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Abstract

Firstly, a formal correspondence is established between the Camassa–Holm (CH) equation and a 
two-component modified CH (or called SQQ) equation according to the method of moment modifi-
cation for multipeakon formulae. Secondly, based on the generalized nonisospectral CH equation in 
Chang et al. (2014) [14] and the interlacing multipeakons of the two-component modified CH equation 
in Chang et al. (2016) [15], we propose a new generalized two-component modified CH equation with two 
parameters, which possesses a nonisospectral Lax pair. The proposed equation still admits multipeakon 
solutions of explicit and closed form. Sufficient conditions for global existence of solutions are given and 
two concrete examples with certain interesting phenomenon are presented. Last of all, as a by-product, 
a generalized nonisospectral modified CH equation is deduced, together with its Lax pair.
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1. Introduction

The Camassa–Holm (CH) equation [12,13]

mt + (mu)x + mux = 0, m = u − uxx, (1.1)

is an integrable shallow water wave equation well studied in the last two decades. It firstly ap-
peared in the work of Fuchssteiner and Fokas [28] as an abstract bi-Hamiltonian equation. But 
it didn’t attract much more attention until it was rediscovered, by Camassa and Holm [12], and 
shown to admit peaked solitons (called peakons) as solutions. From then on, the CH equation 
has been investigated deeply and found to possess many interesting properties, such as describ-
ing breaking waves [21,35] and admitting explicitly solvable N -peakons [2,3,23], which are 
orbitally stable in some sense [22,38]. The other features that have attracted a lot of attention 
are its geometric interpretation on the Bott–Virasoro group [39,41] and its connection with the 
Korteweg–de Vries (KdV) equation according to tri-Hamiltonian duality [42].

The N -peakon dynamics of the CH equation is described by certain ODE system. Due to 
the Lax integrability, the ODE system can be solved by using inverse spectral method so that 
the explicit formulae of N -peakon solution to the CH equation were obtained [3]. The closed 
form of the solution is expressed in terms of the orthogonal polynomials with a discrete measure. 
Besides, it is also noted that the CH peakon flow may be projected to the finite Toda flow [4].

The discovery of CH peakons resulted in an increasing interest in search of new integrable 
equations. The modified Camassa–Holm (mCH) equation:

mt + [m(u2 − u2)]x = 0, m = u − uxx (1.2)
x
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is just one of intriguing modifications. It originally appeared as a new integrable system in the 
works of Fokas [26] and Fuchssteiner [27] as well as Olver and Rosenau [42]. As mentioned 
by Fokas, this equation arises in the theory of nonlinear water waves. In the latter, this equation 
followed from the general method of tri-Hamiltonian duality applied to the bi-Hamiltonian repre-
sentation of the modified KdV equation. It was rederived by Qiao [45,46] and proved to possess 
a Lax pair, which also appeared in an early work of Schiff [50]. Recently, some of its interesting 
properties were investigated, such as [16–18,30–32,37,40]. It is noted that (1.2) is also called the 
FORQ equation in the references.

Moreover, a two-component integrable extension of the mCH equation (1.2) was proposed by 
Song, Qu and Qiao [51]:

mt + [(u − ux)(v + vx)m]x = 0, (1.3a)

nt + [(u − ux)(v + vx)n]x = 0, (1.3b)

m = u − uxx, n = v − vxx, (1.3c)

which we call the 2-mCH equation for simplicity (sometimes it is also called the SQQ sys-
tem in the literature). This system is proven to possess infinitely many conservation laws and a 
Lax formulation. And, it is geometrically integrable since it describes pseudospherical surfaces. 
Subsequently, its bi-Hamiltonian structure was derived by Tian and Liu [53] and its interlacing 
peakons were studied in [15] very recently.

In the present paper, we are interested in the moment problem involved in multipeakons, and 
extending the equations to nonisospectral case.

On one hand, we plan to investigate what we can get from the CH peakon flow by moment 
modification (See Definition 2.1).

As is known in [4], there exists a correspondence between the CH peakon and finite Toda flow. 
Besides, the Toda flow is related to Kac–van Moerbeke flow (or the Lotka–Volterra lattice or the 
Langmuir lattice [19,36,54]) from different attitudes, such as the theory of orthogonal polynomi-
als (OPs) [1,5,43] or Jacobi operator [52], Stieltjes function [44], Bäcklund transformation [33]. 
In Section 2, more details on their correspondence using moment modification are emphasized 
from the view of the theory of OPs.

According to moment modification of multipeakon formulae of the CH equation, we get an 
ODE system, which turns out to be an interlacing peakon flow of the 2-mCH equation. In other 
words, the 2-mCH equation may be reproduced from the CH equation according to moment 
modification of multipeakon formulae.

On the other hand, nonisospectral equations are of interests in some sense. There exist many 
nonisospectral deformations of classic integrable systems in the literature (see, for example, 
[6–11,20,29,48,49]). Some nonisospectral soliton equations are demonstrated to describe solitary 
waves in a certain type of nonuniform media [10,11,34]. Also, it is noted that, some important 
soliton systems, such as the Bianchi system and the Ernst equation, admit nonisospectral linear 
representations, which are helpful for finding some geometric properties of their own (see [47, 
Chapter 8]). Recently, some nonisospectral generalizations of the CH equation have been pro-
posed [14,24,25]. The proposed equation in [14] admits multipeakon solutions, while those in 
[24,25] do not.

Inspired by the work on the generalized nonisospectral CH equation [14], we shall generalize 
the 2-mCH equation into nonisospectral case. Starting from the explicit formulae of interlacing 
multipeakons of the 2-mCH equation [15], we operate a series of operations:
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(1) Alter the moment evolution;
(2) Generate an ODE system;
(3) Construct the corresponding PDE;

so that a nonisospectral extension with two parameters is derived. It is noted that, although the 
method is algebraic, it turns out to be efficient to obtain these new results, which may not be 
easily derived in other ways.

In summary, the main new results in the present paper consist of two parts:

(1) A formal correspondence between the CH equation (1.1) and the 2-mCH equation (1.3)
is revealed from a moment modification perspective.

(2) A new 2-parameter integrable system with some multipeakon solution is proposed. That 
is,

mt + (ρm)x = 0, nt + (ρn)x = 0, (1.4a)

ρx = (s + r)m(v + vx) − sn(u − ux), (1.4b)

m = u − uxx, n = v − vxx, (1.4c)

where s(t) and r(t) are arbitrary functions in t . This equation covers the 2-mCH equation 
(1.3) when s = 1, r = 0 by noting that, in this case, there holds

ρx = [(u − ux)(v + vx)]x.
Besides, it is also shown to be integrable in sense of Lax pair. More exactly, it possesses a 
nonisospectral Lax pair, in other words, the spectrum in the Lax pair is dependent on time t
instead of a constant. Therefore, we shall call it generalized nonisospectral two-component 
mCH (GN2-mCH) equation. The reduction at v = u gives a generalized nonisospectral mCH 
(GNmCH) equation in sense of Lax integrability.

The paper is organized as follows: In Section 2, the correspondence of the Toda and Kac–van 
Moerbeke lattice is reviewed from the view of moment modification. We rederive the 2-mCH 
equation from by applying the idea of moment modification to the CH peakon solutions in Sec-
tion 3. Nonisospectral extension of the 2-mCH equation is presented, in Section 4, together with 
its global interlacing multipeakons and the Lax pair. And, some special cases are studied there. 
Section 5 is devoted to conclusion and discussion.

2. From Toda to Kac–van Moerbeke lattices

In this section, we shall see how to derive the Kac–van Moerbeke lattice from the Toda lattice 
by moment modification from the view of orthogonal polynomials. Related materials can be 
found in the papers e.g. [19,44,52], but the description here is a bit different.

2.1. OPs and Toda lattices

To begin with, let’s review how to connect the orthogonal polynomials (OPs) and the sym-
metric orthogonal polynomials (SOPs) by moment modification.
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Given a measure dμ(x) defined on (0, ∞) with the associated moments

ci =
∫

xidμ(x),

consider the monic polynomials {φn(x)}∞n=0, which are orthogonal with respect to dμ(x). As-
suming that the corresponding Hankel determinants

�n =

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1
c1 c2 · · · cn

...
...

. . .
...

cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣
�= 0, n ∈ Z+,

with the convention �0 = 1 and �k = 0 for k < 0, the OP sequence {φn(x)}∞n=0 are uniquely 
determined and can be expressed in terms of

φn(x) = 1

�n

∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1
...

...
. . .

...

cn−1 cn · · · c2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
.

In this situation, the OP sequence {φn(x)}∞n=0 satisfy

∫
φnφmdμ = hnδnm with hn = �n+1

�n

.

As is known, {φn(x)}∞n=0 satisfy the three term recurrence

φn+1(x) = (x − wn)φn(x) − unφn−1(x), (2.1)

with u0 = 0, where

un =
∫

xφnφn−1dμ∫
φ2

n−1dμ
, wn =

∫
xφ2

ndμ∫
φ2

ndμ
.

In our setup, un and wn will be given in terms of the moments ci , i.e.

un = �n+1�n−1

�2
n

, wn = �n+1

�n+1
− �n

�n

, (2.2)

where
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�n =

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1
...

...
. . .

...

cn−2 cn−1 · · · c2n−3
cn cn+1 · · · c2n−1

∣∣∣∣∣∣∣∣∣
with the convention �1 = c1 and �k = 0 for k ≤ 0.

2.2. Moment modification

Let us see some modification on the moments {cn}∞n=0. We shall use the following definition 
for moment modification.

Definition 2.1. The change of the associated moment based on modifying a measure is called
moment modification.

For the measure dμ(x) in the above subsection, we consider the modified measure dμ̃(x) =
1
2dμ(|x|) defined on (−∞, ∞). The resulted moment sequence {c̃n}∞n=0 based on the modified 
measure dμ̃(x) become

c̃2n = c2n �= 0, c̃2n+1 = 0. (2.3)

In this case, if we denote c̃2n by dn for simplicity, then we can obtain

�̃2n = H 0
nH 1

n , �̃2n+1 = H 0
n+1H

1
n , �̃n = 0, (2.4)

according to Laplace’s expansion of a determinant by complementary minors, where �̃n are the 
Hankel determinants generated by the moments {c̃n}∞n=0 and

Hl
n =

∣∣∣∣∣∣∣∣∣

dl dl+1 · · · dl+n−1
dl+1 dl+2 · · · dl+n

...
...

. . .
...

dl+n−1 dl+n · · · dl+2n−2

∣∣∣∣∣∣∣∣∣
�= 0

for n, l ≥ 0 with the convention Hl
0 = 1, Hl

n = 0 for l ≥ 0, n < 0. And the OPs {φn(x)}∞n=0 reduce 
to a class of so-called symmetric orthogonal polynomials (SOPs) {ψn(x)}∞n=0, which are given 
by

ψ2n(x) = 1

H 0
n

∣∣∣∣∣∣∣∣∣∣∣

d0 d1 · · · dn

d1 d2 · · · dn+1
...

...
. . .

...

dn−1 dn · · · d2n−1

1 x2 · · · x2n

∣∣∣∣∣∣∣∣∣∣∣
, ψ2n+1(x) = 1

H 1
n

∣∣∣∣∣∣∣∣∣∣∣

d1 d2 · · · dn+1
d2 d3 · · · dn+2
...

...
. . .

...

dn dn+1 · · · d2n

x x3 · · · x2n+1

∣∣∣∣∣∣∣∣∣∣∣
.

(Note that, for convenience, the notation ψn is introduced to distinguish SOPs from OPs, and 
likewise vn later takes the place of un in the case of SOPs.) The orthogonal relation becomes
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∫
ψnψmdμ = gnδnm

with

g2n = H 0
n+1

H 0
n

, g2n+1 = H 1
n+1

H 1
n

.

We note that the SOPs consist of even functions {ψ2n}∞n=0 and odd functions {ψ2n+1}∞n=0 in x.
It is also noted that {ψn(x)}∞n=0 satisfy a simpler three term recurrence

ψn+1(x) = xψn(x) − vnψn−1(x) (2.5)

with

vn =
∫

xψnψn−1dμ∫
ψ2

n−1dμ
.

In terms of di , we obtain

v2n = H 0
n+1H

1
n−1

H 0
nH 1

n

, v2n+1 = H 0
nH 1

n+1

H 0
n+1H

1
n

.

Note that v0 = 0. In fact, this formula is also obtained from the expression (2.2) under the moment 
modification (2.3) by use of (2.4). Obviously, in this case, wn becomes zero, which also implies 
the special three term recurrence in (2.5).

2.3. Time evolution

So far, the objects we discuss are independent of time t . Now we will make them depend on 
time t .

Suppose that the moments ci admits time evolution

ċi = ci+1.

Then φn(x, t) evolve according to (see e.g. [44, Th. 1])

φ̇n(x, t) = −un(t)φn−1(x, t). (2.6)

In fact, the compatibility condition of (2.1) and (2.6) leads to

ẇn = un+1 − un, u̇n = un(wn − wn−1), n = 0,1,2... (2.7)

with u0 = 0, which is no other than the semi-infinite Toda lattice with u0 = 0. From the deriva-
tion, it is obvious that

un = �n+1�n−1
2 , wn = �n+1 − �n
�n �n+1 �n
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with

�n =

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1
c1 c2 · · · cn

...
...

. . .
...

cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣
�= 0, �n =

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1
...

...
. . .

...

cn−2 cn−1 · · · c2n−3
cn cn+1 · · · c2n−1

∣∣∣∣∣∣∣∣∣
, ċi = ci+1

is a solution to the semi-infinite Toda lattice (2.7).
When we impose the time evolution on di by

ḋi = di+1,

the corresponding SOPs flow satisfy (see e.g. [44, p. 510])

ψ̇n(x, t) = −vn(t)vn−1(t)ψn−2(x, t). (2.8)

By the compatibility condition of (2.5) and (2.8), one can get

v̇n = vn(vn+1 − vn−1), n = 0,1,2, ... (2.9)

with v0 = 0, which is nothing but the semi-infinite Kac–van Moerbeke lattice (or the Lotka–
Volterra lattice or the Langmuir lattice [19,54]) with v0 = 0. We also obviously obtain that

v2n = H 0
n+1H

1
n−1

H 0
nH 1

n

, v2n+1 = H 0
nH 1

n+1

H 0
n+1H

1
n

with

Hl
k =

∣∣∣∣∣∣∣∣∣

dl dl+1 · · · dl+k−1
dl+1 dl+2 · · · dl+k

...
...

. . .
...

dl+k−1 dl+k · · · dl+2k−2

∣∣∣∣∣∣∣∣∣
�= 0, ḋi = di+1

is a solution to the semi-infinite Kac–van Moerbeke lattice (2.9).

3. From CH to 2-mCH equations

We reviewed how to connect the Toda and Kac–van Moerbeke lattices from the point of mo-
ment modification in the previous section. As is indicated in [4], Beals, Sattinger and Szmigielski 
gave a correspondence of the Toda, Jacobi, and CH multipeakon flows. In a recent paper [15], 
the authors established the picture among the Kac–van Moerbeke, Jacobi and the 2-mCH peakon 
flow. In this section, we shall show how to derive the 2-mCH equation (1.3) from the CH equation 
(1.1) in the sense of moment modification.
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3.1. Multipeakons of CH equation

First of all, let’s review the explicit formula for the N -peakon solution of the CH equation, 
which was obtained by Beals, Sattinger and Szmigielski [2,3]. We remark that the formulae 
below are almost the same as those in [3] except a scaling transformation

x → 2x̃, t → 2t̃ , u → ũ, m → 1

2
m̃.

That’s because we focus on the transformed form (1.1) instead of

m̃t̃ + (m̃ũ)x + m̃ũx̃ = 0, 2m̃ = 4ũ − ũx̃x̃ .

The N -peakon problem is equivalent to solving a finite dimension ODE system obtained from 
original PDE (1.1). They worked out the ODE system by use of inverse spectral method. The 
procedure is as follows:

(1) From PDE to ODEs.
When u takes the form of

u =
N∑

j=1

mj(t)e
−|x−xj (t)|

m can be viewed as a discrete measure with weights mj at locations xj :

m = 2
N∑

j=1

mjδ(x − xj ),

which ensures that equation (1.1) is a well posed distributional problem.
Using elementary distribution calculus, one can find that the PDEs (1.1) hold if xk , mk satisfy 
the ODEs:

ẋj = u(xj ), ṁj = −〈ux〉(xj )mj , (3.1)

where the notation 〈f 〉 denotes the average of its left and right-hand limits, that is,

〈f 〉(a) = f (a+) + f (a−)

2
.

Note that ux has a jump at every point xj .
(2) To solve the ODEs by inverse spectral method.

The ODEs (3.1) may be regarded as a system undergoing an isospectral deformation, which 
suggests that it can be solved by inverse spectral method. Without loss of generality, the 
locations xj at initial time can be ordered as

x1(0) < x2(0) < · · · < xN(0).
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For simplicity, here we consider positive amplitudes mj(0), i.e. mj(0) > 0, j = 1, 2..., N .
By employing Liouville transformation, the corresponding spectral problem to solve can be 
simplified to the following string problem

f̃yy(y) = −λg(y)f̃ (y), −1 < y < 1; f̃ (−1) = f̃ (1) = 0,

g =
N∑

j=1

gj δ(y − yj ), −1 = y0 < y1 < y2 < · · · < yN < yN+1 = 1,

where

yj = tanh(xj /2), gj = 2mj

1 − y2
j

.

Since all the gj are positive, the eigenvalues λj for this problem are simple and positive.
In order to study the inverse spectral problem, the corresponding Weyl function was in-
troduced. It is shown that the string data {gj , yj }Nj=1 can be one-to-one mapped into the 

scattering data {λj , aj }Nj=1. Stieltjes’ theorem on continued fraction was employed to ex-

plicitly recover {gj , yj }Nj=1 from {λj , aj }Nj=1. The data {λj , aj }Nj=1 evolved according to

λ̇j = 0, ȧj = aj

λj

In summary, the following theorem holds.

Theorem 3.1 (Beals, Sattinger and Szmigielski [3]). The Camassa–Holm equation (1.1) admits 
the N -peakon solution

u(x, t) =
N∑

j=1

mj(t) exp(−|x − xj (t)|)

with

xj = log

(
1 + yj

1 − yj

)
, mj = 1

2
gj (1 − y2

j )

and

yj = �0
N−j+1 − 1

2�2
N−j

�0
N−j+1 + 1

2�2
N−j

, gj = (�0
N−j+1 + 1

2�2
N−j )

2

�1
N−j+1�

1
N−j

. (3.2)

Here �l = det(Ai+j+l (t))
k−1 and the moments Ak(t) are restricted by
k i,j=0
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Ak(t) =
∫

xke
t
x dν(x) =

N∑
j=1

(λj )
kaj (t), dν(x) =

N∑
j=1

aj (0)δ(x − λj )dx (3.3)

with aj (t) = aj (0)e
t

λj , j ≥ 1 and positive constants λj , aj (0), j ≥ 1.

Remark 3.2. The solution formulae above are not quoted exactly as they are given in the original 
paper [3]. And the notation �0

j corresponds to �̃0
j in [3].

Remark 3.3. For l ≥ 0, minors �l
k, 0 ≤ k ≤ N are strictly positive so that the order x1(t) <

x2(t) < · · · < xN(t) holds in all the time t . Thus, the theorem above are valid globally. Besides, 
the mj(t) are always positive when positive mj(0) are given. Therefore, this corresponds to the 
pure N -peakon solution. Please refer [3] for more information.

Remark 3.4. When the initial momenta mj(0), 1 ≤ j ≤ N are of both signs, collisions will occur. 
This corresponds to the peakon–antipeakon case [3], for which the spectral data {λj }Nj=1 are real, 

distinct and could be negative but never be zero, and {aj }Nj=1 are still positive. It deserves to note 
that the formulae given in Th. 3.1 are at least valid for local time.

3.2. Moment modification

Our motivation comes from the correspondence of the CH peakon solution and the Toda flow, 
together with the relation between the Toda and Kac–van Moerbeke lattice. We would like to see 
what will happen if moment modification is applied to the CH peakon solution.

As is known, the bridge between the Toda and Kac–van Moerbeke lattices is the moment 
modification (2.3), which leads to the restriction of Hankel determinants �n → H 0

n , H 1
n , and 

subsequently the variable modification un → vn. (Here the symbols correspond to those in Sec-
tion 2.) Thus, let’s start from the moments (3.3) and their Hankel determinants �l

k , and then 
variables gj , yj in (3.2).

We shall employ the moment modification formally based on the modified measure defined 
on (−∞, ∞)

dν̃(x) = 1

2x
dν̂(x),

where dν̂(x) is a symmetric constraint of dμ(x), i.e.

dν̂(x) =
K∑

j=−K

a|j |δ(|x| − λ|j |)dx.

This results in

Ã2k =
∫

x2kdν̃(x) = 0, A2k+1 =
∫

x2k+1dν̃(x) =
K∑

j=1

(ζj )
kbj � Bk �= 0

with
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bj = aj

λj

, ζj = λ2
j .

In this case, for the Hankel determinants �̃l
k = det(Ãi+j+l )

k−1
i,j=0, it is not difficult to see, by 

Laplace’s expansion along multiple rows and columns, that

�̃2l
2k = (−1)k(H l

k)
2, �̃2l+1

2k = Hl
kH

l+1
k ,

�̃2l
2k+1 = 0, �̃2l+1

2k+1 = Hl
k+1H

l+1
k ,

for k ∈ N , where Hl
k = det(Bi+j+l )

k−1
i,j=0. And then, for (3.2), it is easy to get

g2K−2j+1 = (H 0
j )2

H 1
j H 1

j−1

, g2K−2j+2 = 1

4

(H 1
j−1)

2

H 0
j H 0

j−1

,

y2K−2j+1 = 1, y2K−2j+2 = −1

for j = 1, 2, . . . , K . The above formulae are valid when bj and ζj are positive, and ζj are distinct. 
The reason is that Hl

k, k = 0, 1, . . . , K are strictly positive in this case, which may be shown in 
the same way as the positivity of �l

k in [3,14].

Remark 3.5. Note that we choose the moment modification so that Ã2k = 0, Ã2k+1 �= 0 rather 
than Ã2k+1 = 0, Ã2k �= 0. That’s because the latter case will result in the singularity for gj , 
which makes the modification meaningless. Similar phenomenon will occur when the moment 
modification c̃2n = 0, c̃2n+1 �= 0 is applied to the Toda lattice in Section 2.

Our moment modification formally implies that the odd sites y2j−1 are located at +1 while the 
even sites y2j are all at −1. Even though the interpretation of the problem in terms of a string is 
no longer valid, we can nevertheless investigate how the modification of the spectral data results 
in a new difference spectral problem.

In the CH theory [3, eq. (4.3)], the related spectral problem reads

qj − qj−1 = lj−1pj , pj − pj−1 = zgj−1qj−1, q0 = qN+1 = 0,

where lj = yj+1 − yj .
In the special case of y2j−1 = 1, y2j = −1 and N = 2K , one is led to a formal spectral 

problem

q2j − q2j−1 = −2p2j , q2j+1 − q2j = 2p2j+1,

p2j − p2j−1 = zg2j−1q2j−1, p2j+1 − p2j = zg2j q2j

q0 = q2K+1 = 0.

By eliminating the variables pj , we get

q2j − q2j−2 = −2zg2j−1q2j−1, q2j+1 − q2j−1 = 2zg2j q2j , q0 = q2K+1 = 0,
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which are nothing but the related spectral problems for multipeakons of the 2-mCH equation 
studied in [15, eq. (3.7)] by setting q2j = �j, q2j−1 = �j . This implies a formal connection 
between the CH peakon solutions and the 2-mCH multipeakons. There is a comparison between 
the related spectral problems for the CH peakons and the 2-mCH multipeakons in [15], where 
string problems with different boundary conditions are involved, however, the interpretation here 
is somewhat different. In the next subsection, we shall impose time evolution on the variables gj

to construct the 2-mCH equation.

3.3. Rederivation of 2-mCH equation

As is shown in [14], the CH peakon flow is equivalent to an ODE system on gj , yj . In this 
subsection, we would like to impose certain time evolution on the restricted variables gj so as to 
obtain a new ODE system, from which a peakon flow can be constructed. Accordingly, we will 
get a PDE, which admits certain peakon solution.

For our convenience, we start from the moments

Bk(t) =
K∑

j=1

(ζj )
kbj (t), k ∈ Z

with bj (t) = bj (0)e
2t
ζj , which result in

Ḃk = 2Bk−1.

Here bj (0) and ζj are some positive constants, and ζj are distinct.
Define the Hankel determinants Hl

k(t) = det(Bi+j+l (t))
k−1
i,j=0. Generally, we have the conven-

tion

Hl
0 = 1, H l

k = 0, k < 0, l ∈ Z.

In fact, there are some underlying properties behind them, some of which are listed below for 
reader’s convenience. The proofs can be found in, such as, [3,14,15] (especially Section 3 in 
[14]). But, for completeness, we shall present some detailed proofs in Appendix A.

Lemma 3.6. For l ∈ Z, there hold

(1) Linear identities.

Hl
k = 0, k > K,

H l
K =

K∏
i=1

[bi(ζi)
l]

∏
1≤i<j≤K

(ζj − ζi)
2 > 0.

Actually, we also have

Hl
k > 0, k = 0,1, . . . ,K.
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(2) Bilinear identities

Hl−1
k+2H

l+1
k = Hl−1

k+1H
l+1
k+1 − (H l

k+1)
2,

H l−1
k+1H

l+1
k = Gl−1

k+1H
l
k − Gl−1

k H l
k+1,

H l
k+1G

l
k = Hl+1

k Gl−1
k+1 − Hl−1

k+1H
l+2
k ,

H l−1
k+2H

l+2
k = Hl+1

k+1G
l−1
k+1 − Hl

k+1G
l
k+1,

for any k ≥ −1.
(3) Combinations of identities

K∑
l=k

(H 0
l )2

H 1
l H 1

l−1

= H−1
k

H 1
k−1

,

k∑
l=1

(H 1
l−1)

2

H 0
l H 0

l−1

= H 2
k−1

H 0
k

,

k∑
l=1

H 0
l H 2

l−1

H 1
l H 1

l−1

= G0
k

H 1
k

,

for 1 ≤ k ≤ K .

Here Gl
k is defined by

Gl
k =

∣∣∣∣∣∣∣∣∣

Bl Bl+2 Bl+3 · · · Bl+k

Bl+1 Bl+3 Bl+4 · · · Bl+k+1
...

...
...

. . .
...

Bl+k−1 Bl+k+1 Bl+k+2 · · · Bl+2k−1

∣∣∣∣∣∣∣∣∣
with the convention Gl

1 = Bl, Gl
k = 0, k ≤ 0.

Lemma 3.7. If Ḃk = 2Bk−1, then Hl
k evolve according to

Ḣ l
k = 2 Gl−1

k , 1 ≤ k ≤ K.

Proof. This is a consequence of employing differential rule for determinants. �
Now, let’s turn to investigate the variables gj . Recall that

g2K−2j+1 = (H 0
j )2

H 1
j H 1

j−1

, g2K−2j+2 = 1

4

(H 1
j−1)

2

H 0
j H 0

j−1

, j = 1, . . . ,K. (3.4)

After trial and error, we find gj satisfy some ODEs. More exactly, we have the following claim.
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Theorem 3.8. For j = 1, . . . , K , there hold

ġ2j−1 = 8 g2j−1

K∑
i=j

g2i

⎛
⎝2

j∑
i=1

g2i−1 − g2j−1

⎞
⎠ , (3.5)

ġ2j = −8 g2j

j∑
i=1

g2i−1

⎛
⎝2

K∑
i=j

g2i − g2j

⎞
⎠ . (3.6)

Proof. See Appendix B for the detailed proof. �
A series of simple calculation will result in

Corollary 3.9. For j = 1, 2, . . . , K , if we let

pj = ln
g2j−1

m2j−1
, qj = ln

n2j

4g2j

,

where mj , nj are some positive constants, then

ṗj = 2
K∑

i=j

n2ie
pj −qi

⎛
⎝2

j∑
i=1

m2i−1e
pi−pj − m2j−1

⎞
⎠ ,

q̇j = −2
j∑

i=1

m2i−1e
pi−qj

⎛
⎝2

K∑
i=j

n2ie
qj −qi − n2j

⎞
⎠ .

Moreover, if we let

u(x, t) =
K∑

j=1

m2i−1e
−|x−pj (t)|, v(x, t) =

K∑
j=1

n2ie
−|x−qj (t)|,

with

p1 < q1 < p2 < · · · < pK < qK,

then

ṗj = (
u(pj ) − 〈ux〉(pj )

) (
v(pj ) + vx(pj )

)
,

q̇j = (
u(qj ) − ux(qj )

) (
v(qj ) + 〈vx〉(qj )

)
.

Here we recall that the notation 〈f 〉 means the average of f . Also note that ux , vx have jumps 
at the points pj , qj , respectively.
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As is known, if u, v take the forms

u(x, t) =
K∑

j=1

m2i−1e
−|x−pj (t)|, v(x, t) =

K∑
j=1

n2ie
−|x−qj (t)|,

then m = u − uxx, n = v − vxx give discrete measures, namely,

m = 2
K∑

j=1

m2i−1δ(x − pj ), n = 2
K∑

j=1

n2iδ(x − qj ).

With the help of distribution calculations, we can conclude that u, v, m, n satisfy the PDE

mt + [(u − ux)(v + vx)m]x = 0,

nt + [(u − ux)(v + vx)n]x = 0,

m = u − uxx, n = v − vxx,

in the sense of distributions, where the singular products fm for any piecewise smooth function 
f are defined as 〈f 〉m. This PDE is nothing but the 2-mCH equation proposed in [51]. So far, 
we have explained how to construct the 2-mCH equation from the CH equation.

The procedure above also implies some special interlacing peakon solution to the 2-mCH 
equation (1.3), which has been studied in [15]. For completeness, we restate the interlacing 
peakon solution to the 2-mCH equation shown in [15], which simultaneously summarize the 
result above.

Theorem 3.10. Given

p1(0) < q1(0) < p2(0) < · · · < pK(0) < qK(0),

the 2-mCH equation (1.3) admits the multipeakon solution

u(x, t) =
K∑

j=1

mj exp(−|x − pj (t)|), v(x, t) =
K∑

j=1

nj exp(−|x − qj (t)|) (3.7)

with

pK+1−j = ln

(
1

mK+1−j

· (H 0
j )2

H 1
j H 1

j−1

)
, qK+1−j = ln

(
nK+1−j · H 0

j H 0
j−1

(H 1
j−1)

2

)
(3.8)

and the positive constants mj and nj . Here, Hl
k(t) = det(Bi+j+l (t))

k−1
i,j=0 and the moments Bk(t)

are given by

Bk(t) =
∫

ζ kdμt (ζ ),
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where dμt = ∑K
j=1 bj (0)e

2t
ζj δζj

= e
2t
ζ dμ0 with some positive bj (0), and some distinct and pos-

itive constants ζj .

Theorem 3.10 is at least true for all t in some open interval containing t = 0. Sufficient con-
ditions for the global existence in t have been given in [15]. We end this section by stating the 
conditions ensuring the global existence.

Theorem 3.11. Given

{bj > 0, ζj > 0 : 1 ≤ j ≤ K, ζj < ζj+1},

suppose the masses m2k−1, n2k satisfy

Mj < mjnj , 1 ≤ j ≤ K,

Nj > njmj+1, 1 ≤ j ≤ K − 1,

where

Mj = ζ
K−j
K

ζ
K+1−j

1

, Nk = ζ
K−j

1

(K − j)ζ
K−1−j
K

(
mini (ζi+1 − ζi)

)2(K−1−j)

(
ζK − ζ1

)2(K−j)
.

Then the multipeakon solutions (3.7) are valid for all t ∈R.

4. The GN2-mCH equation

The 2-mCH equation can be extended to nonisospectral case by applying the idea for the 
nonisospectral generalizations of CH equation proposed in [14]. More precisely, we have imple-
mented an inverse calculation by employing determinant technique. From the explicit formulae 
of interlacing multipeakons of the 2-mCH equation in Theorem 3.10, we firstly alter the evolu-
tion with respect to time t for the moments. Then we deduce the dynamical system by using the 
determinant identities. At last, the corresponding partial differential equation is obtained. To the 
best of our knowledge, this equation is novel.

4.1. Derivation

In this subsection, we shall present the detailed derivation of the generalized nonisospectral 
two-component mCH equation.

(1). Alter the moment evolution.
Introduce two arbitrary functions r(t) and s(t). Suppose that ζj (t) depend on time t according 

to

ζ̇j = 2r

with positive and distinct ζj (0), and bj (t) satisfy
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ḃj = 2s

ζj

bj ,

with positive bj (0). As before, the moments Bk(t) take the form of

Bk(t) =
K∑

j=1

(ζj (t))
kbj (t), k ∈ Z.

In this case, we have

Ḃk = (2rk + 2s)Bk−1,

which is our modification on moment evolution.
(2). Generate an ODE system.
Since Lemma 3.6 does not depend on time t , it still holds in this case. However, the Hankel 

determinants Hl
k = det(Bi+j+l )

k−1
i,j=0 acquire a different time evolution.

Lemma 4.1. If Ḃk = (2rk + 2s)Bk−1, then Hl
k evolve according to

Ḣ l
k = (2rl + 2s) Gl−1

k , 1 ≤ k ≤ K.

Proof. The result follows by that in Lemma 4.2 of [14]. �
Introduce dependent variables

g2K−2j+1 = 1

mK−j+1

(H 0
j )2

H 1
j H 1

j−1

, g2K−2j+2 = 1

nK−j+1

(H 1
j−1)

2

H 0
j H 0

j−1

, j = 1, . . . ,K,

(4.1)

where mj , nj are positive constants. After many attempts, we obtain the following result, whose 
proof will be given in Appendix C.

Theorem 4.2. For j = 1, . . . , K , there hold

ġ2j−1 =2sg2j−1

K∑
i=j

nig2i

⎛
⎝2

j∑
i=1

mig2i−1 − mjg2j−1

⎞
⎠ − 2rg2j−1

K∑
i=j

K∑
l=i

mig2i−1nlg2l

− 2r g2j−1

K∑
i=j+1

K∑
l=i

mig2i−1nlg2l , (4.2)

ġ2j = − 2sg2j

j∑
i=1

mig2i−1

⎛
⎝2

K∑
i=j

nig2i − njg2j

⎞
⎠ + 4rg2j

K∑
i=j+1

K∑
l=i

mig2i−1nlg2l . (4.3)
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In summary, we created an ODE system, which is satisfied by gj .
(3). Construct the corresponding PDE.
Introduce the transformations

pj = lng2j−1, qj = − lng2j , j = 1,2, . . . ,K.

Then Theorem 4.2 gives

ṗj =2s

K∑
i=j

nie
pj −qi

⎛
⎝2

j∑
i=1

mie
pi−pj − 1

⎞
⎠ − 2r

K∑
i=j

K∑
l=i

minle
pi−ql

− 2r

K∑
i=j+1

K∑
l=i

minle
pi−ql , (4.4)

q̇j =2s

j∑
i=1

mie
pi−qj

⎛
⎝2

K∑
i=j

nie
qj −qi − 1

⎞
⎠ − 4r

K∑
i=j+1

K∑
l=i

minle
pi−ql . (4.5)

We recall that, when u, v are taken as

u(x, t) =
K∑

j=1

mje
−|x−pj (t)|, v(x, t) =

K∑
j=1

nj e
−|x−qj (t)|,

with

p1 < q1 < p2 < · · · < pK < qK

m, n may be regarded as measures

m = 2
K∑

j=1

mjδ(x − pj ), n = 2
K∑

j=1

nj δ(x − qj ).

Note that

K∑
i=j

K∑
l=i

minle
pi−ql +

K∑
i=j+1

K∑
l=i

minle
pi−ql

=1

4

+∞∫
pj −

m(y)(v(y) + vy(y))dy + 1

4

+∞∫
pj +

m(y)(v(y) + vy(y))dy

and
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K∑
i=j+1

K∑
l=i

minle
pi−ql = 1

4

+∞∫
qj

m(y)(v(y) + vy(y))dy.

Therefore, (4.4) and (4.5) can be equivalently written as

ṗj = s
(
u(pj ) − 〈ux(pj )〉

) (
v(pj ) + vx(pj )

) − r

〈 +∞∫
x

m(y)(v(y) + vy(y))dy

〉
(pj ),

q̇j = s
(
u(qj ) − ux(qj )

) (
v(qj ) + 〈vx(qj )〉

) − r

〈 +∞∫
x

m(y)(v(y) + vy(y))dy

〉
(qj ),

which motivate us to get an nonlocal PDE

mt +
⎡
⎣

⎛
⎝s(u − ux)(v + vx) − r

+∞∫
x

m(y)(v(y) + vy(y))dy

⎞
⎠m

⎤
⎦

x

= 0,

nt +
⎡
⎣

⎛
⎝s(u − ux)(v + vx) − r

+∞∫
x

m(y)(v(y) + vy(y))dy

⎞
⎠n

⎤
⎦

x

= 0,

m = u − uxx, n = v − vxx,

with the help of distribution calculations. Again, note that the notation 〈f 〉 denotes the average 
of f and we suppose the singular products fm for any piecewise smooth function f are defined 
as 〈f 〉m.

By introducing

ρ = s(u − ux)(v + vx) − r

+∞∫
x

m(y)(v(y) + vy(y))dy

we finally get the local form (1.4).
Combining the content in this section and Theorem 3.10, we also actually obtain the following 

result on interlacing peakons of the equation (1.4).

Theorem 4.3. Given

p1(0) < q1(0) < p2(0) < · · · < pK(0) < qK(0),

the GN2-mCH equation (1.4) admits the multipeakon solution

u(x, t) =
K∑

mj exp(−|x − pj (t)|), v(x, t) =
K∑

nj exp(−|x − qj (t)|) (4.6)

j=1 j=1
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with

pK+1−j = ln

(
1

mK+1−j

· (H 0
j )2

H 1
j H 1

j−1

)
, qK+1−j = ln

(
nK+1−j · H 0

j H 0
j−1

(H 1
j−1)

2

)

and the positive constants mj and nj . Here, Hl
k(t) = det(Bi+j+l (t))

k−1
i,j=0 and the moments Bk(t)

are given by

Bk(t) =
∫

ζ(t)kdμt (ζ ),

where

μt =
K∑

j=1

bj (0)e

∫ t
0

2s(τ )
ζj (τ )

dτ
δζj (t), ζj (t) = 2

t∫
0

r(τ )dτ + ζj (0),

with some positive bj (0) and some distinct and positive constants ζj (0).

Theorem 4.3 is at least valid for all t in some open interval containing t = 0. A slight modifi-
cation to Theorem 3.11 will yield a sufficient condition for global existence of (4.6).

Theorem 4.4. Given

{bj (0) > 0, ζj (0) > 0 : 1 ≤ j ≤ K, ζj (0) < ζj+1(0)},

suppose that there exist constants ζ̃1, ζ̃K so that

ζ1(t) ≥ ζ̃1 > 0, 0 < ζK(t) ≤ ζ̃K .

Then the multipeakon solutions (4.6) are valid for all t ∈R as long as the masses mj, nj satisfy

Mj < mjnj , 1 ≤ j ≤ K,

Nj > njmj+1, 1 ≤ j ≤ K − 1,

where

Mj = ζ̃
K−j
K

ζ̃
K+1−j
1

, Nk = ζ̃
K−j

1

(K − j)ζ̃
K−1−j
K

(
mini (ζi+1 − ζi)

)2(K−1−j)

(
ζK − ζ1

)2(K−j)
.

Proof. The assumption ensures

bj (t) > 0,

and {ζj }K are bounded uniformly, that is
j=1
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0 < ζ̃1 ≤ ζ1(t) < ζ2j+1(t) < · · · < ζK(t) ≤ ζ̃K,

for all t ∈R. Once we notice these properties, the proof can be achieved by following the way as 
that for Theorem 3.11. �

We end this subsection by remarking that the GN2-mCH (1.4) is integrable in the sense of 
having a Lax pair, where the spectral parameter is dependent on time t . More precisely, we have

Theorem 4.5. The GN2-mCH (1.4) may be obtained by the compatibility condition of the follow-
ing system

∂

∂x

(
�1
�2

)
= 1

2
U

(
�1
�2

)
,

∂

∂t

(
�1
�2

)
= 1

2
V

(
�1
�2

)
,

where

U =
( −1 λm

−λn 1

)
, V =

(
(2s + r)λ−2 + ρ −2sλ−1(u − ux) − λmρ

2(s + r)λ−1(v + vx) + λnρ −(2s + r)λ−2 − ρ

)
,

with

λ̇(t) = r(t)

λ(t)
.

Proof. The proof can be achieved by differentiating the first matrix equation with respect to t

and the second one with respect to x and setting ∂2

∂x∂t

(
�1
�2

)
= ∂2

∂t∂x

(
�1
�2

)
. �

4.2. A special case of GN2-mCH equation

Taking r(t) = sin t , s = sin t
2 , we get a special equation

mt + (ρm)x = 0, nt + (ρn)x = 0,

ρx = (sin
t

2
+ sin t)m(v + vx) − sin

t

2
n(u − ux),

m = u − uxx, n = v − vxx,

which is a nonisospectral equation. That’s because, from Theorem 4.5, it possesses a Lax pair 
with spectral parameter satisfying λ̇(t) = sin t

λ(t)
.

We show two examples with K = 1 and K = 2 in order to illustrate global multipeakons in 
the interlacing case. The peakons here turns out to be periodic solutions in time.

Example 4.6 (K = 1). Choose b1(0) = 1, ζ1(0) = 2, m1 = 1, n1 = 1.2. From Theorem 4.3, we 
easily get

u(x, t) = exp(−|x − p1(t)|), v(x, t) = 1.2 exp(−|x − q1(t)|),
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Fig. 1. A 1+1-peakon solution at time t = −2.5, 5.75, 7.75, 10 with the case of b1(0) = 1, ζ1(0) = 2, m1 = 1, n2 = 1.2.

where

p1 = ln(b1/ζ1), q1 = ln(2b1)

with

ζ1(t) = 4 − 2 cos t, b1(t) =
(

(
√

6 + 2)(
√

6 − 2 cos t
2 )

(
√

6 − 2)(
√

6 + 2 cos t
2 )

) 1√
6

.

It is a global solution since there holds,

q1 − p1 = ln(2ζ1) > 0.

We note that the gap between the location of peak p1 and q1 is dependent on time t . This is 
different from the case for the 2-mCH equation, where the gap is invariant. A graph for inter-
lacing peakons with K = 1 (see Fig. 1) using Matlab is given below by computing the explicit 
formula.

Example 4.7 (K = 2). Choose b1(0) = 1, b2(0) = 2, ζ1(0) = 3, ζ2(0) = 6, m1 = 2.1, n1 = 0.85, 
m2 = 0.25, n2 = 2.1. From Theorem 4.3, we have

u(x, t) =
2∑

j=1

mj exp(−|x − pj (t)|), v(x, t) =
2∑

j=1

nj exp(−|x − qj (t)|),

where
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Fig. 2. A 2+2-peakon solution at time t = −10, 5, 15, 25 with the case of b1(0) = 1, b2(0) = 2, ζ1(0) = 3, ζ2(0) = 6, 
m1 = 2.1, n2 = 0.85, m3 = 0.25, n4 = 2.1.

p1 = ln

(
0.5 · b1b2 (ζ2 − ζ1)

2

ζ1ζ2 (b1ζ1 + b2ζ2)

)
, q1 = ln

(
0.85 · b1b2(b1 + b2) (ζ2 − ζ1)

2

(b1ζ1 + b2ζ2)
2

)
,

p2 = ln

(
4 · (b1 + b2)

2

b1ζ1 + b2ζ2

)
, q2 = ln (2.1 · (b1 + b2))

with

ζ1(t) = 5 − 2 cos t, b1(t) =
(

(
√

7 + 2)(
√

7 − 2 cos t
2 )

(
√

7 − 2)(
√

7 + 2 cos t
2 )

) 1√
7

,

ζ2(t) = 8 − 2 cos t, b2(t) = 2

(
(
√

10 + 2)(
√

10 − 2 cos t
2 )

(
√

10 − 2)(
√

10 + 2 cos t
2 )

) 1√
10

.

It is easy to show that the condition in Theorem 4.4 is satisfied, i.e.

m1n1 >
ζ̃2

ζ̃ 2
1

, m2n2 >
1

ζ̃1
,

n1m2 <
ζ̃1

(ζ2 − ζ1)2 ,

where ζ̃1 = 3, ζ̃2 = 10. Hence, p1 < q1 < p2 < q2 will be preserved at all time and one can 
use the explicit formulae for the 2-peakon solution at all time, resulting in the following graph 
(Fig. 2).
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4.3. The GNmCH equation

Taking v = u in the equation (1.4), we get a PDE

mt + (ρm)x = 0, m = u − uxx, (4.7a)

ρx = (s + r)m(u + ux) − sm(u − ux), (4.7b)

which we call generalized nonisospectral mCH (GNmCH) equation, since it reduces to the mCH 
(1.2) when r = 0, s = 1. The PDE (4.7) is also integrable in the sense of having a formal Lax 
pair. Actually, by following Theorem 4.5 in the case u = v, we immediately have

Theorem 4.8. The GNmCH equation (4.7) may be obtained by the compatibility condition of the 
following system

∂

∂x

(
�1
�2

)
= 1

2
U

(
�1
�2

)
,

∂

∂t

(
�1
�2

)
= 1

2
V

(
�1
�2

)
,

where

U =
( −1 λm

−λm 1

)
, V =

(
(2s + r)λ−2 + ρ −2sλ−1(u − ux) − λmρ

2(s + r)λ−1(u + ux) + λnρ −(2s + r)λ−2 − ρ

)

with

λ̇(t) = r(t)

λ(t)
.

We end this section by a remark on multipeakons for the GNmCH equation (4.7).

Remark 4.9. The multipeakons of the GNmCH equation (4.7) can not be reduced from Theo-
rem 3.10. It turns out to have been quite complicated for the multipeakons of the mCH equation 
(1.2) [16,17]. We suspect the GNmCH case is much more complicated.

5. Conclusion and discussion

The method of moment modification is employed to find a correspondence between the CH 
and 2-mCH equations via the multipeakon formulae. Observing that the interlacing multipeakon 
formulae for the 2-mCH are expressed in terms of Hankel determinants, we perform a series 
of operations based on modifications of the spectral data and its time evolution to obtain a 
generalized nonisospectral two-component mCH equation. As a one-component reduction, a 
nonisospectral extension of mCH is obtained.

Although the method in the present paper is algebraic, sometimes it is efficient to obtain new 
results, which may not be easily derived in other ways. The idea of moment modification is of po-
tential application for producing more novel integrable systems with multipeakon solutions. We 
shall investigate more examples in the near future. Besides, our inverse process for nonisospec-
tral generalizations has been successfully applied to the CH equation in [14] and the 2-mCH 
equation in the present paper. It is possible to generate more nonisospectral equations by using 
this strategy.
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Appendix A. The proof of Lemma 3.6

Lemma 3.6 describes some properties of Hankel determinants Hl
k(t) with the specific moment 

structure. Since it leaves the time evolution out of account, it works throughout the paper.

The proof of Theorem 3.6. In fact, the Hankel determinants Hl
k(t) can be evaluated explicitly. 

The linear relations follows from Lemma 5.2 in [15]. The bilinear identities are the consequences 
of applying Jacobi identity and have been shown in Lemma 3.3 in [14].

The combinations of identities can be demonstrated by following a similar way as the proof 
of Corollary 3.4 in [14]. As for the first relation, by using the bilinear identity, we have

K∑
l=k

(H 0
l )2

H 1
l H 1

l−1

=
K∑

l=k

H 1
l H−1

l − H−1
l+1H

1
l−1

H 1
l H 1

l−1

=
K∑

l=k

(
H−1

l

H 1
l−1

− H−1
l+1

H 1
l

)
= H−1

k

H 1
k−1

,

where we have employed the result H 1
K+1 = 0. Similarly,

k∑
l=1

(H 1
l−1)

2

H 0
l H 0

l−1

=
k∑

l=1

H 0
l−1H

2
l−1 − H 0

l H 2
l−2

H 0
l H 0

l−1

=
k∑

l=1

(
H 2

l−1

H 0
l

− H 2
l−2

H 0
l−1

)
= H 2

k−1

H 0
k

,

where we have used the convention H 2−1 = 0. The third relation is proved by noting

k∑
l=1

H 0
l H 2

l−1

H 1
l H 1

l−1

=
k∑

l=1

G0
l H

1
l−1 − G0

l−1H
1
l

H 1
l H 1

l−1

=
k∑

l=1

(
G0

l

H 1
l

− G0
l−1

H 1
l−1

)
= G0

k

H 1
k

,

where the convention G0
0 = 0 is used. �
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Appendix B. The proof of Theorem 3.8

Note that Theorem 3.8 works under the assumption Ḃk = 2Bk−1. Therefore it only applies in 
Section 3.

The proof of Theorem 3.8. If we write j ′ = K − j + 1, then it is easy to see that (3.5) is equiv-
alent to

ġ2j ′−1 = 8 g2j ′−1

j∑
i=1

g2i′

⎛
⎝2

K∑
i=j

g2i′−1 − g2j ′−1

⎞
⎠ .

Substituting the expressions (3.4) into the above equation and employing the combined identities 
in Lemma 3.6 and the time evolution in Lemma 3.7, we get

2G−1
j H 1

j H 1
j−1 − H 0

j (G0
jH

1
j−1 + H 1

j G0
j−1) = 2H 2

j−1H
1
j H−1

j − H 2
j−1(H

0
j )2,

which is what we need to prove.
By using the bilinear identities in Lemma 3.6, the above equation becomes

2G−1
j H 1

j H 1
j−1 − H 0

j G0
jH

1
j−1 − H 1

j (G−1
j H 1

j−1 − H−1
j H 2

j−1)

=2H 2
j−1H

1
j H−1

j − H 2
j−1(H

1
j H−1

j − H 1
j−1H

−1
j+1)

which reduces to

G−1
j H 1

j − H 0
j G0

j = H 2
j−1H

−1
j+1.

Actually, this is also a bilinear identity in Lemma 3.6, which conclude (3.5).
Next, we turn to the proof of (3.6). Similarly, (3.6) is equivalent to

ġ2j ′ = −8 g2j ′
K∑

i=j

g2i′−1

⎛
⎝2

j∑
i=1

g2i′ − g2j ′

⎞
⎠ ,

which may be written as

2H 0
j H 0

j−1G
0
j−1 − H 1

j−1(G
−1
j H 0

j−1 + H 0
j G−1

j−1) = −2H−1
j H 0

j−1H
2
j−1 + H−1

j (H 1
j−1)

2

by using (3.4) and employing the combined identities in Lemma 3.6 and the time evolution in 
Lemma 3.7.

With the help of the bilinear identities in Lemma 3.6, the above equation results in

2H 0
j H 0

j−1G
0
j−1 − H 0

j−1(H
0
j G0

j−1 + H−1
j H 2

j−1) − H 1
j−1H

0
j G−1

j−1

= − 2H−1
j H 0

j−1H
2
j−1 + H−1

j (H 2
j−2H

0
j − H 0

j−1H
2
j−1)

After elimination, we see it suffices to prove
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H 0
j−1G

0
j−1 − H 1

j−1G
−1
j−1 = −H−1

j H 2
j−2,

which is no other than one of the bilinear identities in Lemma 3.6. Thus (3.6) is proved. �
Appendix C. The proof of Theorem 4.2

Recall that Theorem 4.2 is based on the assumption Ḃk = (2rk + 2s)Bk−1.

The proof of Theorem 4.2. The proof is similar that for Theorem 3.8 and we will employ some 
conclusion there.

Denote j ′ = K − j + 1 for simplicity. It is not hard to see that (4.2) is equivalent to

ġ2j ′−1 =2s g2j ′−1

j∑
i=1

g2i′

⎛
⎝2

K∑
i=j

g2i′−1 − g2j ′−1

⎞
⎠ − 2rg2j ′−1

j∑
i=1

i∑
l=1

mi′g2i′−1nl′g2l′ ,

− 2rg2j ′−1

j−1∑
i=1

i∑
l=1

mi′g2i′−1nl′g2l′ .

Substituting the expressions (4.1) into the above equation and employing the combined identities 
in Lemma 3.6 and the time evolution in Lemma 4.1, we will see that it suffices to prove

2G−1
j H 1

j H 1
j−1 − H 0

j (G0
jH

1
j−1 + H 1

j G0
j−1) = 2H 2

j−1H
1
j H−1

j − H 2
j−1(H

0
j )2,

which has been shown in Appendix B.
Next, we turn to the proof of (4.3). Similarly, (4.3) is equivalently written as

ġ2j ′ = −2s g2j ′
K∑

i=j

g2i′−1

⎛
⎝2

j∑
i=1

g2i′ − g2j ′

⎞
⎠ + 4rg2j ′

j−1∑
i=1

i∑
l=1

mi′g2i′−1nl′g2l′ ,

which results in

2H 0
j H 0

j−1G
0
j−1 − H 1

j−1(G
−1
j H 0

j−1 + H 0
j G−1

j−1) = −2H−1
j H 0

j−1H
2
j−1 + H−1

j (H 1
j−1)

2

by using (4.1) and employing the combined identities in Lemma 3.6 and the time evolution in 
Lemma 4.1. Actually, this formula is true, which is also shown in Appendix B. So far, the proof 
is completed. �
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