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BASIC LOCI IN SHIMURA VARIETIES OF COXETER
TYPE

ULRICH GÖRTZ AND XUHUA HE

Abstract. This paper is a contribution to the general problem
of giving an explicit description of the basic locus in the reduc-
tion modulo p of Shimura varieties. Motivated by [29] and [24],
we classify the cases where the basic locus is (in a natural way)
the union of classical Deligne-Lusztig sets associated to Coxeter
elements. We show that if this is satisfied, then the Newton strata
and Ekedahl-Oort strata have many nice properties.

Introduction

Understanding arithmetic properties of Shimura varieties has been a
cornerstone in many developments in arithmetic geometry and number
theory in the last decades. To a large extent, these arithmetic prop-
erties are encoded in the geometric properties of the special fiber of
a suitable integral model, and studying these reductions of Shimura
varieties has been fruitful in many cases.
A Shimura variety of PEL type can be described as a moduli space

of abelian varieties with additional structure (polarization, endomor-
phisms, level structure). To each such abelian variety we can attach its
p-divisible group; it inherits corresponding additional structure. The
special fiber at p naturally decomposes into finitely many “Newton
strata”, which are given by the isogeny class of these p-divisible groups
(with additional structure).
There is a unique closed Newton stratum. This is the so-called basic

locus. For two reasons the basic locus plays a particular role in the
study of the geometry of the special fiber. First, it is the only Newton
stratum where there is reasonable hope for a complete, explicit de-
scription as a variety. Second, it turns out that a good understanding
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of basic loci can often be used to prove results about general New-
ton strata, and hence about the whole special fiber, by an induction
process.
Explicit descriptions of the basic locus have been of great importance

in the work of Kudla, Rapoport, Howard, Terstiege and others on the
intersection numbers of special cycles in the special fibers of Shimura
varieties (and their relationship to Fourier coefficients of modular forms
as predicted by the “Kudla program”). Kaiser [14] used the description
of the basic locus in the module space of principally polarized abelian
surfaces in his proof of the twisted fundamental lemma for GSp4. A
good description of the basic locus is also useful to prove instances
of the “arithmetic fundamental lemma”, cf. the paper by Rapoport,
Terstiege and Zhang [25].
While the basic locus is the simplest Newton stratum, it still cannot

be described explicitly in general. For example, the basic locus in the
moduli space of principally polarized abelian varieties of dimension g is
just the supersingular locus, i.e., the closed subvariety of supersingular
abelian varieties.
On the other hand, besides several small rank cases (cf. Section 5.3),

there are a number of families of Shimura varieties of PEL-type where
the basic locus allows for a simple and very explicit description. The
case studied first is probably the “Drinfeld case” where the underly-
ing algebraic group is a division algebra and the basic locus can be
described in terms of Deligne’s formal model of Drinfeld’s half space.
Other typical cases are those attached to unitary groups GU(1, n− 1).
See the papers by Vollaard and Wedhorn [29], and by Rapoport, Ter-
stiege, and Wilson [24]. Roughly speaking, in all those cases the follow-
ing picture emerges: The basic locus is a union of Ekedahl-Oort strata
and admits a stratification by (variants of) classical Deligne-Lusztig
varieties. The index set of the stratification and the closure relations
between strata can be described in terms of the Bruhat-Tits building
of a certain inner form of the underlying group.
The uniformization theorem by Rapoport and Zink [26] allows to de-

scribe the basic locus in terms of a moduli space of p-divisible groups
with additional structure, a so-called Rapoport-Zink space. Roughly
speaking, the set of points of this Rapoport-Zink space can be de-
scribed, using Dieudonné theory, as a space of lattices inside a fixed
L-vector space. Here L is the completion of the maximal unramified
extension of Qp (or more generally of a finite extension F/Qp). The
lattices have to satisfy conditions which ensure that they arise as the
Dieudonné module of a p-divisible group with additional structure as
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specified by the moduli problem. In other terminology, these lattices
form an affine Deligne-Lusztig variety inside the space of all lattices.
In this paper, we are mainly interested in the “Coxeter case”, i.e.,

the cases where the basic locus is a union of Ekedahl-Oort strata and
each Ekedahl-Oort stratum is (in a natural way) the union of classical
Deligne-Lusztig sets associated to Coxeter elements.
Let F be a finite extension of Qp (the mixed characteristic case)

or let F = Fq((ǫ)) (the function field case). Fix a datum (G, µ) of
a connected quasi-simple semisimple algebraic group G over F which
splits over a tamely ramified extension and a minuscule cocharacter µ
(see Section 1.1 and Section 5.1). Let P be a standard rational maximal
parahoric subgroup of G(L), where L is the completion of the maximal
unramified extension of F . Let σ denote the Frobenius of the extension
L/F .
For each b ∈ G(L) we consider the following union of affine Deligne-

Lusztig varieties:

X(µ, b)P = {g ∈ G(L)/P ; g−1bσ(g) ∈
⋃

w∈Adm(µ)

PwP}

(see 7.1, compare also [22] Section 5). Denote by B(G, µ) the set
of σ-conjugacy classes for which this set is non-empty. There is a
unique basic σ-conjugacy class in B(G, µ). If b lies inside this basic σ-
conjugacy class, then we call X(b, µ)P the basic locus attached to the
above data. (For a different choice of b we get, up to isomorphism, the
same result. In fact, in a large part of the paper we work with all basic
b simultaneously, i.e. with “fiber bundles” over the basic σ-conjugacy
class, and only later to restrict to single fibers of this bundle.)
In case the data (G, µ, b) corresponds to a Rapoport-Zink space M

(in particular, charF = 0), there typically is a bijection M (Fp) ∼=
X(µ, b)P , given by Dieudonné theory; cf. [22].
In Section 5.1 we define a notion of Ekedahl-Oort elements which

gives rise to a subset EOJ(µ) ⊂ W̃ of the extended affine Weyl group

W̃ (here J denotes the type of the parahoric subgroup P ). For each b
and each w ∈ EOJ(µ), we obtain the EO stratum XJ,w(b), cf. (3.4.1),
attached to w inside X(µ, b)P . We say that the basic locus is a union
of EO strata, if for all w ∈ EOJ(µ) such that XJ,w(b) 6= ∅ for b basic,
we have XJ,w(b

′) = ∅ for all non-basic b′. For the formal definition of
“Coxeter type” see Theorem 5.1.1 and condition (CC) in Section 6.
The main results of this paper are summarized below.

Theorem A. The data (G, µ, P ) of Coxeter type are listed in Theorem
5.1.1.
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Theorem B. If (G, µ, P ) is of Coxeter type, then

(1) The basic locus

X(µ, b)P = ⊔ΛN
o
Λ,

where Λ runs over faces of certain types of the rational Bruhat-
Tits building B of the σ-centralizer Jb of b, and No

Λ is a classical
Deligne-Lusztig set associated to a Coxeter element.

(2) For all non-basic b′, the σ-centralizer Jb′ acts transitively on
X(µ, b′)P . In particular, whenever there is a notion of dimen-
sion (in the RZ cases and in the function field case), this implies
that dimX(µ, b′)P = 0.

In most cases, Λ runs over all vertices in B. In other cases, edges of
B appear. For more details, see Theorem 5.1.1, Theorem 5.2.1 and §7.

Theorem C. In the function field case, if (G, µ, P ) is of Coxeter type,
then the closure relation among the strata No

Λ can be described explicitly
in terms of the simplicial structure of B.

The key ingredients in this paper are

• The description of affine Deligne-Lusztig varieties in the affine
flag variety [10].

• The fine Deligne-Lusztig varieties [20].

In mixed characteristic, in general there is no known scheme struc-
ture on affine Deligne-Lusztig varieties. This is the technical difficulty
preventing us from extending Theorem C to the mixed characteristic
case. However, experience shows that, at least for the basic locus, the
descriptions in the mixed characteristic case and in the equal char-
acteristic case are mostly equal (see Sections 5.3, 7.4). Therefore we
expect that in those cases which have not been treated in the context
of Shimura varieties, our results can serve as guide lines for the precise
result to be expected.
We focus on “Coxeter type” in this paper. However, our methods

should extend to some other cases where the basic locus is still a union
of EO strata but the EO strata there are not of Coxeter type in general.
We include one example at the end of this paper.
The paper is organized as follows. In section 1 we fix notation and

give a group-theoretic definition of the basic locus. In section 2, we
recollect properties of affine Deligne-Lusztig varieties in the affine flag
variety. In section 3, we give a stratification, which includes Kottwitz-
Rapoport stratification and Ekedahl-Oort stratification as special cases.
In section 4, we study the fine affine Deligne-Lusztig varieties in the
affine Grassmannian. Theorem A, Theorem B and the first two parts
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of Theorem C are stated in section 5 and proofs are given in section 6.
Theorem C is proved in section 7. We also study the singularities of
No

λ in section 7.
Acknowledgments. We thank George Pappas, Michael Rapoport, Eva

Viehmann and Xinwen Zhu for useful discussions, answering questions
and pointing out mistakes in an earlier version.
After the paper was finished, we received an email from Xinwen Zhu

about his joint work in preparation with Liang Xiao [30].They study
the basic affine Deligne-Lusztig varieties in the affine Grassmannian
for some unramified quasi-split (but not split) groups. This gives a
different approach to the basic loci of types (2A′

n, ω
∨
1 , S) for n even,

(2Dn, ω
∨
1 , S) and (2A3, ω

∨
2 , S) in our list in Theorem 5.1.1. They also

give a description for some basic loci of non-Coxeter type.

1. Preliminaries

1.1. Notation. Let Fq be the finite field with q elements. Let k be
an algebraic closure of Fq. Let F = Fq((ǫ)) or a finite field extension
of Qp with residue class field Fq and uniformizer ǫ, and let L be the
completion of the maximal unramified extension of F .
Let G be a connected semisimple group over F which splits over a

tamely ramified extension of F . Let σ be the Frobenius automorphism
of L/F . We also denote the induced automorphism on G(L) by σ.
Let S ⊂ G be a maximal L-split torus defined over F and let T be

its centralizer. Since G is quasi-split over L, T is a maximal torus of
G. The Iwahori-Weyl group associated to S is

W̃ = NS(L)/T (L)1.

Here NS denotes the normalizer of S in G, and T (L)1 denotes the

unique parahoric subgroup of T (L). For w ∈ W̃ , we choose a represen-
tative in NS(L) and also write it as w.

1.2. Weyl groups. We denote by A the apartment of GL correspond-
ing to S. We fix a σ-invariant alcove a in A, and denote by I ⊆ G(L)
the Iwahori subgroup corresponding to a over L.
The Iwahori-Weyl group W̃ is an extension of the relative Weyl group

W0 = NS(L)/T (L) by X∗(T )Γ, where Γ = Gal(L̄/L) is the absolute
Galois group of L. If we choose a special vertex of a, we may represent
the Iwahori-Weyl group as a semidirect product

W̃ = X∗(T )Γ ⋊W0 = {tλw;λ ∈ X∗(T )Γ, w ∈ W0}.
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We denote by S̃ the set of simple reflections of W̃ and denote by
S ⊂ S̃ the set of simple reflections of W0. Both W̃ and S̃ are equipped
with an action of σ.
For any subset J of S̃, we denote byWJ the subgroup of W̃ generated

by the simple reflections in J and by JW̃ (resp. W̃ J) the set of minimal
length elements for the cosets WJ\W̃ (resp. W̃/WJ). We simply write
JW̃K for JW̃ ∩ W̃K .
The subgroup WS̃ of W̃ is the affine Weyl group and we usually

denote it by Wa. Then

W̃ = Wa ⋊ Ω,

where Ω is the normalizer of the base alcove a. We may identify Ω with
π1(G)Γ.

1.3. σ-conjugacy classes. We say that b, b′ ∈ G(L) are σ-conjugate
if b′ = g−1bσ(g) for some g ∈ G(L). We denote by B(G) the set of σ-
conjugacy classes of G(L). The classification of the σ-conjugacy classes
is obtained by Kottwitz in [16] and [17]. The description is as follows.
An element b ∈ G(L) determines a homomorphism D → GL, where

D is the pro-algebraic torus whose character group is Q. This homo-
morphism determines an element ν̄b in the closed dominant chamber
X∗(T )

+
Q. The element ν̄b is called the Newton point of b and the map

b 7→ ν̄b is called the Newton map. Let κG : B(G) → π1(G)ΓF
be the

Kottwitz map [17, §7], where ΓF is the absolute Galois group of F . By
[17, §4.13], the map

B(G) → X∗(T )
+
Q × π1(G)ΓF

, b 7→ (ν̄b, κG(b))

is injective. The set B(G) is equipped with a partial order, see [23]
Section 2.3.

1.4. Straight conjugacy classes. Following [10], we relate B(G) to

the Iwahori-Weyl group W̃ .
For any w ∈ W̃ , we consider the element wσ ∈ W̃ ⋊ 〈σ〉. There

exists n ∈ N such that (wσ)n = tλ for some λ ∈ X∗(T )Γ. Let ν̄w be
the unique dominant element in the W0-orbit of λ/n. It is known that
ν̄w is independent of the choice of n and is Γ-invariant. Moreover, ν̄w
is the Newton point of w when regarding w as an element in G(L).
We say that an element w is σ-straight if ℓ((wσ)n) = nℓ(w). This

is equivalent to saying that ℓ(w) = 〈ν̄w, 2ρ〉, where ρ is the half sum
of all positive roots in the root system of the affine Weyl group Wa.
A σ-conjugacy class of W̃ is called straight if it contains a σ-straight
element.
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The map NS(L) → G(L) induces a map W̃ → B(G). Here κG(w)

is the image of w under the projection W̃ → Ω ∼= π1(G)Γ → π1(G)ΓF
.

By [10, §3], the map induces a bijection from the set of straight σ-

conjugacy classes of W̃ to B(G).
A σ-conjugacy class [b] of G(L) is called basic if ν̄b factors through

the center of G. Again by [10, §3], a σ-conjugacy class of G(L) is basic
if and only if it contains some element of Ω.

1.5. The variety Z. Let µ ∈ X∗(T ) be a minuscule coweight. We
denote by λ its image in the coinvariants X∗(T )Γ. The admissible
subset of W̃ associated to µ is defined as

Adm(µ) = {w ∈ W̃ ;w 6 tx(λ) for some x ∈ W0}.

Note that λ is not minuscule in W̃ in general (see also §6.2). We also
denote by τ the image of tλ under the projection map W̃ = Wa⋊Ω → Ω.
Let J ⊂ S̃. Let PJ ⊃ I be the standard parahoric subgroup corre-

sponding to J . Set AdmJ(µ) = WJ Adm(µ)Wσ(J) and

YJ = ∪w∈Adm(µ)PJwPσ(J) = ∪w∈AdmJ(µ)IwI.

Define the action of PJ on G(L)×YJ by p · (g, y) = (gp−1, pyσ(p)−1)
and denote by ZJ its quotient. Then the map (g, y) 7→ (gyσ(g)−1, gPJ)
gives an isomorphism

ZJ
∼= {(b, gPJ) ∈ G(L)×G(L)/PJ ; g

−1bσ(g) ∈ Y }.

The image of the projection map ZJ → G(L) is a union of σ-
conjugacy classes of G(L) and we denote it by B(G, µ)J . In fact,
B(G, µ)J is independent of the subset J we choose [11]. However,
we don’t need this fact in this paper.
The basic σ-conjugacy class in B(G, µ)J contains the element τ and

we denote this σ-conjugacy class by O0. We have the Newton stratifi-
cation

ZJ = ⊔O∈B(G,µ)JZJ,O,

where ZJ,O = {(b, gPJ) ∈ ZJ ; b ∈ O}. The stratum ZJ,O0 is called the
basic locus in ZJ .

2. Affine Deligne-Lusztig varieties

2.1. Affine Deligne-Lusztig varieties. We first look at the case
where J = ∅. Then Y∅ = ⊔w∈Adm(µ)IwI and we have the Kottwitz-
Rapoport stratification

Z∅ = ⊔w∈Adm(µ)Z∅,w,

where Z∅,w = G(L)×I IwI for any w ∈ Adm(µ).
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Given w ∈ Adm(µ) and O ∈ B(G, µ)∅, the intersection Z∅,w ∩ Z∅,O

is a fiber bundle over O and the fiber over b ∈ O is the affine Deligne-
Lusztig variety (in the affine flag variety)

Xw(b) = {gI ∈ G(L)/I; g−1bσ(g) ∈ IwI} ⊂ G(L)/I.

Moreover, the σ-centralizer Jb = {g ∈ G(L); g−1bσ(g) = b} acts on
Xw(b).
In the rest of this section, we recollect some results on affine Deligne-

Lusztig varieties. The following result on σ-straight elements is proved
in [10, Proposition 4.5 & Theorem 4.8].

Theorem 2.1.1. If w is σ-straight, then Xw(b) 6= ∅ if and only if b is
σ-conjugate to w. In this case,

Xw(b) ∼= Xw(w) ∼= Jw/(Jw ∩ I)

(which means that, in the function field case, Xw(b) is 0-dimensional).

2.2. Support. For w ∈ Wa, we denote by supp(w) the support of w,

i.e., the set of i ∈ S̃ such that si appears in some (or equivalently, any)
reduced expression of w. We set

suppσ(wτ) =
⋃

n∈Z

(τσ)n(supp(w)).

Then suppσ(wτ) is the minimal τσ-stable subset J of S̃ such that wτσ ∈
WJ ⋊ 〈τσ〉}.
If ℓ(w) = ♯(suppσ(wτ)/〈τσ〉), i.e., w is a product of simple reflections

in Wa and the simple reflections from each orbit of τσ appears at most
once, then we say that wτ is a σ-Coxeter element.

Proposition 2.2.1. Let w ∈ Waτ such that Wsuppσ(w) is finite. Then

Xw(τ) =
∐

i∈Jτ/(Jτ∩Psuppσ(w))

iY (w),

where

Y (w) = {gI ∈ Psuppσ(w)/I; g−1τσ(g) ∈ IwI}

is a classical Deligne-Lusztig variety in the finite-dimensional flag va-
riety Psuppσ(w)/I.

The proposition follows from the proof of [10, Theorem 4.7]. For
the sake of completeness and because the reasoning simplifies in our
setting, we reproduce the relevant part of the proof in loc. cit.
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Proof. Let g ∈ G(L) with g−1τσ(g) ∈ IwI. By [10, Lemma 3.2 &
Proposition 4.5], there exists p ∈ Psuppσ(w), such that (gp)−1τσ(gp) = τ .
Hence g ∈ JτPsuppσ(w), and

Xw(τ) = {gI ∈ JτPsuppσ(w)/I; g
−1τσ(g) ∈ IwI} ⊂ JτPsuppσ(w)/I.

Note that JτPsuppσ(w)/I = ⊔i∈Jτ /(Jτ∩Psuppσ(w))iPsuppσ(w)/I and for any

g ∈ Psuppσ(w) and i ∈ Jτ , (ig)
−1τσ(ig) ∈ IwI if and only if g−1τσ(g) ∈

IwI. Hence

Xw(τ) =
∐

i∈Jτ/(Jτ∩Psuppσ(w))

Y (w).

�

3. PJ-stable pieces

3.1. Partial conjugation action. Let J ⊂ S̃. The partial conjuga-
tion action of WJ on W̃ defined by x ·σ y = xyσ(x)−1 for x ∈ WJ and

y ∈ W̃ .

Given w,w′ ∈ W̃ and j ∈ J , we write w
sj
−→σ w′ if w′ = sjwsσ(j) and

l(w′) 6 l(w). If w = w0, w1, · · · , wn = w′ is a sequence of elements in

W̃ such that for all k, we have wk−1
sj
−→σ wk for some j ∈ J , then we

write w →J,σ w′. We write w ≈J,σ w′ if w →J,σ w′ and w′ →J,σ w.
The following property is proved in [6, Proposition 3.4].

Proposition 3.1.1. For any w ∈ W̃ , there exists a minimal length
element w′ ∈ WJ ·σ w such that w →J,σ w′. Moreover, we may take

w′ to be of the form vw1 with w1 ∈ JW̃ and v ∈ WI(J,w1,σ). Here
I(J, w1, σ) = max{K ⊂ J ;Ad(w1)σ(K) = K}.

3.2. The subset PJ ·σ IwI. By [9, section 2],
(1) If w ≈J,σ w′, then PJ ·σ IwI = PJ ·σ Iw

′I.

(2) If w
si−→σ w′ with ℓ(w′) < ℓ(w), then PJ ·σ IwI = PJ ·σ Iw′I ∪

PJ ·σ IsiwI.
(3) If w ∈ JW̃ and x ∈ WI(J,w,σ), then PJ ·σ IxwI = PJ ·σ IwI.

A subset of G(L) of the form PJ ·σ IwI for some w ∈ JW̃ is called
a PJ-stable piece. It is analogous to the G-stable pieces introduced by
Lusztig in [19]. It is showed in [21, 1.4] and [9, Proposition 2.5 & 2.6]
that

G(L) = ⊔w∈JW̃PJ ·σ IwI.

The following result is essentially contained in the proof of [9, Propo-
sition 2.5].
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Theorem 3.2.1. Let w ∈ W̃ . Then

PJwPσ(J) = ⊔x∈WJwWσ(J)∩JW̃PJ ·σ IxI.

Proof. It is obvious that ⊔x∈WJwWσ(J)∩JW̃PJ ·σ IxI ⊂ PJwPσ(J). Now

we prove that PJwPσ(J) ⊂ ⊔x∈WJwWσ(J)∩JW̃PJ ·σ IxI.

Notice that PJwPσ(J) = ⊔w′∈WJwWσ(J)
Iw′I. We argue by induction

that Iw′I ⊂ ⊔x∈WJwWσ(J)∩JW̃PJ ·σ IxI for any w′ ∈ WJwWσ(J).

If w′ is a minimal length element inWJ ·σw
′, then w′ ≈J,σ vx for some

x ∈ JW̃ and v ∈ WI(J,x,σ). In this case, x ∈ WJw
′Wσ(J) = WJwWσ(J).

The statement follows from §3.2 (1) & (3).
If w′ is not a minimal length element in WJ ·σ w

′, then there exists
w′′ ≈J,σ w′ and i ∈ J such that ℓ(siw

′′sσ(i)) < ℓ(w′). The statement
follows from the induction hypothesis and §3.2 (1) & (2). �

3.3. A partial order on JW̃ . We introduce 6J,σ as follows. For

w ∈ JW̃ and w′ ∈ W̃ , we write w 6J,σ w′ if there exists x ∈ WJ such

that xwσ(x)−1 6 w′. By [6, 4.7], 6J,σ gives a partial order on JW̃ . For

w,w′ ∈ JW̃ ,
(1) w 6 w′ implies that w 6J,σ w′;
(2) w 6J,σ w′ implies that ℓ(w) 6 ℓ(w′).
It is proved in [9, Proposition 2.6] that if F = Fq((ǫ)), then

PJ ·σ IwI = ⊔x∈JW̃ ,x6J,σw
PJ ·σ IxI.

3.4. A stratification of ZJ . Since YJ = ⊔w∈AdmJ (µ)∩J W̃PJ ·σ IwI, we
have the stratification

ZJ = ⊔w∈AdmJ (µ)∩J W̃ZJ,w,

where ZJ,w = G(L)×PJ (PJ ·σ IwI). This includes as special cases the
Kottwitz-Rapoport stratification discussed in §2.1 and the Ekedahl-
Oort stratification we will discuss in §5.1. See also [13].
Given w ∈ AdmJ(µ)∩JW̃ and O ∈ B(G, µ)J , the intersection ZJ,w∩

ZJ,O is a fiber bundle over O and the fiber over b ∈ O is

(3.4.1) XJ,w(b) := {gPJ ; g
−1bσ(g) ∈ PJ ·σ IwI} ⊂ G(L)/PJ .

It is the image of Xw(b) under the projection map πJ : G(L)/I →
G(L)/PJ . We call XJ,w(b) a fine affine Deligne-Lusztig variety in
G(L)/PJ .
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4. Fine affine Deligne-Lusztig varieties

4.1. (Coarse) affine Deligne-Lusztig varieties. For any J ⊂ S̃, we
have another stratification

G(L)/PJ = ⊔w∈JW̃σ(J){gPJ ; g
−1bσ(g) ∈ PJwPσ(J)}.

Each subset {gPJ ; g
−1bσ(g) ∈ PJwPσ(J)} is a union of fine affine Deligne-

Lusztig varieties. We call it a (coarse) affine Deligne-Lusztig variety in
G(L)/PJ . Similar to the proof of Proposition 2.2.1, we have

Proposition 4.1.1. Let J ⊂ S̃ and w ∈ JW̃ σ(J) ∩ Waτ such that
Ad(w)σ(J) = J . If Wsuppσ(w)∪J is finite, then

{gPJ ; g
−1τσ(g) ∈ PJwPσ(J)} = ⊔i∈Jτ /(Jτ∩Psuppσ(w)∪J )iYJ(w),

where YJ(w) = {gPJ ∈ Psuppσ(w)∪J/PJ ; g
−1τσ(g) ∈ PJwPσ(J)} is a clas-

sical Deligne-Lusztig variety in the partial flag variety Psuppσ(w)∪J/PJ .

The main result we prove in this section (see Sections 4.5, 4.6) is
the following theorem which relates fine affine Deligne-Lusztig varieties
with (coarse) affine Deligne-Lusztig varieties.

Theorem 4.1.2. For any J ⊂ S̃ and w ∈ JW̃ ,
(1) XJ,w(b) ∼= {gPI(J,w,σ); g

−1bσ(g) ∈ PI(J,w,σ)wPσ(I(J,w,σ))}.
(2) If F = Fq((ǫ)), then dimXJ,w(b) = dimXw(b).

Corollary 4.1.3. If J ⊂ S̃ and w ∈ JW̃ is a σ-Coxeter element in the
finite Weyl group Wsuppσ(w), then

XJ,w(τ) ∼= ⊔i∈Jτ/(Jτ∩Psuppσ(w)∪I(J,w,σ)
)iYI(J,w,σ)(w),

where YI(J,w,σ)(w) = {gPI(J,w,σ) ∈ Psuppσ(w)∪I(J,w,σ)/PI(J,w,σ); g
−1τσ(g) ∈

PI(J,w,σ)wPσ(I(J,w,σ))}.
Furthermore, the projection πJ induces an isomorphism from the

classical Deligne-Lusztig variety {gI ∈ Psuppσ(w)/I; g
−1τσ(g) ∈ IwI}

in the flag variety Psuppσ(w)/I to

{gPsuppσ(w)∩J ∈ Psuppσ(w)/Psuppσ(w)∩J ; g
−1τσ(g) ∈ Psuppσ(w)∩J ·σ IwI}

∼= YI(J,w,σ)(w),

and YI(J,w,σ)(w) has dimension ℓ(w).

Proof. The first part of the corollary follows from Theorem 4.1.2 and
Proposition 4.1.1.
Furthermore, it is easy to see that I(J, w, σ) consists of j ∈ J such

that sj commutes with si for all i ∈ suppσ(w). In particular, I(J, w, σ)
and suppσ(w) are disconnected in the affine Dynkin diagram. This im-
plies that {gI ∈ Psuppσ(w)/I; g

−1τσ(g) ∈ IwI} is isomorphic to YI(J,w,σ).
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The proof of Theorem 4.1.2 (1) implies that πJ restricts to an isomor-
phism on {gI ∈ Psuppσ(w)/I; g

−1τσ(g) ∈ IwI}, and that the image of
the latter variety can be identified with YI(J,w,σ)(w). �

We follow the approach of [20] and [8] for classical fine Deligne-
Lusztig varieties in the partial flag variety.

4.2. The parahoric subgroup PQ. For any g ∈ G(L) and H ⊂
G(L), we simply write gH for gHg−1. Let G(L)′ be the subgroup

generated by all parahoric subgroups of G(L). For any J ⊂ S̃, let
PJ = {gPJ ; g ∈ G(L)′} ∼= G(L)′/PJ be the set of parahoric subgroups

conjugate to PJ by an element of G(L)′. For any J,K ⊂ S̃, P ∈ PJ

and Q ∈ PK , we write pos(P,Q) = w if w ∈ JWK
a and there exists

g ∈ G(L)′ such that P = gPJg
−1 and Q = gẇPKẇ

−1g−1, where ẇ is a
representative of w in G(L)′.
For any parahoric subgroups P and Q, we set PQ = (P ∩ Q)UP ,

where UP is the pro-unipotent radical of P . By [21], §1.1 (see also [8],
Lemma 2.3), one shows that PQ is again a parahoric subgroup. For
any g ∈ G(L),

(gP )(
gQ) = g(PQ).

4.3. Bédard’s description of JWa. For J ⊂ S̃, let T(J, τσ) be the
set of sequences (Jn, wn)n>0 such that
(a) J0 = J ,
(b) Jn = Jn−1 ∩ wn−1τσ(Jn−1)w

−1
n−1 for n > 1,

(c) wn ∈ JnWa
τσ(Jn) for n > 0,

(d) wn ∈ WJnwn−1Wτσ(Jn−1) for n > 1.
Then for any sequence (Jn, wn)n>0 ∈ T(J, τσ), we have that wn =

wn+1 = · · · and Jn = Jn+1 = · · · for n ≫ 0. By [1], the assignment
(Jn, wn)n>0 7→ wm for m ≫ 0 defines a bijection T(J, τσ) → JWa.

4.4. Lusztig’s partition of PJ . Following [20], section 4, we give a
partition on PJ .
Let b ∈ τG(L)′. To each P ∈ PJ , we associate a sequence (P

n, Jn, wn)n>0

as follows

P 0 = P, P n = (P n−1)(bσ(P
n−1)b−1) for n > 1,

Jn ⊂ I with P n ∈ PJn, wn = pos(P n, bσ(P n)b−1) for n > 0.

By [21, §1.4], (Jn, wn)n>0 ∈ T(J, τσ). For w ∈ JWa, let

PJ,wτ(b) = {P ∈ PJ ;wm = w for m ≫ 0}.

Then PJ = ⊔w∈JWa
PJ,wτ(b).
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Proposition 4.4.1. Let w ∈ JWa. Then

PJ,wτ(b) = {gPJ ; g ∈ G(L)′, g−1bσ(g) ∈ PJ ·σ IwτI}.

Proof. Notice that G(L)′ ·σ b ⊂ τG(L)′ = ⊔w∈JWa
PJ ·σ IwτI. Then any

P ∈ PJ is of the form P = gPJ for some g ∈ G(L) with g−1bσ(g) ∈
IwτI for a unique w ∈ JWa. Let (P n, Jn, wn)n>0 be the sequence
associated to gPJ . Similar to [8, Lemma 2.4], wm = w for m ≫ 0.
Hence P ∈ PJ,wτ(b). �

4.5. Part (1) of Theorem 4.1.2. Let pJ : P∅ → PJ be the projection
map. Similarly to [20, §4.2 (c) & (d)], for any n > 0, the map P 7→ P n

gives an isomorphism ϑn : PJ,wτ(b) → PJn,wτ(b) and the inverse map is
pJ . In particular, pJn = ϑn ◦ pJ .
By [5, Lemma 1.4], I(J, wτ, σ) = Jm for m ≫ 0. By Lang’s theo-

rem, PI(J,wτ,σ) ·σ IwτI = PI(J,wτ,σ)wτPσ(I(J,wτ,σ)). Therefore PJ,wτ(b) is
isomorphic to

PI(J,wτ,σ),wτ(b) = {gPI(J,wτ,σ) ∈ PI(J,wτ,σ); g
−1bσ(g) ∈ PI(J,wτ,σ)wτPσ(I(J,wτ,σ))}.

We fix τ ′ ∈ Ω. Then

XJ,wτ(b) ∩ τ ′G(L)′/PJ = {gτ ′PJ ; g ∈ G(L)′, (gτ ′)−1bσ(gτ ′) ∈ PJ ·σ IwτI}

= {gPτ ′(J)τ
′; g ∈ G(L)′, g−1bσ(g) ∈ Pτ ′(J) ·σ Iτ

′wτσ(τ ′)−1I}

∼= {gPKτ
′; g ∈ G(L)′, g−1bσ(g) ∈ PKτ

′wτσ(τ ′)−1Pσ(K)}

= {gτ ′P(τ ′)−1(K); g ∈ G(L)′, g−1bσ(g) ∈ P(τ ′)−1(K)wτPσ(τ ′)−1(K)}

= XI(J,wτ,σ),wτ(b) ∩ τ ′G(L)′/PI(J,wτ,σ),

here K = I(τ ′(J), τ ′wτσ(τ ′)−1, σ) = τ ′(I(J, wτ, σ)). Part (1) of the
Theorem 4.1.2 follows by combining all such τ ′’s together.

4.6. Part (2) of Theorem 4.1.2. In this subsection, we assume that
F = Fq((ǫ)). Suppose that wm = w. Let P̄I(J,wτ,σ) be the reduc-
tive quotient of PI(J,wτ,σ) and Ī the image of I in P̄I(J,wτ,σ). The
fiber of the map pI(J,wτ,σ) : P∅,wτ(b) → PI(J,wτ,σ),wτ(b) is isomorphic to
{pI ∈ PI(J,wτ,σ)/I; p

−1wτσ(p) ∈ IwτI} = {pI ∈ P̄I(J,wτ,σ)/Ī; (Ad(wτ) ◦
σ)(pI) = pI}. Here Ad(wτ) ◦ σ is a twisted Frobenius morphism on
PI(J,wτ,σ)/I ∼= P̄I(J,wτ,σ)/Ī. In particular, the fiber of πI(J,wτ,σ) is 0-
dimensional. Since θm is an isomorphism and pI(J,wτ,σ) = θm ◦ pJ , the
fiber of pJ is also 0-dimensional. Hence dimXJ,wτ(b) = dimXwτ(b).

5. Newton strata and Ekedahl-Oort strata

5.1. Ekedahl-Oort strata. From now on, we assume that G is ab-
solutely quasi-simple and J is a maximal proper subset of S̃ and that
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σ(J) = J . Therefore PJ(F ) is a rational maximal parahoric subgroup1

of G(F ).

We simply write EOJ(µ) for AdmJ(µ)∩JW̃ . The elements in EOJ(µ)
are called EO elements. Here EO stands for Ekedahl-Oort. For any
w ∈ EOJ(µ), we call ZJ,w an Ekedahl-Oort stratum.
Let EOJ

σ,cox(µ) be the subset of EO
J(µ) consists of elements w, where

suppσ(w) is a proper subset of S̃ and w is a σ-Coxeter element of
Wsuppσ(w). Since G is absolutely quasi-simple, the affine Dynkin dia-

gram of W̃ is connected. Hence if w ∈ EOJ
σ,cox(µ), then Wsuppσ(w) is a

finite Weyl group.
It follows from Viehmann’s paper [28], Theorem 1.1, that this no-

tion coincides with the usual notion of Ekedahl-Oort strata, if G is
unramified.
We are mainly interested in the case where the basic locus is the

union

(5.1.1) ZJ,O0 = ⊔w∈EOJ
σ,cox(µ)

ZJ,w.

In other words, the basic locus is a union of Ekedahl-Oort strata and
each Ekedahl-Oort stratum is (“in a natural way”) the union of classi-
cal Deligne-Lusztig varieties attached to a Coxeter element. If (5.1.1)
holds, then we say that (G, µ, J) is of Coxeter type. The first main
result of this paper is the classification theorem.

Theorem 5.1.1. Let (G, µ, J) be as in §5.1. The following 21 cases is
the complete list (up to isomorphisms) of the triples (G, µ, J) of Coxeter
type:2

(An, ω
∨
1 , S) (Bn, ω

∨
1 , S) (Bn, ω

∨
1 , S̃− {n})

(B-Cn, ω
∨
1 , S) (B-Cn, ω

∨
1 , S̃− {n}) (C-Bn, ω

∨
1 , S)

(C-BCn, ω
∨
1 , S) (C-BCn, ω

∨
1 , S̃− {n}) (Dn, ω

∨
1 , S)

(2A′
n, ω

∨
1 , S) (2Bn, ω

∨
1 , S̃− {n}) (2B-Cn, ω

∨
1 , S̃− {n})

(2Dn, ω
∨
1 , S) (A3, ω

∨
2 , S) (2A′

3, ω
∨
2 , S)

(C2, ω
∨
2 , S) (C2, ω

∨
2 , S̃− {1}) (2C2, ω

∨
2 , S̃− {1})

(2C-B2, ω
∨
1 , S̃− {1})

The theorem is proved in section 6.

1This assumption excludes some cases to which our method can be applied, for
instance the Hilbert-Blumenthal case. In fact, one may consider maximal rational
parahoric subgroups instead. However, in some cases, the only maximal rational
parahoric subgroups are just rational Iwahori subgroups. Then the resulting strat-
ification is the Kottwitz-Rapoport stratification. It is much harder to achieve a
complete classification under this weaker assumption, so we do not consider it here.

2Here we use the names in [27, Section 4].
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5.2. Ranked poset. Recall that a ranked poset is a partially ordered
set (poset) equipped with a rank function ρ such that whenever y covers
x, ρ(y) = ρ(x) + 1. We say that the partial order of a poset is almost
linear if the poset has a rank function ρ such that for any x, y in the
poset, x < y if and only if ρ(x) < ρ(y).

Theorem 5.2.1. Let (G, µ, J) be as in Theorem 5.1.1. Then

(1) Every Newton stratum is a union of Ekedahl-Oort strata. In
other words, there is a map EOJ(µ) → B(G, µ)J , w 7→ Ow such
that Zw ⊂ ZOw .

(2) The partial order of B(G, µ)J (inherited from B(G)) is almost
linear.

(3) The partial order 6J,σ of EOJ
σ,cox(µ) coincides with the usual

Bruhat order and is almost linear. Here the rank is the length
function.

(4) For any w ∈ EOJ(µ)−EOJ
σ,cox(µ) and b′ ∈ Ow the σ-centralizer

Jb′ acts transitively on XJ,w(b
′). In particular, whenever there

is a notion of dimension (in the RZ cases and in the function
field case), this implies that dimXJ,w(b

′) = 0.
(5) For any w ∈ EOJ

σ,cox(µ), set J(w, σ) = I(J, w, σ) ∪ suppσ(w).
Then

XJ,w(τ) = ⊔i∈Jτ /(Jτ∩PJ(w,σ))iY (w),

where

Y (w) = {gPI(J,w,σ) ∈ PJ(w,σ)/PI(J,w,σ);

g−1τσ(g) ∈ PI(J,w,σ)wPσ(I(J,w,σ)}.

The theorem is proved in section 6.11.

5.3. Many of the above cases have been investigated in the context of
Shimura varieties:
The case (G, µ, J) = (C2, ω

∨
2 , S) has been studied by Katsura and

Oort [15] and Kaiser [14]; see also the paper [18] by Kudla and Rapoport
(where the results are applied to computing intersection numbers of
arithmetic cycles).
The case (G, µ, J) = (An, ω

∨
1 , S) is the U(1, n), p split case in which

the basic locus is 0-dimensional. This is the situation considered by
Harris and Taylor in [4].
The case (G, µ, J) = (2A′

n, ω
∨
1 , S) is the U(1, n), p inert case and is

studied by Vollaard and Wedhorn in [29].

The cases (G, µ, J) = (B-Cn, ω
∨
1 , S̃− {n}), (2B-Cn, ω

∨
1 , S̃− {n}) and

(C-BCn, ω
∨
1 , S̃− {n}) are the U(1, ∗), p ramified cases and are studied
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by Rapoport, Terstiege and Wilson in [24]. See Section 7.4 where we
discuss these cases in more detail.
The case (2A′

3, ω
∨
2 , S) is the U(2, 2), p inert case and is studied by

Howard and Pappas in [12]. They transfer the problem to questions
about an orthogonal group. The case (G, µ, J) = (A3, ω

∨
2 , S) is the

U(2, 2), p split case which has not been written down in detail but
which should not be hard to deal with.
The cases (G, µ, J) = (B-Cn, ω

∨
1 , S) and (C-BCn, ω

∨
1 , S) are the “ex-

otic good reduction” cases for ramified U(1, ∗) and it was conjectured
in [24] that the description of basic locus is similar to the cases studied
in loc.cit.
The remaining cases (including both PEL and non-PEL types) seem

completely new.

6. The study of Ekedahl-Oort elements

6.1. General strategy. It is showed in [10, §6] that the nonemptiness
pattern of affine Deligne-Lusztig varieties only depends on the data
(W̃ , w, τ, σ) and is independent of the choice of G (i.e., independent of
the orientation of the local Dynkin diagrams). Hence whether or not

(G, µ, J) is of Coxeter type depends only on (W̃ , λ, J, σ). Here λ is the
image of µ in X∗(T )Γ.
Let us consider the following two conditions:
Coxeter-Straight Condition (CSC): EOJ(µ)−EOJ

σ,cox(µ) consists of
σ-straight elements.
Coxeter Condition (CC): If w ∈ EOJ(µ) with ν̄w central, then w is

a σ-Coxeter element in Wsuppσ(w).
By Theorem 2.1.1, (CSC) implies that (G, µ, J) is of Coxeter type .

If (G, µ, J) is of Coxeter type, then it is obvious that (CC) holds. We
will show via a case-by-case analysis that (CC) implies (CSC).

6.2. The quadruple (W̃ , λ, J, σ). We use the same labeling of Coxeter
graph as in [2]. If ω∨

i is minuscule, we denote the corresponding element
in Ω by τi. Let σ0 be the unique nontrivial diagram automorphism for
the finite Dynkin diagram if W0 is of type An, Dn (with n > 5) or E6.
For type D4, we also denote by σ0 the diagram automorphism which
interchanges α3 and α4.
The pairs (W̃ , λ) coming from (G, µ) with G absolutely quasi-simple

and µ minuscule in G are as follows: (Ãn, ω
∨
i )16i6n, (B̃n, ω

∨
i )16i6n,

(C̃n, ω
∨
i )16i6n, (C̃n, 2ω

∨
n), (D̃n, ω

∨
i )i=1,n−1,n, (Ẽ6, ω

∨
i )i=1,6, (Ẽ7, ω

∨
1 ), (F̃4, ω

∨
1 ),

(G̃2, ω
∨
2 ).
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It was pointed to us by X. Zhu that to compute these tuples one
only needs to understand the restriction of µ to a maximal split torus;
it is not required to fully “compute” the reduced affine root system the
group G gives rise to.
We will show that the basic locus is a union of Ekedahl-Oort strata

if and only if the quadruple (W̃ , λ, J, σ) is one of the following (up to

automorphisms of W̃ ):

(Ãn, ω
∨
1 , S, id) (Ãn, ω

∨
1 , S, σ0) (B̃n, ω

∨
1 , S, id)

(B̃n, ω
∨
1 , S̃− {n}, id) (B̃n, ω

∨
1 , S̃− {n}, τ1) (C̃n, ω

∨
1 , S, id)

(D̃n, ω
∨
1 , S, id) (D̃n, ω

∨
1 , S, σ0) (Ã3, ω

∨
2 , S, id)

(Ã3, ω
∨
2 , S, σ0) (C̃2, ω

∨
2 , S, id) (C̃2, ω

∨
2 , S̃− {1}, id)

(C̃2, ω
∨
2 , S̃− {1}, τ2)

Note that this list is shorter than the one in Theorem 5.2.1 because
some automorphisms of W̃ will not lift to automorphisms of the affine
root system.
If the quadruple (W̃ , λ, J, σ) is not in the list above, we give an ele-

ment w such that the Coxeter condition (CC) fails for w. If the quadru-
ple (W̃ , λ, J, σ) is in the list above, we compute EOJ(µ), EOJ

σ,cox(µ) and

the Newton points of the elements in EOJ(µ)− EOJ
σ,cox(µ).

We follow [7, 1.5] for the reduced expression of tµ. For 1 6 a, b 6 n,
set

s[a,b] =

{

sasa−1 · · · sb, if a > b,

1, otherwise.

6.3. Type Ãn−1. For simplicity, we consider the extended affine Weyl
group of GLn and ω∨

i = (1(i), 0(n−i)) instead. We may assume that
J = S and µ = ω∨

i with 1 6 i 6 n
2
(after applying some automorphism

of W̃ ).
Case 1: σ = id.
If 2 6 i < n

2
, then (CC) fails for s0s[n−1,n−gcd(n,i)]τ .

If i = n
2
> 3, then (CC) fails for s0s1sn−1s0τ .

If i = n
2
= 2, then EOJ

σ,cox(µ) = {τ, s0τ} and EOJ(µ)−EOJ
σ,cox(µ) =

{s0s1τ, s0s3τ, s0s1s3τ, s0s1s3s0τ} consists of σ-straight elements. More-

over, νs0s1τ = (2
3

(3)
, 0(1)), νs0s3τ = (1(1), 1

3

(3)
), νs0s1s3τ = (1, 1

2

(2)
, 0) and

νs0s1s3s0τ = (1(2), 0(2)).
If i = 1, then EOJ

σ,cox(µ) = {τ} and EOJ(µ)−EOJ
σ,cox(µ) = {s0s[n−1,i]τ ; 2 6

i 6 n} consists of σ-straight elements. For 2 6 i 6 n, νs0s[n−1,i]τ =

( 1
i−1

(i−1)
, 0(n−i+1)).

Case 2: σ = σ0.
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If i > 3 or n > 4, then (CC) fails for s0s1sn−1s0τ .
If i = 2, n = 4, then EOJ

σ,cox(µ) = {τ, s0τ, s0s1τ, s0s3τ} and EOJ(µ)−

EOJ
σ,cox(µ) = {s0s1s3τ, s0s1s3s0τ} consists of σ-straight elements. More-

over, νs0s1s3τ = (1, 1
2

(2)
, 0) and νs0s1s3s0τ = (1(2), 0(2)) are all distinct.

If i = 1, then EOJ
σ,cox(µ) = {τ, s0τ, · · · , s0s[n−1,⌈n+3

2
⌉]τ} and EOJ(µ)−

EOJ
σ,cox(µ) = {s0s[n−1,i]τ ; 2 6 i 6 ⌈n+1

2
⌉} consists of σ-straight ele-

ments. For 2 6 i 6 ⌈n+1
2
⌉, νs0s[n−1,i]τ = ( i

2(i−1)

(i−1)
, 1
2

(n−2i+2)
, i−2
2(i−1)

(i−1)
).

6.4. Type B̃n. Let J = S̃ − {i}. If i /∈ {0, 1, n}, then (CC) fails for

s−1
[n,i]s[n−1,i]τ . We may assume that J = S or S̃ − {n} (after applying

some automorphism of W̃ ).
Case 1: J = S, σ = id.
If τ = id, then µ > ω∨

2 and (CC) fails for s0s
−1
[n,2]s[n−1,2]s0.

If τ = τ1 and µ > ω∨
1 , then (CC) fails for s0s2s1τ .

If µ = ω∨
1 , then EOJ

σ,cox(µ) = {τ, s0τ, s0s2τ, · · · , s0s
−1
[n−1,2]τ} and

EOJ(µ) − EOJ
σ,cox(µ) = {s0s

−1
[n,2]τs[n−1,i]; 1 6 i 6 n} consists of σ-

straight elements. For 1 6 i 6 n, νs0s−1
[n,2]

τs[n−1,i]
= (1

i

(i)
, 0(n−i)).

Case 2: J = S̃− {n}, σ = id or τ1.
If µ > ω∨

1 , then (CC) fails for snsn−1snτ .
If µ = ω∨

1 and σ = id, then EOJ
σ,cox(µ) = {τ, snτ, snsn−1τ, · · · , s[n,2]τ}

and EOJ(µ) − EOJ
σ,cox(µ) = {s[n,2]s1τ, s[n,2]s0τ} ∪ {s[n,0]s

−1
[i,2]τ ; 2 6 i 6

n− 1} consists of σ-straight elements. Moreover, νs[n,2]s1τ = νs[n,2]s0τ =

( 1
n

(n)
) and for 2 6 i 6 n− 1, νs[n,0]s

−1
[i,2]

τ = ( 1
n−i

(n−i)
, 0(i)).

If µ = ω∨
1 and σ = τ1, then EOJ

σ,cox(µ) = {τ, snτ, · · · , s[n,2]τ} ∪

{s[n,2]s1τ, s[n,2]s0τ} and EOJ(µ) − EOJ
σ,cox(µ) = {s[n,0]s

−1
[i,2]τ ; 1 6 i 6

n− 1} consists of σ-straight elements. For 1 6 i 6 n− 1, νs[n,0]s
−1
[i,2]

τ =

( 1
n−i

(n−i)
, 0(i)).

6.5. Type C̃n. Let J = S̃ − {i} with i 6 n
2
(after applying some

automorphism of W̃ ).
Case 1: µ > ω∨

1 .
If i 6= 0, then (CC) fails for s[i,0]s[1,i]τ . Hence J = S and σ = id.
If µ > ω∨

1 , then (CC) fails for s0s1s0.
If µ = ω∨

1 , then EOJ
σ,cox(µ) = {1, s0, s0s1, · · · , s

−1
[n−1,0]} and EOJ(µ)−

EOJ
σ,cox(µ) = {s−1

[n,0]s[n−1,i]; 1 6 i 6 n} consists of σ-straight elements.

For 1 6 i 6 n, νs−1
[n,0]

s[n−1,i]
= (1

i

(i)
, 0(n−i)).
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Case 2: µ = ω∨
n .

If 0 < i < n
2
, then σ = id and (CC) fails for s−1

[n−i,i]τ .

If i = n
2
> 1, then (CC) fails for sisi+1si−1siτ .

If i = 0 and n > 2, then (CC) fails for s0s1s0τ .
Therefore n = 2.
If J = S, then σ = id and EOJ

σ,cox(µ) = {τ, s0τ} and EOJ(µ) −

EOJ
σ,cox(µ) = {s0s1τ, s0s1s0τ} consists of σ-straight elements. More-

over, νs0s1τ = (1
2
, 0) and νs0s1s0τ = (1

2

(2)
).

If J = S̃−{1} and σ = id, then EOJ
σ,cox(µ) = {τ, s1τ} and EOJ(µ)−

EOJ
σ,cox(µ) = {s1s0τ, s1s2s0τ} consists of σ-straight elements. More-

over, νs1s2τ = νs1s0τ = (1
2
, 0) and νs1s2s0τ = (1

2

(2)
).

If J = S̃ − {1} and σ = τ2, then EOJ
σ,cox(µ) = {τ, s1τ, s1s2τ, s1s0τ}

and EOJ(µ)− EOJ
σ,cox(µ) = {s1s2s0τ} consists of σ-straight elements.

Moreover, νs1s2s0τ = (1
2

(2)
).

6.6. Type D̃n. Let J = S̃ − {i}. After applying some automorphism
of W̃ , we may assume that i = 0 or 2 6 i 6 n

2
and µ = ω∨

1 or ω∨
n .

Case 1: µ = ω∨
1 .

If i 6= 0, then (CC) fails for s−1
[n,i]s[n−2,i]τ . Hence J = S.

If σ = id, then EOJ
σ,cox(µ) = {τ, s0τ, s0s2τ, · · · , s0s

−1
[n−2,2]τ} and EOJ(µ)−

EOJ
σ,cox(µ) = {s0s

−1
[n−2,2]sn−1τ, s0s

−1
[n−2,2]snτ} ∪ {s0s

−1
[n,2]τs[n−2,i]; 1 6 i 6

n − 1} consists of σ-straight elements. Moreover, νs0s−1
[n−2,2]

sn−1τ
=

νs0s−1
[n−2,2]

snτ
= ( 1

n

(n)
) and for 1 6 i 6 n−1, νs0s−1

[n,2]
τs[n−2,i]

= (1
i

(i)
, 0(n−i)).

If σ = σ0, then EOJ
σ,cox(µ) = {τ, s0τ, · · · , s0s

−1
[n−1,2]τ, s0s

−1
[n−2,2]snτ}

and EOJ(µ) − EOJ
σ,cox(µ) = {s0s

−1
[n,2]τs[n−2,i]; 1 6 i 6 n − 1} consists

of σ-straight elements. Moreover, for 1 6 i 6 n − 1, νs0s−1
[n,2]

τs[n−2,i]
=

(1
i

(i)
, 0(n−i)).

If σ(1) 6= 1, then n = 4 and (CC) fails for s0s2s3 or s0s2s4.
Case 2: µ = ω∨

n .
If 2 6 i < n

2
, then (CC) fails for s−1

[n−i,i]τ .

If i = n
2
, then (CC) fails for sisi+1si−1siτ .

Now we consider the case where J = S and n > 4. One may check
that (CC) fails for s0s2s1τ or s0s2s1s0τ .

6.7. Type Ẽ6. After applying some automorphism of W̃ , we may as-
sume that µ = ω∨

1 and J = S, S̃− {2} or S̃− {4}.
If J = S, then (CC) fails for s0s2s4s3s1τ .

If J = S̃− {2}, then (CC) fails for s2s4s5τ or s2s4s3τ .
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If J = S̃− {4}, then (CC) fails for s4s3s5s4τ .

6.8. Type Ẽ7. Here µ = ω∨
1 . After applying some automorphism of

W̃ , J = S̃− {i} for 0 6 i 6 4.
If J = S, then (CC) fails for s0s1s3s4s2s5s4s3s1s0τ .

If J = S̃− {1}, then (CC) fails for s1s3s4s5s6τ .

If J = S̃− {2}, then (CC) fails for s2s4s3s5s4s2τ .

If J = S̃− {3}, then (CC) fails for s3s4s5τ .

If J = S̃− {4}, then (CC) fails for s4s2s5s4τ .

6.9. Type F̃4. Here µ = ω∨
1 . If J = S, then (CC) fails for s0s1s2s3s2s1.

If J = S̃−{1}, then (CC) fails for s1s2s3s2. If J = S̃−{2}, then (CC)

fails for s2s3s2. If J = S̃−{3}, then (CC) fails for s3s2s3. If J = S̃−{4},
then (CC) fails for s4s3s2s3.

6.10. Type G̃2. Here µ = ω∨
2 . If J = S, then (CC) fails for s0s2s1s2.

If J = S̃−{1}, then (CC) fails for s1s2s1s0. If J = S̃−{2}, then (CC)
fails for s2s1s2s0.

6.11. Proof of Theorem 5.2.1. Part (1) and (2) follow from the
Coxeter-Straight condition. Part (3) follows from the explicit com-
putation in each case. Part (4) follows from Theorem 2.1.1. Part (5)
follows from Theorem 4.1.2 and Proposition 4.1.1. Part (6) follows from
the explicit description of EOJ

σ,cox(µ). Part (7) follows from §3.3 (1),
(2) and the fact that for all the cases we are considering, ℓ(x) < ℓ(y)
implies that x < y.

7. Closure relations

7.1. The τσ-orbits on S̃. In this section we assume that F = Fq((ǫ))
and that (G, µ, J) is as in Theorem 5.1.1. Let N be the fiber over τ
for the map ZO0 → O0; with the notation of [22], this means N =
X(µ, τ)PJ

. We usually refer to N as the basic locus. In this section,
we study the stratification of N by classical Deligne-Lusztig varieties
in more detail.
This description proceeds as follows: first we describe the set I of

EO strata which occur in the basic locus N (in terms of the Dynkin
diagram). Second, we will describe the set of strata within each EO
stratum (in terms of the Bruhat-Tits building of Jτ ). Finally we will
discuss the closure relations between strata.
Identify S̃ with the set of vertices of the affine Dynkin diagram, and

for any vertex v, denote by d(v) the distance between v and the unique
vertex not contained in J .
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Let

I = {Σ ⊂ S̃; ∅ 6= Σ is τσ-stable and ∀v, v′ ∈ Σ: d(v) = d(v′)}

Clearly every τσ-orbit is an element of I. In some cases, there is also
one further element which is the union of two orbits, see Section 7.4.
We denote by d(Σ) the value of d(v) for any v ∈ Σ.
Given Σ ∈ I, we denote by Σ♭ the union of all the τσ-orbits Σ′

with d(Σ′) 6 d(Σ) and Σ′ 6⊆ Σ and denote by Σ♯ the union of all the
τσ-orbits Σ′ with d(Σ′) > d(Σ).
From the explicit computation in §6, we get the following properties:

Proposition 7.1.1. Let Σ ∈ I.

(1) We have S̃ = Σ ⊔ Σ♭ ⊔ Σ♯.
(2) The subsets Σ♭ and Σ♯ are disconnected in the affine Dynkin

diagram.
(3) For any Σ ∈ I, there is exactly one element w ∈ EOJ

σ,cox(µ)

such that suppσ(w) = Σ♭. We denote this element by wΣ. We
have ℓ(wΣ) = d(Σ).

(4) We have I(J, wΣ, σ) = Σ♯ and J(wΣ, σ) = S̃−Σ (cf. Prop. 3.1.1,
Theorem 5.2.1).

Example 7.1.2. As an example, consider the case (B̃n, ω
∨
1 , S̃−{n}, τ1).

In this case, the possible triples (Σ,Σ♭,Σ♯) are ({i}, {m,m− 1, . . . , i+
1}, {i − 1, . . . , 1, 0}) for i = m, . . . , 2, and ({0}, {m,m − 1, . . . , 1}, ∅),
({1}, {m,m− 1, . . . , 2, 0}, ∅) and ({0, 1}, {m,m− 1, . . . , 2}, ∅). In par-
ticular, in the last case, Σ has more than one element.

7.2. A stratification of N. Set NΣ = N ∩ ZJ,wΣ
= XJ,wΣ

(τ), the
Ekedahl-Oort stratum attached to Σ. Then N = ⊔Σ∈INΣ. By Theorem
5.2.1 (5),

(7.2.1) NΣ = ⊔i∈Jτ/(Jτ∩PS̃−Σ)iY (wΣ),

where by Corollary 4.1.3

Y (wΣ) = {gPΣ♯ ∈ PS̃−Σ/PΣ♯; g−1τσ(g) ∈ PΣ♯wPσ(Σ♯)}

∼= {gI ∈ PΣ♭/I; g−1τσ(g) ∈ IwΣI}.

Since suppσ(wΣ) = Σ♭, Y (wΣ) is connected andNΣ = ⊔i∈Jτ/(Jτ∩PS̃−Σ)iY (wΣ)
is the decomposition of NΣ into connected components. Each of them
has dimension ℓ(wΣ).
Now we describe the closure of each stratum in N.

Theorem 7.2.1. Let Σ ∈ I. Then for any i ∈ Jτ/(Jτ ∩ PS̃−Σ),

iY (wΣ) = ⊔(Σ′)♭⊂Σ♭ ⊔j∈Jτ/(Jτ∩PS̃−Σ′ );i∩j 6=∅ jY (wΣ′).
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The intersection i ∩ j is understood as the intersection inside Jτ of
the cosets given by i and j.

Proof. It suffices to consider the case where i = 1. Since πJ is proper,
Y (wΣ) = πJ

(

{gI ∈ PΣ♭/I; g−1τσ(g) ∈ IwΣI}
)

= ∪w′6wΣ
πJ

(

{gI ∈

PΣ♭/I; g−1τσ(g) ∈ Iw′I}
)

. Any element w′ 6 wΣ is of the form wΣ′w′′

for some Σ′ with (Σ′)♭ ⊂ Σ♭ and w′′ ∈ W(Σ′)♯ . Since (Σ′)♯ ⊂ J ,

PJ ·σ Iw′I = PJ ·σ IwΣ′I and πJ

(

{gI ∈ PΣ♭/I; g−1τσ(g) ∈ Iw′I}
)

=

πJ

(

{gI ∈ PΣ♭/I; g−1τσ(g) ∈ IwΣ′I}
)

.
Similarly to the proof of Proposition 2.2.1, {gI ∈ PΣ♭/I; g−1τσ(g) ∈

IwΣ′I} = ⊔j∈(Jτ∩PΣ♭ )/(Jτ∩P(Σ′)♭
){jgI ∈ P(Σ′)♭/I; g

−1τσ(g) ∈ IwΣ′I} and

πJ

(

{gI ∈ PΣ♭/I; g−1τσ(g) ∈ IwΣ′I}
)

= ⊔j∈(Jτ∩PΣ♭ )/(Jτ∩P(Σ)♭
∩P

S̃−Σ′)jY (wΣ′).

Note that S̃− Σ = Σ♭ ⊔ Σ♯ and Σ♯ ⊂ S̃− Σ′. Hence (Jτ ∩ PS̃−Σ)/(Jτ ∩
PS̃−Σ−Σ′) ∼= (Jτ ∩PΣ♭)/(Jτ ∩P(Σ)♭ ∩PS̃−Σ′). The theorem is proved. �

Another way to describe the closure of strata is via the Bruhat-
Tits building of the group Jτ over F . This reproduces precisely the
descriptions in [29] and [24].

Proposition 7.2.2. Let Σ,Σ′ ∈ I and j, j′ ∈ Jτ . The following are
equivalent:

(1) j(Jτ ∩ PS̃−Σ) ∩ j′(Jτ ∩ PS̃−Σ′) 6= ∅,
(2) j(Jτ ∩PS̃−Σ)j

−1∩ j′(Jτ ∩PS̃−Σ′)(j′)−1 contains a (rational) Iwa-
hori subgroup of Jτ ,

(3) The faces in the rational building of Jτ corresponding to j(Jτ ∩
PS̃−Σ)j

−1 and j′(Jτ∩PS̃−Σ′)(j′)−1 are neighbors (i.e., there exists
an alcove which contains both of them).

Proof. We may and will assume throughout that j′ = 1.
The Iwahori subgroups of j(Jτ ∩ PS̃−Σ)j

−1 are of the forms jg(Jτ ∩
I)g−1j−1 for some g ∈ Jτ∩PS̃−Σ and the Iwahori subgroups of Jτ∩PS̃−Σ′

are of the forms g′(Jτ ∩ I)(g′)−1 for some g′ ∈ Jτ ∩ PS̃−Σ′ . Hence (2)
is equivalent to saying that for some g ∈ Jτ ∩ PΣ♭ and g′ ∈ Jτ ∩ PS̃−Σ′,
jg(Jτ ∩ I)g−1j−1 = g′(Jτ ∩ I)(g′)−1, i.e., (g′)−1jg ∈ I. The latter
condition is equivalent to condition (1).
By definition of the simplicial structure of the Bruhat-Tits building,

(2) and (3) are equivalent . �

7.3. Singularities of the closures of strata. Consider (G, µ, J) as
in Theorem 5.1.1.
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Proposition 7.3.1. Each fine Deligne-Lusztig variety Y (wΣ) occur-

ring in the stratification (7.2.1) is smooth. Its closure Ỹ inside the flag
variety PΣ♭/I is smooth. In particular, the projection P∅ → PJ restricts

to a resolution of singularities Ỹ → Y (wΣ) of the closure of Y (wΣ) in
PJ (or equivalently in N).

Proof. The smoothness of Ỹ is equivalent to the smoothness of the
Schubert variety inside PΣ♭/I attached to wΣ. Since the latter is a Cox-
eter element, this Schubert variety is isomorphic to its Bott-Samelson
resolution, and hence is smooth. �

Proposition 7.3.2. If the triple (W̃ , λ, J, σ) belongs to the following
list

(Ãn, ω
∨
1 , S, id) (*) (Ãn, ω

∨
1 , S, σ0) (*) (B̃n, ω

∨
1 , S̃− {n}, id)

(B̃n, ω
∨
1 , S̃− {n}, τ1) (C̃n, ω

∨
1 , S, id) (Ã3, ω

∨
2 , S, id) (*)

(Ã3, ω
∨
2 , S, σ0) (*) (C̃2, ω

∨
2 , S, id) (*) (C̃2, ω

∨
2 , S̃− {1}, id) (*)

(C̃2, ω
∨
2 , S̃− {1}, τ2)

then

(1) for all Σ ∈ I, the closure Y (wΣ) of Y (wΣ) inside N has at most
isolated singularities, and

(2) the closure Y (wΣ) is smooth if and only if τ(J) 6= J or ℓ(wΣ) 6
1.

The cases where all closures Y (wΣ) are smooth are marked (*) in the
table.

Proof. We write w := wΣ and assume that ℓ(w) > 0. Denote by F the
twisted Frobenius g 7→ τσ(g)τ−1; it acts on suppσ(w) and hence on
the flag variety Psuppσ(w)/I. Let Q := Psuppσ(w)∩J and w′ := wτ−1, and
denote by

XQ(w
′) := {gQ ∈ Psuppσ(w)/Q; g−1F(g) ∈ QwF(Q)}

the Deligne-Lusztig variety attached to w′ inside Psuppσ(w)/Q with re-
spect to F. Recall that w is σ-Coxeter which by definition means that
w′ is a twisted Coxeter element for F.
Using Cor. 4.1.3, we identify Y (w) with

{gQ ∈ Psuppσ(w)/Q; g−1F(g) ∈ Q ·σ Iw
′I}.

Let Y (w), XQ(w′) denote the closures inside Psuppσ(w)/Q. Note that

Y (w) is isomorphic to the closure of Y (w) inside N. Clearly we have

(7.3.1) Y (w) ⊆ XQ(w′).
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Furthermore XQ(w′) is irreducible by the well-known criterion for ir-

reducibility of Deligne-Lusztig varieties and dimXQ(w′) = dimQw′F(Q)/F(Q).
By Corollary 4.1.3, we have dimY (w) = ℓ(w). Thus we see that the

inclusion (7.3.1) is an equality if and only if ℓ(w) = dimQw′F(Q)/F(Q).

Let w0 denote the longest element in Wsuppσ(w)∩J . Since w ∈ JW̃ , we
have ℓ(w0w

′) = ℓ(w0)+ ℓ(w′) = ℓ(w′)+dimQ/I, and we conclude that
the inclusion (7.3.1) is an equality if and only if w0w

′ is the longest
element inside Wsuppσ(w)∩Jw

′WF(suppσ(w)∩J). In the cases listed in the
statement of the proposition, the Dynkin type of suppσ(w)∩ J is type
A, and it is easily checked that in those cases, w0w

′ indeed is the longest
element inside this double coset.
Now suppose that τ(J) 6= J , or equivalently that F(Q) 6= Q. Since

S̃− J ⊆ supp(w), we have w′ ∈ WF(suppσ(w)∩J), so XQ(w
′) = XQ(id) is

smooth and closed in Psuppσ(w)/Q.

On the other hand, if F(Q) = Q, then the above implies that Y (w) =

XQ(w′) = XQ(w
′) ⊔ XQ(id). Since dimXQ(id) = 0, part (1) follows.

Finally, since closures of Deligne-Lusztig varieties are always normal,
Y (w) is smooth if ℓ(w) 6 1. The remaining assertion in part (2) follows
from Proposition 3.3 and Proposition 4.4 in [3] by Brion and Polo (note
that ℓ(w) < dimPsuppσ(w)/Q whenever ℓ(w) > 1, hence the boundary
in the sense of loc. cit. is XQ(id)). �

7.4. Examples. As examples, we discuss the three cases treated by
Rapoport, Terstiege and Wilson in [24] and an example of non-Coxeter
type.

7.4.1. (C-BCm, ω
∨
1 , S̃−{m}). This case arises from GU(1, 2m), p ram-

ified. Note here that the vertices 0 and m are conjugate under the
extended affine Weyl group, but not conjugate under the diagram au-
tomorphism for the relative local Dynkin diagram. In this case there
exist m + 1 different EO strata in the basic locus, of dimensions 0,
. . . , m. In the terminology of [24], the EO stratum of dimension i
is the union of all strata attached to vertex lattices of type 2i. The
stratification is indexed by the vertices of the Bruhat-Tits building of
Jτ .

7.4.2. (2B-Cm, ω
∨
1 , S̃ − {m}). This case arises from GU(1, 2m − 1), p

ramified, the hermitian form C is split. In this case there exist m + 2
EO strata in the basic locus; one each of dimension 0, . . . , m− 1, and
two of dimension m. For i = 0, . . . , m−1, the EO stratum of dimension
i is the union of all strata attached to vertex lattices of type 2i. On
the other hand, the union of all strata attached to vertex lattices of
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type 2m is equal to the union of the two m-dimensional EO strata
(the corresponding EO strata are related by the conjugation action of
GU(1, 2m − 1)). In this case, the action of στ on the affine Dynkin
diagram is trivial. There are two orbits with the same distance to the
vertex m (namely the vertices 0 and 1). See Example 7.1.2. The union
of these two orbits occurs as an element Σ ∈ I; it corresponds to the
m− 1-dimensional EO stratum. The index set for the Deligne-Lusztig
varieties inside this EO stratum is the set of edges of type {0, 1} inside
the Bruhat-Tits building of Jτ . In the description in [24] this is reflected
by Prop. 3.4.

7.4.3. (B-Cm, ω
∨
1 , S̃ − {m}). This case arises from GU(1, 2m − 1), p

ramified, the hermitian form C being nonsplit. In this case basic EO
strata correspond bijectively to types of vertex lattices, and the index
set of the stratification is the set of vertices of the Bruhat-Tits building
of Jτ .

7.4.4. (C-BC2, ω
∨
1 , S̃−{1}). This case arises from GU(1, 3), p ramified.

However, the level structure is different from the one considered in [24].
One can show that the basis locus is still the union of EO strata. There
are 6 EO strata in the basic locus, which correspond to the elements
1, s1, s1s0, s1s2, s1s0s1 and s1s2s1 respectively. One is of dimension 0,
one is of dimension 1, two of dimension 2 and two of dimension 3. The
elements s1s0s1 and s1s2s1 are not Coxeter elements.
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