and r6,0(y) = y6 + 10y4 + 30y2 + 22. It is easy to check that the identity

r6,0(y) =

min(m−1,n−1)∑
s=0

rm−1,s(y)rn−1,s(y) +

min(m,n)∑
s=0

vsrm,s(y)rn,s(y)

holds for (m,n) ∈ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.
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