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UNIPOTENT VARIETY IN THE GROUP COMPACTIFICATION

Xuhua He

Department of Mathematics, M.I.T., Cambridge, MA 02139

Abstract. The unipotent variety of a reductive algebraic group G plays an impor-

tant role in the representation theory. In this paper, we will consider the closure Ū

of the unipotent variety in the De Concini-Procesi compactification Ḡ of a connected
simple algebraic group G. We will prove that Ū − U is a union of some G-stable

pieces introduced by Lusztig in [L4]. This was first conjectured by Lusztig. We will

also give an explicit description of Ū . It turns out that similar results hold for the
closure of any Steinberg fiber in Ḡ.

Introduction

A connected simple algebraic group G has a “wonderful” compactification Ḡ,
introduced by De Concini and Procesi. The variety Ḡ is a smooth, projective
variety with G×G action on it. The G×G-orbits of Ḡ are indexed by the subsets
of the simple roots.

The group G acts diagonally on Ḡ. Lusztig introduced a partition of Ḡ into
finitely many G-stable pieces. The G-orbits on each piece are in one-to-one cor-
respondence to the conjugacy classes of a certain reductive group. Based on the
partition, he developed the theory of “Parabolic Character Sheaves” on Ḡ.

In this paper, we study the closure Ū of the unipotent variety U of G in Ḡ, par-
tially based on the previous work of [Spr2]. The main result is that the boundary
of the closure is a union of some G-stable pieces. (see Theorem 4.3.)

The unipotent variety plays an important role in the representation theory. One
would expect that Ū , the subvariety of Ḡ, which is analogous to the subvariety U
of G, also plays an important role in the theory of “Parabolic Character Sheaves”.
Our result is a step toward this direction.

The arrangement of this paper is as follows. In section 1, we briefly recall some
results on the B×B-orbits of Ḡ (where B is a Borel subgroup of G) and results on
Ū , which were proved by Springer in [Spr1] and [Spr2]. In section 2, we first recall
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the definition of the G-stable pieces and then in 2.6, we show that any G-stable
piece is the minimal G-stable subset of Ḡ that contains a particular B ×B-orbit.
In the remaining part of section 2, we establish some basic facts about the Coxeter
elements, which will be used in section 4 to prove our main theorem. In section
3, we show case-by-case that certain G-stable pieces are contained in Ū . Hence a
lower bound of Ū is established.

A naive thought about Ū is that the boundary of the “unipotent elements” are
“nilpotent cone”. In fact, it is true. A precise statement is given and proved in 4.3.
Thus we obtain an upper bound of Ū . We also show in 4.3 that the lower bound
is actually equal to the upper bound. Therefore, our main theorem is proved. In
section 4, we also consider the closure of arbitrary Steinberg fiber of G in Ḡ. (An
example of Steinberg fiber is U .) The results are similar. In the end of section 4,
we calculate the number of points of Ū over a finite field. The formula bears some
resemblance to the formula for Ḡ.

1. Preliminaries

1.1. Let G be a connected, simple algebraic group over an algebraically closed
field k. Let B be a Borel subgroup of G, B− be the opposite Borel subgroup and
T = B ∩ B−. Let (αi)i∈I be the set of simple roots. For i ∈ I, we denote by
α∨
i , ωi, ω

∨
i and si the simple coroot, the fundamental weight, the fundamental

coweight and the simple reflection corresponding to αi. We denote by <,> the
standard pairing between the weight lattice and the root lattice. For any element
w in the Weyl group W = N(T )/T , we will choose a representative ẇ in N(T ) in
the same way as in [L1, 1.1].

For any subset J of I, let WJ be the subgroup of W generated by {sj | j ∈ J}
and W J (resp. JW ) be the set of minimal length coset representatives of W/WJ

(resp. WJ\W ). Let wJ
0 be the unique element of maximal length in WJ . (We will

simply write wI
0 as w0.) For J,K ⊂ I, we write JWK for JW ∩WK .

1.2. For J ⊂ I, let PJ ⊃ B be the standard parabolic subgroup defined by J and
P−
J ⊃ B− be the opposite of PJ . Set LJ = PJ ∩ P−

J . Then LJ is a Levi subgroup

of PJ and P−
J . Let ZJ be the center of LJ and GJ = LJ/ZJ be its adjoint group.

We denote by πPJ
(resp. πP−

J
) the projection of PJ (resp. P−

J ) onto GJ .

Let Ḡ be the wonderful compactification of G ([DP] deals with the case k = C.
The generalization to arbitrary k was given in [Str]). It is an irreducible, projective
smooth G × G-variety. The G × G-orbits ZJ of Ḡ are indexed by the subsets J
of I. Moreover, ZJ = (G × G) ×P−

J
×PJ

GJ , where P−
J × PJ acts on the right on

G×G and on the left on GJ by (q, p) · z = πP−
J
(q)zπPJ

(p)−1. Let hJ be the image

of (1, 1, 1) in ZJ .
We will identify ZI with G and the G × G-action on it is given by (g, h) · x =

gxh−1.
For any subvariety X of Ḡ, we denote by X̄ the closure of X in Ḡ.
For any finite set A, we will write |A| for the cardinality of A.
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1.3. For any closed subgroupH ofG, we denote byHdiag the image of the diagonal
embedding of H in G×G and by Lie(H) the corresponding Lie subalgebra of H.
For g ∈ G, we write gH for gHg−1.

For any parabolic subgroup P , we denote by UP its unipotent radical. We
will simply write U for UB and U− for UB− . For J ⊂ I, set UJ = U ∩ LJ and
U−
J = U− ∩ LJ .
For parabolic subgroups P and Q, define

PQ = (P ∩Q)UP .

It is easy to see that for J,K ⊂ I and u ∈ JWK , P
(u̇PK)
J = PJ∩Ad(u)K .

Let U be the unipotent variety of G. Then U is stable under the action of Gdiag

and U is stable under the action of U × U and Tdiag . Moreover, U = Gdiag · U .
Similarly, Ū = Gdiag · Ū (see [Spr2, 1.4]).

1.4. Now consider the B×B-orbits on Ḡ. We use the same notation as in [Spr1].
For any J ⊂ I, u, v ∈ W , set [J, u, v] = (B × B)(u̇, v̇) · hJ . It is easy to see
that [J, u, v] = [J, x, vz−1], where u = xz with x ∈ W J and z ∈ WJ . Moreover,
Ḡ =

⊔

J⊂I

⊔

x∈WJ ,w∈W

[J, x, w]. Springer proved the following result in [Spr1, 2.4].

Theorem. Let x ∈ W J , x′ ∈ WK, w,w′ ∈ W . Then [K, x′, w′] is contained

in [J, x, w] if and only if K ⊂ J and there exists u ∈ WK , v ∈ WJ ∩ WK with

xvu−1 6 x′, w′u 6 wv and l(wv) = l(w) + l(v).

As a consequence of the theorem, we have the following properties which will
be used later.

(1) For any K ⊂ J , w ∈ W J and v ∈ WJ , [K,wv, v] ⊂ [J, w, 1].

(2) For any J ⊂ I, w,w′ ∈ W J with w 6 w′, then [J, w′, 1] ⊂ [J, w, 1].

1.5. In this subsection, we recall some results of [Spr2].
Let ǫ be an indeterminate. Put o = k[[ǫ]] and K = k((ǫ)). An o-valued point of

a k-variety Z is a k-morphism γ : Spec(o) −→ Z. We write Z(o) for the set of all
o-valued points of Z. Similarly, we write Z(K) for the set of all K-valued points
of Z. For γ ∈ Z(o), we have that γ(0) ∈ Z, where 0 is the closed point of Spec(o).

By the valuative criterion of completeness (see [EGA, Ch II, 7.3.8 & 7.3.9]),
for the complete k-variety Ḡ, the inclusion o →֒ K induces a bijective from Ḡ(o)
onto Ḡ(K). Therefore, any γ ∈ Ḡ(K) defines a point γ(0) ∈ Ḡ. In particular, any
γ ∈ U(K) defines a point γ(0) ∈ Ḡ. Here we regard U(K) as a subset of Ḡ(K) in
the natural way.

We have that x ∈ Ū if and only if there exists γ ∈ U(K) such that γ(0) = x
(see [Spr2, 2.2]).

Let Y be the cocharacter group of T . An element λ ∈ Y defines a point in
T (k[ǫ, ǫ−1]), hence a point pλ of T (K). Let H ⊂ G(o) be the subgroup consisting
of elements γ with γ(0) ∈ B. Then for γ ∈ U(K), there exists γ1, γ2 ∈ H, w ∈ W
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and λ ∈ Y , such that γ = γ1ẇpλγ2. Moreover, w and λ are uniquely determined
by γ (see [Spr2, 2.6]). In this case, we will call (w, λ) admissible. Springer showed
that (w, λ− w−1λ) is admissible for any dominant regular coweight λ (see [Spr2,
3.1]).

For λ ∈ Y and x ∈ W with x−1 · λ dominant, we have that pλ(0) = (ẋ, ẋ) ·
hI(x−1λ), where I(x−1λ) is the set of simple roots orthogonal to x−1λ (see [Spr2,
2.5]). If moreover, (w, λ) is admissible, then there exists some t ∈ T such that
(U × U)(ẇẋt, ẋ) · hI(x−1λ) ⊂ Ū .

2. the partition of ZJ

2.1. We will follow the set-up of [L4, 8.18].
For any J ⊂ I, let PJ be the set of parabolic subgroups conjugate to PJ . We

will write B for P∅. For P ∈ PJ , Q ∈ PK and u ∈ JWK , we write pos(P,Q) = u

if there exists g ∈ G, such that gP = PJ ,
gQ = u̇PK . For J, J ′ ⊂ I and y ∈ J ′

W J

with Ad(y)J = J ′, define

Z̃y
J = {(P, P ′, γ) | P ∈ PJ , P ′ ∈ PJ ′

, γ = UP ′gUP , pos(P
′, gP ) = y}

with the G×G action given by (g1, g2) · (P,Q, γ) = (g1P, g2P ′, g2γg
−1
1 ).

To z = (P, P ′, γ) ∈ Z̃y
J , we associate a sequence (Jk, J

′
k, uk, yk, Pk, P

′
k, γk)k>0

with Jk, J
′
k ⊂ I, uk ∈ W , yk ∈ J ′

kW Jk ,Ad(yk)Jk = J ′
k, Pk ∈ PJk

, P ′
k ∈ PJ ′

k
, γk =

UP ′
k
gUPk

for some g ∈ G satisfies pos(P ′
k,

gPk) = uk. The sequence is defined as
follows.

P0 = P, P ′
0 = P ′, γ0 = γ, J0 = J, J ′

0 = J ′, u0 = pos(P ′
0, P0), y0 = y.

Assume that k > 1, that Pm, P ′
m, γm, Jm, J ′

m, um, ym are already defined for m < k
and that um = pos(P ′

m, Pm), Pm ∈ PJm
, P ′

m ∈ PJ ′
m

for m < k. Let

Jk = Jk−1 ∩ Ad(y−1
k−1uk−1)Jk−1, J

′
k = Jk−1 ∩ Ad(u−1

k−1yk−1)Jk−1,

Pk = g−1
k−1(

gk−1Pk−1)
(P ′

k−1
Pk−1)gk−1 ∈ PJk

, P ′
k = P

P ′
k−1

k−1 ∈ PJ ′
k

where

gk−1 ∈ γk−1 is such that gk−1Pk−1 contains some Levi of Pk−1 ∩ P ′
k−1,

uk = pos(P ′
k, Pk), yk = u−1

k−1yk−1, γk = UP ′
k
gk−1UPk

.

It is known that the sequence is well defined. Moreover, for sufficient large n,
we have that Jn = J ′

n = Jn+1 = J ′
n+1 = · · · and un = un+1 = · · · = 1. Now we

set β(z) = u0u1 · · ·un, n ≫ 0. Then we have that β(z) ∈ J ′

W . By [L4, 8.18] and
[L3, 2.5], the sequence (Jk, J

′
k, uk, yk)k>0 is uniquely determined by (J, β(z), y).
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The map w 7→ yw−1 is a bijection between W J and J ′

W . For w ∈ W J , set

Z̃y
J,w = {z ∈ Z̃y

J | β(z) = yw−1}.

Then (Z̃y
J,w)w∈WJ is a partition of Z̃y

J into locally closed G-stable subvari-

eties. For w ∈ W J , let (Jk, J
′
k, uk, yk)k>0 be the sequence uniquely determined

by (J, yw−1, y). Then (P, P ′, γ) 7→ (P1, P
′
1, γ1) define a G-equivariant map ϑ :

Z̃y
J,w −→ Z̃y1

J1,u
−1
0 w

.

2.2. Let J ⊂ I. Set Z̃J = Z̃
w0w

J
0

J and J∗ = Ad(w0w
J
0 )J . For w ∈ W J , set

wJ = w0w
J
0w

−1. The map w 7→ wJ is a bijection between W J and J∗

W . For any
w ∈ W J , let

Z̃J,w = {z ∈ Z̃J | β(z) = wJ}.

Then (Z̃J,w)w∈WJ is a partition of Z̃J into locally closed G-stable subvarieties.
Let (Jk, J

′
k, uk, yk)k>0 be the sequence determined by (J, wJ , w0w

J
0 ) (see 2.1). As-

sume that Jn = J ′
n = Jn+1 = J ′

n+1 = · · · and un = un+1 = · · · = 1. Set v0 = wJ

and vk = u−1
k−1vk−1 for k ∈ N. By [L4, 8.18] and [L3, 2.3], we have uk ∈ J ′

kW Jk

and uk+1 ∈ WJk
for all k > 0. Hence vk+1 ∈ WJk

for all k > 0. Moreover, it is
easy to see by induction on k that yk = vkw. In particular, w = yn ∈ JnW Jn ,
Ad(w)Jn = Jn and ẇ normalizes B ∩ LJn

. We have the following result.

Lemma 2.3. Keep the notation of 2.2. Let z = (PJ ,
ẇ−1

J PJ∗ , ẇ−1
J UPJ∗ ẇJ ẇbUPJ

),

where b ∈ ẇn−1v̇−1
n (UPJ′

n
∩UJn−1

)ẇ
n−2v̇−1

n−1(UPJ′
n−1

∩UJn−2
) · · ·v̇

−1
1 (UPJ′

1

∩UJ0
)T or

b ∈ B. Then z ∈ Z̃J,w.

Proof. For any k, set Pk = PJk
, P ′

k = v̇−1
k PJ ′

k
. Then

Pk ∩ P ′
k = PJk

∩ v̇−1
k+1u̇

−1
k PJ ′

k
= v̇−1

k+1(PJk
∩ u̇−1

k PJ ′
k
).

Note that u−1
k ∈ JkW J ′

k . Then LJk
∩ u̇−1

k LJ ′
k
= LJk∩Ad(u̇−1

k
)J ′

k
= LJ ′

k+1
. Thus

v̇−1
k+1LJ ′

k+1
= v̇−1

k+1(LJk
∩ u̇−1

k LJ ′
k
) is a Levi factor of Pk ∩ P ′

k. Moreover, we have

P
P ′

k

k = P
(
v̇
−1
k PJ′

k
)

Jk
= v̇−1

k+1(P
(
u̇
−1
k PJ′

k
)

Jk
) = v̇−1

k+1PJk∩Ad(u̇−1
k

)J ′
k
= v̇−1

k+1PJ ′
k+1

P ′
k
Pk = v̇−1

k (P
(v̇kPJk

)

J ′
k

) = v̇−1
k (P

(u̇kPJk
)

J ′
k

) = v̇−1
k PJ ′

k
∩Ad(u̇k)Jk

= v̇−1
k PAd(ẏk)(Jk∩Ad(ẏ−1

k
u̇k)Jk)

= v̇−1
k PAd(ẏk)Jk+1

If b ∈ B, then set gk = ẇb, γk = UP ′
k
gkUPk

and zk = (Pk, P
′
k, γk) for all k. In

this case, v̇−1
k+1LJ ′

k+1
= ẇẏ−1

k+1LJ ′
k+1

= ẇLJk+1
⊂ ẇPk = gkPk. Thus gkPk contains
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some Levi of Pk ∩ P ′
k. Moreover,

g−1
k (gkPk)

(
v̇
−1
k PAd(ẏk)Jk+1

)
gk = P

(
b−1ẇ−1v̇

−1
k PAd(ẏk)Jk+1

)

k = b−1

(P
ẏ
−1
k PAd(ẏk)Jk+1

k )

= b−1

PJk∩Ad(ẏ−1
k

)Ad(ẏk)Jk+1
= b−1

PJk+1
= PJk+1

.

Therefore, ϑ(zk) = zk+1.
If b = (ẇn−1v̇−1

n bnv̇nẇ
−n+1) · · · (v̇−1

1 b1v̇1)(ẇ
ntẇ−n), where bj ∈ UPJ′

j

∩ UJj−1

for 1 6 j 6 n and t ∈ T , then set

ak = (ẇn−k v̇−1
n bnv̇nẇ

−n+k) · · · (v̇−1
k bkv̇k)(ẇ

n+1−ktẇ−n−1+k).

In this case, set gk = ẇak+1, γk = UP ′
k
gkUPk

and zk = (Pk, P
′
k, γk). For

j > 0, Jj+1 = Jj ∩ Ad(ẏ−1
j+1)Jj and vj+1 ∈ WJj

. Thus ẇLJj+1
= v̇−1

j+1ẏj+1LJj+1
⊂

v̇−1
j+1LJj

= LJj
. Then ẇj v̇−1

k+j+1UJk+j
⊂ ẇj

LJk+j
⊂ LJk

. So ak+1 ∈ Pk. Thus

gkPk = ẇPk contains some Levi of PJk

⋂v̇−1
k PJ ′

k
. Moreover,

g−1
k (gkPk)

(
v̇
−1
k PAd(ẏk)Jk+1

)
gk = a−1

k+1PJk+1
.

Thus ϑ(zk) = (Q,Q′, γ′), where Q = a−1
k+1PJk+1

, Q′ = v̇−1
k+1PJ ′

k+1
and γ′ =

UQ′gkUQ. Note that v̇−1
k+1UPJ′

k+1

⊂ Q′ and T ⊂ Q′. Moreover, for j > 1,

ẇj v̇−1
k+j+1UJk+j

⊂ ẇj

LJk+j
⊂ ẇLJk+1

= v̇−1
k+1ẏk+1LJk+1

= v̇−1
k+1LJ ′

k+1
⊂ Q′. Thus

ak+1 ∈ Q′. Hence, zk+1 = (ak+1, ak+1) · ϑ(zk).
In both cases, ϑ(zk) is in the same G orbit as zk+1. Thus

β(z) = β(z0) = u1β(z1) = · · · = u1u2 · · ·un = wJ . �

Remark. 1. From the proof of the case where b ∈ B, we can see that

ϑn(PJ ,
ẇ−1

J PJ∗ , ẇ−1
J UPJ∗ ẇJ ẇbUPJ

) = (PJn
, PJn

, UPJn
ẇbUPJn

).

This result will be used to establish a relation between the G-stable pieces and the
B ×B-orbits.

2. The fact that (PJ ,
ẇ−1

J PJ∗ , ẇ−1
J UPJ∗ ẇJ ẇbUPJ

) is contained in Z̃J,w for any

b ∈ ẇn−1v̇−1
n (UPJ′

n
∩UJn−1

)ẇ
n−2v̇−1

n−1(UPJ′
n−1

∩UJn−2
) · · ·v̇

−1
1 (UPJ′

1

∩UJ0
)T plays an

important role in section 3. We will discuss about it in more detail in 3.1.

2.4. Let (Jn, J
′
n, un, yn)n>0 be the sequence that is determined by wJ and w0w

J
0 .

Assume that Jn = J ′
n = Jn+1 = J ′

n+1 = · · · and un = un+1 = · · · = 1. Then

z 7→ ϑn(z) is a G-equivariant morphism from Z̃J,w to Z̃w
Jn,1

and induces a bijection

from the set of G-orbits on Z̃J,w to the set of G-orbits on Z̃w
Jn,1

.
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Set L̃J,w = LJn
and C̃J,w = ẇL̃J,w. Let NG(L̃J,w) be the normalizer of L̃J,w in

G. Then C̃J,w is a connected component of NG(L̃J,w) and Z̃w
Jn,1

is a fibre bundle

over PJn with fibres isomorphic to C̃J,w. There is a natural bijection between

C̃J,w and F = {z = (PJn
, PJn

, γn) | z ∈ Z̃w
Jn,1

} under which the action of L̃J,w on

C̃J,w by conjugation corresponds to the action of PJn
/UPJn

on F by conjugation.

Therefore, we obtain a canonical bijection the set of G-stable subvarieties of Z̃J,w

and the set of L̃J,w-stable subvarieties of C̃J,w (see [L4, 8.21]). Moreover, a G-

stable subvariety of Z̃J,w is closed if and only if the corresponding L̃J,w-stable

subvariety of C̃J,w is closed. By the remark 1 of 2.3, for any b ∈ B ∩ L̃J,w, the

G-orbit that contains (PJ ,
ẇ−1

J PJ∗ , ẇb) corresponds to the L̃J,w-orbit that contains
ẇb via the bijection.

2.5. SinceG is adjoint, the center of P/UP is connected for any parabolic subgroup
P . Let HP be the inverse image of the (connected) center of P/UP under P −→
P/UP . We can regard HP /UP as a single torus ∆J independent of P . Now ∆J

acts (freely) on Z̃J by δ : (P, P ′, γ) 7→ (P, P ′, γz) where z ∈ HP represents δ ∈ ∆J .

The action of G on Z̃J commutes with the action of ∆J and induces an action
of G on ∆J \ Z̃J . There exists a G-equivariant isomorphism from ZJ to ∆J \ Z̃J

which sends (g1, g2) · hJ to (g2PJ ,
g1P−

J , Ug1P−
J
g1g

−1
2 Hg2PJ

). We will identify ZJ

with ∆J \ Z̃J .

It is easy to see that ∆J(Z̃J,w) = Z̃J,w. Set ZJ,w = ∆J \ Z̃J,w. Then

ZJ =
⊔

w∈WJ

ZJ,w.

Moreover, we may identify ∆J with a closed subgroup of the center of L̃J,w. Set

LJ,w = L̃J,w/∆J and CJ,w = C̃J,w/∆J . Thus we obtain a bijection between the set
of G-stable subvarieties of ZJ,w and the set of LJ,w-stable subvarieties of CJ,w (see
[L4, 11.19]). Moreover, a G-stable subvariety of ZJ,w is closed if and only if the

corresponding LJ,w-stable subvariety of CJ,w is closed and for any b ∈ B∩L̃J,w, the

G-orbit that contains (PJ ,
ẇ−1

J PJ∗ , ẇb) corresponds to the LJ,w-orbit that contains
ẇb∆J via the bijection.

Proposition 2.6. For any w ∈ W J , ZJ,w = Gdiag · [J, w, 1].

Proof. By 2.3, (ẇ, b) · hJ ∈ ZJ,w for all b ∈ B. Since ZJ,w is G-stable,
Gdiag [J, w.1] ⊂ ZJ,w.

For any z ∈ ZJ,w, let C be the LJ,w-stable subvariety corresponding to Gdiag · z

and let c be an element in C̃J,w such that c∆J ∈ C. By 2.2, ẇ normalizes B∩L̃J,w.

Thus c is L̃J,w-conjugate to an element of ẇ(B∩L̃J,w). Therefore, z is G-conjugate

to (ẇ, b) · hJ for some b ∈ B ∩ L̃J,w. The proposition is proved. �

Proposition 2.7. For any w ∈ W J , ZJ,w = Gdiag(ẇT, 1) · hJ .
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Proof. Since (ẇT, 1) · hJ ⊂ ZJ,w and ZJ,w is a G-stable closed variety, we have

that Gdiag(ẇT, 1) · hJ ⊂ ZJ,w.
Set X = {(ẇt, u) ·hJ | t ∈ T, u ∈ U}. For any u ∈ ẇUJ and t ∈ T , we have that

Ad(ẇt)−1u ∈ UJ and u ∈ ẇUJ ⊂ U . Consider the map φ :ẇ UJ × T −→ X defined
by φ(u, t) = (u, u)(ẇt, 1) · hJ = (ẇt, (ẇt)−1uẇtu−1) · hJ , for u ∈ ẇUJ , t ∈ T .

It is easy to see that there is an open subset T ′ of T , such that the restriction
of φ to ẇUJ × T ′ is injective. Note that dim(X) = dim(T ) + dim(U/UPJ

) =
dim(T ) + dim(UJ ) = dim(ẇUJ × T ). Then the image of φ is dense in X . The
proposition is proved. �

Remark. This argument was suggested by the referee.

2.8. For w ∈ W , denote by supp(w) the set of simple roots whose associated
simple reflections occur in a reduced expression of w. An element w ∈ W is called
a Coxeter element if it is a product of the simple reflections, in some order, or in
other words, |supp(w)| = l(w) = |I|. We have the following properties.

Proposition 2.9. Fix i ∈ I. Then all the Coxeter elements are conjugate under

elements of WI−{i}.

Proof. Let c, c′ be Coxeter elements. We say that c′ can be obtained from
c via a cyclic shift if c = si1si2 · · · sin is a reduced expression and c′ = si1csi1 .
It is known that for any Coxeter elements c, c′, there exists a finite sequences of
Coxeter elements c = c0, c1, . . . , cm = c′ such that ck+1 can be obtained from ck
via a cyclic shift (see [Bo, p. 116, Prop. 1]).

Now assume that c = si1si2 · · · sin is a reduced expression of a Coxeter element.
If i1 6= i, then si1csi1 and c are conjugated by si1 ∈ WI−{i}. If i1 = i, then

si1csi1 = si2si3 · · · sinc(si2si3 · · · sin)
−1. Therefore, if a Coxeter element can be

obtained from another Coxeter element via a cyclic shift, then they are conjugated
by elements of WI−{i}. The proposition is proved. �

Remark. The proof of [loc. cit] also can be used to prove this proposition.

Proposition 2.10. Let J ⊂ I and w ∈ W J with supp(w) = I. Then there exist

a Coxeter element w′, such that w′ ∈ W J and w′ 6 w.

Proof. We prove the statement by induction on l(w).
Let i ∈ I with siw < w. Then siw ∈ W J . If supp(siw) = I, then the statement

holds by induction hypothesis on siw. Now assume that supp(siw) = I − {i}. By
induction, there exists a Coxeter element w′ of WI−{i}, such that w′ ∈ W J−{i}

and w′ 6 siw. Then siw
′ is a Coxeter element of w and siw

′ 6 w.
Since w′ ∈ WI−{i}, (w

′)−1αi is either αi or a non-simple positive root. We

also have that w′ is a Coxeter element of WI−{i}. Thus if (w′)−1αi = αi, then
< αi, α

∨
j >= 0 for all j 6= i. It contradicts the assumption that G is simple. Hence

(w′)−1αi is a non-simple positive root. Note that if siw
′ /∈ W J , then siw

′ = w′sj
for some j ∈ J , that is, (w′)−1αi = αj. Therefore, siw

′ ∈ W J . The proposition is
proved. �
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Corollary 2.11. Let i ∈ I, J = I − {i} and w be a Coxeter element of W with

w ∈ W J . Then
⊔

K⊂J

⊔

w′∈WK ,supp(w′)=I ZK,w′ ⊂ ZJ,w.

Proof. By 1.4, [K,wv, v] ⊂ [J, w, 1] for K ⊂ J and v ∈ WJ . Since ZJ,w is

G-stable, (v̇−1ẇv̇T, 1) · hK ⊂ ZJ,w. By 2.9, (ẇ′T, 1) · hK ⊂ ZJ,w for all Coxeter

element w′. By 2.7, ZK,w′ ⊂ ZJ,w for all Coxeter element w′ with w′ ∈ WK .
For any u ∈ WK with supp(u) = I, there exists a Coxeter element w′, such that
w′ ∈ WK and w′ 6 u. Thus by 1.4, we have that [K, u, 1] ⊂ ZJ,w. By 2.6,

ZK,u ⊂ ZJ,w. The corollary is proved. �

Remark. In 4.4, we will show that the equality holds.

3. Some combinatorial results

3.1. Fix i ∈ I. Define subsets Ik of I for all k ∈ N in the following way. Set
I1 = {i}. Assume that Ik is already defined. Set

Ik+1 = {αj | j ∈ I − ∪k
l=1Il, < α∨

j , αm >6= 0 for some m ∈ Ik}.

It is easy to see that if j1, j2 ∈ Ik with j1 6= j2, then < αj1 , α
∨
j2

>= 0. Thus
sIk =

∏

j∈Ik
sj is well-defined. For sufficiently large n, we have In = In+1 = · · · =

∅ and sIn = sIn+1
= · · · = 1. Now set wk = sInsIn−1

· · · sIk for k ∈ N. We will

write wJ for w1. Set J−1 = I and J0 = J = I − {i}. Then wJ is a Coxeter
element and wJ ∈ W J . Let (Jn, J

′
n, un, yn) be the sequence determined by wJ

and w0w
J
0 . Then we can show by induction that for k > 0, Jk = Jk−1 − Ik+1,

uk = w
Jk−1

0 wJk

0 sIk+1
w

Jk+1

0 wJk

0 , yk = w
Jk−1

0 wJk

0 sIksIk−1
· · · sI1 and J ′

k = Ad(yk)Jk.

In particular, Jn = ∅. Thus L̃J,wJ = T and C̃J,wJ = ẇJT . Since w is a Coxeter

element, the homomorphism T −→ T sending t ∈ T to (ẇJ )−1tẇJ t−1 is surjective.

Thus L̃J,wJ acts transitively on C̃J,wJ . By 2.5, G acts transitively on ZJ,wJ .

For k ∈ N, we set vk = w
Jk−1

0 wJk

0 w−1
k+1. Then it is easy to see that

v̇−1
k (UPJ′

k

∩ UJk−1
) = wk+1(UP−

Jk

∩ U−
Jk−1

).

Therefore by 2.3, for b ∈ wn−1wn+1(UP−
Jn

∩ U−
Jn−1

) · · ·w2 (UP−
J1

∩ U−
J0
)T , we have

that (ẇJb, 1) · hJ ∈ ZJ,wJ .

In the rest of this section, we will keep the notations of J , Jk, w
J and wk as

above. We will prove the following statement.

Proposition. Let X be a closed subvariety of Ḡ satisfying the following condition:

for any admissible pair (w, λ) and x ∈ W with x−1λ is dominant, there exist some

t ∈ T , such that Gdiag(U × U)(ẇẋt, ẋ) · hI(x−1λ) ⊂ X. Then ZJ,wJ ⊂ X.

An example of such X is Ū . There are some other interesting examples, which
we will discuss in 4.5. The proof is based on case-by-case checking.
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Remark. The outline of the case-by-case checking is as follows.

For λ ∈ Y , we write λ > 0 if λ ∈
∑

l∈I R>0α
∨
l .

We start with the fundamental coweight ω∨
i . Find x ∈ W that satisfies the

conditions (1) xω∨
i > 0 and (2) for l ∈ I, either (sl − 1)xω∨

i > 0 or slxω
∨
i � 0.

Such x always exists, as we will see by case-by-case checking. The elements xω∨
i

that we obtain in this way are not unique, in general. Fortunately, there always
exists some x ∈ W that satisfies the conditions (1) and (2) and allows us to do
the procedures that we will discuss below.

In the rest of the remark, we fix such x. Since xω∨
i ∈ Y , there exists n ∈ N,

such that nxω∨
i is contained in the coroot lattice. Set λ = nxω∨

i . Now we can
find v ∈ W such that (v, λ) is admissible. (In practice, we find v ∈ W with
l(v) = |supp(v)| and −vλ > 0. Then we can use lemma 3.2 to check that if (v, λ)
is admissible.) By the assumption on X , Gdiag(U × U)(v̇ẋt, ẋ) · hJ ⊂ X for some
t ∈ T .

In some cases, x−1vx = wJ . Since wJ is a Coxeter element, (ẇJT, 1) · hJ =
Tdiag(ẇJ t, 1) · hJ ⊂ X . By 2.7, ZJ,wJ

⊂ X .

In other cases, the situation is more complicated. We need to choose some
u ∈ U , such that (uv̇ẋt, ẋ) · hJ ∈ ZJ,wJ

. This is the most difficult part of the
case-by-case checking. The lemma 3.3 and lemma 2.3 will be used to overcome the
difficulties.

Throughout this section, we will use the same labelling of Dynkin diagram as in
[Bo]. For a, b ∈ I, we denote by s[a,b] the element sbsb−1 · · · sa of the Weyl group
W and ṡ[a,b] = ṡbṡb−1 · · · ṡa. (If b < a, then s[a,b] = 1 and ṡ[a,b] = 1.)

Lemma 3.2. Let x = si1si2 · · · sin with |supp(x)| = n. Then (1 − x−1)ω∨
k = 0

if k /∈ {i1, i2, . . . , in} and (1 − x−1)ω∨
ij

= sinsin−1
· · · sij+1

α∨
ij
. Thus (x, λ) is

admissible for all λ ∈
∑n

j=1 Nsinsin−1
· · · sij+1

α∨
ij
.

The lemma is a direct consequence of [Bo, p. 226, Ex. 22a], which was pointed
out to me by the referee.

Lemma 3.3. Let w, x, y1, y2 ∈ W and t ∈ T . Assume that y1 = si1si2 · · · sil ,
y2 = sil+1

sil+2
· · · sil+k

with k + l = |supp(y1y2)|. If moreover, < α∨
il1

, αil2
>= 0

for all 1 6 l1 < l2 6 l and (1 − y1y2)xω
∨
i , (1 − y1)wω

∨
i ∈

∑k
j=1 R>0α

∨
ij
, then

there exists u ∈ U−w−1αil+1
U−w−1αil+2

· · ·U−w−1αil+k
such that (ẋ−1ẇut, 1) · hJ ∈

Gdiag(U × U)(ẇt, ẏ1ẏ2ẋ) · hJ .

Proof. We have that (1−y1y2)xω
∨
i =

∑k+l
j=1(1−sij )sij+1

· · · sil+k
xω∨

i . Note that

i1, i2, . . . , ik+l are distinct and (1 − sij )sij+1
· · · sil+k

xω∨
i ∈ Rα∨

ij
for all j. Hence

(1 − sij )sij+1
· · · sil+k

xω∨
i ∈ R>0α

∨
ij

for all j, i. e., < sij+1
· · · sikxω

∨
i , αij >∈

R>0. Therefore ẋ−1ṡ−1
il+k

· · · ṡ−1
ij+1

Uαij
ṡij+1

· · · ṡil+k
ẋ ⊂ UPJ

. Similarly, we have

that ẇ−1U−αij
ẇ ∈ UP−

J
for j 6 l.
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There exists uj ∈ Uαij
and u′

j ∈ U−αij
such that uj ṡijuj = u′

j . Note that

u′
1u

′
2 · · ·u

′
l+k−1 ∈ LI−{il+k}, ul+k ∈ UPI−{il+k}

and ẋ−1ul+kẋ ⊂ UPJ
. Thus

u′
1u

′
2 · · ·u

′
l+kẋ = u′

1u
′
2 · · ·u

′
l+k−1ul+k ṡikul+kẋ ∈ UPI−{ik}

u′
1u

′
2 · · ·u

′
l+k−1ṡik ẋUPJ

⊂ Uu′
1u

′
2 · · ·u

′
l+k−1ṡik ẋUPJ

.

We can show in the same way that u′
1u

′
2 · · ·u

′
l+kẋ ∈ Uẏ1ẏ2ẋUPJ

. Therefore,

(ẇt, u′
1u

′
2 · · ·u

′
l+kẋ) · hJ ∈ (U ×U)(ẇt, ẏ1ẏ2ẋ) · hJ . Set u = ẇ−1u′

l+1u
′
l+2 · · ·u

′
l+kẇ

and u′ = t−1ẇ−1(u′
1u

′
2 · · ·u

′
l)

−1ẇt ∈ UP−
J
. Then

(ẋ−1ẇut, 1) · hJ = (ẋ−1ẇutu′, 1) · hJ =
(

ẋ−1(u′
1u

′
2 · · ·u

′
l+k)

−1ẇt, 1) · hJ

∈ Gdiag(U × U)(ẇt, ẏ1ẏ2ẋ) · hJ . �

3.4. In subsection 3.4 to subsection 3.7, we assume that G is PGLn(k). Without
loss of generality, we assume that i 6 n/2. In this case, wJ = s[i+1,n−1]s

−1
[1,i]. For

any a ∈ R, we denote by [a] the maximal integer that is less than or equal to a.

For 1 6 j 6 i, set aj = [(j − 1)n/i]. For convenience, we will set ai+1 = n − 1.
Note that for j 6 i−1, aj+1−aj = [jn/i]− [(j−1)n/i] > [n/i] > 2. Therefore, we
have that 0 = a1 < a1 + 1 < a2 < a2 + 1 < · · · < ai < ai + 1 6 ai+1 = n− 1. Now
set b0 = 0. For k ∈ {1, 2, . . . , n−1}−{a2, a3, . . . , ai}−{a2+1, a3+1, . . . , ai+1},
set bk = i. For j ∈ {2, 3, . . . , i}, set baj

= (j − 1)n − iak and baj+1 = i − baj
. In

particular, bn−1 = i.

Now set v = s[a1+1,a2−δba2
,0]s[a2+1,a3−δba3

,0] · · · s[ai+1,ai+1−δbai+1
,0], where δa,b is

the Kronecker delta. Set vj = s[aj+1,aj+1]s[aj+1+1,aj+2] · · · s[ai+1,ai+1] for 1 6 j 6 i.

Set λ =
∑i

j=1

∑aj+1−aj

k=1 baj+k(s[aj+1,aj+k−1]vj+1)
−1α∨

aj+k. It is easy to see that

for 1 6 a 6 b 6 n− 1 and 1 6 k 6 n− 1,

s[a,b]α
∨
k =































∑b
l=a−1 α

∨
l , if k = a− 1;

−
∑b

l=a α
∨
l , if k = a;

α∨
k−1, if a < k 6 b;

α∨
b + α∨

b+1, if k = b+ 1;

α∨
k , otherwise .

If baj+k 6= 0, then (s[aj+1,aj+k−1]s[aj+1+1,aj+2−δbaj+2
,0] · · · s[ai+1,ai+1])

−1α∨
aj+k =

(s[aj+1,aj+k−1]vj+1)
−1α∨

aj+k. By 3.2, (v, λ) is admissible.
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We have that

λ =

i
∑

j=1

aj+1−aj−1
∑

k=1

baj+kv
−1
j+1s

−1
[aj+1,aj+k−1]α

∨
aj+k +

i
∑

j=1

baj+1
v−1
j+1s

−1
[aj+1,aj+1−1]α

∨
aj+1

=

i
∑

j=1

aj+1−aj−1
∑

k=1

k
∑

l=1

baj+kα
∨
aj+l +

i−1
∑

j=1

baj+1

aj+1−aj+1
∑

l=1

α∨
aj+l + bai+1

ai+1−ai
∑

l=1

α∨
ai+l

=
i

∑

j=1

aj+1−aj
∑

k=1

k
∑

l=1

baj+kα
∨
aj+l +

i−1
∑

j=1

baj+1
α∨
aj+1+1

=

i
∑

j=1

aj+1−aj
∑

l=1

aj+1−aj
∑

k=l

baj+kα
∨
aj+l +

i−1
∑

j=1

baj+1
α∨
aj+1+1

=
i

∑

j=1

aj+1−aj
∑

l=2

(

(aj+1 − aj − l)i+ baj+1

)

α∨
aj+l +

(

(a2 − 1)i+ ba2

)

α∨
1

+

i
∑

j=2

(

baj
+ (aj+1 − aj − 2)i+ baj+1

+ baj+1

)

α∨
aj+1

=
i

∑

j=1

aj+1−aj
∑

l=1

(

(aj+1 − aj − l)i+ baj+1

)

α∨
aj+l = nxω∨

i .

Note that aj > j for j > 2. Set xi = 1 and xj = s[j+1,aj+1]s[j+2,aj+2] · · · s[i,ai]

for 1 6 j 6 i− 1. If j = 1, we will simply write x for x1.

Lemma 3.5. For 1 6 j 6 i, we have that

nxjω
∨
i =

j−1
∑

l=1

l(n− i)α∨
l +

aj+1
∑

l=j

(

jn− il
)

α∨
l

+
i

∑

k=j+1

ak+1−ak
∑

l=1

(

(ak+1 − ak − l)i+ bak+1

)

α∨
ak+l.

In particular, nxω∨
i =

∑i
j=1

∑aj+1−aj

l=1

(

(aj+1 − aj − l)i+ baj+1

)

α∨
aj+l.

Proof. We argue by induction on j. Note that nω∨
i =

∑i−1
l=1 l(n − i)α∨

l +
∑n−1

l=i i(n− l)α∨
l . Thus the lemma holds for j = i.

Note that jn− i(aj + l) = jn− iaj+1+ i(aj+1−aj − l) = baj+1
+ i(aj+1−aj − l).
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Assume that the lemma holds for j. Then

nxj−1ω
∨
i = s[j,aj]

j−1
∑

l=1

l(n− i)α∨
l + s[j,aj]

aj+1
∑

l=j

(jn− il)α∨
1

+ s[j,aj]

i
∑

k=j+1

ak+1−ak
∑

l=1

(

(ak+1 − ak − l)i+ bak+1

)

α∨
ak+l

=

j−2
∑

l=1

l(n− i)α∨
l + (j − 1)(n− i)

aj
∑

l=j−1

α∨
l − j(n− i)

aj
∑

l=j

α∨
l +

aj
∑

l=j+1

(jn− il)α∨
l−1

+
(

jn− i(aj + 1)
)

(α∨
aj

+ α∨
aj+1

) +

aj+1
∑

l=aj+2

(jn− il)α∨
l

+

i
∑

k=j+1

ak+1−ak
∑

l=1

(

(ak+1 − ak − l)i+ bak+1

)

α∨
ak+l

=

j−2
∑

l=1

l(n− i)α∨
l + (j − 1)(n− i)

aj
∑

l=j−1

α∨
l − j(n− i)

aj
∑

l=j

α∨
l +

aj
∑

l=j+1

(jn− il)α∨
l−1

+
(

jn− i(aj + 1)
)

α∨
aj

+

i
∑

k=j

ak+1−ak
∑

l=1

(

(ak+1 − ak − l)i+ bak+1

)

α∨
ak+l

=

j−2
∑

l=1

l(n− i)α∨
l + (j − 1)(n− i)α∨

j−1 +

aj
∑

l=j

(

(j − 1)(n− i)− j(n− i) + jn− i(l + 1)
)

α∨
l

+
i

∑

k=j

ak+1−ak
∑

l=1

(

(ak+1 − ak − l)i+ bak+1

)

α∨
ak+l

=

j−2
∑

l=1

l(n− i)α∨
l +

aj
∑

l=j−1

(

(j − 1)n− il
)

α∨
l +

i
∑

k=j

ak+1−ak
∑

l=1

(

(ak+1 − ak − l)i+ bak+1

)

α∨
ak+l.

Thus the lemma holds for j. �

Lemma 3.6. We have that x−1v1x = wJ .

Proof. If aj > j + 1, then s−1
[j+1,aj+1]

s[aj+1,aj+1] = s−1
[j+1,aj]

. If j > 2 and

aj < j + 1, then j = 2, aj = 2 and s−1
[3,a3]

s[a2+1,a3] = 1 = s−1
[3,a2]

. In conclusion,

s−1
[j+1,aj+1]

s[aj+1,aj+1] = s−1
[j+1,aj]

for j > 2. Moreover, s−1
[2,a2]

s[a1+1,a2] = s1. Thus

s−1
[2,a2]

v1s[2,a2] = s−1
[2,a2]

s[a1+1,a2]v2s[2,a2] = s1v2s[2,a2] = v2s1s[2,a2] = v2s[3,a2]s1s2.
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s−1
[j+1,aj+1]

vjs[j+1,aj]s
−1
[1,j]s[j+1,aj+1] = s−1

[j+1,aj+1]
s[aj+1,aj+1]vj+1s[j+1,aj]s

−1
[1,j]s[j+1,aj+1]

= s−1
[j+1,aj ]

vj+1s[j+1,aj ]s
−1
[1,j]s[j+1,aj+1]

= vj+1s
−1
[1,j]s[j+2,aj+1]sj+1 = vj+1s[j+2,aj+1]s

−1
[1,j+1].

Thus, we can prove by induction on j that x−1v1x = x−1
j vjs[j+1,aj]s

−1
[1,j]xj for

1 6 j 6 i. In particular, x−1v1x = s[i+1,n−1]s
−1
[1,i]. The lemma is proved. �

3.7. By 3.4 and 3.5, there exists t ∈ T , such that (U × U)(v̇ẋt, ẋ) · hJ ⊂ X .
Consider K = {aj | baj

= 0}. Then for any j, j′ ∈ K with j 6= j′, we have that
|j − j′| > 2 and < α∨

j , αj′ >= 0. Set y =
∏

j∈K sj . Then y is well-defined. Note

that (1 − y)yxω∨
i , (1 − y)vxω∨

i ∈
∑

j∈K R>0α
∨
j . By 3.3, (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X .

Therefore, (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X . By 3.6, x−1yvx = x−1v1x = wJ . Therefore,
ZJ,wJ ∩X 6= ∅. By 3.1, G acts transitively on ZJ,wJ . Therefore ZJ,wJ ⊂ X .

3.8. In this subsection, we assume that G is of type Cn and set

ǫ =

{

1, if 2 | i;

0, otherwise.

Set v = sn−i+1sn−i+3 · · · sn−ǫ, x1 = s−1
[n−i,n−1]s

−1
[n−i−1,n−2] · · · s

−1
[1,i] and x2 =

s−1
[n+ǫ−1,n]s

−1
[n+ǫ−3,n] · · · s

−1
[n−i+2,n]. Set λ = α∨

n−i+1 +α∨
n−i+3 + · · ·+α∨

n−ǫ. Then we

have that (v, λ) is admissible.
Now set λ′ =

∑

j∈I min(i, j)α∨
j ∈ Nω∨

i . Set x1,j = s−1
[j−i+1,j]s

−1
[j−i,j−1] · · · s

−1
[1,i]

for i − 1 6 j 6 n − 1, s. Then we can show by induction that x1,jλ
′ =

∑i
k=1 kα

∨
j−i+1+k + i

∑n
l=j+2 α

∨
l . In particular, x1ω

∨
i =

∑i
k=1 kα

∨
n−i+k.

For 0 6 j 6 (i+ ǫ− 1)/2, set x2,j = s−1
[n−i+2j,n]s

−1
[n−i+2j−2,n] · · · s

−1
[n−i+2,n]. Then

we can show by induction that x2,jx1λ
′ =

∑j−1
k=0 α

∨
n−i+1+2k +

∑i−2j
l=1 lα∨

n−i+2j+l.

In particular, we have that x2x1λ
′ = λ. Therefore, there exists t ∈ T , such that

(U, U)(v̇ẋ2ẋ1t, ẋ2ẋ1) · hJ ⊂ X .
Now set y1 = sn+ǫ−1sn+ǫ−3 · · · sn−i and y2 = s[1,n−i−1]. For 1 6 j 6 n− i− 1,

set βk = −(vx2x1)
−1αk = −αk+i. Thus by 3.3, there exists u ∈ Uβ1

Uβ2
· · ·Uβn−i

,

such that (ẋ−1
1 ẋ−1

2 ẏ1ẏ2v̇ẋ2ẋ1ut, 1) · hJ ∈ X .
For 0 6 j 6 (i+ ǫ− 1)/2, set

v2,j = s[1,n−i](sn−i+2sn−i+4 · · · sn−i+2j)(sn−i+1sn−i+3 · · · sn−i+2j−1)s
−1
[n−i+2j+1,n].

It is easy to see that s[n−i+2j,n]v2,js
−1
[n−i+2j,n] = v2,j−1. Therefore, we can show

by induction that x−1
2 y1y2vx2 = x−1

2,jv2,jx2,j for 0 6 j 6 (i+ǫ−1)/2. In particular,

x−1
2 y1y2vx2 = s[1,n−i]s

−1
[n−i+1,n].

For i − 1 6 j 6 n − 1, set v1,j = s[1,j−i+1]s[j+2,n]s
−1
[j−i+2,j+1]. Then we

have that s[j−i+1,j]v1,js
−1
[j−i+1,j] = v1,j−1. Therefore, we can show by induction
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that x−1
1 s[1,n−i]s

−1
[n−i+1,n]x1 = x−1

1,jv1,jx1,j for i − 1 6 j 6 n − 1. In particular,

x−1
2 y1y2vx2 = s[i+1,n]s

−1
[1,i] = wJ .

Moreover, w−1
n−i−k+1w

−n+i+k+1βk = w−1
n−i−k+1(−αn−1) = −

∑n
l=n−k αl. Since

n − k ∈ Jn−i−k−1 − Jn−i−k , Uβk
⊂ ẇn−i−k−1ẇn−i−k+1(UP−

Jn−i−k

∩ U−
Jn−i−k−1

). By

3.1, (ẋ−1
1 ẋ−1

2 ẏ1ẏ2v̇ẋ2ẋ1ut, 1) · hJ ∈ ZJ,wJ . Therefore, ZJ,wJ ⊂ X .

For type Bn, we have the similar results.

3.9. In subsection 3.9 and 3.10, we assume thatG is of typeDn. In this subsection,
assume that i 6 n− 2.

If 2 | i, set v = sn−isn−i+2 · · · sn−2, λ = α∨
n−i + α∨

n−i+2 + · · · + α∨
n−2 and

x = (s−1
[n−1,n]s

−1
[n−3,n] · · · s

−1
[n−i+1,n])(s

−1
[n−i−1,n−2]s

−1
[n−i−2,n−3] · · · s

−1
[1,i]).

If 2 ∤ i, set v = (sn−isn−i+2 · · · sn−1)sn, λ =
∑(i−3)/2

l=0 α∨
n−i+2l+1/2(α∨

n−1+α∨
n)

and x = (s−1
[n−2,n]s

−1
[n−4,n] · · · s

−1
[n−i+1,n])(s

−1
[n−i−1,n−2]s

−1
[n−i−2,n−3] · · · s

−1
[1,i]).

By the similar calculation to what we did for type Cn−1, we have that in both
cases (v, λ) is admissible and x−1λ = ω∨

i . Moreover, by the similar argument to
what we did for type Cn−1, we can show that ZJ,wJ ⊂ X .

3.10. Assume that i = n. Set

ǫ =

{

1, if 2 | [n/2];

0, otherwise.

If 2 ∤ n, set v = sn+ǫ−1(s1s3 · · · sn−2)sn−ǫ, x = sn+ǫ−1(s
−1
[n−3,n]s

−1
[n−5,n] · · · s

−1
[2,n])sn−1

and λ = 3
2α

∨
n−ǫ +

1
2α

∨
a+ǫ−1 +

∑(n−3)/2
j=0 α∨

2j+1. Then λ = 2xω∨
n and (v, λ) is admis-

sible. Set y = s2s4 · · · sn−3. Then (v̇ẋt, ẏ−1ẋ) · hJ ∈ X for some t ∈ T . By 3.3,
(ẋ−1ẏv̇ẋt, 1) · hJ ∈ X . Since x−1yvx = sn−1s

−1
[1,n−2]sn = wJ , ZJ,wJ ⊂ X .

If 2 | n, set v = (s1s3 · · · sn−3)sn−ǫ, λ = α∨
n−ǫ +

∑n/2−2
j=0 α∨

1+2j and

x =

{

s2s4, if n = 4;

sn−2sn+ǫ−1(s
−1
[n−4,n]s

−1
[n−6,n] · · · s

−1
[2,n])sn−1, otherwise.

Then λ = 2xω∨
n and (v, λ) is admissible. Therefore, there exists t ∈ T , such

that (U, U)(v̇ẋt, ẋ) · hJ ⊂ X . Set y1 = s2s4 · · · sn−2, y2 = sn+ǫ−1 and β =
−(vx)−1αn+ǫ−1 = −αn/2. By 3.3, there exists u ∈ Uβ and t ∈ T , such that

(ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X .
It is easy to see that x−1y1y2vx = sn−1s

−1
[1,n−2]sn = wJ and

w−1
2 β =

{

−
∑3

l=1 αl, if n = 4;

−
∑n−2

l=n/2−1 αl, otherwise.

Note that J0 = I − {n} and J1 = I − {n − 2, n}. Thus Uβ ⊂ w2(UP−
J1

∩ U−
J0
).

By 3.1, ZJ,wJ ⊂ X .
Similarly, ZI−{i−1},sns

−1
[1,n−2]

sn−1
⊂ X .
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3.11. Type G2.
Set v = si, x = wJ and λ = α∨

i = xω∨
i . Then (v, λ) is admissible. Set y = s3−i,

then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T . Note that x−1yvx = wJ . Therefore,
ZJ,wJ ⊂ X .

3.12. Type F4.
If i = 1, then set v = s2, x = s1s4w

2 and λ = α∨
2 = xω∨

1 . Thus (v, λ) is
admissible. Set y1 = s1s3, y2 = s4 and β = −(vx)−1α4 = −(α2 + α3). Then
there exists u ∈ Uβ and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that

x−1y1y2vx = wJ and w−1
2 β = −(α2 + 2α3 + α4). By 3.1, ZJ,wJ ⊂ X .

If i = 2, then set v = s1s3, x = s2w
2 and λ = α∨

1 + α∨
3 = xω∨

2 . Thus (v, λ) is
admissible. Set y = s2s4, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T . Note that
x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 3, then set v = s2s4, x = s3w
2 and λ = 2α∨

2 + α∨
4 = xω∨

3 . Thus (v, λ) is
admissible. Set y = s1s3, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T . Note that
x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 4, then set v = s3, x = s1s4w
2 and λ = α∨

3 = xω∨
1 . Thus (v, λ) is

admissible. Set y1 = s2s4, y2 = s1 and β = −(vx)−1α1 = −(α2 + 2α3). Then
there exists u ∈ Uβ and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that

x−1y1y2vx = wJ and w−1
2 β = −(α1 + 2α2 + 2α3). By 3.1, ZJ,wJ ⊂ X .

3.13. Type E6.
If i = 1, then set v = s1s5s3s6, x = s1s4s3s1s6w

J and λ = α∨
1+2α∨

3+α∨
5+2α∨

6 =
3xω∨

1 . Thus (v, λ) is admissible. Set y1 = s4, y2 = s2 and β = −(vx)−1α2 =
−(α3+α4+α5). Then there exists u ∈ Uβ and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) ·
hJ ∈ X . Note that x−1y1y2vx = wJ and w−1

2 β = −(α2+α3 +2α4 +α5 +α6). By
3.1, ZJ,wJ ⊂ X .

Similarly, ZI−{6},s2s1s3s4s5s6 ⊂ X .

If i = 2, then set v = s4, x = s2s3s5s4s2w
J and λ = α∨

4 = xω∨
1 . Thus (v, λ)

is admissible. Set y1 = s2s3s5, y2 = s1s6, β1 = −(vx)−1α1 = −(α4 + α5) and
β2 = −(vx)−1α6 = −(α3 + α4). Then there exists u ∈ Uβ1

Uβ2
and t ∈ T , such

that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that x−1y1y2vx = wJ , w−1
2 β1 = −

∑6
l=3 αl

and w−1
2 β2 = −(α1 + α3 + α4 + α5). By 3.1, ZJ,wJ ⊂ X .

If i = 3, then set v = s3s6s1s4s5, x = s2s3s4s1s3w
J and λ = 2α∨

1 +α∨
3 +3α∨

4 +
5α∨

5 +α∨
6 = 3xω∨

3 . Thus (v, λ) is admissible. Set y = s2, then (ẋ−1ẏv̇ẋt, 1)·hJ ∈ X
for some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

Similarly, ZI−{5},s2s1s3s4s6s5 ⊂ X .

If i = 4, then set v = s2s3s5, x = s4(w
J)2 and λ = α∨

2 +α∨
3 +5α∨

5 = xω∨
3 . Thus

(v, λ) is admissible. Set y = s1s4s6, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T .
Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

3.14. Type E7.
If i = 1, then set v = s4, x = s3s1s2s5s4s3s1s7(w

J )2 and λ = α∨
4 = xω∨

1 . Thus

(v, λ) is admissible. Set y1 = s3s2s5 , y2 = s1s6s7, β1 = −(vx)−1α1 = −
∑6

l=3 αl,
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β2 = −(vx)−1α6 = −(α4 + α5) and β3 = −(vx)−1α7 = −(α2 + α3 + α4). Then
there exists u ∈ Uβ3

Uβ2
Uβ1

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X .

Note that x−1y1y2vx = wJ , w−1
2 β1 = −α4 −

∑7
l=2 αl, w

−1
2 β2 = −

∑6
l=2 αl and

w−1
3 (wJ)−1β3 = −(α2 + α4 + α5 + α6). By 3.1, ZJ,wJ ⊂ X .

If i = 2, then set v = s2s3s5s7, x = s4s2s7(w
J)3 and λ = α∨

2 +2α∨
3 +α∨

5 +α∨
7 =

2xω∨
2 . Thus (v, λ) is admissible. Set y = s1s4s6. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for

some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 3, then set v = s2s3s5, x = s1s4s3s7(w
J)3 and λ = α∨

2 +α∨
3 +α∨

5 = xω∨
3 .

Thus (v, λ) is admissible. Set y1 = s1s4s6, y2 = s7 and β = −(vx)−1α7 = −(α4 +
α5). Then there exists u ∈ Uβ3

Uβ2
Uβ1

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) ·hJ ∈
X . Note that x−1y1y2vx = wJ and w−1

2 β = −(α2 + α4 + α5 + α6). By 3.1,
ZJ,wJ ⊂ X .

If i = 4, then set v = s1s4s6, x = s2s3s5s4(w
J)3 and λ = α∨

1 +2α∨
4 +α∨

6 = xω∨
4 .

Thus (v, λ) is admissible. Set y = s2s3s5s7. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some
t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 5, then set v = s2s3s5s7, x = s4s6s5(w
J )3 and λ = α∨

2 +2α∨
3 +3α∨

5 +α∨
7 =

2xω∨
5 . Thus (v, λ) is admissible. Set y = s1s4s6. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for

some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 6, then set v = s4s6, x = s1s5s7s6(w
J)3 and λ = α∨

4 + α∨
6 = xω∨

6 . Thus
(v, λ) is admissible. Set y1 = s2s3s5s7, y2 = s1 and β = −(vx)−1α1 = −(α3+α4+
α5). Then there exists u ∈ Uβ and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X .

Note that x−1y1y2vx = wJ and w−1
2 β = −α4 −

∑5
l=1 αl. By 3.1, ZJ,wJ ⊂ X .

If i = 7, then set v = s2s5s7, x = s6s7s4s5s6s7s1(w
J)2 and λ = α∨

2 +α∨
5 +α∨

7 =
2xω∨

7 . Thus (v, λ) is admissible. Set y1 = s4s6, y2 = s3s1, β1 = −(vx)−1α3 =
−(α3 + α4 + α5) and β2 = −(vx)−1α1 = −(α2 + α4 + α5 + α6). Then there
exists u ∈ Uβ2

Uβ1
and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that

x−1y1y2vx = wJ , w−1
2 β1 = −α4 −

∑6
l=1 αl, w

−1
3 (wJ)−1β2 = −α4 −

∑5
l=1 αl. By

3.1, ZJ,wJ ⊂ X .

3.15. Type E8.
If i = 1, then set v = s4s6, x = s3s1s2s5s4s3s1s8(w

J)5 and λ = α∨
4 +α∨

6 = xω∨
1 .

Thus (v, λ) is admissible. Set y1 = s2s3s5s7, y2 = s1s8, β1 = −(vx)−1α1 =

−α4 −
∑6

l=2 αl and β2 = −(vx)−1α8 = −
∑7

l=3 αl. Then there exists u ∈ Uβ2
Uβ1

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that x−1y1y2vx = wJ ,

w−1
2 β1 = −α4 − α5 −

∑7
l=2 αl and w−1

2 β2 = −α4 −
∑8

l=2 αl. By 3.1, ZJ,wJ ⊂ X .

If i = 2, then set v = s2s3s5s7, x = s4s2s7s8(w
J)6 and λ = α∨

2 +α∨
3 +α∨

5 +α∨
7 =

xω∨
2 . Thus (v, λ) is admissible. Set y = s1s4s6s8. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for

some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 3, then set v = s2s3s5s7, x = s1s4s3s7s8(w
J )6 and λ = α∨

2 + α∨
3 +2α∨

5 +
α∨
7 = xω∨

3 . Thus (v, λ) is admissible. Set y = s1s4s6s8. Then (ẋ−1ẏv̇ẋt, 1)·hJ ∈ X
for some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 4, then set v = s1s4s6s8, x = s2s5s3s4s8(w
J)6 and λ = α∨

1 +3α∨
4 +2α∨

6 +
α∨
8 = xω∨

4 . Thus (v, λ) is admissible. Set y = s2s3s5s7. Then (ẋ−1ẏv̇ẋt, 1)·hJ ∈ X
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for some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 5, then set v = s2s3s5s7, x = s4s6s5(w
J )6 and λ = α∨

2 +2α∨
3 +2α∨

5 +α∨
7 =

xω∨
5 . Thus (v, λ) is admissible. Set y = s1s4s6s8. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for

some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X .

If i = 6, then set v = s1s4s6, x = s1s5s7s6(w
J)6 and λ = α∨

1 +2α∨
4 +α∨

6 = xω∨
6 .

Thus (v, λ) is admissible. Set y1 = s2s3s5s7, y2 = s8 and β = −(vx)−1α8. Then
there exists u ∈ Uβ and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that

x−1y1y2vx = wJ and w−1
2 β = −α4 −

∑5
l=1 αl. By 3.1, ZJ,wJ ⊂ X .

If i = 7, then set v = s2s3s5, x = s6s7s8s4s5s6s7(w
J)5 and λ = α∨

2 +α∨
3 +α∨

5 =
xω∨

7 . Thus (v, λ) is admissible. Set y1 = s1s4s6, y2 = s7s8, β1 = −(vx)−1α7 =
−(α3 + α4 + α5) and β2 = −(vx)−1α8 = −(α2 + α4 + α5 + α6). Then there
exists u ∈ Uβ2

Uβ1
and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that

x−1y1y2vx = wJ , w−1
2 β1 = −α4 −

∑6
l=1 αl and w−1

3 (wJ )−1β2 = −α4 −
∑5

l=1 αl.
By 3.1, ZJ,wJ ⊂ X .

If i = 8, then set v = s4, x = s1s5s6s7s8(w
J )5 and λ = α∨

4 = xω∨
8 . Thus

(v, λ) is admissible. Set y1 = s5s2s3, y2 = s1s6s7s8, β1 = −(vx)−1α1 = −α4 −
∑7

l=2 αl, β2 = −(vx)−1α6 = −(α3 + α4 + α5), β3 = −(vx)−1α7 = wJβ2 and
β4 = −(vx)−1α8 = (wJ)2β2. Then there exists u ∈ Uβ4

Uβ3
Uβ2

Uβ1
and t ∈ T ,

such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X . Note that x−1y1y2vx = wJ , w−1
2 β1 =

−
∑6

l=3 αl −
∑7

l=1 αl, w
−1
2 β2 = −α4 −

∑7
l=1 αl, w

−1
3 (wJ )−1β3 = −α4 −

∑6
l=1 αl

and w−1
4 (wJ)−2β4 = −α4 −

∑5
l=1 αl. By 3.1, ZJ,wJ ⊂ X .

4. The explicit description of Ū

4.1. We assume that G1 is a disconnected algebraic group such that its identity
component G0 is reductive. Following [St, 9], an element g ∈ G1 is called quasi-
semisimple if gBg−1 = B, gTg−1 = T for some Borel subgroup B of G0 and some
maximal torus T of B. We have the following properties.

(a) if g is semisimple, then it is quasi-semisimple. See [St, 7.5, 7.6].
(b) Let g ∈ G1 is a quasi-semisimple element and T1 be a maximal torus of

ZG0(g)0, where ZG0(g)0 is the identity component of {x ∈ G0 | xg = gx}. Then

any quasi-semisimple element in gG0 is G0-conjugate to some element of gT1. See
[L4, 1.14].

(c) g is quasi-semisimple if and only if the G0-conjugacy class of g is closed

in G1. See [Spa, 1.15(f)] for the if-part, the only-if-part is due to Lusztig in an
unpublished note. His proof is as follows.

Proposition(Lusztig). Let g ∈ G1. Let clG0g be the G0-conjugacy class of g.
Assume that clG0g is closed. Then g is quasi-semisimple.

Proof. The proof is due to Lusztig.
By [St 7.2], we can find a Borel subgroup B such that gBg−1 = B. Let clBg be

the B-conjugacy class of g. Since clBg ⊂ clG0g and clG0g is closed, we see that the
closure of clBg is contained in clG0g. By [Spa 1.15(e)], the closure of clBg contains
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a quasi-semisimple element. Hence clG0g contains a quasi-semisimple element.
Hence g is quasi-semisimple. �

4.2. Let ρi : G −→ GL(Vi) be the irreducible representation of G with lowest
weight −ωi and ρ̄i : Ḡ −→ P

(

End(Vi)
)

be the morphism induced from ρi (see [DS,

3.15]). Let N be the subvariety of Ḡ consisting of elements such that for all i ∈ I,
the images under ρ̄i are represented by nilpotent endomorphisms of Vi. We have
the following result.

Theorem 4.3. We have that

Ū − U = N =
⊔

J$I

⊔

w∈WJ ,supp(w)=I

ZJ,w.

Proof. By 2.11 and the results in section 3, we have that

⊔

J$I

⊔

w∈WJ ,supp(w)=I

ZJ,w ⊂ Ū − U .

For i ∈ I, let Xi be the subvariety of P
(

End(Vi)
)

consisting of the elements
that can be represented by unipotent or nilpotent endomorphisms of Vi. Then Xi

is closed in P (End(Vi)). Thus, ρ̄i(z) ∈ Xi for z ∈ Ū . Moreover, since G is simple,
for any g ∈ Ḡ, ρ̄i(g) is represented by an automorphism of Vi if and only if g ∈ G.
Thus if z ∈ Ū − U , then ρ̄i(z) is represented by an nilpotent endomorphism of Vi.
Therefore Ū − U ⊂ N .

Assume that w ∈ W J with supp(w) 6= I and N ∩ZJ,w 6= ∅. Let C be the closed
LJ,w-stable subvariety that corresponds to N ∩ ZJ,w. We have seen that ẇ is a
quasi-semisimple element of NG(LJ,w). Moreover, there exists a maximal torus
T1 in ZLJ,w

(w)0 such that T1 ⊂ T . Since C is an LJ,w-stable nonempty closed
subvariety of CJ,w, ẇt ∈ C for some t ∈ T1. Set z = (ẇt, 1) · hJ . Then z ∈ N .

Since supp(w) 6= I, there exists i ∈ I with i /∈ supp(w). Then −wωi = −ωi.
Let v be a lowest weight vector in Vi. Assume that ρ̄i(z) is represented by an
endomorphism A of V . Then Av ∈ k∗v. Thus z /∈ N . That is a contradiction.
Therefore N ⊂

⊔

J$I

⊔

w∈WJ ,supp(w)=I ZJ,w. The theorem is proved. �

Remark. Let G = PGL4(k) and I = {1, 2, 3}. Then the theorem implies that
Z{1,3},s2s1s3s2 ⊂ Ū . By 2.5, we can see that Z{1,3},s2s1s3s2 contains infinitely many

G-orbits. Therefore Ū contains infinitely many G-orbits.

Corollary 4.4. Let i ∈ I and J = I −{i} and w be a Coxeter element of W with

w ∈ W J . Then ZJ,w =
⊔

K⊂J

⊔

w′∈WK ,supp(w′)=I ZK,w′.

Proof. Note that ZJ,w ⊂ Ū ∩ (
⊔

K⊂J ZK). Since Ū and
⊔

K⊂J ZK are closed,

ZJ,w ⊂ Ū ∩ (
⊔

K⊂J ZK) =
⊔

K⊂J

⊔

w′∈WK ,supp(w′)=I ZK,w′ . Therefore by 2.11,

ZJ,w =
⊔

K⊂J

⊔

w′∈WK ,supp(w′)=I ZK,w′. �
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4.5. Let σ : G −→ T/W be the morphism which sends g ∈ G to the W -orbit in
T that contains an element in the G-conjugacy class of the semisimple part gs.
The map σ is called Steinberg map. The fibers of σ are called Steinberg fibers.
The unipotent variety is an example of Steinberg fiber. Some other interesting
examples are the regular semisimple conjugacy classes of G.

Let F be a fiber of σ. It is known that F is a union of finitely many G-
conjugacy classes. Let t be a representative of σ(F ) in T , then F = Gdiag · tU
and F̄ = Gdiag · tŪ (see [Spr2, 1.4]). It is easy to see that t(Ū − U) ⊂ N .
Thus F̄ −F = Gdiag · t(Ū −U) ⊂ N . Therefore, if (w, λ) is admissible and x−1 ·λ
dominant, then there exists some t′ ∈ T such that (U×U)(ẇẋt′, ẋ) ·hI(x−1λ) ⊂ tŪ .

Thus by 2.11 and the results in section 3,
⊔

J$I

⊔

w∈WJ ,supp(w)=I ZJ,w ⊂ F̄ − F .

Therefore, we have

F̄ − F = N =
⊔

J$I

⊔

w∈WJ ,supp(w)=I

ZJ,w.

Thus F̄ − F is independent of the choice of the Steinberg fiber F . As a conse-
quence, in general, F̄ contains infinitely many G-orbits (answering a question that
Springer asked in [Spr2]).

4.6. For any variety X that is defined over the finite field Fq, we write |X |q for
the number of Fq-rational points in X .

If G is defined and split over the finite field Fq, then for any w ∈ W J , |Z̃J,w|q =

|G|qq−l(w) (see [L4, 8.20]). Thus

|ZJ,w|q = |G|qq
−l(w)(q − 1)−|I−J| = (

∑

u∈W

ql(u))(q − 1)|J|ql(w0w).

Set L(w) = {i ∈ I | wsi < w}. Then w ∈ W J if and only if J ⊂ L(w0w).
Moreover, if w 6= 1, then L(w0w) 6= I. Therefore

|Ū − U|q =
∑

J 6=I

∑

w∈WJ ,supp(w)=I

|ZJ,w|q = (
∑

w∈W

ql(w))
∑

J 6=I

∑

w∈WJ ,supp(w)=I

(q − 1)|J|ql(w0w)

=
∑

w∈W

ql(w)
∑

supp(w)=I

∑

J⊂L(w0w)

ql(w0w)(q − 1)|J|

=
∑

w∈W

ql(w)
∑

supp(w)=I

ql(w0w)+|L(w0w)|.

Remark. Note that |Ḡ|q =
∑

w∈W ql(w)
∑

w∈W ql(w0w)+|L(w0w)| (see [DP, 7.7]).

Our formula for |Ū − U|q bears some resemblance to the formula for |Ḡ|q.
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[L2] G. Lusztig, Character sheaves on disconnected groups I, Represent.Th. 7 (2003), 374-403.

[L3] G. Lusztig, Parabolic character sheaves I, Moscow Math.J 4 (2004), 153-179.
[L4] G. Lusztig, Parabolic character sheaves II, Moscow Math.J 4 (2004), 869-896.

[Spa] N. Spaltenstein, Classes unipotents et sous-groupes de Borel, Lecture Notes in Mathe-

matics, vol. 946, Springer Verlag, New York, 1982.
[Spr1] T. A. Springer, Intersection cohomology of B×B-orbits closures in group compactifica-

tions,, J. Alg. 258 (2002), 71-111.

[Spr2] T. A. Springer, Some subvarieties of a group compactification, proceedings of the Bom-
bay conference on algebraic groups, to appear.

[St] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of Amer.Math.Soc,

vol. 80, 1968.
[Str] E. Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987),

no. 1, 165-171.


