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Introduction to FTLE

Eulerian Coherent Structure (ECS)

To segment the domain into different regions with similar behavior
according to an Eulerian quantity such as the strain, kinetic energy, or the
vorticity.

Lagrangian Coherent Structure (LCS)

To partition the space-time domain into different regions according to a
Lagrangian quantity advected along with passive tracers.

Shingyu Leung (HKUST) An Eulerian Approach to the FTLE May 22, 2011 3 / 33



One such Lagrangian quantity is the FTLE,

rate of separation between adjacent particles over a finite time
interval with an infinitesimal perturbation in the initial location.

x′(t; x0, t0) = u(x(t; x0, t0), t)

with the initial condition x(t0) = x0 and u : Rd × R → R
d .

Flow map Φ : Ω× R× R → R
d ,

Φ(x; t0,T ) = x(T ; x0, t0)

The leading order in the perturbation

‖δx(T )‖ =
√

〈δx(0), [DΦ(x; t0 ,T )]∗DΦ(x; t0,T )δx(0)〉
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Denoting ∆(x; t0,T ) the Cauchy-Green deformation tensor

∆(x; t0,T ) = [DΦ(x; t0,T )]∗DΦ(x; t0,T ) ,

the largest strength deformation

max
δx(0)

‖δx(T )‖ =
√

λmax[∆(x; t0,T )]‖e(0)‖ = exp[σT (x, t0)|T |]‖e(0)‖

FTLE

σT (x, t0) =
1

|T | ln
√

λmax[∆(x; t0,T )]

forward FTLE if T > 0 and the backward FTLE if T < 0.

LCS: (roughly speaking) Ridge of the FTLE.
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Lagrangian formulation to FTLE

Lagrangian approach to FTLE

1 Compute the flow map Φ(x; t0,T ) by solving the ODE system

x′(t; x0, t0) = u(x(t; x0, t0), t)

on an initial Cartesian mesh at time t = t0.

2 Construct the deformation tensor ∆(x; t0,T ) by finite differencing the
flow map Φ(xi ; t0,T ) and then find it’s largest eigenvalue.

Remarks
1 The velocity field might be defined discretely on a mesh.

2 The numerical accuracy when using a high order adaptive time
integrator such as ode45 in MATLAB.

3 For computing the FTLE at the next time step t = t1 = t0 +∆t, all
rays obtained on the previous time step t = t0 are all discarded.
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Part 1: Eulerian formulation to FTLE for one time level

Goal:

Lagrangian computations ⇒ Eulerian formulation

Define Ψ = (Ψ1,Ψ2, · · · ,Ψd ) : Ω× R → R
d with the initial condition

Ψ(x, t0) = x = (x1, x2, · · · , xd ) .

Following the particle trajectory with x = x0, any particle identity should
be preserved in the Lagrangian framework, i.e.

DΨ(x, t)

Dt
=
∂Ψ(x, t)

∂t
+ (u · ∇)Ψ(x, t) = 0
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These level set functions defined on a uniform Cartesian mesh give the
backward flow map from t = t0 + T to t = t0, i.e.

Φ(y; t0 + T ,−T ) = Ψ(y, t0 + T )

Figure: Lagrangian and Eulerian interpretations of the function Ψ.
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Computing the backward FTLE σ
−T (x, t0 + T )

1 Discretize the computational domain

2 Initialize Ψ1(xi , yj , t0) = xi and Ψ2(xi , yj , t0) = yj
3 Solve the Liouville equations

∂Ψm

∂t
+ (u · ∇)Ψm = 0 , m = 1, 2

for up to t = tK = t0 + T .

4 Compute the Cauchy-Green deformation tensor with Ψ = (Ψ1,Ψ2)T ,

∆(xi , yj ; tK ,−T ) = [DΨ(xi , yj , tK )]
∗DΨ(xi , yj , tK )

5 Determine the backward FTLE at (xi , yj , t0 + T )

σ−T (xi , yj , tK ) =
1

T
ln
√

λmax[∆(xi , yj ; tK ,−T )]
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Computing the forward FTLE σ
T (x, t0)

1 Initialize the level set functions at t = t0 + T by Ψ(x, t0 + T ) = x.

2 Solve the corresponding level set equations backward in time.

3 Determining the Jacobian of the resulting flow map and then
computing the largest eigenvalue of the deformation tensor
∆(x; t0,T ).

4 The forward FTLE is formed by

σT (x, t0) =
1

T
ln
√

λmax[∆(x; t0,T )] .
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Part 2: Propagating the FTLE for many time-levels

Goal:

Propagate the backward FTLE σ−T (x, t0 + T ) forward in time from
t0 + T to Tf in order to approximate σ−T (x, t) or σ−(t−t0)(x, t) for
t > t0 + T .
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Theorem (Theorem 3.1 in Shadden, Lekien and Marsden 2005)

The traditional (forward) Lyapunov exponent is constant along
trajectories. Also, the (forward) finite-time Lyapunov exponent becomes
constant along trajectories for large integration times T .

The difference between σT (x, t0) and σ
T (Φs(x; t0), t0 + s) for some

arbitrary but fixed s,

|σT (x, t0)− σT (Φs(x; t0), t0 + s)| ≤ 2|s|
|T | max

t∗
σt

∗
−t0(x, t0) = O(|T |−1)

The material derivative of the (forward) FTLE is bounded by
∣

∣

∣

∣

DσT (x, t)

Dt

∣

∣

∣

∣

= lim
s→0

|σT (Φs(x; t), t + s)− σT (x, t)|
|s| = O(|T |−1)

If T is large enough, we obtain the approximation

DσT (x, t)

Dt
= 0
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If T is large enough, we can approximate the solution σ−T (x, t) for
t > t0 + T by simply solving the following Liouville equation

∂σ−T (x, t)

∂t
+ u · ∇σ−T (x, t) = 0

with the initial condition at t = t0 + T .
Let S be the time difference from t = t0 + T . Since

∣

∣

∣
σ−T (ΦS (x; t0 + T ), t0 + T + S)− σ−T (x, t0 + T )

∣

∣

∣

≤ 2S

T
max
t∗

σt
∗

(x,T ) = O

(

S

T

)

,

the error in the approximation is linear in S .
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Advantages and limitations of the Eulerian formulation

Timestep constraint
1 Lagrangian: ∆t, stiffness of the velocity field
2 Eulerian: ∆t = O(∆x), CFL condition

Computational Complexity

d : the dimension of the domain
N = O(∆x−1): number of mesh points in each spacial dimension
M = T/∆t = O(∆t−1): number of time steps for t = T
K = (Tf − t0)/∆t̃ = O(∆t̃−1): number of time steps until t = Tf

(number of time levels of FTLE to be computed)

1 Lagrangian: O(NdMK ) = O(∆x−d∆t̃−1∆t−1)
2 Eulerian: O(Nd [(d − 1)M + K + 1]) = O(∆x−d∆t̃−1)
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Velocity Field
1 CFD solver
2 Real life measurements

Storage for the velocity field
1 Lagrangian approach: O(dNd+1), Nd+1 mesh points in the space-time

domain and a d-vector per node.
2 Eulerian approach: O(dNd ), Nd mesh points in the space domain and

a d-vector per node.

Storage for the flow map and the FTLE
1 Lagrangian approach: O(d)
2 Eulerian approach: O(dNd )

Numerical dissipation in the Eulerian formulation

An order of O(S/T ) error is introduced in the approximation
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Part 3: FTLE on a Codimension One Manifold

Goal:

A simple approach to compute the FTLE on a codimension one manifold.

A codimension one manifold M(t) in Rd evolving in time under the
velocity field ũ : M(t)× t → R

d .

A possible approach: triangulate the surface, evolve all vertices
according to the flow, compute the Jacobian matrix based on a local
coordinate system on the surface,...

Our proposed approach: the evolving manifold represented implicitly
using a level set function.
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Computing the backward FTLE σ
−T (x, t0 + T ) for x ∈ M(t0 + T )

1 With φ(xi , yj , t0) at t = t0 so that M = {φ = 0}, solve

∂φ

∂t
+ (u · ∇)φ = 0 for up to t = t0 + T

2 With Ψ1(xi , yj , t0) = xi , Ψ
2(xi , yj , t0) = yj , solve the Liouville equations

∂Ψm

∂t
+ (u · ∇)Ψm = 0 , m = 1, 2 from t = t0 to t = t0 + T

3 Extend the map off the manifold by

∂Ψm

∂τ
+ sgn(φ)(n · ∇)Ψm = 0 , m = 1, 2

4 Compute the deformation tensor ∆ = (DΨ)∗DΨ

5 Determine the backward FTLE σ̃T = lnλmax(∆)
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Example: Double-Gyre flow

The flow is modeled by the following stream-function

ψ(x , y , t) = A sin[πf (x , t)] sin(πy) ,

where

f (x , t) = a(t)x2 + b(t)x ,

a(t) = ǫ sin(ωt) ,

b(t) = 1− 2ǫ sin(ωt)

with A = 0.1, ω = 2π/10 and ǫ = 0.1
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(a) The backward FTLE using ∆x = ∆y = 1/128 at t = 15, T = 5 and S = 10.
(b) The backward FTLE using ∆x = ∆y = 1/512 at t = 15, T = 5 and S = 10.
(c) The forward FTLE using ∆x = ∆y = 1/128 at t = 0, T = 5 and S = 10.

(d) The forward FTLE using ∆x = ∆y = 1/512 at t = 0, T = 5 and S = 10.
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(a) The backward FTLE with ∆x = ∆y = 1/512 at t = 15.0 using the
Lagrangian approach (MATLAB function ode45) with T = 15.
(b) The backward FTLE with ∆x = ∆y = 1/512 at t = 15.0 using the
Lagrangian approach (RK4 with a fixed timestep) with T = 15.
(c) The backward FTLE at t = 15 using the proposed Eulerian approach with
∆x = ∆y = 1/512 and T = 5 and S = 10.

(d) The backward FTLE at t = 15 using the proposed Eulerian approach with

∆x = ∆y = 1/512 and T = 15.
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(a) the forward FTLE with ∆x = ∆y = 1/512 at t = 0.0 using the Lagrangian
approach (MATLAB function ode45) with T = 15.
(b) The forward FTLE with ∆x = ∆y = 1/512 at t = 0.0 using the Lagrangian
approach (RK4 with a fixed timestep) with T = 15.
(d) The forward FTLE at t = 0 using the proposed Eulerian approach with
∆x = ∆y = 1/512, T = 5 and S = 10.
(c) The forward FTLE at t = 0 using the proposed Eulerian approach with
∆x = ∆y = 1/512 and T = 15.
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∆x Eul. Rate Lag. (∆t = 1) Rate Lag. (∆t = ∆x) Rate
1/64 22.87 - 1085 - 4591 -
1/128 110.9 2.28 8424 2.95 71440 3.96
1/256 1021 3.20 66030 2.97 1123000 3.97
1/512 8859 3.11 525700 2.99 - -

CPU times (in seconds) for the Eulerian approach with T = 5 and S = 10, and
the Lagrangian approach with ∆t = 1 and ∆t = ∆x .
Eulerian approach ≃ O(∆x−3)

Lagrangian approach ≃ O(∆x−3∆t−1)
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Example: Rayleigh-Bénard convection

The velocity field is given by

u =
A

k
ξ sin kr cos z ,

v =
A

k
y sin kr cos z ,

w = −A sin z

(

r cos kr +
2

k
sin kr

)

,

where A = 0.24, k = 0.2, r2 = ξ2 + y2, ξ = x − g(t), and
g(t) = 0.1 cos(2πt).
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(a) (b)

(a) The backward FTLE using ∆x = ∆y = 1/32 at t = 50, T = 12 and S = 38.

(b) The forward FTLE using ∆x = ∆y = 1/32 at t = 0, T = 12 and S = 38.
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Example: FTLE on a Sphere

(a) (b)

The forward FTLE on a sphere under the rigid body rotation. The exact solution

is zero everywhere on the sphere. The underlying mesh size (a) ∆x = 3/32 and

(b) ∆x = 3/128.
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(a) (b)

The error in the forward FTLE on a sphere under the motion in the outward

normal direction. The underlying mesh size (a) ∆x = 3/32 and (b) ∆x = 3/128.
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(a) (b)

The error in the forward FTLE on a sphere under the motion in the inward normal

direction. The underlying mesh size (a) ∆x = 3/32 and (b) ∆x = 3/128.

Shingyu Leung (HKUST) An Eulerian Approach to the FTLE May 22, 2011 27 / 33



Example: Four point vortices on a sphere

The velocity of any marker particle satisfies the motion

x′ =
1

2π

4
∑

i=1

xi × x

2(1 − x · xi )
,

with the point vortices centered at (1/
√
3,−1/

√
3, 1/

√
3),

(1/
√
3,−1/

√
3,−1/

√
3), (−

√

2/3, 1/
√
3, 0) and (−1/

√
3,−1/

√
3, 1/

√
3).
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(a) (b)

(a) The backward FTLE at t = 2 with T = 2. (b) The forward FTLE at t = 0.0

with T = 2.
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Example: Sphere under a vortex flow

The sphere evolves under the vortex motion governed by

u = 2 sin2(πx) sin(2πy) sin(2πz)

v = − sin2(πy) sin(2πx) sin(2πz)

w = − sin2(πz) sin(2πy) sin(2πx) .

(a) (b)

(a) The backward FTLE at t = 0.5 with T = 0.5. (b) The forward FTLE at

t = 0.0 with T = 0.5.
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Conclusion

1 Eulerian framework for approximating the FTLE based on the level
set formulation

Compute the related flow map by solving Liouville equations
Determine the FTLE on an evolving manifold implicitly represented by
a level set function

2 Future work

Extract the Lagrangian coherent structure from the FTLE
Combine the current approaches with a CFD solver
Incorporate our algorithms with flow fields from real life measurements
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Thank you
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