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We develop numerical methods for solving partial differential equations (PDE) defined on
an evolving interface represented by the grid based particle method (GBPM) recently pro-
posed in [S. Leung, H.K. Zhao, A grid based particle method for moving interface problems,
J. Comput. Phys. 228 (2009) 7706–7728]. In particular, we develop implicit time discretiza-
tion methods for the advection–diffusion equation where the time step is restricted solely
by the advection part of the equation. We also generalize the GBPM to solve high order
geometrical flows including surface diffusion and Willmore-type flows. The resulting
algorithm can be easily implemented since the method is based on meshless particles
quasi-uniformly sampled on the interface. Furthermore, without any computational mesh
or triangulation defined on the interface, we do not require remeshing or reparametriza-
tion in the case of highly distorted motion or when there are topological changes. As an
interesting application, we study locally inextensible flows governed by energy minimiza-
tion. We introduce tension force via a Lagrange multiplier determined by the solution to a
Helmholtz equation defined on the evolving interface. Extensive numerical examples are
also given to demonstrate the efficiency of the proposed approach.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The numerical solution of partial differential equations (PDEs) on evolving surfaces is a challenging problem as is simu-
lating the motion of high order geometric evolution equations. The interface may stretch, deform and break apart. In the case
of geometric motion, the velocity of the interface depends on high order derivatives of the interface position which poses
challenges for accuracy and stability of the method. Such problems have application in the biological, physical and engineer-
ing sciences.

Various numerical methods have been proposed to solve PDEs on surfaces and geometric flows. One popular approach is
based on explicit representation of surfaces by parametrizing or laying down a mesh on the surface (e.g. [13,25,26,
5,2,10,9,3]). When the surface is evolving, this type of approach is also called Lagrangian formulation since parametrization
or meshes on the surface is tracked along the Lagrangian trajectory. One major issue of this approach is that it is difficult
(especially in 3 dimensions), to maintain a smooth global parametrization or a quasi-uniform mesh for a moving interface
with complicated geometry and dynamics involving large deformations or topological changes. As a result, the resulting
algorithm usually requires reparametrization/remeshing during the evolution, although a recent algorithm developed for
geometric motion of surfaces has the potential to overcome this problem [3]. In addition, if the topology of the interface
. All rights reserved.
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changes, then local interface surgery is required which can be highly problematic to perform in three dimensions. However,
these Lagrangian type methods are relatively easy to implement and are efficient and accurate numerically.

An alternative approach is based on an implicit representation of surfaces using an auxiliary function on a fixed Eulerian
mesh. For example, the level set method can be used for implicit representation while the PDEs on the surface, which is the
zero level set of the level set function, are extended off the interface onto neighboring level sets (e.g. [4,1,44,15,43,11]). There
are three main advantages using an implicit formulation. First, there is no need to parametrize or triangulate the surface.
Second, it is easy to handle topological changes. Third, the surface PDEs is extended off the surface to a corresponding
PDE in a neighborhood of the zero level set on a fixed Eulerian mesh for which many standard numerical methods for PDEs
can be applied. Examples of other recent Eulerian approaches include [31,23], which are based on the closest point method,
[17], which is based on volume of fluid method, [32] which is based on a grid-free particle level set method, and [28,12,37],
which are based on diffuse interface method. Typically the Eulerian formulation has an increased computation cost com-
pared to Lagrangian formulation due to embedding of the equation into one higher dimension. Also it is difficult to deal with
open surfaces. For applications of Eulerian methods to geometric evolution equations, we refer the reader to the recent re-
view [22] for references.

In [20], we have recently proposed a novel approach, the grid based particle method (GBPM), to represent and model an
interface and its motion. The idea is to sample the interface by meshless and non-parametrized Lagrangian particles accord-
ing to an underlying uniform or adaptive Eulerian mesh. This results in a quasi-uniform sampling of the interface. As the
interface moves, we continuously update the location of these particles by solving ordinary differential equations (ODEs),
rather than partial differential equations (PDEs). Using extra Lagrangian information defined on these sampling points,
we can naturally capture topological changes such as merging or breakup of surfaces.

Unlike usual Lagrangian methods depending on surface parametrizations or meshes, the GBPM does not require any con-
nectivity information among the particles. This feature allows one to easily add or delete particles, which is important for
maintaining a consistent resolution of the surface as well as dealing with topological changes. Moreover, the sampling of
the particles has a one-to-one reference to the underlying grid points which are in the neighborhood of the interface. This
Eulerian reference provides both a quasi-uniform sampling of the interface and neighborhood information among meshless
particles. This is useful for local construction of the surface and detection of interface collision or self-intersection. The Eule-
rian reference is continuously updated without using a PDEs approach. Even though it is not demonstrated in the current
paper, an adaptive sampling of the interface can be achieved easily through local grid refinement of the underlying grid tak-
ing advantage of the fact that no PDE is solved on the grid. For a more detailed description, we again refer interested readers
to some recent publications [20,19].

We have successfully applied this technique to various velocity models in [20], including motion by mean curvature. We
have also demonstrated that the method can be used to capture the viscosity solution or the multivalued solution when two
interfaces come across each other. Numerous test examples have been shown in [20] that demonstrate the flexibility of the
approach. We can also deal with curves/surfaces with high codimension as well as open curves/surfaces easily with this
method [19,21].

In this paper, we extend our previous work and use the GBPM to solve advection–diffusion equations on surfaces. In par-
ticular, we develop implicit methods that remove time step restrictions due to diffusion. We then further extend these tech-
niques and consider high-order geometric flows including surface diffusion and Willmore flow [42]. As an interesting
application of these techniques, we further impose a local inextensibility condition on an evolving interface. This constraint
is important in many fields including lipid vesicle modeling in mathematical biology (e.g. [30,8,36,40,39,35]), flexible fiber
interactions (e.g. [38]) and robotics (e.g. [6]). To enforce local inextensibility, we incorporate a Lagrange multiplier which
acts as the local tension of the evolving interface. This Lagrange multiplier satisfies a surface Helmholtz equation relating
the geometry of the evolving interface with the tangential and the normal velocities of the unconstrained flow.

The paper is organized as follows. In Section 2, we first summarize the grid based particle method we have introduced in
[20]. We explain how we generalize the method for solving PDEs on evolving surface in Sections 3.1,3.2,3.3. With these tech-
niques, we then model higher order motions of the interface including the motion by surface diffusion and the Willmore flow
in Sections 3.4 and 3.5. In Section 4, we apply the techniques we have developed to simulate local inextensible flows. Section
5 shows examples to demonstrate the performance of our method.
2. Grid based particle method (GBPM)

In this section, we give a brief review of the grid based particle method. For a complete description of the algorithm, we
refer interested readers to [20]. The interface is represented by meshless particles which are associated to an underlying
Eulerian mesh. In our current algorithm, each sampling particle on the interface is chosen to be the closest point from each
underlying grid point in a small neighborhood of the interface. This one to one correspondence gives each particle an Eule-
rian reference during the evolution. The closest point to a grid point, x, and the corresponding shortest distance can be found
in different ways depending on the form in which the interface is given.

At the first step, we define an initial computational tube for active grid points and use their corresponding closest points
as the sampling particles for the interface. A grid point p is called active if its distance to the interface is smaller than a given
tube radius, c, and we label the set containing all active grids C. To each of these active grid points, we associate the
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corresponding closest point on the interface, and denote this point by y. This particle is called the foot-point associated to
this active grid point. This link between the active grid points and its foot-points is kept during the evolution. Furthermore,
we can also compute and store certain Lagrangian information of the interface at the foot-points, including normal,
curvature and etc., which may be useful in various applications.

As a result of the interface sampling, the density of particles on the interface will be roughly inversely proportional to the
local grid size. This relation makes it easy to incorporate adaptivity in the current grid based particle method. In some re-
gions where one wants to resolve the interface better by putting more marker particles, one might simply locally refine
the underlying Eulerian grid and add the new foot-points accordingly.

This initial set-up is illustrated in Fig. 1(a). We plot the underlying mesh using solid lines, all active grids are plotted using
small circles and their associated foot-points are plotted using squares. To each grid point near the interface (blue1 circles),
we associate a foot-point on the interface (red squares). The relationship of each of these pairs is shown by a solid line link. In
practice, we do not necessarily use such a thick computational tube. Since the thicker the tube, the more the interface is
over-sampled. Usually, we use c = 1.1h which already gives a relatively good sampling.

To track the motion of the interface, we move all the sampling particles according to a given motion law. This motion law
can be very general. Suppose the interface is moved under an external velocity field given by u = u(y). Since we have a col-
lection of particles on the interface, we simply move these points just like all other particle-based methods, which is simple
and computationally efficient. We can simply solve a set of ordinary differential equations using high order scheme which
gives a very accurate location of the interface. For more complicated motions, the velocity may depend on the geometry of
the interface. This can be done through a local interface reconstruction as described in [20]. Here, we extend this approach to
solve PDEs on surfaces and higher order geometric equations.

It should be noted that a foot-point y after motion may not be the closest point on the interface to its associated active grid
point p anymore. For example, Fig. 1(b) shows the location of all particles on the interface after the constant motion u = (1,1)T

with a small time step. As we can see, these particles on the interface are not the closest point from these active grid points to
the interface anymore. More importantly, the motion may cause those original foot-points to become unevenly distributed
along the interface. This may introduce both stiffness, when particles become clustered, and large error, when particles be-
come far apart. To maintain a quasi-uniform distribution of particles, we need to resample the interface by recomputing
the foot-points and updating the set of active grid points (C) during the evolution (see Fig. 1(c)–(e)). During the resampling
process, we locally reconstruct the interface, which involves communication among different particles on the interface. This
local reconstruction also provides geometric and Lagrangian information at the recomputed foot-points on the interface.

The key step in the method is a least squares approximation of the interface using polynomials at each particle in a local
coordinate system, {(n0)\,n0}, with y as the origin, see Fig. 2(a). Using this local reconstruction, we find the closest point from
this active grid point to the local approximation of the interface, Fig. 2(b). This gives the new foot-point location. Further, we
also compute and update any necessary geometric and Lagrangian information, such as normal, curvature, and also possibly an
updated parametrization of the interface at this new foot-point. For a detailed description, we refer interested readers to [20].

To end this section, we summarize the algorithm here.

Algorithm
1. Initialization [Fig. 1(a)]. Collect all grid points in a small neighborhood (computational tube) of the interface. From

each of these grid points, compute the closest point on the interface. We call these grid points active and their cor-
responding particles on the interface foot-point.

2. Motion [Fig. 1(b)]. Move all foot-points according to a given motion law.
3. Re-Sampling [Fig. 1(c)]. For each active grid point, re-compute the closest point to the interface reconstructed locally

by those particles after the motion in step 2.
4. Updating the computational tube [Fig. 1(d) and (e)]. Activate any grid point with an active neighboring grid point

and find their corresponding foot-points. Then, inactivate grid points which are far away from the interface.
5. Adaptation (Optional). Locally refine the underlying grid cell if necessary.
6. Iteration. Repeat steps 2–5 until the final computational time.

3. Time and spatial derivatives

In the first part of this section, we discuss how we apply the GBPM to solve a PDE on an evolving surface. Then in the
second part we apply the GBPM to compute high order flow including motion by surface diffusion and Willmore flow.

3.1. Advection equation

In this section, we consider f : RðtÞ ! R defined on the surface R(t) represented by quasi-uniformly distributed but mesh-
less particles. Assuming that the function f is advected by the flow, we have
1 For interpretation of color in Figs. 1, 3, 19 and 20, the reader is referred to the web version of this article.



Fig. 1. Grid based particle method. From left to right: (a) Initialization, (b) after motion, (c) after re-sampling, (d) after activating new grid points with their
foot-points and (e) after inactivating grid points with their foot points that are too far from the interface.
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Df
Dt
¼ 0; ð1Þ
where D/Dt = @/@t + u � r is the material derivative along any trajectory of a particle on the interface.
Solving this equation is relatively straightforward in our formulation. Since we are representing the interface R(t) using

particles, the corresponding f at each of these particles is constant during the motion. Denote yi(tn) the location of the foot-
point associated to an active grid point xi at the time t = tn. According to the motion u = u(yi), we solve the ODE



Fig. 2. (a) Definition of a local coordinates and (b) the way how we determine the new foot-point using a local least squares reconstruction of the interface.
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dyðtÞ
dt
¼ uðyðtÞÞ; ð2Þ
for y(tn+1) with the initial condition y(tn) = yi(tn). Denoting this location by y�i ðtnÞ, we obtain the function value f after this
motion phase
f ðy�i ðtnÞÞ ¼ f ðyiðtnÞÞ: ð3Þ
The more important step is the resampling phase. In this step, we locally reconstruct the interface and then recompute
the foot-point associated to a particular activated grid point. Thus, we have to update the function value at the new foot-
point location yi(tn+1) using the function values at y�j ðtnÞ. This is an approximation problem. Given f ðy�j ðtnÞÞ for j = 1, . . .,m,
one approximates f(yi(tn+1)). In this paper, we consider the local coordinates at y�i ðtnÞ and then the approximation can be eas-
ily done on the tangent plane at the point y�i ðtnÞ. Here we discuss the two dimensional formulation. Extension to higher
dimensions is straightforward. In the local coordinate {(n0)\,n0} with n0 the normal vector associated to the foot-point yi(tn),
we express the function f in terms of this local coordinates,
f ðx; yÞ ¼ f ð~x; ~yð~xÞÞ ¼ f ð~xÞ; ð4Þ
where ~yð~xÞ is the least squares polynomial we obtained to locally approximate the interface. Let ~x� be the minimizer which
gives the location for the new foot-point, we have the following approximation problem. Given m data points ð~xj; f ð~xjÞÞ for
j = 1, . . .,m, we want to approximate f ð~x�Þ. Various methods could be used. In the current formulation, we again use the least
squares technique and determine a polynomial ~f approximating the function f according to the data points. Then the func-
tion value at the new foot-point is given by ~f ð~x�Þ, i.e.
f ðyiðtnþ1ÞÞ ¼ ~f ð~x�Þ: ð5Þ
Although this is not conservative, it is found to give very good results.
To simplify the notation in the following sections, we define the following operators for solving the advection equation.

Let f(Rn,yn, tn) be the function evaluated at the Lagrangian particles yn which samples the surface Rn at tn. We define the
advection operator ADt by
ADtf ðRn; yn; tnÞ ¼ f ðRnþ1; y�; t�Þ: ð6Þ
The superscript (⁄) accounts for the fact that the sampling particles y⁄ are locations of the foot-points yn right after motion.
These points are in general not the corresponding closest points from the underlying grid anymore. But since these points y⁄

still sample the interface at t = tn+1, we denote the surface by Rn+1. To restore the quasi-uniform sampling of the interface, we
apply the resampling step as described in Section 2. The function value at these new sampling points yn+1 are obtained by
interpolation, denoted by the operator I ,
f ðRnþ1; ynþ1; tnþ1Þ ¼ I f ðRnþ1; y�; t�Þ: ð7Þ
To sum up, the solution of the advection equation on the evolving surface is
f ðRnþ1; ynþ1; tnþ1Þ ¼ IADtf ðRn; yn; tnÞ: ð8Þ
3.2. Surface Laplacian

Consider a surface R parametrized by (s1,s2). The surface Laplacian of a function f : R! R is given by
DRf ¼
X2

i;j¼1

1ffiffiffi
g
p @

@si

ffiffiffi
g
p

gij @f
@sj

� �
ð9Þ
where the coefficients gij are the components of the inverse of the metric tensor [gi,j], whose components are given by
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gij ¼
@X
@si

@X
@sj

; ð10Þ
with the surface R is given by X(s1,s2).
To locally parametrize the surface in our formulation, we use again the local coordinate system of the tangent plane. At

each particle, we translate and rotate the coordinate system according to its normal vector n so that the foot-point is now at
the origin of the new coordinate. The local parametrization of the surface is then given by the tangent plane {t1,t2} where n,
t1 and t2 are orthogonal. If we use a second order polynomial to locally approximate the interface, i.e.
Xðs1; s2Þ ¼
X2

i¼0

X
06iþj62

ai;jsi
1sj

2; ð11Þ
the metric tensor [gij] in this coordinate system can be found via
½gij� ¼
1þ @X

@s1

� �2
@X
@s1

@X
@s2

@X
@s1

@X
@s2

1þ @X
@s2

� �2

0
B@

1
CA; ð12Þ
where
@X
@s1
¼ a1;0 þ 2a2;0s1 þ a1;1s2;

@X
@s2
¼ a0;1 þ 2a0;2s2 þ a1;1s1: ð13Þ
Next, since the function f is defined only on the foot-points y, we also fit f using a local least squares quadratic polynomial
f ðs1; s2Þ ¼
X2

i¼0

X
06iþj62

bi;jsi
1sj

2: ð14Þ
The corresponding derivatives in Eq. (9) can then be approximated by the derivatives of this local least squares
approximation.

A similar approximation can be found in [41] where the authors proposed an approach to find the surface Laplacian using
local polynomial estimation. However, their approach is applied on a fixed surface which is not evolving. Moreover, all cal-
culations are done on the tangent plane at each of the sampling points, i.e. the local metric [gij] is flat, which makes the over-
all approximation of low order.

3.3. Advection–diffusion equation

In this section, we apply the techniques for computing the surface Laplacian to solve the advection–diffusion equation.
We develop explicit and implicit schemes. Numerical details are also discussed.

3.3.1. An explicit scheme
The easiest way to solve the advection–diffusion equation is to apply operator splitting techniques and to compute each

operator explicitly. We first consider the advection part given by
Df
Dt
¼ 0; ð15Þ
with the initial condition f(yi(tn)) defined on the interface R(tn). This can be solved by the techniques described in Section 3.1.
Once we have obtained the solution f(yi(tn+1)) defined on the surface R(tn+1), we solve the following diffusion equation
@f
@t
¼ DRðtnþ1Þf ; ð16Þ
where the surface R(tn+1) remains unchanged in this step. Using the forward Euler method, we have
f nþ1 ¼ ½I þ DtDRðtnþ1Þ�f n: ð17Þ
We denote the solution from this diffusion equation on the fixed surface Rn+1 by
f ðRnþ1; ynþ1; tnþ1Þ ¼ Dnþ1
þ;DtIADtf ðRn; yn; tnÞ: ð18Þ
The operators I and ADt are defined in the previous section. The superscript (n + 1) in the operator D represents the surface
Rn+1. The subscript + reflects the plus sign in the operator ½I þ DtDRðtnþ1Þ�, i.e.
Dnþ1
þ;Dt ¼ ½I þ DtDRðtnþ1Þ�: ð19Þ
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This explicit scheme can be easily implemented but the corresponding CFL condition is restrictive: the time step
Dt = O(h2), where h is the underlying fixed grid size (not the interparticle distance).

3.3.2. Implicit schemes
To relax the time step restriction, we will discuss several implicit schemes which will result in a CFL condition of Dt = O(h)

which solely depends on the advection part.
We consider again the numerical discretization of the surface Laplacian we described in Section 3.2. For simplicity, we

consider here only the two dimensional case, it is relatively straightforward to generalize the approach to higher dimensions.
For a given surface Rn, the surface Laplacian (9) can be written as a linear combination of derivatives on the surface
DRn f ¼ a1fs þ a2fss ð20Þ
for some ai’s depending only on the coefficients of the local quadratic reconstruction
fðsÞ ¼ a0 þ a1sþ a2s2: ð21Þ
As described in Section 3.2, associated to each active grid point, we locally approximate the function f by a local least squares
quadratic polynomial
f ðsÞ ¼ b0 þ b1sþ b2s2: ð22Þ
In particular, given the data (si, fi) for i = 1, . . .,m, these coefficients bi’s in the local reconstruction are determined by solving
the normal equation
m
P

si
P

s2
iP

si
P

s2
i

P
s3

iP
s2

i

P
s3

i

P
s4

i

0
B@

1
CA

b0

b1

b2

0
B@

1
CA ¼

P
fiP

sifiP
s2

i fi

0
B@

1
CA; ð23Þ
which gives
b0

b1

b2

0
B@

1
CA ¼

b1;1 b1;2 b1;3

b2;1 b2;2 b2;3

b3;1 b3;2 b3;3

0
B@

1
CA

P
i

fiP
i

sifiP
i

s2
i fi

0
BBBB@

1
CCCCA: ð24Þ
This implies that coefficients bi depend linearly on the function values fi. Moreover, assuming that we are computing the sur-
face Laplacian at s = s⁄ with s⁄ = si for some i = 1, . . .,m, we can express the surface Laplacian (9) as a linear combination of fi’s
DRn f ¼
X
i–�

cifi þ c�f �; ð25Þ
for some c� ¼ c�ðs�; bk1 ;k2
;ak3 Þ and bk1 ;k2

depends on si, i.e., locations of footpoints.
This linear relationship is important for developing iterative methods for implicit schemes. We first consider the follow-

ing implicit scheme based on a simple operator splitting. We follow the explicit scheme we have just developed in the pre-
vious section, Dnþ1

þ;DtIADt , and replace the diffusion part by a backward Euler scheme. This implies
½I � DtDRðtnþ1Þ�f nþ1 ¼ f n; ð26Þ
or
f nþ1 ¼ ½I � DtDRðtnþ1Þ�
�1f n: ð27Þ
In the operator form, we denote the resulting numerical scheme by
f ðRnþ1; ynþ1; tnþ1Þ ¼ ðDnþ1
�;DtÞ

�1IADt f ðRn; yn; tnÞ: ð28Þ
Unfortunately, discretizing Eq. (26) does not result in a diagonally dominant system of linear equations for arbitrary Dt.
We demonstrate this using a very simple case where the surface is flat and the grid points are evenly distributed with uni-
form spacing of Dx = 1. We first approximate the function f(x) locally using the least squares fitting, this gives
f(x) = b0 + b1x + b2x2 where
b2 ¼ 0:14286f�2 � 0:07143f�1 � 0:14286f 0 � 0:07143f 1 þ 0:14286f 2: ð29Þ
For sufficiently small Dt, we have 1 + 2 � 0.14286Dt > 4(0.14286 + 0.07143)Dt. This implies that the matrix we use to approx-
imate the operator ½I � DtDRðtnþ1Þ� is diagonally dominant only conditionally in Dt. The resulting system of linear equations
can still be inverted using simple Jacobi/Gauss–Seidel iteration for sufficiently small Dt. In general, however, the condition
will not be guaranteed for arbitrary Dt or local geometry.



Fig. 3. Discretization of the surface Laplacian gives an nonsymmetric matrix. See text for details.
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Another numerical difficulty is that the above discretization gives a nonsymmetric matrix for general surfaces. Consider
Fig. 3 where we have two foot-points (red square) on the interface (black solid line). We plot the local coordinates used in the
local reconstruction using an arrow and the dashed lines. We draw the projection of each foot-points to these two local coor-
dinate systems using blue circle. Depending on the interface, sa will generally be different from sb. Since the coefficients of
the local reconstruction depend on the values si in the stencil, the contribution from the function value at the left foot-point
to the surface Laplacian at the right foot-point will be different from the vise-versa relation. This implies that the matrix we
are inverting is in general nonsymmetric.

Numerically, we propose the following two strategies in solving for fn+1 in Eq. (26). As described above, for sufficiently
small Dt, the operator ½I � DtDRðtnþ1Þ� is still diagonally dominant even though nonsymmetric. In this case, we can still invert
it using simple Gauss–Seidel iteration. To simplify the notation, we introduce the variable g = fn. For each foot-point (using
the label ⁄), we iterate the following expression for f⁄,k
ð1� c�DtÞf �;k ¼ g� þ Dt
X
i–�

cif
��
i ; ð30Þ
for all foot-points and k = 1, . . . The superscript ⁄⁄ denotes the most-updated value for fi, i.e. it represents either k or k � 1.
The initial guess of the iteration can be the solution from the forward Euler operator so that
f �;0 ¼ Dnþ1
þ;DtIADt f ðRn; yn; tnÞ: ð31Þ
The iteration converges very rapidly and it usually takes less than 10 iterations.
For other cases where we do not have a good initial guess of the solution, or the Gauss–Seidel iteration does not converge,

or we want an unconditionally stable scheme for the diffusion part, we simply solve the system of linear equations using the
singular value decomposition (SVD). Iterative solvers including Quasi-Minimal Residual method (QMR) [14] might give fas-
ter convergence, but it is challenging to find a good preconditioner for such nonsymmetric matrix and so this approach will
not be studied here.

This implicit scheme described above gives a CFL condition Dt = O(h) but still is only first order accurate. To increase the
accuracy in solving the diffusion equation, we can replace the backward Euler step by a Crank–Nicolson method
f nþ1 ¼ I � Dt
2

DRðtnþ1Þ

� ��1

I þ Dt
2

DRðtnþ1Þ

� �
f n: ð32Þ
Numerically, the implementation of this iteration method is similar to (30) except that we replace Dt by Dt/2 and also define
g by I þ Dt

2 DRðtnþ1Þ

h i
f n. Even though the Crank–Nicolson scheme is of higher order, the overall scheme
f ðRnþ1; ynþ1; tnþ1Þ ¼ ðDnþ1
�;Dt=2Þ

�1Dnþ1
þ;Dt=2IADt f ðRn; yn; tnÞ ð33Þ
is still first order accurate due to the simple operator splitting.
To obtain higher order accuracy for the overall scheme, we need to split the operators more accurately. One way is to use

the Strang splitting which nicely cancels the first order error due to the simple splitting. There are two resulting numerical
schemes which are symmetric to each other by switching the corresponding operators,
f ðRnþ1; ynþ1; tnþ1Þ ¼ IADt=2
	 


ðDnþ1=2
�;Dt=2Þ

�1Dnþ1=2
þ;Dt=2

h i
IADt=2
	 


f ðRn; yn; tnÞ ð34Þ
and
f ðRnþ1; ynþ1; tnþ1Þ ¼ ðDnþ1
�;Dt=4Þ

�1Dnþ1
þ;Dt=4

h i
IADt½ � ðDn

�;Dt=4Þ
�1Dn

þ;Dt=4

h i
f ðRn; yn; tnÞ: ð35Þ
To speed up the computations, we combine adjacent operators in the time marching methods and obtain the following
schemes,
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f ðRnþ1;ynþ1; tnþ1Þ ¼ IADt=2
	 


ðDnþ1=2
�;Dt=2Þ

�1Dnþ1=2
þ;Dt=2

h i
IADt½ � � � � ðD3=2

�;Dt=2Þ
�1D3=2

þ;Dt=2

h i
IADt½ � ðD1=2

�;Dt=2Þ
�1D1=2

þ;Dt=2

h i
IADt=2
	 


f ðR0;y0; t0Þ

ð36Þ
and
f ðRnþ1;ynþ1; tnþ1Þ ¼ ðDnþ1
�;Dt=4Þ

�1Dnþ1
þ;Dt=4

h i
IADt½ � ðDn

�;Dt=2Þ
�1Dn

þ;Dt=2

h i
� � � ðD2

�;Dt=2Þ
�1D2

þ;Dt=2

h i
IADt½ � ðD0

�;Dt=4Þ
�1D0

þ;Dt=4

h i
f ðR0;y0; t0Þ:

ð37Þ
3.3.3. A fully implicit Crank–Nicolson scheme
In the previous Section, we have introduced various implicit schemes based on operator splitting, including the explicit

scheme (18), the backward Euler scheme (28), the Crank–Nicolson scheme (33) and also two schemes based on Strang split-
ting (36) and (37). It is also desirable to develop a Crank–Nicolson scheme with no operator splitting, e.g.
f nþ1 � f n

Dt
¼ 1

2
DRðtnÞf n þ DRðtnþ1Þf

nþ1
h i

: ð38Þ
Note that different sets of foot-points are used to sample the two surfaces R(tn) and R(tn+1). To solve f on the same set of foot-
points, we propose the following strategy. We introduce a new variable F = DRf which is advected and is interpolated at the
new foot-points as described in Section 3.1. The resulting scheme can be written as
FðRn; yn; tnÞ ¼ DRðtnÞf ðRn; yn; tnÞ;

f ðRnþ1; ynþ1; tnþ1Þ ¼ ðDnþ1
�;Dt=2Þ

�1 IADt f ðRn; yn; tnÞ þ Dt
2
IADtFðRn; yn; tnÞ

� �
: ð39Þ
3.4. Smoothing

For motions depending on high order derivatives of geometrical quantities, such as the surface Laplacian of the mean cur-
vature, it may be necessary to apply smoothing to filter out high frequency modes in the solution during the evolution to
maintain stability of the numerical scheme. One simple way is to smooth using a Gaussian-type filter (e.g. [24]). Given
f ð~xiÞ with ~xi is the coordinate in the (n0)\-direction. We compute the weighted average quantity on the point ~x ¼ ~x� by
f ð~x�Þ ¼
P

iwð~x; ~x�Þf ð~xiÞP
iwð~x; ~x�Þ

; ð40Þ
where
wð~x; ~x�Þ ¼ exp
�ð~x� ~x�Þ2

2r2

 !
ð41Þ
and r = O(h).

3.5. Surface diffusion flow and Willmore flow

In this section, we consider interface motion that depends on high order geometry quantities. We will consider surface
diffusion (e.g. [27,7,34]) and the related Willmore flow [42]. For surface diffusion, we have a family of compact, closed hyper-
surfaces R(t) satisfying the evolution equation
vn ¼ DRðtÞH ð42Þ
with R(0) = R0, the initial surface, and vn is the normal velocity defined on the surface R(t). The quantity H is the total cur-
vature of R(t). Let A(t) and V(t) be the surface area of the surface R(t) and its enclosed volume, respectively, then
1
2

dAðtÞ
dt
¼
Z

RðtÞ
vnHds ¼

Z
RðtÞ

HDRðtÞHds ¼ �
Z

RðtÞ
jrRðtÞHj2ds 6 0;

dVðtÞ
dt
¼
Z

RðtÞ
vnds ¼ 0; ð43Þ
where rR(t) is the surface gradient. This implies that the surface area of the surface R(t) is non-increasing in time while the
enclosed volume remains unchanged.

A related geometric flow is the Willmore flow [42], which involves a fourth order nonlinear evolution equation. The Will-
more energy for a compact closed hypersurface is
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EðRÞ ¼ 1
2

Z
R

H2ds: ð44Þ
In addition to its intrinsic mathematical interest, this model has been used to characterize the energy of vesicles (e.g.
[16,33]). Any critical point of this functional is called a Willmore surface, which satisfies the equation
DRH þ 2HðH2 � KÞ ¼ 0; ð45Þ
where K is the Gaussian curvature. To determine such a surface, one may evolve a compact surface to the Willmore surface
via Willmore flow
RðtÞ0 ¼ �rEðRÞ ð46Þ
which implies the motion by the following normal velocity
vn ¼ DRH þ 2HðH2 � KÞ: ð47Þ
Both of these flows depend on the surface Laplacian of the mean curvature. To numerically approximate this quantity at each
foot-point, we first interpret the mean curvature as a function defined on the interface. The corresponding numerical quan-
tity at each foot-point can be approximated from the local reconstruction. For instance, in two dimensions for example, the
mean curvature at the foot-point can be approximated by the local quadratic reconstruction f(s) using
jðs�Þ ¼ f 00ðsÞ
f1þ ½f 0½s��2g3=2

�����
s¼s�

: ð48Þ
For more details on computing this quantity at all foot-points, we refer interested readers to [20]. With the mean curvature
defined at all foot-points, we can then compute the surface Laplacian as in (9) by taking f = H.

Since the underlying PDE is fourth order, solving the resulting evolution equation using an explicit scheme leads to a CFL
time step restriction of Dt = O(h4). Here we describe a semi-implicit method to solve the surface diffusion motion and the
Willmore flow.

We consider the following relations between the normal n and the tangent vector t on the interface
ts ¼ �jn;
ns ¼ jt: ð49Þ
The fourth derivative of the interface is therefore given by
yssss ¼ tsss

¼ ð�jnÞss

¼ ð�jsn� j2tÞs
¼ ð�jss þ j3Þn� 3jjst

¼ ð�jss � j2yss � nÞn� 3jjst: ð50Þ
This implies that the velocity induced by surface diffusion can be written as
v ¼ �jssn

¼ yssss � j3nþ 3jjst

¼ yssss þ j2yss þ v � t: ð51Þ
Since the tangential velocity on the interface will not change the corresponding shape, we simply advect the foot-points
numerically using the velocity
v ¼ yssss þ j2yss: ð52Þ
In particular, we compute j2 explicitly using the curvature on the interface Rn at t = tn, i.e. (jn)2, and treat yssss and yss implic-
itly as explained in Section 3.3.2, where s is the old metric defined on the interface at t = tn. This gives
ynþ1 � yn ¼ Dt ynþ1
ssss þ ðjnÞ2ynþ1

ss

h i
;

ynþ1 ¼ I � Dt
@4

@s4 � DtðjnÞ2 @
2

@s2

" #�1

yn: ð53Þ
4. Application to flows with local inextensibility

In this section, we will consider modeling only a two dimensional flow with a local inextensibility constraint given by
[18,30]
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ðv tÞs � jvn ¼ 0; ð54Þ
where s is the arclength parametrization, j is the signed curvature and vn and vt are the normal and the tangential velocities,
respectively. It is possible to generalize this approach to three dimensions. For instance, preserving the surface area, we have
divsu ¼ 0; ð55Þ
where divs = trrs is the surface divergence. This generalizes the local inextensibility condition from two dimensions (54) to
divsvt � Hvn ¼ 0; ð56Þ
where vt is the tangential velocity and H is the total curvature [29].
To impose this constraint in the flow induced by the original energy Eo(R), we introduce a locally defined Lagrange mul-

tiplier K so that the new energy En(R) we are minimizing is given by (e.g. [35])
EnðRÞ ¼ EoðRÞ þ
Z

R
K � ðsR � s0ÞdR; ð57Þ
where s0 and sR are the arclength parametrization of the initial interface R0 and the current interface R, respectively. Let vo
n

and vo
t be the normal and the tangential velocities which decrease the original energy Eo(R) using gradient descent. The

velocity that decreases En(R) is therefore given by
u ¼ ðvo
n þKjÞnþ ðvo

t þKsÞt: ð58Þ
Thus K plays the role of an interfacial tension. The function K defined on the interface R is now determined by requiring that
u satisfies the local inextensibility condition
ðu � tÞs � jðu � nÞ ¼ 0: ð59Þ
This yields the following Helmholtz equation for K
�Kss þ j2K ¼ ðvo
t Þs � jvo

n: ð60Þ
After we solve this equation, we update the interface according to Eq. (58).
It can be shown that this modified flow (58) still minimizes the original energy Eo(R). For instance, we have
dEo

dt
¼
Z

R
�ðvo

nnþ vo
t tÞ � udR

¼ �
Z

R
ðvo

nÞ
2 þ ðvo

t Þ
2

h i
dR�

Z
R

vo
nKjþ vo

t Ks
� 

dR

¼ �
Z

R
ðvo

nÞ
2 þ ðvo

t Þ
2

h i
dRþ

Z
R

K2j2 þK2
s

� �
dR: ð61Þ
Now, since
Z
R

K2j2 þK2
s

� �
dR ¼ �

Z
R

vo
nKjþ vo

t Ks
� 

dR 6
Z

R
ðvo

nÞ
2 þ ðvo

t Þ
2

h i
dR

� �1=2 Z
R

K2j2 þK2
s

� �
dR

� �1=2

; ð62Þ
we obtain
Z
R

K2j2 þK2
s

� �
dR 6

Z
R
ðvo

nÞ
2 þ ðvo

t Þ
2

h i
dR: ð63Þ
And this implies that
dEo

dt
6 0; ð64Þ
and the equality holds if vo
n ¼ �Kj and vo

t ¼ �Ks.
In the case when the gradient descent of the original energy Eo(R) satisfies the local inextensibility condition, we have
ðvo
t Þs � jvo

n ¼ 0; ð65Þ
and so
�Kss þ j2K ¼ 0: ð66Þ
This equation has a trivial solution K = 0. In particular, if the steady state solution is a circle, this trivial solution to K is a
solution to (60). Indeed, the solution is not unique since one can have the circle rotating in a constant but arbitrary speed
such that ðv0

t Þs ¼ 0. In this paper however, we will not study the existence and uniqueness to the Eq. (60) for general
interfaces.

Unlike those equations we obtained in developing implicit schemes for the advection–diffusion equation, this Helmholtz
equation is inhomogeneous and, even more challenging, the coefficient in the Helmholtz operator, j2, has a very large range
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for general shapes of the interface. The simple Gauss–Seidel type iteration has difficulty in converging to a steady state solu-
tion. In the current implementation, we solve Eq. (60) using the SVD.

5. Example

5.1. Advection equation on a circle

The first example is a two-dimensional case where a circle centered at (0.5,0.75) with radius 0.15 is rotated by the
velocity
u ¼ 2ð0:5� yÞ;
v ¼ 2ðx� 0:5Þ: ð67Þ
The circle rotates about (0.5,0.5) with period T = p. On the circle, we solve the advection equation
Df
Dt
¼ 0; ð68Þ
where
D
Dt
¼ @

@t
þ u

@

@x
þ v @

@y
ð69Þ
is the material derivative along the trajectory of a particle on the interface. The initial condition defined on the circle is given
by
f ðx; y;0Þ ¼ x: ð70Þ
The exact solution to this interface problem is given by
f ðxðTÞ; yðTÞ; TÞ ¼ x0; ð71Þ
where x(T) = x(0) = x0 and y(T) = y(0). Fig. 4 shows the rate of convergence of our method applied to solve this simple advec-
tion equation on an evolving surface, which is approximately third order (2.9453).

5.2. Surface diffusion on a sphere

We next simulate the diffusion of a material along a moving surface. We first repeat a similar two-dimensional example
as in the previous test where we again consider the rotation of a circle as defined above. However, to match the scaling of the
diffusion time, we modify the rigid body rotation by
u ¼ 200ð0:5� yÞ;
v ¼ 200ðx� 0:5Þ: ð72Þ
The circle now rotates about (0.5,0.5) with period T = p/100. On the moving circle, we solve the following advection–diffu-
sion equation
Fig. 4. Convergence of solving advection equation on a rotating circle.



Fig. 5. Maximum value of f(h, t) defined on the circle under the rigid body rotation and its error using the explicit scheme with the underlying uniform mesh
of resolution 2572 (first row) and 5132 (second row). The circles on the left subfields are the computed solution. The solid line is the exact solution.
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Convergence of various numerical schemes for solving the heat equation on an evolving surface with motion governed by (a) the simple rigid body
and (b) the outward normal expansion.
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Df
Dt
¼ DSf ; ð73Þ
where D/Dt is the material derivative along the trajectory of a particle on the interface. The initial condition defined on the
circle is given by
f ðh;0Þ ¼ sinðnhÞ; ð74Þ
where n = 2, h = tan�1[(y � 0.75)/(x � 0.5)]. The exact solution to this problem is given by
f ðXðtÞ;YðtÞ; tÞ ¼ exp �n2t
r2

� �
f ðXð0Þ;Yð0Þ; 0Þ; ð75Þ
where r is the radius of the circle, and (X(t),Y(t)) is the trajectory satisfying
dXðtÞ
dt
¼ u;

dYðtÞ
dt
¼ v: ð76Þ
The maximum value of f(h, t) on the interface is then given by
max
h

f ðh; tÞ ¼ exp �n2t
r2

� �
: ð77Þ
In Fig. 5, we plot the computed maximum value of f(h, t) on the circle at various times using the explicit scheme with an
underlining grid of resolution 257 � 257 (a), and also their corresponding errors (b). We also plot the corresponding quan-
tities using an underlining grid of resolution 513 � 513 in Fig. 5 on the second row.
Maximum value of f(h,/, t) defined on the sphere and its error using the underlying uniform mesh of resolution 1013. The circles on the second row
computed solution. The solid line is the exact solution.
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In Fig. 6, we demonstrate the convergence of various numerical schemes for solving the heat equation on an evolving sur-
face. In Fig. 6(a), we show the convergence results of the rigid body rotation demonstrated above. In Fig. 6(b), we solve the
surface heat equation on an initial circle of radius r0 = 0.1 centered at (0.5,0.5) expanding in the normal direction with speed
200, i.e. vn = 200, for time tf = p/4000. The initial condition of a function f defined on the interface is given by f(h; t = 0) = sin
(nh) with n = 2. The exact solution on the circle at the final time can be found explicitly,
Fig. 9.
Dt = 16
f ðh; t ¼ tf Þ ¼ exp � n2tf

r0ðr0 þ vntf Þ

� �
sinðnhÞ: ð78Þ
Fig. 8. Rate of convergence for solving the diffusion equation on a sphere.

Evolution of an initial 7-fold symmetric star shaped interface by surface diffusion using the explicit method with Dx = 1/128 and (upper row)
Dx4 and (bottom row) Dt = 32Dx4.
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As expected, the explicit scheme gives approximately first order convergence while the fully implicit CN scheme (39), and
the Strang splitting schemes (36) and (37) all give approximately second order convergence. An interesting observation is
that the CN scheme based on simple splitting exhibits a different convergence behavior for these two types of motion.
For the rigid rotation, the underlying metric remains unchanged, i.e. the surface Laplacian operator DRðtnÞ ¼ DRðtnþ1Þ. Thus
the simple splitting in fact coincides with that from the fully implicit CN scheme (39), which is why the methods (33)
and (39) give similar results in Fig. 6(a).

We repeat a similar test in three-dimensions but without an applied velocity. We consider a sphere of radius 0.25 cen-
tered at (0.5,0.5,0.5) with a function defined on the surface initially given by a linear combination of two spherical harmonic
functions
Fig. 10
Dt = 16
f ðh;/; t ¼ 0Þ ¼ sin5 h cosð5/Þ þ sin4 h cos h cosð4/Þ: ð79Þ
The exact solution to the heat equation on the surface
@f
@t
¼ Dsf ð80Þ
is given by
f ðh;/; tÞ ¼ exp �30t
r2

0

� �
f ðh;/;0Þ: ð81Þ
We show the maximum value of f(h,/, t) on the surface at different times and error in Fig. 7 using a mesh of 151 � 151 � 151.
In Fig. 8, we have plotted the error defined as
EDx ¼ exp �0:3
r2

0

� �
max

R
f ðh;/; 0Þ �max

R
f ðh;/;0:01Þ; ð82Þ
with maxRf ðh;/;0Þ ¼ 5þ
ffiffiffiffiffiffi
41
p� �4

= 100
ffiffiffiffiffiffi
10
p

7þ
ffiffiffiffiffiffi
41
p� �3=2

� �
. The figure shows that the rate of convergence is approximately 2

(1.8303).
. Evolution of an initial 7-fold symmetric star shaped interface by surface diffusion using the explicit method with Dx = 1/256 and (upper row)
Dx4 and (bottom row) Dt = 32Dx4.
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5.3. Motion by surface diffusion and Willmore flow

In this section, we simulate high order geometric motion due to surface diffusion and Willmore flow. Figs. 9–11 show a
simple case where an initial 7-fold symmetric star shaped interface evolves by surface diffusion. In Figs. 9 and 10 we plot the
solutions at various times during the evolution computed by the simple explicit scheme using an underlying mesh with
Dx = 1/128 and Dx = 1/256, respectively. High order geometric information, i.e. the surface Laplacian of the curvature, is
computed by first treating the curvature as a function defined at the foot-points, then computing the corresponding deriv-
atives of the local least squares reconstruction of this resulting function. Gaussian smoothing of the curvature as described in
Section 3.4 is applied before interpolation and differentiation. For a relatively large Dt = 32Dx4, the solutions show instability
in the evolution. The Dt = O(Dx4) constraint makes the computation inefficient for small Dx. Fig. 11 shows the solutions at
the final time tf computed using the semi-implicit scheme from Eq. (53) described in Section 3.5 using various Dt’s. In the
upper row, Fig. 11(a) and (b), we use an underlying mesh with Dx = 1/128. The timestep Dt is chosen to be 128Dx4 and
512Dx4, respectively. These timesteps are significantly larger than the timestep restriction in the explicit scheme. For the
case where Dt ’ 512Dx4, the solution is in fact obtained by doing only four steps of time marching. This explains why
the solution in Fig. 11(b) is not accurate at all. Similarly in Fig. 11(c) and (d), we have shown the solution at the time tf using
various Dt’s with a finer mesh. All evolutions are stable but the accuracy in the solution decreases when we increase the time
step.

We have also shown the solution to the Willmore flow with the same initial condition in Fig. 12. As in the surface diffu-
sion case, the semi-implicit scheme effectively removes the restrictive time step constraint Dt = O(Dx4).

The GBPM can be easily extended to three dimensions as described in Section 3.2. To demonstrate this, in Figs. 13–15, the
evolution of a torus and a dumbbell shaped interface under surface diffusion are shown. The topological changes in Figs. 13
and 14 are captured nicely using the GBPM. The idea is to deactivate any grid point and its associated foot-point whose
Lagrangian information at the corresponding foot-point conflicts with any of its neighbor. Removal and addition of meshless
sampling points is simple for the GBPM.
Fig. 11. Solution of an initial 7-fold symmetric star shaped interface by surface diffusion at tf = 7.5 � 10�6 using the semi-implicit method with (a) Dx = 1/
128 and Dt = 128 Dx4 = Dx2/128 ’ tf/16, (b) Dx = 1/128 and Dt = 512Dx4 = Dx2/32 ’ tf/4, (c) Dx = 1/256 and Dt = 512Dx4 = Dx2/128 ’ tf/64, and (d) Dx = 1/
256 and Dt = 2048Dx4 = Dx2/32 ’ tf/16.



Fig. 12. Solution of an initial 7-fold symmetric star shaped interface under Willmore flow at tf = 7.5 � 10�6 using the semi-implicit method with (a) Dx = 1/
128 and Dt = 128Dx4 = Dx2/128 ’ tf/16, (b) Dx = 1/128 and Dt = 512Dx4 = Dx2/32 ’ tf/4, (c) Dx = 1/256 and Dt = 512Dx4 = Dx2/128 ’ tf/64, and (d) Dx = 1/
256 and Dt = 2048Dx4 = Dx2/32 ’ tf/16.

Fig. 13. Motion of a torus by surface diffusion. The radius at the initial time is 0.075. The topological change is nicely captured by the GBPM.
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We have also performed analogous simulations for motion by the Willmore flow; the results are shown in Figs. 16–18. As
observed previously (e.g. [26]) the dumbbell does not pinch off under Willmore flow but rather evolves to a sphere.

5.4. Local inextensible flows

Consider first a case in which a circle of radius r0 is evolved by a flow in the normal direction with v0
n ¼ 1 and v0

t ¼ 0. This
velocity field does not satisfy the inextensibility constraint. In particular, the arclength grows linearly with time given by
2p(r0 + t). Imposing the local inextensible constraint given by Eq. (60), we have



Fig. 14. Motion of a dumbbell shape by surface diffusion. The radius of the middle cylindrical part at the initial time is 0.075. The topological change is
nicely captured by the GBPM.

Fig. 15. Motion of a dumbbell shape by surface diffusion up to t = 10�4. The radius of the middle cylindrical part at the initial time is 0.150. The topological
change is nicely captured by the GBPM.

Fig. 16. Motion of a torus by Willmore flow up to t = 3 � 10�4. The radius at the initial time is 0.05.
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�Khh þK ¼ �r: ð83Þ
Assuming the solution K is independent of h, we have K = �r and therefore Eq. (58) gives u = 0 which means that the initial
circle should stay circle with the same radius. In Fig. 19(a) we have shown the change in the total arclength of a circle with an
initial radius r0 = 0.1. The blue circles are the computed total arclength under the flow v0

n ¼ 1 without the local inextensibil-
ity constraint. The computed total length of the interface when the local inextensible constraint is applied is shown
in red.



Fig. 17. Motion of a dumbbell shape by Willmore flow up to t = 3 � 10�4. The radius of the middle cylindrical part at the initial time is 0.075.

Fig. 18. Motion of a dumbbell shape by Willmore flow up to t = 3 � 10�4. The radius of the middle cylindrical part at the initial time is 0.150.
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A slightly more complicated case is the motion by mean curvature. We start with an initial circle of radius r0 = 0.15, i.e.
the curvature j = 1/r0. The total arclength of the circle is given by rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:152 � 2t

p
for 0 6 t 6 0.152/2. In Fig. 19(b) we

show the computed arclength of the evolution of the circle with and without the local inextensible constraint. Similar to
the previous case, the circle stays unchanged with inextensibility.

The next example is the Willmore flow (46). In two dimensions, the corresponding normal velocity reduces to
vn ¼ DRj�
1
2
j3: ð84Þ
And, therefore, an initially circular interface grows in the outward direction with radius given by rðtÞ ¼ ð2t þ r4
0Þ

1=4. In
Fig. 19(c), we show the computed arclength of an initial circle of radius r0 = 0.15 under Willmore flow with and without
the local inextensible constraint. The results are similar to the previous cases.

We next consider a more extreme case for Willmore flow with an initial 4-fold symmetric interface profile
r ¼ r0 � ½1þ � cosð4hÞ� ð85Þ
where r0 = 0.25 and � = 0.30. In Fig. 20, we show the evolution of the initial interface under Willmore flow with (a) and
without (b) the local inextensible constraint. In both of these figures, we plot the initial condition as the red dashed line.
The interface at different times is plotted using blue solid lines. Even though both flows (the constrained and the
unconstrained flows) tend to a circle, the radii of the circles are different since the constrained flow preserves the interface
length.
6. Conclusion and future work

In this work, we have developed numerical algorithms for solving advection–diffusion PDEs on moving interfaces using
the grid based particle method (GBPM). We also demonstrated the ability of the GBPM to simulate high order geometric
flows including changes in the interface topology. To solve the equations efficiently, we developed semi-implicit methods
to overcome the severe time step constraints required for the stability of explicit methods.

In the future, we plan to extend the algorithms to incorporate global constraints such as the conservation of enclosed vol-
ume. Because of the local representation of the interface in the GBPM this is a challenging task. In addition, we plan to extend
the GBPM to solve problems in which there is coupling between bulk and surface processes.



Fig. 19. Evolution of arclength for several geometric flows and their inextensible analogue. (a) Motion in the outward normal direction, (b) motion by mean
curvature, and (c) the Willmore flow of an initial circle of radius r0 = 0.15 with/without the local inextensibility constraint.

Fig. 20. Evolution of an initial 4-fold symmetric interface with r0 = 0.25 and � = 0.30 under the Willmore flow (a) without and (b) with the local inextensible
constraint. The red dashed line is the initial condition. The interface at various times are plotted in blue solid lines.
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