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Abstract We propose a computational efficient yet simple numerical algorithm to solve the
surface eikonal equation on general implicit surfaces. The method is developed based on
the embedding idea and the fast sweeping methods. We first approximate the solution to the
surface eikonal equation by the Euclidean weighted distance function defined in a tubular
neighbourhood of the implicit surface, and then apply the efficient fast sweeping method to
numerically compute the corresponding viscosity solution. Unlike some other embedding
methods which require the radius of the computational tube satisfies h = O(Δxγ ) for some
γ < 1, our approach allows h = O(Δx). This implies that the total number of grid points in
the computational tube is optimal and is given by O(Δx1−d) for a co-dimensional one surface
inRd . The method can be easily extended to general static Hamilton–Jacobi equation defined
on implicit surfaces. Numerical examples will demonstrate the robustness and convergence
of the proposed approach.

Keywords Partial differential equations · Implicit surfaces · Level set method ·
Eikonal equations · Interface modeling

1 Introduction

We consider the eikonal equation in an isotropic medium, given by

|∇u(x)| = 1
F(x) , x ∈ Ω\P

u(xs) = 0, xs ∈ P
(1)
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whereΩ ⊂ R
n is an open bounded domain, P is the set of sources, F(x) is the wave velocity

and u(x) denotes the travel-time of the wave from the source xs to a target point x ∈ Ω . This
first order Hamilton–Jacobi (HJ) equation is one of the fundamental building block for the
level set method [24,32] and such nonlinear partial differential equation can be found in a
wide range of applications including geometrical optics, computer vision, geophysics, and
etc. To numerically obtain the first arrival solution, tremendous number of efficient numerical
methods have been proposed for approximating the viscosity solution [6,7] to Eq. (1). These
methods include the fast sweeping method [12,13,28,29,35,40,41] and the fast marching
method [27,33,36].

In this paper, we consider a slightly more general equation where Ω is a general implicit
surface Σ , and the typical gradient is replaced by the surface gradient ∇Σ , which is the
gradient intrinsic to the surface. If the surface is embedded in the Euclidean space, the
surface gradient is just the orthogonal projection of the usual gradient onto the tangent plane
of the surface. Mathematically, if we consider a surface Σ in a scalar field u, the surface
gradient is defined as

∇Σu = ∇u − (n · ∇u)n,

where n is a unit normal vector defined on Σ . We aim to develop an efficient and converging
numerical algorithm for obtaining the viscosity solution of the surface eikonal equation given
by

|∇Σu(x)| = 1
F(x) , x ∈ Σ\P

u(xs) = 0, xs ∈ P.
(2)

Similar to the typical eikonal equation (1), the viscosity solution can be interpreted as the
first arrival time for high frequency surface wave propagation on Σ , for example [10],
and is useful in modeling constrained motions of curves/surfaces and image regularizations
[18].

Numerically, on the other hand, there has not been much attention paid to the eikonal
equation on surfaces (2). The first work in this direction was proposed in [14] to determine
the geodesic paths on manifolds using the fast marching method. The method has extended
the fast marching method on triangulated mesh by incorporating the local metric from the
geometry. Similar idea can be found in [38,39]. Some other methods have been proposed for
surfaces represented by an explicit parametrization, see for example [4,34,37].

All approaches discussed above require some form of explicit representation of the inter-
face. In this paper, we are interested in developing a numerical algorithm for implicit surfaces
without any explicit interface triangulation. The resulting algorithm, coupled with the level
set method [24,32], will then be well-suited for applications which involve eikonal solution
on dynamic surfaces, such as those biological modelings in [8,26]. One approach for solving
the surface eikonal equation on surfaces has been proposed in [21] based on the fast march-
ing method. Since the solution of the surface eikonal equation on an implicit surface is the
intrinsic weighted distance function, the paper has proposed to approximate such distance
function by the Euclidean weighted distance function defined in a tubular neighbourhood
of the implicit surface. In other words, one replaces the surface eikonal equation (2) by the
typical eikonal equation (1) defined in a narrow computation tube {|φ| ≤ h} containing the
original surface for some tube radius h. In the following context, this method will be called
the embedding method for short.

Since the surface PDE is extended off the interface to a corresponding PDE in a small
neighborhood of the surface on a fixed Eulerian mesh, we can first apply to the equation any
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well-developed numerical technique to determine the Euclidean weighted distance function
and then use it to approximate the original intrinsic distance function on the surface. Fast
marching method was used in [21]. In this work, we will explore the possibility of using
fast sweeping methods instead. We will discuss two numerical Hamiltonians including the
GodunovHamiltonian, which has beenwidely used for the eikonal equation (1) because of its
convergence behavior, and also the Lax–Friedrichs (LxF) Hamiltonian, which can be easily
applied to even non-convex HJ equations.

In order to observe the numerical convergence to the exact solution in the expected order,
some embedding methods require that the radius of the computational tube satisfies h =
O(Δxγ ) for some γ < 1, such as [21]. This implies that the total number of mesh point
in such a tube will be given by O(Δxγ−d) for a codimension-one surface in R

d . We will
give a detailed study of this behavior in Sect. 3, at least in the context of the fast sweeping
method. Yet a more important criteria in designing an embedding method for the problem
is to take care of the causality in designing the numerical scheme. When incorporating with
the embedding method with a computational tube radius h = O(Δx), we have observed
that a simple fast sweeping method based on the Godunov Hamiltonian fails to converges
to the exact solution. The main reason, as will be analyzed, is that this approach has not
been able to correctly take care of the characteristic directions. We therefore propose to
introduce an extension equation in an extra layer of computational tube, which helps to fix
the direction of the characteristics in the numerical scheme. Even with the extra layer of the
computational cells, the proposed method only requires that the overall tube radius satisfies
h = O(Δx). This is, therefore, optimal in the sense that the total number of mesh points in
the computational tube is O(Δx1−d) for a co-dimensional one surface in R

d .
It is worthwhile to compare our approach to some fast sweeping approaches and embed-

ding ideas. Qian et al. [28,29] has proposed a fast sweeping method for solving eikonal
equations on surfaces explicitly represented by a triangulation. One main contribution in
those work is a new ordering strategy for the fast sweeping method so that the alternating
sweepings in each iteration can cover all directions of information propagation. That method
has been shown to be computationally efficient and numerically convergent for a triangulated
domain. Our proposed method in this paper, on the other hand, relies simply on the natural
ordering provided by the underlying Cartesian mesh and the resulting sweeping strategy does
not require to introduce any reference point on the surface.

In the level set framework, Bertalmio et al. [3] has proposed an embedding approach
for solving time-dependent PDEs on surfaces. The main idea is to first express the surface
gradient operator using the typical Euclidean gradient and a projection operator

Pn = I − n ⊗ n,

where n can be easily determined using the level set function. Related to this level set
approach, Macdonald and Ruuth [19] has developed the Closest Point Method (CPM) to
solve time-dependent PDEs on implicit surfaces. With the closest point function cp: x → y
which maps a grid point x to the closest point y = argminz∈Σ‖x − z‖2, one can show

∇Σu(y) = ∇u(y) = ∇u(cp(x))

so that the surface gradient can be computed using the Euclidean gradient. Not only that those
works have emphasized only on time-dependent equations while this paper concentrates on
staticHamilton–Jacobi equations, themain difference between the current approach and these
work is that the extrinsic surface gradient is now simply replaced by the Euclidean gradient.
Since we are interested only in a robust convergent first order scheme, such approximation
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is significant for the current application and leads to a computationally efficient numerical
algorithm.

The paper is organized as follows. In Sect. 2, we first summarize the fast sweeping method
for HJ equations including the eikonal equation (1) and the hyperbolic conservation laws,
which is the building block of our approach. In Sect. 3, we will then follow the approach in
[21] but naively replace the fast marching method by the fast sweeping method. However,
we are also going to show in the same section that the numerical approach will lead to a non-
converging method. Based on the analysis in Sect. 3, we propose a simple yet converging
numerical algorithm for Eq. (2) in Sect. 4. Some extensions will be discussed in Sect. 5.
Section 6 shows various numerical examples to demonstrate the feasibility and robustness
of the new formulation.

2 Fast Sweeping Methods for Eikonal Equations and the Advection
Equations

In this section, we will briefly summarize the fast sweeping method for solving the HJ
equations. For a complete description of the algorithm, we refer interested readers to [12,
13,28,29,35,40,41] and thereafter for general HJ equations, and [5,15–17] for extensions to
advection equations and hyperbolic conservation laws.

The fast sweeping method was originated in [30] in the context of computer graphics
for the shape-from-shading problem. For simplicity, we present the algorithm for the two-
dimensional case only. Generalization to higher dimensions is rather straight-forward. We
first discretize the computation domain into a uniform mesh {xi, j } with mesh size Δx and
represent the solution at the mesh points by ui, j . The fundamental idea is to design of an
upwind, monotone and consistent discretization for the nonlinear term |∇u|. Furthermore,
if there is a simple local solver for the discretized system, one can then obtain an efficient
numerical algorithm for solving the nonlinear partial differential equation. The term sweeping
comes from the fact that allmethods in this class can be easily incorporatedwith the symmetric
Gauss–Seidel iterations, see Algorithm 1, which may lead to an O(N ) algorithm with N the
total number of mesh points in the computational domain.

Algorithm 1: The fast sweeping method for the eikonal equation |∇u| = 1 or the
advection equation v · ∇u = (p, q) · (ux , uy) = 0.
Data: The set of boundary points (xs , ys ), the mesh size Δx .
Result: ui, j in the computational domain.
Initialization: Assign the boundary condition. For the eikonal equation, set ui, j = 0 if (xi , y j ) is a
point in the boundary, otherwise ui, j = ∞;
while not converges do

for each of the four sweeping directions do
if ui, j 
= 0 then

update ui, j according to the local solution to the corresponding update formula associated to
the numerical discretization;

end
end

end

The fast sweeping approach inAlgorithm 1 can be easily adopted by the eikonal equations,
advection equations or hyperbolic conservation laws. In particular, if we are solving the
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eikonal equation |∇u| = 1, we have a choice in picking a numerical Hamiltonian for the
discretization. For example, for each (xi , y j ), we define uxmin = min(ui−1, j , ui+1, j ) and
uy
min = min(ui, j−1, ui, j+1). The Godunov Hamiltonian [41] has the following simple update

formula, given by

ui, j ←
⎧
⎨

⎩

min
(
uxmin, u

y
min

) +Δx if
∣
∣uxmin − uy

min

∣
∣ > Δx

1
2

[

uxmin + uy
min +

√

2Δx2 − (
uxmin − uy

min

)2
]

otherwise.
(3)

The corresponding local solver for the LxF Hamiltonian [13] is given by

ui, j ← ui+1, j + ui−1, j + ui, j+1 + ui, j−1

4

+Δx

2

⎡

⎣1 −
√

(
ui+1, j − ui−1, j

2Δx

)2

+
(
ui, j+1 − ui, j−1

2Δx

)2
⎤

⎦ . (4)

When solving the advection equations v · ∇u = (p, q) · (ux , uy) = 0, we can use the
simple upwind differencing to discretize the equation and derive the update formula [5,15–
17]. At each point (xi , y j ), we define p± = 1

2 (pi, j ±|pi, j |) and, therefore, obtain the update
formula given by

ui, j ← p+ui−1, j − p−ui+1, j + q+ui, j−1 − q−ui, j+1

|pi, j | + |qi, j | . (5)

3 The First Attempt

In this section, we first directly apply the embedding idea in [21] on a computational tube
of radius O(Δx) but replace the eikonal solver by the fast sweeping method. Because the
Hamiltonian is convex and simple enough, the closed-form solution to the local problem
from the Godunov discretization can be explicitly determined. This makes the Godunov fast
sweeping particularly attractive.

Following the embedding idea in [21], we attempt to solve the surface eikonal equation
|∇Σu| = 1 not only on the interfaceΣ but replace it by the typical eikonal equation |∇u| = 1
defined in a computational tube Γh of radius h enclosing the surface Σ . In particular, we
might simply update the numerical solution ui, j only if the grid point (xi , y j ) ∈ Γh while
keep it to be the numerical infinity otherwise. Therefore, the Godunov Hamiltonian will not
pass any information from outside Γh to the interior. This numerical scheme is extremely
easy to code, as demonstrated in Algorithm 2. Like other fast sweeping methods, the iterative
scheme converges to an approximation to the eikonal equation for a given Δx . But in this
section, we are going to demonstrate that this proposed scheme does not converge to the
exact viscosity solution to the surface eikonal equation as Δx tends to zero if we have the
tube radius Γh = O(Δx). Even so, the analysis of such a straight-forward scheme will still
be important since it motivates us the proposed approach which will be discussed later in
Sect. 4.

For simplicity, we analyze this scheme in the two-dimensional case and consider Σ =
{x = y} with the point source located at the origin and we determine the solution in [0, 1]2.
Therefore, the exact solution on Σ at (x, x) is simply the Euclidean distance from the origin
and is given by

√
2x . Since the geometry of this example is very simple, it turns out that we

can calculate the explicit formula of the numerical solution from the Godunov Hamiltonian
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Algorithm 2: The first attempt to solve the surface eikonal equation |∇Σu| = 1 using
the Godunov fast sweeping method.
Data: The source location (xs , ys ), the mesh size Δx , the level set representation of the surface φi, j

and the tube radius h = O(Δx).
Result: ui, j in the computational tube.
Initialization: Set ui, j = 0 if (xi , y j ) is at the point source, otherwise ui, j = ∞;
while not converges do

for each of the four sweeping directions do
if |φi, j | ≤ h and ui, j 
= 0 then

update ui, j using (3);
end

end
end

for some tube radius h with h
Δx ∈

(
1√
2
, 3√

2

)
. To do that, we first state some essential

observations.

Observation 3.1 ui, j depends only on ui−1, j and ui, j−1.

Because of the special structure of our computational domain, information propagates
only from the lower left part to the upper right part in the domain. The upwind Godunov
Hamiltonian enforces a grid point (xi , y j ) to choose its lower and left neighbour grid values
ui−1, j and ui, j−1 in the update formula. This observation is crucial since it implies that the
numerical solution will converge in only one sweeping direction (from lower left to upper
right).

Observation 3.2 Assume h
Δx ∈

[√
2, 3√

2

)
and consider a given level y = y j where j ≥ 3.

There are only five grid points u j, j−2, . . . , u j, j+2 within the computation tube.

This is due to the construction of the computational tube and is clearly demonstrated in
Fig. 1.

Observation 3.3 If h
Δx ∈

[√
2, 3√

2

)
, we have ui+2,i = ui+1,i + Δx and ui,i+2 = ui,i+1

+ Δx.

From Observation 3.2, ui+2,i is a boundary point of the computational tube. Based on the
Observation 3.1, the value depends only on ui+1,i and ui+2,i−1. However, since ui+2,i−1 lies
outside the computational tube, its default value is set to be the numerical infinity and will not
be updated. When using the Godunov Hamiltonian, we therefore have ui+2,i = ui+1,i +Δx .
The other formula can also be obtained in a similar argument.

We now state two propositions which lead to the closed form numerical solution from the
Godunov Hamiltonian under some simple configurations. The first one is about a symmetry
in the numerical solution, while the second one gives us the explicit formulae of the numerical
solution.

Proposition 3.1 If h
Δx ∈

(
1√
2
, 3√

2

)
, we have ui, j = u j,i .

Proof By Observation 3.3, the proposition is equivalent to show that

ui,i+1 = ui+1,i and ui,i+2 = ui+2,i

for i ≥ 3. We prove it by induction. For case i ≤ 3, it can be shown by directly calculation.
Now assume case i ≤ k is true, where k ≥ 3. For the case where i = k + 1, we use

123



J Sci Comput (2016) 67:837–859 843

y

x
x1 x2 x3 x4 x5

y1

y2

y3

y4

y5

•
Fig. 1 The red line is the interface Σ given by y − x = 0. The green region indicates the computation tube
Γh . The blue dot denotes the source location at the origin (x1, y1) = (0, 0) (Color figure online)

Observation 3.1 and deduce that uk+1,k+2 depends on uk,k+2 and uk+1,k+1. And uk+2,k+1

depends on uk+1,k+1 and uk+2,k . By the induction hypothesis, uk,k+2 = uk+2,k . Therefore,
uk+1,k+2 and uk+2,k+1 both use the same set of values in their updating formula based on
the Godunov Hamiltonian, and therefore their values equal. Next, by Observation 3.3, we
have uk+1,k+3 = uk+1,k+2 + Δx and uk+3,k+1 = uk+2,k+1 + Δx . Since we have just shown
uk+1,k+2 = uk+2,k+1. It follows that uk+1,k+3 = uk+3,k+1 and it leads to the proposition by
induction. ��

Proposition 3.2 Denote α± = 1 ± 1√
2
. If h

Δx ∈
[√

2, 3√
2

)
, we have

1. ui,i = ui−1,i + Δx√
2
;

2. |ui−1,i+1 − ui,i | < Δx;

3. ui,i+1 = ui−1,i + Δx
2

(

α+ +
√

2 − α2−
)

.

Proof These expressions can be explicitly constructed.

1. ui,i is updated based on ui−1,i and ui,i−1. By the symmetry of the numerical solution,
we have ui−1,i = ui,i−1. Therefore,

ui,i = ui−1,i + ui,i−1 + √
2Δx2 − (ui−1,i − ui,i−1)2

2
= ui−1,i + Δx√

2
.
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2. We have

|ui−1,i+1 − ui,i | = |ui+1,i−1 − ui,i | =
∣
∣
∣
∣(ui,i−1 + Δx) −

(

ui,i−1 + Δx√
2

)∣
∣
∣
∣

=
(

1 − 1√
2

)

Δx < Δx .

3. ui,i+1 is updated using ui−1,i+1 and ui,i . Since |ui−1,i+1 − ui,i | < Δx , we have

ui,i+1 = ui−1,i+1 + ui,i + √
2Δx2 − (ui−1,i+1 − ui,i )2

2

=
(ui−1,i + Δx) +

(
ui−1,i + Δx√

2

)
+

√

2Δx2 −
(
1 − 1√

2

)2
Δx2

2

= ui−1,i + Δx

2

(

α+ +
√

2 − α2−
)

.

��
These observations and propositions provide us a recursive relation to explicitly construct

the numerical solution from the Godunov Hamiltonian everywhere in the computation tube
if the tube radius satisfies

√
2 ≤ h

Δx < 3√
2
. In particular, we obtain

ui−1,i = ui−2,i−1 + Δx

2

(

α+ +
√

2 − α2−
)

= ui−3,i−2 + 2Δx

2

(

α+ +
√

2 − α2−
)

= · · · = u1,2 + (i − 2)Δx

2

(

α+ +
√

2 − α2−
)

and

ui,i = ui−1,i + Δx√
2

= u1,2 + (i − 2)Δx

2

(

α+ +
√

2 − α2−
)

+ Δx√
2

= α+Δx + (i − 2)Δx

2

(

α+ +
√

2 − α2−
)

.

Now, we take Δx = N−1 and consider the numerical solution at the location (x, y) =
(xN , yN ) = (1, 1). This implies

uN ,N = α+
N

+ N − 2

2N

(

α+ +
√

2 − α2−
)

.

We have noticed, however, that this solution converges to 1
2

(

α+ +
√

2 − α2−
)

but not to the

exact solution
√
2 as N goes to infinity. This simple example shows that a trivial embedding

method coupled with the Godunov fast sweeping method might fail to converge to the exact
solution as Δx → 0 when choosing a tube radius h = O(Δx).

In developing a fast method for solving the eikonal equation, it is extremely important to
take care of the causality by considering the characteristic direction. The trivial embedding
method developed above, however, does not provide correct information for the update for-
mula near the boundary ∂Γh , as shown in Fig. 2. Consider the numerical value of a grid point
ui, j which lies inside the computational domain (xi , y j ) ∈ Γh but adjacent to the boundary
of the computational tube ∂Γh , as shown in blue in Fig. 2. The corresponding update formula
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i

j ••

•

Characteristic direction

Numerical upwind direction

Fig. 2 The numerical upwind direction and the real characteristic direction near a boundary grid point

depends on the values at two adjacent grid points, marked in red. However, since ui−1, j lies
outside the computation tube, only ui, j−1 will be used. This implies that there is always a
mismatch in the numerical upwind direction and the real characteristic direction at a grid
point near the computational boundary, and this mismatch does not vanish as we decrease
Δx . This is the main reason why the method does not converge to the correct solution.

In Fig. 3a, we have plotted several numerical solutions (in blue circles and blue solid
lines) to the eikonal equation using various tube radius given by h = O(Δx). The top blue
data are obtained using the tube radius h = 5Δx/

√
8, which has been analyzed above. We

clearly see that the numerical solution converges to 1
2

(

α+ +
√

2 − α2−
)

, represented by the

red dotted line on the top, as Δx → 0. Using a larger ratio h/Δx as we refine the mesh, the
numerical solution does converge to a value closer to the exact solution

√
2, as demonstrated

by different blue solid curves in the figure. Nevertheless, for any finite fixed ratio h/Δx , the
approach proposed earlier in this section does not converge to the exact solution.

On the other hand, the numerical solution seems to converge to the exact solution if we
have Δx → 0 and h/Δx → ∞ at the same time, as shown in Fig. 3b. Therefore, one
possible attempt to fix this simple fast sweeping scheme is to follow a similar approach as
in [21] by choosing the tube radius h = O(Δxγ ) for some γ ∈ (0, 1). In such a choice, the
computation tube will shrink in a much smaller speed as we reduce the mesh size Δx . Their
original intention is to increase the resolution of the numerical solution when approximating
the Euclidean weighted distance function by having h → 0 and h

Δx → ∞ at the same time.
We have preformed numerical experiments on the above example by choosing γ = 0.8 and
γ = 0.7, respectively, and we have checked the numerical error in the numerical solution
at the point (x, y) = (1, 1). We have found that the solutions from these two cases seem
to converge to the exact solution, but the smaller the value of γ the better the numerical
convergence, as shown in Fig. 3a, c. In particular, for a relatively larger γ (=0.8), we found
that the numerical solution converges slower than O(

√
Δx). For a smaller γ (=0.7), the

convergence is faster than O(
√

Δx).
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Fig. 3 Numerical solutions at (x, y) = (1, 1) on different Δx and h. The exact solution
√
2 and

1
2

(

α+ +
√

2 − α2−
)

are plotted using the bottom and the top red dotted lines on both figures, respectively.

a Blue solid lines with circles (from top to bottom) represent the numerical solutions from different Δx using
a fix ratio of h/Δx changing from 2.5/

√
2 to 7.5/

√
2 in an increment of 1/

√
2. The black dashed line with

squares represents the numerical solutions from different Δx using h = 1.5(Δx)γ for γ = 0.7 and 0.8.
b Numerical solution as Δx → 0 while keeping h/Δx fixed. c Error at the location (x, y) = (1, 1) versus the
mesh size with h = O(Δxγ ) and γ = 0.8 and γ = 0.7, respectively. A black dotted reference line has slope
0.5. The case with γ = 0.7 has a better behavior with the slope of the least squares fitting line 0.6546 (Color
figure online)

Such improvement in the numerical solution canbepartially explainedby the constructions
in the explicit numerical solution using h = O(Δx) as demonstrated above. The smaller value
of γ , the greater number of grid points lies inside the tube. As argued, the boundary grid
points introduce problematic information in the characteristic direction. The further away
(relative to Δx) the boundary to the interface Σ , the more the error gets diluted. But we
again emphasize that it is not clear how small should γ be used in order to yield good
numerical results. Also, since the number of mesh points across the computational tube is
O(h/Δx) = O(Δxγ−1), the total number of mesh points within Γh is therefore

O(Δxγ−1) · O(Δx1−d) = O(Δxγ−d).

As a result, this approach has a heavy trade-off between the accuracy in the solution and the
overall computational cost. In the next section, we are going to propose a simple numerical
treatment by incorporating the true characteristic direction to the update formula, while
keeping the radius of the computational tube h = O(Δx).
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4 Our Proposed Approach

Our proposed approach is motivated by the fact that the scheme has to take care of the
correct characteristic direction even for those grid points adjacent to the boundary of the
computational tube. This implies that instead of keeping ui, j as the numerical infinity for all
(xi , y j ) /∈ Γh , one has to also update the solution in the exterior of Γh if the grid location is
adjacent to the computational tube.

To design a correct condition at those locations, we recall that the viscosity solution to
the surface eikonal equation |∇Σu| = 1 on an implicit surface can be seen as the intrinsic
distance function of the surface itself. At each point on the surface, it is geometrically clear
that the surface gradient ∇Σu of the intrinsic distance function must lie on the tangent plane
and it implies that the surface gradient should be orthogonal to the normal of the surface. If
the level set function φ is the signed distance representation of the surface given by {φ = 0}
with |∇φ| = 1, such condition can be expressed as

n · ∇Σu = 0 on Σ (6)

where n = ∇φ is the unit normal defined on the interface Σ . Our approach uses this expres-
sion to impose an extra boundary value condition for Γh . Assuming that the solution to the
surface eikonal equation is not only given on Σ but also all level sets given by {|φ| < h}, we
have a natural extension of the solution to outside the tube using

n · ∇u = 0. (7)

Mathematically, this means that the function u has to be constant along the normal direction
to the boundary and, therefore, such condition imposes simply a constant extrapolation of u
away from Γh .

In this work, we propose to extend the solution to eikonal equationwithinΓh by solving (7)
outside the computational tube. One simple way to implement this extension idea is to intro-
duce a time variable and solve the following linear advection equation in the computational
domain except the tube, up to steady state

ut + sgn(φ)n · ∇u = 0 on Ω − Σh

where sgn(x) is the signum function. Instead, we can also consider the time-independent
version by solving [

sgn(φ)n
] · ∇u = 0 on Ω − Σh (8)

where the extra signum function takes care of the upwind direction in the characteristics so
that all information will flow outward from the interface to the rest of the computational
domain.

Recall thatwe require only a boundary condition at grid point adjacent to the computational
tube, much computational efforts are wasted if this extension equation is solved on Ω − Σh .
The first step in our approach is to introduce a second layer of computational tube, as shown
in Fig. 4. The inner computation layer (denoted by Γ in with radius hin) is the same as
our previous computation tube in Sect. 3 where we impose the eikonal equation, while the
outer layer is an extension layer (denoted by Γ out with width hout ) in which we impose the
constrained boundary condition (8). Numerically, the equation in each individual domain
Γ in and Γ out can be efficiently solved by fast sweeping methods. The inner layer can be
handled just like what we have discussed in Sect. 3. When we update ui, j in the outer layer
Γ out based on the advection equation (8), we apply the fast sweeping updating formula (5)
by considering
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Fig. 4 The computational tube Γ consists of two separate layers, denoted by Γ in and Γ out . The inner layer
Γ in for the eikonal equation is represented by green, while the outer layer Γ out for the extension equation is
highlighted by yellow (Color figure online)

pi, j = [sgn(φ)φx ]i, j = sgn(φi, j )

2Δx

(
φi+1, j − φi−1, j

)

qi, j = [sgn(φ)φy]i, j = sgn(φi, j )

2Δx

(
φi, j+1 − φi, j−1

)
.

Since we require that Δx is small enough to resolve the interface, the level set function φ is
differentiable in the computational tube so that it is accurate to approximate the derivatives
using the central difference. The algorithm can be easily implemented and we have summa-
rized in Algorithm 3. If high order extrapolation is necessary, one can apply the PDE based
extrapolation approach proposed in [1,2].

Algorithm 3: A simple fast sweeping method for the surface eikonal equation |∇Σu| =
1.
Data: The source location (xs , ys ), the mesh size Δx , the level set representation of the surface φi, j ,

the inner tube radius hin and the outer tube radius hout .
Result: ui, j in the computational tube.
Initialization: Set ui, j = 0 if (xi , y j ) is at the point source, otherwise ui, j = ∞;
while not converges do

for each of the four sweeping directions do
if |φi, j | ≤ hin and ui, j 
= 0 then

update ui, j using (3) for the Godunov Hamiltonian or (4) for the LxF Hamiltonian;

else if hin < |φi, j | ≤ hout then
update ui, j using (5) with v = (p, q) = sgn(φ)n ;

end
end

end

Now, all grid points in the inner computational tube have correct characteristic information
for updating its latest value. Returning to our previous simple example as demonstrated in
Fig. 2, in particular, we find that ui, j can now update its value using ui−1, j which thus
provides a better approximation to the characteristic direction. Furthermore, we also mention
that constructing an extra extension layer is necessary anyway if we are using the LxF
Hamiltonian instead of the Godunov Hamiltonian. In the original work [13], higher order
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(a)

•

•

•

(b)

••

•

Fig. 5 a The numerical values in the outer layer are constantly extrapolated from those in the inner layer. The
arrows in the figure show the unit outward normal directions, which are also the extrapolation direction. In the
ideal situation, the same numerical value is found along the cross section in the outer layer. b The boundary
point, represented by the blue dot, can now take the numerical value of its left neighbour point which lies in
the extension layer. This extra point corrects the numerical upwind direction (Color figure online)

extrapolation technique has been coupled with a maximization–minimization condition to
determine a proper value for grid locations outside the computational boundary. On the other
hand, we found that a constant extrapolation condition is already good enough to provide a
convergent and robust algorithm for determining the values in the outer layer (Fig. 5).

In the current approach, we are able to use a tube radius hin and hout both of O(Δx).
Nevertheless, the tube radius has to be wide enough for resolving both the eikonal equation in
inner layer and the extension equation in outer layer. Using the same lower bound proposed
in [21], both layers should have at least h

√
d in their width which makes a lower bound of

the whole tube hout to be
√
dΔx + √

dΔx = 2
√
dΔx . In our numerical experiments, we

choose 2dΔx . Even though such choice is slightly larger than the theoretical lower bound,
the total number of grid points increases only linearly as Δx → 0.

In the following, we prove the numerical convergence of the LxF fast sweeping method on
the two dimension eikonal equations |∇u| = R, where R = R(x) is some positive function.

Proposition 4.1 Suppose that the initial values of numerical solution are all set to be positive
in both the inner and the outer layers (except the source points). Then the numerical solution
always stays positive.

Proof We split the discussion into two cases. First, we consider a location (xi , y j ) in the
inner layer. Take Δx = Δy, σx = σy = 1, the Hamiltonian for the eikonal equation is
H(p, q) = √

p2 + q2. The LxF fast sweeping has the following update formula,

u∗
i, j = Ri, jΔx

2
+ 1

4

[
ui+1, j + ui−1, j + ui, j+1 + ui, j−1

−
√

(ui+1, j − ui−1, j )2 + (ui, j+1 − ui, j−1)2
]
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It is clear that the sign of u∗
i, j solely depends on the second term of the above expression.

Note that

(ui+1, j + ui−1, j + ui, j+1 + ui, j−1)
2 −

[√

(ui+1, j − ui−1, j )2 + (ui, j+1 − ui, j−1)2
]2

= 4ui+1, j ui−1, j + 2ui+1, j ui, j+1 + 2ui+1, j ui, j−1 + 2ui−1, j ui, j+1

+ 2ui−1, j ui, j−1 + 4ui, j+1ui, j−1.

The second term will always keep its positive sign if the values of ui±1, j and ui, j±1 are all
positive. So if the numerical solution starts with the positive initial values everywhere, the
value of u∗

i, j always stays positive at the following iterations.
If (xi , y j ) is in the outer layer, we have

u∗
i, j = p+ui−1, j − p−ui+1, j + q+ui, j−1 − q−ui, j+1

|p| + |q| ,

where (p, q) is the unit outward normal vector at (xi , y j ), and p± := (p±|p|)/2. Since, u∗
i, j

is just a convex combination of ui±1, j and ui, j±1 with p+,−p−, q+,−q− ≥ 0, u∗
i, j stays

positive as long as ui±1, j and ui, j±1 do so. Its positiveness again inherits from the initial
values of the numerical solution. ��

We recall a simple fact in analysis, a decreasing and bounded below sequence converges.
We then have the following corollary.

Corollary 1 The LxF fast sweeping method on eikonal equations |∇φ| = R(x) converges
numerically.

Proof Recall that we impose large values to the initial guess in the fast sweeping algorithm,
the numerical solution based on the Godunov Hamiltonian is guaranteed to be decreasing.
Even though there is no such property in the LxF Hamiltonian, on the other hand, we can
explicitly impose this constraint in the iteration by updating the numerical solution only
when the updated value is less than its old value. Now, since the numerical solution always
approximates to the correct viscosity solution from above, the numerical solution at each
grid point forms a decreasing sequence. And, because each of these sequences is bounded
below by zero based on the above proposition, they converge as the iteration goes. ��

It does not seems to be trivial to rigorously prove that the numerical solution on Σ con-
verges to the viscosity solution to the surface eikonal equation asΔx goes to zero. Intuitively,
as explained earlier, one has to provide the correct characteristic information in designing a
local update formula. For the surface eikonal equation, such information might come from
outside the inner computational domain. The extension step we proposed does give a way
to bring the necessary information to the inner tube. To prove that the numerical solution
indeed converges to the viscosity solution, however, one difficulty is that the computational
domain depends explicitly on Δx . Also, one has to consider at the same time the coupling of
the extension equation in the outer layer and the numerical solution to the eikonal equation in
the inner tube. Nevertheless, the numerical examples in Sect. 6 have shown that the proposed
numerical scheme does converge to the correct viscosity solution without any difficulty.

5 Extensions

The proposed approach can be easily extended to various equations and on general implicit
surfaces. In this section, we discuss various straight-forward extensions and applications.
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5.1 General Static HJ Equations on Surfaces

The proposed approach can be easily extended to other static HJ equations on surfaces.
Suppose that we are given a HJ equation

H(∇Σu) = 0,

defined only on the surface Σ . Following the same idea in the previous section, we replace
the intrinsic gradient ∇Σu directly by the extrinsic gradient ∇u and consider the equation

H(∇u) = H(ux , uy) = 0

in a small neighborhood of the surface Σ . Numerically, we first construct a two-layered
computational tube that encloses the surface Σ . In the inner layer Γ in , we solve the HJ
equation H(ux , uy) = 0 by replacing the Hamiltonian with the LxF Hamiltonian

H

(
D+
x ui, j + D−

x ui, j
2

,
D+

y ui, j + D−
y ui, j

2

)

− σx

(
D+
x ui, j − D−

x ui, j
2

)

− σy

(
D+

y ui, j − D−
y ui, j

2

)

,

where

σx ≥ max

∣
∣
∣
∣
∂H

∂ux

∣
∣
∣
∣ and σy ≥ max

∣
∣
∣
∣
∂H

∂uy

∣
∣
∣
∣

and D±
x and D±

y are the forward and the backward difference operators along the x- and the
y-direction, respectively. Numerically, we can follow the same approach as in Algorithm 3
but only need to replace the iterative update formula at each grid point (xi , y j ) within Γ in

by

ui, j ←
[

σx

Δx
+ σy

Δy

]−1 [

σx
ui+1, j + ui−1, j

2Δx

+ σy
ui, j+1 + ui, j−1

2Δy
− H

(
ui+1, j − ui−1, j

2Δx
,
ui, j+1 − ui, j−1

2Δy

)]

.

In the outer layer Γ out , we keep the typical extension equation as before.

5.2 Implicit Surfaces in the Closest Point Representation

In above sections, all implicit surfaces are represented by the zero level set of some signed dis-
tance functions. Some implicit surfaces, however, cannot be defined using any signed distance
function. Typical examples include open surfaces and non-orientable surfaces. Nevertheless,
if an implicit surface is not pathological, it usually admits a closest point representation in an
open set that contains the implicit surface. It is, therefore, not difficult to extend our proposed
algorithm to surfaces with the closest point representation. For a point x sufficiently close to a
given surfaceΣ , it is possible to find the unique projection of x onΣ which gives the shortest
Euclidean distance. Following the same notation as in the closest point method [19,20,31],
we denote this unique projection cp(x), representing the closest point on Σ to x. Then the
surfaceΣ can be represented by the zero level set of the function F(x) := |x−cp(x)|. Using
this function, we can similarly define the inner and outer layer by Γ in = {F(x) ≤ hin} and
Γ out = {hin < F(x) ≤ hout }, respectively.
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Unlike the signed distance function as in the level setmethod, unit outward normalmay not
be well defined in surfaces with the closest point representation. For example, non-orientable
surfaces like the Mobius band do not have any consistent outward normal at any point. It
seems to cause trouble in our constant outward extrapolation in Γ out . But we do not actually
need the consistent outward normal on the surface everywhere. For a point x in Γ out , all we
need is to extrapolate the numerical value at x away the surface orthogonally. And this can
be done by extrapolate along the unit vector

sgn(φ)n(x) = x − cp(x)
|x − cp(x)| .

Since the closest point cp(x) has the shortest distance to x on Σ , this can only happen iff
x − cp(x) is orthogonal to the tangent plane at cp(x). So the unit vector n(x) is orthogonal
to Σ and pointing away from it.

6 Numerical Examples

6.1 Eikonal Equations

In this section, we first investigate the convergence behavior of the proposed algorithm
by solving the eikonal equation |∇u| = 1 on some simple two-dimensional and three-
dimensional implicit surfaces for which the exact solutions can be analytically found. Then
we extend the approach to various complicated surfaces to demonstrate the effectiveness of
the method.

In this first example, we consider solving the surface eikonal equation on the six-folded
star-shape curve given by

r = r0 + ε sin2(3πθ),

with r0 = 0.5, ε = 0.2 and the point source boundary condition u = 0 at (x, y) = (0.5, 0), as
shown in Fig. 6a. The exact solution at a given point on the curve is simply the arclength from
the source point. The infinity norm error on the solution using various meshes are plotted in

(a) −7 −6 −5 −4 −3
−9

−8

−7

−6

−5

−4

−3

− 2

log(Δx)

lo
g(

E
rr

or
)

log(Error) for Godunov−FS
log(Error) for LxF−FS
 reference with slope 0.5
 reference with slope 1

(b)

Fig. 6 (A six-folded star shaped curve) a The set up of the example. The point source is located at (0.5, 0)
plotted using a red dot. b The slope of both linear fitting lines is clearly greater 1. The corresponding conver-
gence order using the Godunov and the LxF Hamiltonians are 1.3413 and 1.0041, respectively (Color figure
online)

123



J Sci Comput (2016) 67:837–859 853

Table 1 (6-Folded star shaped curve) Errors (×10−2) in the numerical solution on various meshes

N 101 201 401 801 1601

(a) 11.6423 5.2356 1.9493 0.7665 0.2914

(b) 2.4838 1.2756 0.6288 0.2785 0.1638

N denotes the number of grid points in each physical direction
(a) Godunov–FS, (b) LxF–FS

Table 2 (6-Folded star shaped curve) The number of sweepings required to obtain the numerical solution

N 101 201 401 801 1601

(a) 22 34 54 91 161

(b) 58 96 166 301 559

(a) Godunov–FS, (b) LxF–FS

Fig. 6b and are shown in Table 1. In Fig. 6b, we have plotted also two reference curves with
slope equals 0.5 and 1, respectively. Even though the solutions from the LxF fast sweeping
is in general more accurate than that using the Godunov fast sweeping, it is clear that our
proposed approach using any of these numerical Hamiltonian converges to the exact solution
with an order of approximately 1.

In Table 2, we summarize the number of sweepings required to reach the converged
solutions using the Godunov hamiltonian and the LxF hamiltonian, respectively. The total
number of iterations for any of two numerical Hamiltonians is approximately linear (0.7187
and 0.8213 for two Hamiltonians respectively) in the number of grid points in each physi-
cal direction. We have the following observations. Unlike the Godunov–FS scheme for the
eikonal equation (1) which can be shown to converge in 2d iterations in R

d , the proposed
Godunov–FS method for the surface eikonal equation (2) takes more iterations to converge
and the number of iterations now depends on N . This can be explained by the fact that in
a part of the computational domain, we are solving an extension equation and the result-
ing solution is coupled with that from the eikonal equation. Therefore, the proof in, for
example, Zhao [41] does not directly go through. Secondly, the LxF–FS requires a larger
number of iterations than the Godunov–FS to converge. This is expected due to the exces-
sive numerical dissipation and viscosity in the LxF hamiltonian. The same observation has
been commonly reported in the fast sweeping community. Nevertheless, for a complicated
Hamilton–Jacobi equationwhen the local solver for theGodunovhamiltonian cannot be easily
constructed, the LxF hamiltonian still provides a simple strategy for designing a fast sweeping
algorithm.

Next, we consider a sphere with radius of 0.5, where the radius of the inner computa-
tion tube and the extension tube are 2Δx and 4Δx , respectively. The point source is set at
(−0.5, 0, 0), and the infinity norm error is measured along a circle where the sphere intersects
with the y–z plane. The numerical errors for various mesh size are given in Table 3. Like the
low dimensional case, the convergence rate is again approximately 1, as shown in Fig. 7.

We also plot some eikonal solutions on other two dimensional manifolds represented
implicitly using a level set function in Fig. 8. We use the same radius in the inner layer as
the sphere, i.e. 2Δx . Except the Stanford bunny in which we choose a slightly larger outer
tube (5Δx), all other examples use the same radius 4Δx .

123



854 J Sci Comput (2016) 67:837–859

Table 3 (Sphere) Errors in the numerical solution to the eikonal equation by the LxF fast sweeping scheme
on various meshes

N 81 101 121 141 161 181 201

Error (×10−1) 1.1927 0.9795 0.8389 0.7313 0.6489 0.5853 0.5323

N denotes the number of grid points in each physical direction
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(a) (b)

Fig. 7 (Sphere) a The solution to eikonal equation on the sphere. The point source and the circle where we
measure the error are represented by a red dot and a black dotted circle along the sphere respectively. b The
error in the solution to the eikonal equation on a sphere. The convergence order using the LxF fast sweeping
is approximately 1 (Color figure online)

6.2 Implicit Surfaces in the Closest Point Representation

In this section, we apply our algorithm to some implicit surfaces with closest point repre-
sentations. We consider the upper hemisphere and also the Mobius band. We first obtain the
viscosity solution in a small neighborhood of the implicit surface defined using a Cartesian
mesh, then we interpolate the solution on the corresponding triangulate surface, as shown in
Fig. 9.

6.3 An Anisotropic Eikonal Equation

We extend our proposed approach to solve an anisotropic eikonal equation on a moving
medium [25], given by

|∇u(x)| = |1 − v(x) · ∇u(x)|
F(x)

.

The equation has a wide range of applications in geophysics [11] and atmospherical sciences
like noise propagation modeling [9] or underwater acoustics. If we interpret this eikonal
equation in the context of wave propagation, u is the first arrival time that the wave propagates
from the point source. v(x) and F(x) are the ambient velocity field of the surroundingmoving
medium and the speed of the wave propagation, respectively. Various numerical methods
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Fig. 8 Solutions to the eikonal equations on various implicit surfaces

Fig. 9 The eikonal solutions on a, b upper hemisphere and c, d the Mobius band
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Fig. 10 The anisotropic eikonal equation in the three-vortex flow. The source point is set at (0.5, 0, 0), and
the centers of vortex flow are set at (0, 0, 0.5), (0, −0.5, 0) and (0.5, 0, 0) respectively. Contour lines of our
computed solution are plotted in black solid line on top of a, b the flow field and c, d the contour lines of the
unperturbed first arrivaltime in magenta dotted lines (Color figure online)

might be used to solve the equation, but they are limited to a typical Euclidean space. In this
part of the paper, we will solve this generalized eikonal equation on a sphere given by

|∇Σu(x)| = |1 − v(x) · ∇u(x)|
F(x)

where the ambient velocity v ∈ R
3 is orthogonal to the surface (v · n = 0) and has a small

magnitude comparing to F (such that |v| � F). One simple flow field is given by the
following N -point vortex flow [22,23]

v(x) = 1

2π

N∑

j=1

s j (x j × x)
|x j − x|2 ,

where x j is the center of a point vortex with the index j and si is the corresponding strength
of the vortex. In the following examples, we take F = 3, the radius of the sphere as 0.5,
s j = 4 for all j and the point source is always located at (−0.5, 0, 0). Figure 10 shows
our solution to the three-point vortex flow (N = 3) with the centers of the point vortex
are located at (0, 0, 0.5), (0,−0.5, 0) and (0.5, 0, 0), which are highlighted by red stars in

123



J Sci Comput (2016) 67:837–859 857

Fig. 11 The anisotropic eikonal equation in the four-vortex flow. The source point is kept at (−0.5, 0, 0).
Contour lines of our computed solution are plotted in black solid line on top of a, b the flow field and c, d the
contour lines of the unperturbed first arrivaltime in magenta dotted lines (Color figure online)

Fig. 10a, b. We plot the contours of our computed first arrival time on sphere in black solid
lines. In Fig. 11, we repeat the same example but consider having four point vortices located
at (−1,±1,±1)/2

√
3. To demonstrate the effect of the moving medium, we plot also the

unperturbed traveltime corresponding to |v| = 0 in magenta dotted lines in Figs. 10 and
11c, d. We can clearly see the perturbation in the arrival time due to the ambient flow on the
surface.

7 Conclusion and Future Work

In this paper, we have proposed a simple, computationally efficient and convergent numerical
algorithm to solve surface eikonal equations on implicit surfaces. The approach is developed
based on the embedding method so no surface triangulation is necessary. We have carefully
studied a simple approach and have explained why we cannot simply solve the eikonal
equation using the Godunov fast sweeping method in a small neighborhood of the implicit
surface. Our proposed method only requires that the overall tube radius satisfies h = O(Δx),
which is optimal in the sense that the total number of mesh points in the computational tube
is O(Δx1−d) for a co-dimensional one surface in R

d .
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In the future, we plan to couple the level set method to extend the algorithm to simulate
evolution of surfaces in which the motion law is modeled by the viscosity solution of a
certain HJ equation. In addition, we also plan to develop higher order accurate schemes to
HJ equations on implicit surfaces.

Acknowledgments The work of Leung was supported in part by the Hong Kong RGC Grants 605612 and
16303114.
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