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UNIPOTENT VARIETY IN THE GROUP COMPACTIFICATION

XUHUA HE

Department of Mathematics, M.I.T., Cambridge, MA 02139

ABSTRACT. The unipotent variety of a reductive algebraic group G plays an impor-
tant role in the representation theory. In this paper, we will consider the closure I/
of the unipotent variety in the De Concini-Procesi compactification G of a connected
simple algebraic group G. We will prove that &/ — U is a union of some G-stable
pieces introduced by Lusztig in [L4]. This was first conjectured by Lusztig. We will
also give an explicit description of I/. It turns out that similar results hold for the
closure of any Steinberg fiber in G.

INTRODUCTION

A connected simple algebraic group G has a “wonderful” compactification G,
introduced by De Concini and Procesi. The variety G is a smooth, projective
variety with G x G action on it. The G x G-orbits of G are indexed by the subsets
of the simple roots.

The group G acts diagonally on G. Lusztig introduced a partition of G into
finitely many G-stable pieces. The G-orbits on each piece are in one-to-one cor-
respondence to the conjugacy classes of a certain reductive group. Based on the
partition, he developed the theory of “Parabolic Character Sheaves” on G.

In this paper, we study the closure I/ of the unipotent variety U of G in G, par-
tially based on the previous work of [Spr2]. The main result is that the boundary
of the closure is a union of some G-stable pieces. (see Theorem 4.3.)

The unipotent variety plays an important role in the representation theory. One
would expect that U, the subvariety of G, which is analogous to the subvariety U
of GG, also plays an important role in the theory of “Parabolic Character Sheaves”.
Our result is a step toward this direction.

The arrangement of this paper is as follows. In section 1, we briefly recall some
results on the B x B-orbits of G' (where B is a Borel subgroup of G) and results on
U, which were proved by Springer in [Spr1] and [Spr2]. In section 2, we first recall
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the definition of the G-stable pieces and then in 2.6, we show that any G-stable
piece is the minimal G-stable subset of G that contains a particular B x B-orbit.
In the remaining part of section 2, we establish some basic facts about the Coxeter
elements, which will be used in section 4 to prove our main theorem. In section
3, we show case-by-case that certain G-stable pieces are contained in /. Hence a
lower bound of U is established.

A naive thought about ¢/ is that the boundary of the “unipotent elements” are
“nilpotent cone”. In fact, it is true. A precise statement is given and proved in 4.3.
Thus we obtain an upper bound of /. We also show in 4.3 that the lower bound
is actually equal to the upper bound. Therefore, our main theorem is proved. In
section 4, we also consider the closure of arbitrary Steinberg fiber of G in G. (An
example of Steinberg fiber is ¢.) The results are similar. In the end of section 4,
we calculate the number of points of U over a finite field. The formula bears some
resemblance to the formula for G.

1. PRELIMINARIES

1.1. Let G be a connected, simple algebraic group over an algebraically closed
field k. Let B be a Borel subgroup of GG, B~ be the opposite Borel subgroup and
T = BN B~. Let (a;);er be the set of simple roots. For i € I, we denote by
o), wi, w; and s; the simple coroot, the fundamental weight, the fundamental
coweight and the simple reflection corresponding to «;. We denote by <, > the
standard pairing between the weight lattice and the root lattice. For any element
w in the Weyl group W = N(T')/T, we will choose a representative w in N(T') in
the same way as in [L1, 1.1].

For any subset J of I, let W; be the subgroup of W generated by {s; | j € J}
and W7 (resp. /W) be the set of minimal length coset representatives of W/W
(resp. W;\W). Let wy be the unique element of maximal length in W;. (We will
simply write wi as wg.) For J, K C I, we write /W for 7W n WX,

1.2. For J C I, let P; D B be the standard parabolic subgroup defined by J and
P; D B~ be the opposite of P;. Set L; = Py P, . Then L; is a Levi subgroup
of Py and P; . Let Z; be the center of L; and Gy = L;/Z; be its adjoint group.
We denote by mp, (resp. 7TPJ—) the projection of P; (resp. P; ) onto G .

Let G be the wonderful compactification of G ([DP] deals with the case k = C.
The generalization to arbitrary k was given in [Str] 2 It is an irreducible, projective
smooth G x G-variety. The G x G-orbits Z; of G are indexed by the subsets J
of I. Moreover, Z; = (G x G) Xp-xp, G, where P, x Pj acts on the right on
G x G and on the left on G; by (¢,p) -z = Tp- (q)zmp, (p)~t. Let hs be the image
of (1,1,1) in Z;.

We will identify Z; with G’ and the G x G-action on it is given by (g,h) - x =
grh=1. ) ) )

For any subvariety X of G, we denote by X the closure of X in G.

For any finite set A, we will write |A| for the cardinality of A.
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1.3. For any closed subgroup H of GG, we denote by H 4,44 the image of the diagonal
embedding of H in G x G and by Lie(H) the corresponding Lie subalgebra of H.
For g € G, we write YH for gHg~ 1.

For any parabolic subgroup P, we denote by Up its unipotent radical. We
will simply write U for Ug and U~ for Ug-. For J C I, set Uy = U N L; and
U, =U"NLjy.

For parabolic subgroups P and @, define

PP = (PNQ)Up.

It is easy to see that for J, K C I and u € 7W¥, P}uPK) = Pjnadw)K-

Let U be the unipotent variety of G. Then U is stable under the action of Ggiqg
and U is stable under the action of U x U and Tl;q9. Moreover, U = Ggiqq - U.
Similarly, U = Giag - U (see [Spr2, 1.4]).

1.4. Now consider the B x B-orbits on G. We use the same notation as in [Spr1].

For any J C I, u,v € W, set [J,u,v] = (B x B)(u,?) - hy. It is easy to see

that [J,u,v] = [J,z,v2z7 ], where u = zz with x € W7 and z € W;. Moreover,

G= ] || [J,z,w]. Springer proved the following result in [Sprl, 2.4].
JCI zeWJ weWw

Theorem. Let x € W7, o/ € WE, w,w' € W. Then [K,x',w'] is contained

in [J,x,w] if and only if K C J and there exists u € Wx,v € W; N WE with
rou~t <2/, w'u < wo and [(wv) = [(w) + 1(v).

As a consequence of the theorem, we have the following properties which will
be used later.

(1) For any K C J, w € W7 and v € Wy, [K,wv,v] C [J,w, 1].

(2) For any J C I, w,w’ € W’ with w < w’, then [J,w’, 1] C [J, w, 1].

1.5. In this subsection, we recall some results of [Spr2].

Let € be an indeterminate. Put o = k[[¢]] and K = k((¢)). An o-valued point of
a k-variety Z is a k-morphism -~y : Spec(o) — Z. We write Z(0) for the set of all
o-valued points of Z. Similarly, we write Z(K) for the set of all K-valued points
of Z. For v € Z(0), we have that v(0) € Z, where 0 is the closed point of Spec(o).

By the valuative criterion of completeness (see [EGA, Ch II, 7.3.8 & 7.3.9)),
for the complete k-variety G, the inclusion o < K induces a bijective from G(o)
onto G(K). Therefore, any v € G(K) defines a point v(0) € G. In particular, any
v € U(K) defines a point v(0) € G. Here we regard U(K) as a subset of G(K) in
the natural way.

We have that o € U if and only if there exists v € U(K) such that v(0) = z
(see [Spr2, 2.2]).

Let Y be the cocharacter group of 7. An element A € Y defines a point in
T (k[e,€7t]), hence a point py of T(K). Let H C G(0) be the subgroup consisting
of elements v with v(0) € B. Then for v € U(K), there exists 1,72 € H, w € W



4 XUHUA HE

and A € Y, such that v = y,wpyvy2. Moreover, w and A are uniquely determined
by « (see [Spr2, 2.6]). In this case, we will call (w, \) admissible. Springer showed
that (w, A —w™1)) is admissible for any dominant regular coweight \ (see [Spr2,
3.1]).

For A € Y and x € W with 27! - A\ dominant, we have that p(0) = (&, 1) -
Ri(z-1x), Where I(z=1)) is the set of simple roots orthogonal to 271\ (see [Spr2,
2.5]). If moreover, (w, ) is admissible, then there exists some t € T such that

(U X U)(U).CCt,.CC) . hj(x—l)\) cU.

2. THE PARTITION OF Z;

2.1. We will follow the set-up of [L4, 8.18].

For any J C I, let P’ be the set of parabolic subgroups conjugate to P;. We
will write B for P?. For P € P/, Q € PX and u € "W¥ | we write pos(P, Q) = u
if there exists g € G, such that 9P = P;,9Q = “Py. For J,J' C I and y € T'wd
with Ad(y)J = J', define

25 ={(P,P',7)| P e P’,P' € P”,y = UpgUp,pos(P',*P) = y}

with the G' x G action given by (g1,92) - (P,Q,7) = (9*P,92 P’ gayg; *).

To z = (P, P',y) € Zg, we associate a sequence (Ji, J}, Uk, Yk, Py P, Vi) k>0
with Ji, Ji C I, up, € W, yp € "W Ad(ye)Jy = J},, P € Py, Pl € Pyr,m =
Up;gUp, for some g € G satisfies pos(P;,9P;) = ug. The sequence is defined as
follows.

PO:P7P(;:P,7’)/0:’77J0:JvJ(,):Jl7u0:pOS(P67PO)7y0:y'

Assume that k > 1, that P, P!, Ym, Jm, J 1y Um, Ym are already defined for m < k
and that u,, = pos(Py,, Pn), Pm € Py,,, P}, € Py, for m < k. Let

Je = Je—1 NAd(y;  ug—1)Jk—1, I} = J—1 N Ad(uy yp—1) Je-1,

Py, = gk_—ll(gk*lPk—l)(P’g_lpk_l)gk—1 € Py, P = Pkp_kfl cPy

where

gk—1 € Yk—1 is such that 9~ P;_; contains some Levi of P,_; N P_,,

up = pos(Pf, Pr), Yk = up 1 Yk—1, Yk = Up; gr—1Up, -
It is known that the sequence is well defined. Moreover, for sufficient large n,
we have that J,, = J), = Jpy1 = J), 1 = -+ and uy, = Uupq1 = --- = 1. Now we

set B(z) = uguy - - - tun, n > 0. Then we have that 5(z) € 7' W. By [L4, 8.18] and
[L3, 2.5], the sequence (Jg, J}., uk, Yk )k>0 is uniquely determined by (J, 5(2),y).
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The map w +— yw~" is a bijection between W+ and T'W. For w e W, set
73, ={z€ 24| B(z) = yu'}.

Then (Zg,w)weWJ is a partition of ij into locally closed G-stable subvari-
eties. For w € W7, let (Ji, J}, uk, yx)k>0 be the sequence uniquely determined
by (J,yw™!,y). Then (P, P',y) + (P, P{,71) define a G-equivariant map o :
7Y 71
le — ZJl,uglw'

~ ~ J
2.2. Let J C I. Set Z; = Z;°"° and J* = Ad(wowy)J. For w € W7, set
wy = wow({w—l. The map w — wy is a bijection between W+ and J"W. For any
w € W7, let

Zyw=A{2€Z;s|B(z) =wys}.

Then (Z.4)wew is a partition of Z; into locally closed G-stable subvarieties.

Let (Jg, J4, Uk, Yr ) k>0 be the sequence determined by (J,wy, wowg) (see 2.1). As-

sume that J, = J), = Joqp1 =J) 1 = and up = upy1 =--- = 1. Set vg = wy

and v, = u,;_llvk_l for k € N. By [L4, 8.18] and [L3, 2.3], we have uy € T W I

and ug41 € Wy, for all £ > 0. Hence vy € Wy, for all £ > 0. Moreover, it is

easy to see by induction on k that vy, = vpw. In particular, w = y, € »W/n,

Ad(w)Jy, = J,, and w normalizes B N L; . We have the following result.

Lemma 2.3. Keep the notation of 2.2. Let z = (PJ,w31PJ*,w31UpJ* wywbUp, ),
cmn—1 . — :n—2.—1 L —1

where b € 1”nl(UpJ;L NUy, )" Unfl(UpJ; ) NU;,_,) " (UPJ{ NUy,)T or

be B. Then z € Zj,,.

Proof. For any k, set P, = Py, , P, = i}’:lpjl/c. Then
1.1 L1 L1
P. N P]; = Py, N "k+1"% PJ:@ = "t1(Py, N PJ:'Q)'

-1 - Juyir s T _ _
Note that u, = € “*W+-k. Then L;, N Ly = LkaAd(%l)J;c = LJl;+1. Thus

L —1 s —1 . —1 . .
Vkt1 LJI/€+1 = "st1(Ly, N Ly ) is a Levi factor of Py N Py Moreover, we have

-1 . —1
(vk PJ’ ) s—1 (uk P‘Jl/c)

F% o L 0 __v—l __®_1
P.r=P, = "1 (P ) = ’“+1PkaAd(a;1)J,; = "1 Py

k k+1

P o1 (°k Py,) o1 (“k Py ) o1
Pt =" (P, ) = (P, 7Y = Py ad(an) g
o1 51
=" PAd(yk)(JknAd(y,gluk)Jk) =" PAd(yk)Jk+1
If b € B, then set gy = wb, 7% = Up; grUp, and 2, = (P, P, v) for all k. In

.—1 P— . .
. p " .
this case, k+1LJ;C+1 = yk+1LJ;C+1 =YLy, CYP,=9P;. Thus 9% P contains
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some Levi of P, N P;. Moreover,

b_l _1 —1 . —1

. —1
P ) —1 Y P :
19k k Paaggy i s) o ( k Ad(ig) Ter1) b Ad(ig) g1
9 (9" Py) T ) =" (P, )
-1

b bt
= PJkﬂAd(ykjl)Ad(yk)Jk_;rl = PJk+1 = PJk+1'
Therefore, 9(2) = zg41-
If b= (" 10, by by ") - - (07 Tby0y) (Wt "), where by € Up, NU,_,

for 1 <j<nandteT, then set

n—=k . —lb —n—i—k) ( )( n+1— kt —n— l—l—k)

—1
ar = (W nUp W bi U,

In this case, set gr = wak4+1, V& = Up; gxUp, and z, = (P, P.,vx). For
>0, Jjt1=J;N Ad(yj_H)J and vj41 € Wy, Thus YLy ., = @jllﬁﬁlLJHl C
J+1LJ = Lj,. Then w’ ”k+ﬂ+1UJk . C w’ LJ,cﬂ C Lj,. So ax41 € Pr. Thus

9k P, = ¥ P, contains some Levi of P T ﬂ P 7] - Moreover,

. —1
—1¢g (" Pad(g)paq) 4 Grt
g ()" P g — it py

1 .1

Thus d(zx) = (Q, Q’,v’), where QQ = “»1 Py, Q = ”k+1PJ;c+1 and v =
Ug grUg. Note that ”k+1Up, C Q and T C Q'. Moreover, for j > 1,

Tt

Li—1 L1 . L1
wjvk+j+1UJk+j C w’ LJk+j C LJk+1 = vk+1yk+lLJk+l = ”k+1LJI,€+1 C Q/. Thus
ap+1 € Q. Hence, 21 = (ap+1, ars1) - V(2k).

In both cases, ¥(zx) is in the same G orbit as zx41. Thus

B(z) = B(z0) = w1 f(z1) = =uwug---u, =wy. O

Remark. 1. From the proof of the case where b € B, we can see that

Py

n’

.71 - — . .
ﬂn(PJ,wJ PJ*,leUPJ*wabUPJ> = (PJ

n’

Up,, wbUp, ).

This result will be used to establish a relation between the GG-stable pieces and the
B x B-orbits. ) B
2. The fact that (Py,%s PJ*,wleP]*wabUP]) is contained in Zj,, for any
be " T (Up, NU,, )" (Up,, MUy, ) " (Up,, NU,)T plays an
7, ~ 7!

important role in section 3. We will discuss about it in more detail in 3.1.

2.4. Let (Jp, J), un, yn)n>0 be the sequence that is determined by w; and wow({.
Assume that J, = J), = Jpp1 = J, | <o+ and U, = Upy1 = -+ = 1. Then

z— 19" (z)isa G—equlvarlant morphlsm from Z Jw tO Zw 7.1 and induces a bijection
from the set of G-orbits on Z,, to the set of G-orbits on ZJ 1



UNIPOTENT VARIETY IN THE GROUP COMPACTIFICATION 7

Set f)Jw =Ly, and éjw = 'Lbf/]w Let Ng(f)Jw) be the normalizer of f)Jw in
G. Then C Jw 18 a connected component of Ng(L Jw) and Z 1isa fibre bundle
over P/» with fibres isomorphic to C Jw- There is a natural bijection between
C’J,w and FF = {z=(Pj,, Py ,v) | z¢€ Z}Unl} under which the action of I~1J7w on
C Jw by conjugation corresponds to the action of Py, /Up, on F by conjugation.
Therefore, we obtain a canonical bijection the set of G-stable subvarieties of Z Jyw
and the set of L Jw-stable subvarieties of Crw (see [L4, 8.21]). Moreover, a G-
stable subvarlety of Z Jw 1s closed if and only if the corresponding L Jw—stable
subvariety of C Jw 1S Closed By the remark 1 of 2.3, for any b € BN L Jw, the

G-orbit that contains (Py, s ‘P 7+, Wb) corresponds to the L Jw-orbit that contains
wb via the bijection.

2.5. Since G is adjoint, the center of P/Up is connected for any parabolic subgroup
P. Let Hp be the inverse image of the (connected) center of P/Up under P —
P/Up. We can regard Hp/Up as a single torus A; independent of P. Now A
acts (freely) on Z; by 6 : (P, P',~) — (P, P',~z) where z € Hp represents 6 € A .
The action of G on Z; commutes with the action of A; and induces an action
of Gon Ay \ Z;. There exists a G-equivariant isomorphism from Z; to A \ Z;
which sends (g1, g2) - hs to (92Py, 9 P}, UglpJ—glgg_lﬂgsz)- We will identify Z;
with AJ \ ZJ.
It is easy to see that AJ(ZJ’QU) = Zj’w. Set Zj. = A\ Zj’w. Then

|| Zsw.

weWJ

Moreover, we may identify A ; with a closed subgroup of the center of L Jw- Set
L., = EJ’M/AJ and Cj,, = éJ7w/AJ. Thus we obtain a bijection between the set
of G-stable subvarieties of Z;,, and the set of L ,-stable subvarieties of C's,, (see
[L4, 11.19]). Moreover, a G-stable subvariety of Z,, is closed if and only if the

corresponding L j ,,-stable subvariety of C'j ,, is closed and for any b € BNL Jw, the

G-orbit that contains (Py, s ‘P 7+, Wb) corresponds to the L ,-orbit that contains
wbA ; via the bijection.

Proposition 2.6. For any w € W7, Z;., = Gaiag - [J,w,1].

Proof. By 2.3, (w,b) - hy € Zj, for all b € B. Since Z;, is G-stable,
deg[J w. 1] C ij

For any z € Zj ., let C be the L ;,,-stable subvariety corresponding to deg z
and let ¢ be an element in Cjw such that cA; € C. By 2.2, w normalizes BﬂLJw
Thus cis L Jw-conjugate to an element of w(B NL Jw)- Therefore, z is G-conjugate
to (w,b) - hy for some b € BN ij’w. The proposition is proved. [J

Proposition 2.7. For any w e W7, Z;,, = Gaiag(WT,1) - hy.
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Proof. Since (wT,1)-hy C Zj., and Z;,, is a G-stable closed variety, we have
that deg(wT, 1) ~hy C Z‘],w.

Set X = {(at,u)-hy |t € T,u € U}. Forany u € “U; and t € T, we have that
Ad(it)™'u € Uy and v € “U; C U. Consider the map ¢ :¥ Uy x T — X defined
by ¢(u,t) = (u,u)(it, 1) - hy = (wt, (wt) tuitu=1) - hy, for u € ?Uy,t € T.

It is easy to see that there is an open subset T of T, such that the restriction
of ¢ to YUy x T’ is injective. Note that dim(X) = dim(T) + dim(U/Up,) =
dim(T) + dim(Uy) = dim(“U; x T). Then the image of ¢ is dense in X. The
proposition is proved. [

Remark. This argument was suggested by the referee.

2.8. For w € W, denote by supp(w) the set of simple roots whose associated
simple reflections occur in a reduced expression of w. An element w € W is called
a Coxeter element if it is a product of the simple reflections, in some order, or in
other words, |supp(w)| = l(w) = |I|. We have the following properties.

Proposition 2.9. Fix i € I. Then all the Coxeter elements are conjugate under
elements of Wi_g;y-

Proof. Let ¢, ¢’ be Coxeter elements. We say that ¢’ can be obtained from
¢ via a cyclic shift if ¢ = s;,8;,---s;, is a reduced expression and ¢’ = s;,¢s;,.
It is known that for any Coxeter elements ¢, ¢/, there exists a finite sequences of
Coxeter elements ¢ = ¢g, ¢y, ... ,¢n = ¢ such that cyy1 can be obtained from ¢y
via a cyclic shift (see [Bo, p. 116, Prop. 1]).

Now assume that ¢ = s;, S, - - - 55, is a reduced expression of a Coxeter element.
If iy # 4, then s;,¢s;, and c are conjugated by s;, € Wi_iy- It i = 4, then
Si,C8iy = SiySis " 8i, C(8iy8is i, )7 1. Therefore, if a Coxeter element can be
obtained from another Coxeter element via a cyclic shift, then they are conjugated
by elements of W;_g;,. The proposition is proved. [

Remark. The proof of [loc. cit] also can be used to prove this proposition.

Proposition 2.10. Let J C I and w € WY with supp(w) = I. Then there exist
a Coxeter element w', such that w' € W7 and w' < w.

Proof. We prove the statement by induction on I(w).

Let i € I with s;w < w. Then s;w € WY, If supp(s;w) = I, then the statement
holds by induction hypothesis on s;w. Now assume that supp(s,w) = I — {i}. By
induction, there exists a Coxeter element w’ of Wj_y;y, such that w' € w1
and w’ < s;w. Then s;w’ is a Coxeter element of w and s;w’ < w.

Since w' € Wi_gpy, (w')"Lay is either a; or a non-simple positive root. We
also have that w’ is a Coxeter element of W;_g;,. Thus if (w)"ta; = oy, then
< ay, oz}/ >= 0 for all j # 7. It contradicts the assumption that GG is simple. Hence
(w')"'ay is a non-simple positive root. Note that if s;w’ ¢ W7, then s;w’ = w's;
for some j € J, that is, (w’)"ta; = a;. Therefore, s;uw’ € W7, The proposition is
proved. [J
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Corollary 2.11. Letie€ I, J =1—{i} and w be a Coxeter element of W with
we W7, Then | |-, U ew 5 supp(uwy=1 ZK,w C Zw-

Proof. By 1.4, [K,wv,v] C [J,w,1] for K C J and v € W;. Since Z,,, is
G-stable, (0"'i0T, 1) - hx C Zju. By 2.9, (W'T,1) - hx C Zj,, for all Coxeter
element w'. By 2.7, Zk . C Zj, for all Coxeter element w’' with w’ € W¥.
For any u € W with supp(u) = I, there exists a Coxeter element w’, such that
w' € WX and w' < u. Thus by 1.4, we have that [K,u,1] C Z;,. By 2.6,
ZKu C m The corollary is proved. [

Remark. In 4.4, we will show that the equality holds.

3. SOME COMBINATORIAL RESULTS

3.1. Fix 7 € I. Define subsets [, of I for all & € N in the following way. Set
I, = {i}. Assume that I} is already defined. Set

Iipi ={ajjel - Ulell, < a}/,am > 0 for some m € I }.

It is easy to see that if ji,jo € I with j; # jo, then < ozjl,OzjV2 >= (0. Thus
s1, = Hjelk s;j is well-defined. For sufficiently large n, we have I,, = I,,11 = --- =
@ and sy, = sy,,, = --- = 1. Now set wy = sy,s1,_, -5y, for k € N. We will
write w’ for wy. Set J_; = I and Jy = J = I — {i}. Then w’ is a Coxeter
element and w’/ € W7. Let (J,,J!, un,yn) be the sequence determined by w?’

and wowb]. Then we can show by induction that for & > 0, Jp = Jr—1 — Ix41,

ug = wbjk_lw‘oj’“sjk+1w6]’“+lw6]’“, Yk = wbjk_lwbijIkS]k_l ---s, and J, = Ad(yg) k.
In particular, J, = @. Thus i‘;’wJ =T and éJ’wJ =’ T. Since w is a Coxeter
element, the homomorphism 7' — T sending t € T to (w”)tw/t~! is surjective.
Thus _Z/J7wJ acts transitively on C‘vaj. By 2.5, G acts transitively on Z; .

For k € N, we set v, = w(‘)]’“’lw(‘)]’“w,;il. Then it is easy to see that

W (Up,, NU_) =" (Up, OU;,).

Ik

w"flwn _ w _
Therefore by 2.3, for b € +1(UPJ—n nNU; )2 (UPJ—1 NU; )T, we have

that (wa, 1) -hy € ZJ’wJ.
In the rest of this section, we will keep the notations of J, Ji, w’ and wy, as
above. We will prove the following statement.

Proposition. Let X be a closed subvariety of G satisfying the following condition:
for any admissible pair (w,\) and x € W with x =1\ is dominant, there exist some
t €T, such that Giag(U x U)(wit, %) - hyg-1x) C X. Then Z;,0 C X.

An example of such X is /. There are some other interesting examples, which
we will discuss in 4.5. The proof is based on case-by-case checking.
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Remark. The outline of the case-by-case checking is as follows.

For A €Y, we write A > 0if A€ >, Rxooy)'.

We start with the fundamental coweight w,”. Find x € W that satisfies the
conditions (1) zw,” > 0 and (2) for | € I, either (s; — 1)zw; > 0 or sjaw,” # 0.
Such z always exists, as we will see by case-by-case checking. The elements zw,’
that we obtain in this way are not unique, in general. Fortunately, there always
exists some x € W that satisfies the conditions (1) and (2) and allows us to do
the procedures that we will discuss below.

In the rest of the remark, we fix such z. Since zw) € Y, there exists n € N,
such that nzw,” is contained in the coroot lattice. Set A = nzw,”. Now we can
find v € W such that (v, \) is admissible. (In practice, we find v € W with
[(v) = |supp(v)| and —vA > 0. Then we can use lemma 3.2 to check that if (v, \)
is admissible.) By the assumption on X, Ggiqq(U x U)(03t, %) - hy C X for some
teT.

In some cases, x~'vr = wy. Since wy is a Coxeter element, (w;T,1) - hy =
Tdiag(th, 1) -hy C X. By 2.7, ZJﬂUJ c X.

In other cases, the situation is more complicated. We need to choose some
u € U, such that (uvit,&) - hy € Zj.,. This is the most difficult part of the
case-by-case checking. The lemma 3.3 and lemma 2.3 will be used to overcome the
difficulties.

1

Throughout this section, we will use the same labelling of Dynkin diagram as in
[Bo]. For a,b € I, we denote by s[,; the element sys,_1 - -5, of the Weyl group
W and 'é[a,b] = $pSp_1 - Sa- (If b < a, then Sla,b) = 1 and é[a,b] = 1.)

Lemma 3.2. Let x = s;,8;, -+ 8;, with [supp(z)| = n. Then (1 —z 1w’ =0
if k ¢ {i1,iz,...,in}t and (1 — x_l)w;/j = 80,8, 1 Sig 0. Thus (x,X) is

admissible for all X € 377 Nsj, 84, - 8i,, 0.

The lemma is a direct consequence of [Bo, p. 226, Ex. 22a], which was pointed
out to me by the referee.

Lemma 3.3. Let w,x,y1,y2 € W and t € T. Assume that y1 = Si; i, - Si;,

Y2 = Sip Sio " Siyy, With k41 = |supp(y1y2)]. If moreover, < ozivll,o« >=0

for all 1 <1y <l <1 and (1 — y1y2)zw,’, (1 — y1)ww,” € Z?Zl R>0aivj, then
there exists u € U_w—lail+1U_ "'U—w_lamk such that (i~ 1wut,1)-hy €

Gaiag(U x U)(it, 1927) - hy.

w—la”+2

Proof. We have that (1—yyy2)zw? = 327 (1 —5i,)8i,,, - Si . 2w, . Note that

=1
i1,142, ... ik are distinct and (1 — s;,)s4,,, -+ 8i, 2w € Rozivj for all j. Hence
. . ee. g Vv Vv S ) e Vv .
(1 = 54;)86,,, " Sip 7w, € Reoay) for all j, i e, < s, - s, aw], 05, >€
. 1-—1 1 . . . ..
R-(. Therefore & Sivin siHanij Sij41 " Si, @ C Up,. Similarly, we have

.1 . .
that w U_aijw € UPJ_ for 7 < 1.
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There exists u; € Uaij and u; € U_aij such that u;s; u; = ug Note that

i ’ .1 .
uyuy Uy € Lo gi 0y, Wtk € UPI*{Z‘Z—H@} and 27 w4z C Up,. Thus

! / s ! ! / . . U !/ / . U
Uy =« - U T = U Ug - - Upg g Uik Sy, Ui+ kT € Upp_( yUgUg - - Upy 180, TUP,

!, / . .
CUujuy - upyp 18:,2Up,.

We can show in the same way that wjub---u;, & € Uy1922Up,. Therefore,
(wt, uhuh - up, &) -hy € (U x U)(wt, 152d) - hy. Set u =~ uj quj, o up, W
and v’ =t~ 1t~ (wjub - u)) it € U —. Then

(& Mbut, 1) - hy = (@7 bute/, 1) - hy = (27 (ufuly - upy ) "Hit, 1) - by
€ Gaiag(U x U)(Wt, 9192%) - hy. O

3.4. In subsection 3.4 to subsection 3.7, we assume that G is PGL, (k). Without
loss of generality, we assume that ¢ < n/2. In this case, w’/ = S[i41,n— 115[1 ok For
any a € R, we denote by [a] the maximal integer that is less than or equal to a.

For 1 < j <14, set a; = [(j — 1)n/i]. For convenience, we will set a;11 =n — 1.
Note that for j <i—1, aj41 —a; = [jn/i]| - [(] —1)n/i] = [n/i] > 2. Therefore, we
have that 0 = a; <a1—|—1<a2<a2—i—1< <a;<a;+1< a1 =n—1. Now
set bp = 0. For k € {1,2,... n—l}—{ag,ag,... ya;} —{ag+1,a3+1,... ,a;+1},
set b = 1. For j € {2, 3 i}, set by, = (j —1)n —iay and by, 41 =i — by,. In
particular, b, _1 = 1.

Now set v = Slar+1,a2—0,., 0] Slas+1,a5 8y, 0] " Slai+1,ai11—8s,, | o] where d,p is
the Kronecker delta. Set vj = Siq, +1,a;,1]5[a;0141,aj52] * " " Slai+1,a:41] TOr 1 < J < i

Set A = Z] D baj+k(S[ay+1,a;+k— 1]vj+1)_1 gk It is easy to see that
forl<a<b<n—1land1<k<n—1,

b )
(> a1 @) if k=a—1;
— Z?:a o), if k = a;
Vv .
S[a.b] 0%k = § o), if a <k < b;
o +ay g, ifk=0+1;
Lo, otherwise .

. -1,V _
j+2,0] S[ai+1,ai+1]) aaj—i—k -

(S[aj+17aj+k_1]'vj+1>_1a;/j+k. By 3.2, (v, \) is admissible.

If baj—i—k 7& 0, then (S[aj—l—l,aj—i—k:—l]S[aj+1+1,aj+2—5ba
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We have that

ajri1—a;—1

A
§ § -1 -1 \Y% § -1 -1 \%
A baj+kvj+1S[aj+1,aj+k—1]aaj+k + baj+1Uj+18[aj+1,aj+1—1]aaj+1
Jj=

Jj=1
i ajy1— aj_l k aj+1—a;+1 Ait1—a;
_ \Y V
E E E bag—HcOéa at E bag+1 § Qa,+1 + baz‘+1 E : Ya;+1
j=1 k=1 = =1 =1

i Aj+1—a;
- E z E bag+kaa +1 + § :bag+1 a3+1+1
j=1 k=1 =

aj+1—a; Gj41—0aj

Z Z Z bag‘f‘kaa +Z+Zbag+1 Qajqq+1

j=1 1=1

a.7+1_aj

M@

((aj41 —a; — )i+ baj+1)aavj+l + ((az = 1)i + by, )
j=1 =2

.

+ (baj +(aj41 —a; —2)i+bayy, + baj+1)aavj+1
j=2

i Gj1—aj

- Z Z ((aj41 —aj = Di+ by, ). 1y = naw,’.

j=1 1=1

Note that a; > j for j > 2. Set x; =1 and T; = S[j11,a;,1]5[j4+2.a;42] " S[i,ai]
for 1 <j<i—1. If j =1, we will simply write x for z;.

Lemma 3.5. For 1 < j <1, we have that

aj+1
na;w Zln—zal-i-z ]n—d
i Gk+1—ag
+ Z Z CLk_|_1 — A — l)i + bak+1)aavk+l'

k=j+1 =1

In particular, nzw, = Z] L2 T (a4 —ay — i+ baHl)achjH.

Proof. We argue by induction on j. Note that nw, = Z;;i l(n —i)a) +

n—1

—; i(n—1)a). Thus the lemma holds for j = .
Note that jn —i(a; +1) = jn—iaji1 +i(aj41 —a; —1) = ba, , +i(ajr1—aj—1).
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Assume that the lemma holds for j. Then

Jj—1 @541
nrj_ 1w, = 5[j.q,] Z I(n —i)oy" + spja,] Z (jn —il)ay
=1 I=j
agr1—ag
+ S[j,a;] Z Z ak+1 — ay, —l)i+bak+1)a(\l/k+l
k=j+1 [=1
Jj—2 aj aj aj
=S U ai + G- D) Y af —jin-)Da¥ + 3 (- ila),
=1 I=j—1 1=j I=j+1
ajt1
+ (n—ile;+ D) (e, + ol )+ Y (in—il)a)
l=a;+2
i Ap4+1—0ak
+ Z Z (k41 — ar — Ui+ bay ) 1
k=j+1 =1
j—2 a)
Zl(n—z)al +(—1)(n—1) Z af —j(n—i Zal + Z (jn —il)oy’ 4
=1 l=j—-1 l=j l=j+1

i Gk+1—0k

+ (jn — z(aj + 1 Oz ;1 Z Z ak+1 —a —1)i+ bak+1)0%vlk+z
k=j [=1

J—2 aj
=Y ln =)o) + (G- Dn =i +> (G —Dn—1i) —jn—i)+jn—il+1)a)
=1 I=j

i QAkp41—0ag

DI SN RS
_,j —

Jj— i Qg41—0g

Zln—z )y + Z (j—Dn—il)oy +Z Z ((ag41 — ar — )i+ bay )y -
k=j =1

=1 l=j—-1

l\’)

Thus the lemma holds for 5. [

Lemma 3.6. We have that z ‘vz = w”.
-1 .
Proof. If a; > j + 1, then 3[ +1a +1] Slaj+Las1] = 541,05 If 7 > 2 and
aj < j+1,then j = 2, a; = 2 and s[ 5 Slaz+1,a3) = 1= s[_gl RE In conclusion,

—1 —1 —1
Sii41,a;41)Slas+Lase1] = S[ji1,a) for j > 2. Moreover, s[ JSlai+1,a5] = S1- Thus

-1 -1 _ — —
3[2’a2]vl'9[2,a2] — 8[2’(12]8[a1+1,a2]v28[2,a2] — 31U28[2,a2] — /02813[2@2] - U2S[3,a2]3132-
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s V;iS[; ast s =8k Sia.  1Vi18]4 sty ,
i+1,a;41] 292 [0+1a51°(1 51 [F+1,a;541] [i4+1,a;11]° lai+1a;41] Yi+1215+1,a;]°[1 512 [F+1,a541]
- Sgil,aj]vj‘HS[j'i‘l:aj]S[_l,lj]s[j'i‘l:aj-!-l]
= Uj+1s[_1,1j]8[j+27aj+1]8j+1 = Uj+13[j+2,aj+113[_1,1j+1]-
Thus, we can prove by induction on j that z ‘v,z = T vjs[j+1’aj]s[_17lj]xj for

1

1 < j <i. In particular, x 7 vz = s[iﬂ’n_l]s[_lli]. The lemma is proved. [

3.7. By 3.4 and 3.5, there exists t € T, such that (U x U)(vit, %) - hy C X.
Consider K = {a; | by; = 0}. Then for any j,j' € K with j # j’, we have that
l7—7| > 2and < Oé}/,(l/j/ >=10. Set y = HjeK s;j. Then y is well-defined. Note
that (1 —y)yaw;’, (1 — y)vaw € Yo Ruoa). By 3.3, (¢~ 'goit, 1) - hy € X.
Therefore, (¢~ 'yvit,1)-hy € X. By 3.6, 27 'yvr = v~ 'v;z = w’/. Therefore,
Zjwi NX # 3. By 3.1, G acts transitively on Z;,,s. Therefore Z;,,, C X.

3.8. In this subsection, we assume that G is of type C,, and set

{1, if 2| i;
€ =

0, otherwise.

-1 -1 -1
Set v = Sp—it1Sn—it3 " Sp—e, T1 = Sin—in—1)5[n—i—1,n—2] """ S[1.] and zo =
S[_nl—l—e—l,n]s[_nl—l-e—?),n] e 3[_711_Z.+2’n]. Set \=o_, 1+l i g+ -+ .. Then we

have that (v, A) is admissible.
; . .. Vv Vi o1 —1 . -1

Now set ' = Zjel min(é, j)ay € Nw,. Set xq; = S[—it 1,5 —ij—1]" " S[14]
for i —1 < 7 < n—1,s. Then we can show by induction that x17j)\’ =
> ko iy, i Z?:jJrz oy’ In particular, z1w) =Y, kay ..

. . 1 1 —1

For0<j < (i+e—1)/2, set zo,; = Stnit2im]Sin—i+2j—2m " Sn—it2n]" Then
we can show by induction that zo 21N = 31 oY _ii1ion + Dos? Loy ivoiv
In particular, we have that zox1\ = A. Therefore, there exists ¢ € T', such that
(U, U)(i]i‘gi‘lt, i’g:ﬁl) -hy C X.

Now set y1 = Spte—18n+e—3" " Sn—; and Yo = Sy p—j—1]- For 1 <j<n—i—1,
set Br = —(vzow1) lag = —agy;. Thus by 3.3, there exists u € Ug, Ug, - - Ug, _,,
such that (27 '@5 g1ie0dadiut, 1) - hy € X,

For 0 <j<(i+e—1)/2, set

—1
V2,5 = 811 n—i] (Sn—it2Sn—ita * Sn—it2j) (Sn—id15n—it3 * Sn—it2—1)8[, ;101 o]
It is easy to see that s[n_i+2j7n]vg,js[_n_i+2j n]

by induction that 1’2_1y1y2U112 = .’112_’}1)273'1112’]‘ for 0 < j < (i+e—1)/2. In particular,

= v j—1. Therefore, we can show

—1 —1
Ty Y1Y2VT2 = (1 ni]S[p i1 )
. . 1
Fort—1 < j <n-—1,set vy; = 8[1,j—i+1]S[+2,n]5]j—i+2,j+1]" Then we

have that sp;_;y1 501 = v1,j—1. Therefore, we can show by induction

—1
J8—i+1,5]
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that ] 8[1 n— Z]s[nl i1 L1 = 561_}01,3'561,]' for i — 1 < j < n—1. In particular,
-1 _ J
3:2 yly2U$2 - S[Z—I—l,n]s[l’i] =w".
-1 —ntith+1lg, — o1 — n ;
Moreover, w, —;_,  jw™ """ Br =w, ~ i—k—i—l(_an—l) = — > 1_,_k Qq. Since
n—i—k—1_. —
n—ke JJp_i—k-1— Jn_i—k, Ug, C w w"*i*kJrl(UPf N U ) By

T —i— ke n 1—k—1

3.1, (xl Ty Y goviedqut, 1)-hy€ Zj,. Therefore, Z;,,» C X.

For type B,,, we have the similar results.

3.9. Insubsection 3.9 and 3.10, we assume that G is of type D,,. In this subsection,
assume that ¢ < n — 2.

If 2 |, set v = Sp_iSp—it2-  Sn—2, A = ay)_; +ay_i o+ -+ a)_, and

(o1 —1 —1 —1 g1 —1
L= (S[n—1,n]3[n—3,n] " S n—it1, n])(s[n i—1,n—2]%[n—i 327; 379, i])‘

If2+2, Setl'U = (SIL_Z‘Sn_H_Q ) cSp— 1)Sn,1)\ Z(l )/ 1\7{ i+21 +1/2( o, q —|—Oé )
and z = (S[n—z,n]s[n—4,n] e S[n—z‘+1,n])( [n—i—1,n—2] [n—i—2,n—3] [1,i])'

By the similar calculation to what we did for type C,,_1, we have that in both
cases (v, ) is admissible and z7'X\ = wY. Moreover, by the similar argument to

what we did for type C,,—1, we can show that 7, C X.
3.10. Assume that i = n. Set

_{1, if 2| [n/2];
1 0, otherwise.

IfQTn setv:anrE 1(8183 " Sp—2)Sn—e, T = Spte—1(8 [n13n] [n15n] . 3[_2,1n]>3n—1l

and A = 3oy +1a),. + Z(n 8)/2 ay;, - Then X = 2zw,’ and (v, A) is admis-

sible. Set y = 8284 “Sp—3. Then (vit,y~t@) - hy € X for some t € T. By 3.3,

(= Yyoit,1) - hy € X. Since 2~ yvz = 5, 15[11n 9]5n =w’, Z;, CX.
If2|n,set v=(5183"""8p-3)Sn—c, A=, .+ Z”/Q 2 ay, o and

$984, if n =4,
T = -1 g1 1 .
Sn—28n+e— 1( [n 4,n] [n—6,n] e 8[2,n]>8n_1’ otherwise.

Then A = 2zw,’ and (v, \) is admissible. Therefore, there exists t € T, such
that (U,U)(0dt,x) - hy C X. Set y1 = 8284+ -Sn—2, Y2 = Spte—1 and f =
—(vx)lomye—1 = —ay . By 3.3, there exists u € Ug and t € T, such that
(l"— Y1Y20TUt, 1) hye X.

It is easy to see that z ™'y yovx = 5,15 = w’ and

[ln 2]

— ay, if n = 4;
w2_15={ Zz 1 !

Zl “nj2—1Qu,  otherwise.

Note that Jo =1 —{n} and J; =1 —{n —2,n}. Thus Ug C “’2(UP; NnU;,)-
1
By 3.1, Z;0 C X.
Similarly, ZI—{i—l} o Cc X.
1N C1,n—2

_ ]Sn—l
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3.11. Type Gs.

Set v = s;, x = w’ and A = o = 2w)’. Then (v, \) is admissible. Set y = s3_;,
then (2~ 'yvat,1) - hy € X for some t € T. Note that 2~ 'yvz = w”’. Therefore,
ZJ7wJ C X

3.12. Type Fjy.

If i = 1, then set v = 89, * = sysqw? and A = oy = xwy. Thus (v, ) is
admissible. Set y; = s183, y2 = s4 and 8 = —(vz)tay = —(az + a3). Then
there exists u € Ug and ¢t € T, such that (7 'g19202ut, 1) - hy € X. Note that
r  y1yve = w’ and wz_lﬁ = —(ag +2a3+ay). By 3.1, Z;,,, C X.

If i = 2, then set v = s153, ¥ = sow? and A = o) + af = xwy. Thus (v, \) is
admissible. Set y = sgs4, then (27 1goit,1) - hy € X for some t € T. Note that
x 'yve = w’. Thus Zjwr CX.

If i = 3, then set v = 8984, ¥ = s3w? and \ = 2ay + o = zwy. Thus (v, \) is
admissible. Set y = sys3, then (i~ 1goit,1) - hy € X for some t € T. Note that
" 'yve = w’. Thus Zyw CX.

If i = 4, then set v = s3, * = s154w? and X = ay = zwy. Thus (v,])) is
admissible. Set y; = s254, Y2 = 51 and 8 = —(vz) " tay = —(as + 2a3). Then
there exists u € Ug and ¢t € T, such that (2~ 'g19202ut, 1) - hy € X. Note that
r  y1yve = w’ and wz_lﬁ = —(a1 + 202 +2a3). By 3.1, Z; ,7 C X.

3.13. Type Ej.

Ifi = 1, then set v = 51558356, T = 5154835156w” and A = oy +2ay +ay +2ay =
3zwy. Thus (v,)) is admissible. Set y; = s4, y2 = s2 and 3 = —(va) lay =
—(a3 + g+ as). Then there exists u € Ug and t € T, such that (¢~ g, gevdut, 1) -
hy € X. Note that 2 'yyovz = w’ and wz_lﬁ = —(age +ag+2a4 + a5+ ag). By
3.1, ZJ’wJ C X.

Similarly, Z71_ 161,555, s3545556 C X -

If i = 2, then set v = s4, T = 5253558482w” and A\ = o = xwy. Thus (v, \)
is admissible. Set y; = $25385, y2 = 8186, B1 = —(vr)lay = —(aq + a5) and
B2 = —(vr) tag = —(a3 + a4). Then there exists u € Up, U, and ¢ € T, such
that (i~ ly1900dut, 1) - hy € X. Note that o~ 1y yvr = w”/, w{lﬁl = — 256:3 oy
and wy !By = —(ay + a3 + ag + as). By 3.1, Zywr CX.

If i = 3, then set v = 5356515455, T = S253545153w’ and \ = 2a) + oy + 3 +
S5ay +af = 3zwy. Thus (v, ) is admissible. Set y = so, then (2~ govit,1)-hy € X
for some ¢t € T. Note that z~'yvez = w”’. Thus Zjw CX.

Similarly, Z1_(51 6,5, 55545685 C X -

If i = 4, then set v = s95355, v = s4(w”’)? and A = o +ay +5ay = 2wy . Thus
(v, ) is admissible. Set y = s15486, then (i ~yoit,1) - hy; € X for some t € T.
Note that z~'yve = w’. Thus Zywr CX.

3.14. Type E;.
If i = 1, then set v = s4, T = 5351525554835157(w”’)? and A = af = 2w,’. Thus
(v, \) is admissible. Set y; = s38285 , Y2 = s18657, f1 = —(vr) " lag = — 2?23 ay,
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By = —(vx) tag = —(ag + as) and B3 = —(vz)tay = —(ag + a3 + ay). Then
there exists u € Ug,Us,Us, and t € T, such that (i~ 'gi9e0iut,1) - hy € X.
Note that =z~ ty yv2x = w’, w;lﬁl = —qy — 27:2 ay, wz_lﬁg = —Z?:Q oy and
wy ' (w!) 1By = — (e + au + a5 + ag). By 3.1, Z;,0 C X.

If i = 2, then set v = s9535587, T = s48257(w”’)? and A = o +2ay +ay +af =
2zwy. Thus (v, \) is admissible. Set y = s15486. Then (2 tyoit, 1) -hy € X for
some t € T. Note that z~'yve = w’/. Thus Zjwr CX.

If i = 3, then set v = 595385, T = 51548357(w’)? and A\ = ay + o + ) = rwy.
Thus (v, \) is admissible. Set y; = 515456, ¥2 = s7 and 8 = —(vx) lay = — (a4 +
;). Then there exists u € Up,Ug,Up, and t € T, such that (i~ g geviut,1)-hy €
X. Note that 27ty 502 = w’ and wglﬁ = —(a2 + a4 + a5 + ag). By 3.1,
ZJ7,wJ C X.

If i = 4, then set v = 515486, T = S2535554(w” )3 and A\ = af +2a) +af = 2w} .
Thus (v, \) is admissible. Set y = sos35557. Then (i~ 1yvit,1) - hy € X for some
t € T. Note that z~'yvez = w”’. Thus Zjw CX.

If i = 5, then set v = 82535557, T = S45655(w?)3 and A\ = oy +2ay +3ay +af =
2zwy. Thus (v, \) is admissible. Set y = s15486. Then (2 tyoit,1)-hy € X for
some t € T. Note that = 'yve = w’/. Thus Zjwr CX.

If i = 6, then set v = sy56, T = s1555786(w”)3 and A\ = o + o = zwy. Thus
(v, \) is admissible. Set y; = s2535557, y2 = s1 and 8 = —(va) tay = —(az+ay+
as). Then there exists u € Ug and ¢ € T, such that (2~ '¢g19203ut,1) - hy € X.
Note that z~ 'y vz = w’ and wglﬁ = —qy — 215:1 . By 3.1, 25,0 C X.

If i = 7, then set v = s98557, T = 56578455565751 (w”)? and A = oy +ay +af =

2zwy. Thus (v, ) is admissible. Set y; = s486, y2 = s351, /1 = —(vz) lag =
—(az + a4 +as) and B = —(vr)"tay = —(ag + a4 + as + ag). Then there
exists u € Up,Up, and t € T, such that (¢~ 'g19204ut, 1) - hy € X. Note that
ryigeve = wl, wy B = —au = 3y, wit(w!) 7By = —au — Y ar. By
3.]_, ZJ7wJ C X

3.15. Type Esjs.

If i = 1, then set v = 5486, T = 5351525584535188(w”)® and A\ = af +af = 2wy
Thus (v, ) is admissible. Set y; = s9838557, Y2 = s188, B1 = —(va) tay =
—Qy — Z?:z a; and o = —(vz) " lag = — 257:3 a;. Then there exists u € Ug,Ug,
and t € T, such that (i~ '91900dut, 1) - hy € X. Note that z 1y yvz = w”,
wglﬁl = —oy — a5 — 217:2 «; and w;lﬁg = —qy — 2?22 . By 3.1, Z;,, C X.

If i = 2, then set v = s9535557, T = 8482575g(w? )0 and A\ = oy +ay +af +af =
2wy . Thus (v, \) is admissible. Set y = s1545¢58. Then (i~ 1yvit,1)-hy € X for
some t € T. Note that z~'yve = w’/. Thus Zjwr CX.

If i = 3, then set v = s9835557, T = 5154835758(w”’)® and A\ = oy + ay + 20y +
oy = zwy. Thus (v, \) is admissible. Set y = s1548683. Then (&~ yoit,1)-hy € X
for some ¢t € T. Note that z~'yvez = w”’. Thus Zjw CX.

If i = 4, then set v = s1545688, T = 5285535488(w?)% and A\ = o) +3a) +2a +
ay = zwy. Thus (v, \) is admissible. Set y = sys35587. Then (2~ yoit,1)-hy € X
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for some ¢ € T. Note that z~'yvez = w”’. Thus Zjw CX.

If i = 5, then set v = s2538587, = 845655(w? )% and A\ = oy +2ay +2aY +af =
zwy. Thus (v, ) is admissible. Set y = s1s4568s. Then (i~ tyoit,1)-hy € X for
some t € T. Note that z~'yvz = w’. Thus Z;,s C X.

If i = 6, then set v = 515486, T = s1555756(w” )% and A\ = af +2a) +af = 2wy .
Thus (v, \) is admissible. Set y; = 52535557, y2 = sg and 3 = —(vz) tag. Then
there exists u € Ug and t € T, such that (2~ 'g;g00dut,1) - hy € X. Note that
r Yy v = w’ and wy 1B = —ay — Z?:l . By 3.1, Z;,, CX.

If i = 7, then set v = s25385, T = 56578854858657(w’)® and A = oy +ay +ay =
zwy. Thus (v,\) is admissible. Set y; = $15486, Y2 = s788, f1 = —(vr) tay =
—(a3 + ag + az) and By = —(vx)"lag = —(as + a4 + a5 + ag). Then there
exists u € Up,Up, and t € T, such that (2~ 9e0iut,1) - hy € X. Note that
v = w, w{lﬁl = —qy — 216:1 oy and wg_l(w‘])_lﬁg = —qy — Z?:l Q.
By 3.1, Zy s C X.

If i = 8, then set v = s4, © = s1858657s3(w?)’ and A = af = awy. Thus

(v, \) is admissible. Set y; = s5s253, Y2 = S1865758, 1 = —(vx) lag = —ay —
27:2 ar, B = —(vr)lag = —(a3 + ag + as), B3 = —(vr)tar = w/By and
Bs = —(vr)~tag = (w’)?By. Then there exists u € Up,Up,Us,Up, and t € T,

such that (i_lglygbdzut,l) -hy € X. N70te that 2 'y yove = w’, w;lﬁl =

6 — — _ 6
=23 U~ Dy O, Wy Py = —aq =, wyt(w!) T By = —au = 3L,
and wy H(w?) 2By = —ay — Z?:l a;. By 3.1, Z;,7 C X.

4. THE EXPLICIT DESCRIPTION OF U

4.1. We assume that G is a disconnected algebraic group such that its identity
component GV is reductive. Following [St, 9], an element g € G is called quasi-
semisimple if gBg~! = B, gTg~! = T for some Borel subgroup B of G° and some
maximal torus T" of B. We have the following properties.

(a) if g is semisimple, then it is quasi-semisimple. See [St, 7.5, 7.6].

(b) Let g € G is a quasi-semisimple element and Ty be a mazimal torus of
Zo(9)°, where Zgo(g)° is the identity component of {x € G° | xg = gx}. Then
any quasi-semisimple element in gG° is G°-conjugate to some element of gT}. See
[L4, 1.14].

(c) g is quasi-semisimple if and only if the G°-conjugacy class of g is closed
in G'. See [Spa, 1.15(f)] for the if-part, the only-if-part is due to Lusztig in an
unpublished note. His proof is as follows.

Proposition(Lusztig). Let g € G'. Let clgog be the G°-conjugacy class of g.
Assume that clgog is closed. Then g is quasi-semisimple.

Proof. The proof is due to Lusztig.

By [St 7.2], we can find a Borel subgroup B such that gBg~! = B. Let clgg be
the B-conjugacy class of g. Since clgg C clgog and clgog is closed, we see that the
closure of ¢lpg is contained in clgog. By [Spa 1.15(e)], the closure of clpg contains
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a quasi-semisimple element. Hence clgog contains a quasi-semisimple element.
Hence g is quasi-semisimple. [

4.2. Let p; : G — GL(V;) be the irreducible representation of G with lowest
weight —w; and p; : G — P(End(V;)) be the morphism induced from p; (see [DS,
3.15]). Let A/ be the subvariety of G consisting of elements such that for all i € I,
the images under p; are represented by nilpotent endomorphisms of V;. We have
the following result.

Theorem 4.3. We have that

U-u=~N-=|| | ] Zyw.

Jg[ weWJ supp(w)=1I

Proof. By 2.11 and the results in section 3, we have that

I_l |_| ZJ,wCZ;{—U.

J;I weWJ supp(w)=I

For i € I, let X; be the subvariety of P(End(Vi)) consisting of the elements
that can be represented by unipotent or nilpotent endomorphisms of V;. Then X;
is closed in P(End(V;)). Thus, p;(z) € X; for z € U. Moreover, since G is simple,
for any g € G, p;(g) is represented by an automorphism of V; if and only if g € G.
Thus if 2 € U — U, then p;(2) is represented by an nilpotent endomorphism of V;.
Therefore Y —U C N.

Assume that w € W7 with supp(w) # I and NNZ;,, # @. Let C be the closed
L j,-stable subvariety that corresponds to N'N Z;,,. We have seen that w is a
quasi-semisimple element of N¢(Lj.). Moreover, there exists a maximal torus
T} in ZLJ)w(w)O such that 77 C T. Since C is an Lj,-stable nonempty closed
subvariety of Cj ,,, wt € C for some t € Ty. Set z = (wt,1) - hy. Then z € N.

Since supp(w) # I, there exists ¢ € I with ¢ ¢ supp(w). Then —ww; = —w;.
Let v be a lowest weight vector in V;. Assume that p;(z) is represented by an
endomorphism A of V. Then Av € k*v. Thus z ¢ N. That is a contradiction.
Therefore N C UJgI Uwews Zjw. The theorem is proved. [

Remark. Let G = PGLy(k) and I = {1,2,3}. Then the theorem implies that
Z{1,3},s0515552 C U. By 2.5, we can see that Z(y 3} 5,545, cOntains infinitely many
G-orbits. Therefore U contains infinitely many G-orbits.

ssupp(w)=I

Corollary 4.4. Leti € I and J =1—{i} and w be a Cozeter element of W with
w e WJ' Then Z‘]’w = I_lKCJ I_lw’GWK,supp(w’):I ZK’w/.

Proof. Note that Z;., C U N (s Zk). Since U and ||, ; Zx are closed,
Ziw CUN(UxcsZr) = Ugey Uw,ewxﬂsupp(w,)zf Zk - Therefore by 2.11,

Zva = |_|KCJ Llw’EWK,supp(w’):I ZKvw/' O
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4.5. Let 0 : G — T'/W be the morphism which sends g € G to the W-orbit in
T that contains an element in the G-conjugacy class of the semisimple part g;.
The map o is called Steinberg map. The fibers of o are called Steinberg fibers.
The unipotent variety is an example of Steinberg fiber. Some other interesting
examples are the regular semisimple conjugacy classes of G.

Let F' be a fiber of o. It is known that F' is a union of finitely many G-
conjugacy classes. Let t be a representative of o(F) in T, then F' = Ggiqq - tU
and F' = Giag - tU (see [Spr2, 1.4]). It is easy to see that t(U — U) C N.
Thus F — F = Gajag - t(U —U) C N. Therefore, if (w, \) is admissible and 27! - A
dominant, then there exists some ¢’ € T such that (U x U)(wit', &) hy-15) C tU.
Thus by 2.11 and the results in section 3, | |;c; | ,emwv Zjw CF—F.
Therefore, we have -

,supp(w)=I

F-F=N=|| | ] ZJ -

Jg[ weWJ supp(w)=1I

Thus F — F is independent of the choice of the Steinberg fiber F. As a conse-
quence, in general, F' contains infinitely many G-orbits (answering a question that
Springer asked in [Spr2]).

4.6. For any variety X that is defined over the finite field F,, we write | X|, for
the number of F,-rational points in X.

If G is defined and split over the finite field F, then for any w € W7, |Z Jwlq =
|Gl,q7 ") (see [L4, 8.20]). Thus

q = ‘G‘qq_l(w)(q == Jl Z ql(u) |J| l(wow)
ueW

Set L(w) = {i € I | ws; < w}. Then w € W if and only if J C L(wow).
Moreover, if w # 1, then L(wow) # I. Therefore

U —Ulg=>" S Zswle= (3 ¢ S (q — 1)/ gHwow)

J#AI weWJ supp(w)=1 weWw JAT weWJ supp(w)=1I
- Z g') Z Z ql(wow)<q _ 1)|J|

weW supp(w)=I JCL(wow)
T LCI SRl

weW supp(w)=1

Remark. Note that |G|, = 3, o ¢/ 3 pew ¢/ o) HILwowl (see [DP, 7.7)).
Our formula for [ — U], bears some resemblance to the formula for |G/,
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