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PROJECTED RICHARDSON VARIETIES AND AFFINE SCHUBERT

VARIETIES

XUHUA HE AND THOMAS LAM

Abstract. Let G be a complex quasi-simple algebraic group and G/P be a partial
flag variety. The projections of Richardson varieties from the full flag variety form a
stratification of G/P . We show that the closure partial order of projected Richardson
varieties agrees with that of a subset of Schubert varieties in the affine flag variety of
G. Furthermore, we compare the torus-equivariant cohomology and K-theory classes of
these two stratifications by pushing or pulling these classes to the affine Grassmannian.
Our work generalizes results of Knutson, Lam, and Speyer for the Grassmannian of type
A.

1. Introduction

Let G be a complex quasi-simple algebraic group, B,B− ⊂ G be opposite Borel sub-
groups, and T = B ∩ B− the maximal torus. The flag variety G/B has a stratification

G/B = ⊔X̊w = ⊔X̊w by Schubert cells X̊w = B−wB/B and opposite Schubert cells

X̊w = BwB/B. The intersections X̊v
w = X̊w ∩ X̊v are known as open Richardson vari-

eties, and also form a stratification of G/B. The closure of X̊v
w is the (closed) Richardson

variety Xv
w = Xv ∩Xw, where Xw = B−wB/B is a Schubert variety and Xv = BvB/B

is an opposite Schubert variety.
Let P ⊂ B be a fixed parabolic subgroup, and π : G/B → G/P denote the projection.

The open projected Richardson varieties Π̊v
w = π(X̊v

w) form a stratification of G/P (for
suitable w and v). Its closure Πv

w = π(Xv
w) is called a projected Richardson variety and

was studied by Lusztig [31] and Rietsch [38] in the context of total positivity, and by
Goodearl and Yakimov [12] in the context of Poisson geometry. Projected Richardson
varieties enjoy many desirable geometric properties: Knutson, Lam, and Speyer [21] (see
also Billey and Coskun [1]) showed that they are Cohen-Macaulay, normal, have rational
singularities and are exactly the compatibly Frobenius split subvarieties of G/P with
respect to the standard splitting.

Our main results are combinatorial, cohomological, and K-theoretic comparisons be-
tween the projected Richardson varieties Πv

w and the affine Schubert varieties of the affine

flag variety F̃ l of G. These results generalize work of Knutson, Lam, and Speyer [20]
in the case that G/P is a Grassmannian of type A. The techniques of our proof dif-
fer significantly from those of [20]. In particular, the proof of the cohomological part
of [20] appears to only extend to cominuscule G/P . A more geometric comparison in
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the Grassmannian case was performed by Snider [39] who also recovered our K-theoretic
comparison in the case of the Grassmannian.

On the combinatorial side, we compare two posets. One is obtained from the closure
order of projected Richardson varieties, which we denote by QJ . It was first studied
by Rietsch [38] and Goodearl and Yakimov [12]. The other one is the admissible subset
Adm(λ) associated to a dominant coweight λ, introduced by Kottwitz and Rapoport in

[24]. It is a subset of the Iwahori-Weyl group Ŵ and the Bruhat order on Ŵ gives a
partial order on Adm(λ). One important result in the study of Shimura varieties is that
the special fiber of the local model is a union of finitely many opposite affine Schubert
cells IwI/I in the affine flag variety, where w runs over the admissible set Adm(λ) for
the Shimura coweight λ. See [34] and [43].

In this paper, we define an injection θ : QJ → Adm(λ). Our combinatorial theorem
states that θ is order-reversing and the image is theW×W -double coset of the translation
element t−λ. In the special case where λ is a minuscule coweight, θ gives an order-reversing
bijection between QJ and Adm(λ). The proof relies on properties of the Demazure, or
monoidal product of Coxeter groups, studied for example by He, and He and Lu in
[15, 16, 18]. In Section 3, we describe some applications of our result to the combinatorial
properties of the poset QJ , and to the enumeration of Adm(λ) for minuscule coweights
λ. We also give a closed formula for the number of rational points of the special fiber of
local model for “fake” unitary Shimura varieties. The order-reversing bijection between
QJ and Adm(λ) also plays an important role in the proof of the normality and Cohen-
Macaulayness of local models [17].

In fact, our combinatorial theorem naturally extends to the comparison of a larger

partial order on W ×W J ⊃ QJ with a W ×W -double coset in Ŵ . This partial order on
W ×W J arises as the closure partial order of a stratified space ZJ , studied by Lusztig
[32]. In Section 4.1 we give maps between these stratified spaces which in part explains
the combinatorial theorems.

Now let Gr = G(K)/G(O) denote the the affine Grassmannian of G, where K = C((t))
and O = C[[t]]. Let Grλ ⊂ Gr denote the closure of the G(O)-orbit containing the torus-
fixed point t−λ labeled by −λ. The dense open orbit G(O)t−λG(O)/G(O) is an affine
bundle over G/P and we let p : G/P →֒ Grλ denote the composition of the zero section
with the open inclusion G(O)t−λG(O)/G(O) ⊂ Grλ. Our K-theoretic theorem states
that in KT (Grλ) we have

(1) p∗([OΠx
y
]) = q∗(ψθ(x,y))

where [OΠx
y
] ∈ KT (G/P ) and ψθ(x,y) ∈ KT (F̃ l) denote the K-theory classes of the

structure sheaves of projected Richardson varieties and affine Schubert varieties respec-
tively, and q∗ is induced by the composition of the inclusion Grλ → Gr, with the maps

Gr ≃ ΩK → LK → LK/TR ≃ F̃ l. Here K ⊂ G denotes the maximal compact subgroup,
TR ⊂ T the compact torus, and LK and ΩK are the free loop group and based loop
group. The same formula (1) holds for torus-equivariant cohomology classes. The proof
of the K-theoretic comparisons (Section 5) relies on the study of equivariant localiza-
tions. We utilize the machinery developed by Kostant and Kumar [23] where equivariant
localizations of Schubert classes in both finite and infinite-dimensional flag varieties are
studied.

In Section 5.6, we use our K-theory comparison to prove a conjecture of Knutson,
Lam, and Speyer [20] stating that the affine stable Grothendieck polynomials of [26, 27]
represent the classes of the structure sheaves of positroid varieties in the K-theory of the
Grassmannian. In Section 5.7, we explain the implications, in the case of a cominuscule

2



G/P , towards the comparison of the quantum K-theory of G/P and the K-homology
ring of the affine Grassmannian.

Acknowledgements. The authors would like to thank Allen Knutson, Ulrich Görtz,
Jiang-Hua Lu, Leonardo Mihalcea, David Speyer, and John Stembridge for related discus-
sions. We also would like to thank the referee for careful reading and valuable suggestions.

2. Combinatorial comparison

2.1. Let G be a complex connected quasi-simple algebraic group. Let B,B− be opposite
Borel subgroup of G and T = B ∩ B− be a maximal torus. Let Q be the coroot lattice
and P be the coweight lattice of G. We denote by P+ the set of dominant coweights and
Q+ = Q∩ P+. Let (αi)i∈S be the set of simple roots determined by (B, T ). Let R (resp.
R+, R−) be the set of roots (resp. positive roots, negative roots). We denote by W the
Weyl group N(T )/T . For i ∈ S, we denote by si the simple reflection corresponding to
i. For α ∈ R, we let rα denote the corresponding reflection.

Let Wa = Q ⋊W be the affine Weyl group and Ŵ = P ⋊ W be the Iwahori-Weyl
group (sometimes also called the extended affine Weyl group). It is known that Wa is a

normal subgroup of Ŵ and is a Coxeter group with generators si (for i ∈ S̃ = S ∪ {0}).
Here si (for i ∈ S) generates W and s0 = t−θ∨sθ is a simple affine reflection, where θ is

the largest positive root of G. We emphasize that Ŵ , which serves as the key indexing
set in the sequel, depends on G and not just R.

Following [19], we define the length function on Ŵ by

(a) ℓ(tχw) =
∑

α∈R+,w−1(α)∈R+

|〈χ, α〉|+
∑

α∈R+,w−1(α)∈R−

|〈χ, α〉+ 1|.

For any proper subset J of S̃, let WJ be the subgroup generated by si for i ∈ J and wJ

be the maximal element in WJ . We denote by Ŵ J (resp. JŴ ) the set of minimal length

representatives in Ŵ/WJ (resp. WJ\Ŵ ). For J,K ⊂ S̃, we simply write Ŵ J ∩ KŴ as
KŴ J . If moreover, J,K ⊂ S, then we write W J for W ∩ Ŵ J , KW for W ∩ KŴ J and
KW J for W ∩ KŴ J . For any w ∈ W , the coset WJw contains a unique minimal and
a unique maximal element. We denote by min(WJw) and max(WJw) respectively. The
elements min(wWJ) and max(wWJ) are defined in a similar way.

Let Ω be the subgroup of length-zero elements of Ŵ . The Bruhat order on Wa extends

naturally to Ŵ . Namely, for w1, w2 ∈ Wa and τ1, τ2 ∈ Ω, we define τ1w1 6 τ2w2 if and
only if τ1 = τ2 and w1 6 w2 in Wa.

2.2. Now we introduce three operations ∗ : Ŵ × Ŵ → Ŵ , ⊲ : Ŵ × Ŵ → Ŵ and

⊳ : Ŵ × Ŵ → Ŵ . Here ∗ is the Demazure, or monoidal, product and following [21] we
call ⊲ and ⊳ the downwards Demazure products. They were also considered in [18] and
[16] and some properties were also discussed there.

We describe x ∗ y, x ⊲ y and x ⊳ y for x, y ∈ Ŵ as follows. See [15, Lemma 1.4].
(1) The subset {uv; u 6 x, v 6 y} contains a unique maximal element, which we

denote by x ∗ y. Moreover, x ∗ y = u′y = xv′ for some u′ 6 x and v′ 6 y and ℓ(x ∗ y) =
ℓ(u′) + ℓ(y) = ℓ(x) + ℓ(v′).

(2) The subset {uy; u 6 x} contains a unique minimal element which we denote by
x ⊲ y. Moreover, x ⊲ y = u′′y for some u′′ 6 x with ℓ(x ⊲ y) = ℓ(y)− ℓ(u′′).

(3) The subset {xv; v 6 y} contains a unique minimal element which we denote by
x ⊳ y. Moreover, x ⊳ y = xv′′ for some v′′ 6 y with ℓ(x ⊳ y) = ℓ(x)− ℓ(v′′).

3



Now we list some properties of ∗, ⊲ and ⊳.
(4) If x′ 6 x and y′ 6 y, then x′ ∗ y′ 6 x ∗ y. See [16, Corollary 1].
(5) If x′ 6 x, then x′ ⊳ y 6 x ⊳ y. See [16, Lemma 2].
(6) z 6 x ∗ y if and only if z ⊳ y−1 6 x if and only if x−1 ⊲ z 6 y. See [18, Appendix].
(7) If J is a proper subset of S̃, then min(WJx) = wJ ⊲ x, min(xWJ) = x ⊳ wJ ,

max(WJx) = wJ ∗ x and max(xWJ) = x ∗ wJ .

2.3. In the rest of this section, we fix a dominant coweight λ. Set J = {i ∈ S; 〈λ, αi〉 =
0}. Any element in Wt−λW ⊂ Ŵ can be written in a unique way as yt−λx−1 for x ∈ W J

and y ∈ W . In this case, ℓ(yt−λx−1) = ℓ(t−λ) + ℓ(y) − ℓ(x). The maximal element in
Wt−λW is wSt

−λ and the minimal element is t−λwJwS.

Proposition 2.1. Let x, x′ ∈ W J and y, y′ ∈ W . Then the following conditions are
equivalent:

(1) y′t−λ(x′)−1 6 yt−λx−1;
(2) There exists u ∈ WJ such that y′u 6 y and xu−1 6 x′;
(3) There exists v ∈ WJ such that y′ 6 yv and xv 6 x′.

Proof. (1) ⇒ (2): Since ℓ(yt−λx−1) = ℓ(t−λx−1)+ℓ(y), we have that yt−λx−1 = y∗t−λx−1.
By 2.2 (6), y−1 ⊲ (y′t−λ(x′)−1) 6 t−λx−1. In other words, there exists z 6 y such that
z−1y′t−λ(x′)−1 6 t−λx−1. Now we have that

max(z−1y′WJ)t
−λ = max(z−1y′t−λ(x′)−1W ) 6 max(t−λx−1W ) = wJt

−λ.

Therefore max(z−1y′WJ) 6 wJ and z−1y′ ∈ WJ . We denote (y′)−1z by u. Then
u ∈ WJ , y

′u = z 6 y and u−1t−λ(x′)−1 6 t−λx−1. We have that

u−1t−λ(x′)−1 = (t−λwJwS)(wSwJu
−1(x′)−1) and t−λx−1 = (t−λwJwS)(wSwJx

−1).

Moreover,

ℓ(u−1t−λ(x′)−1) = ℓ(t−λ) + ℓ(u)− ℓ(x′)

= ℓ(t−λwJwS) + ℓ(wSwJ) + ℓ(u)− ℓ(x′)

= ℓ(t−λwJwS) + ℓ(wS)− ℓ(wJ) + ℓ(u)− ℓ(x′)

= ℓ(t−λwJwS) + ℓ(wS)− ℓ(wJu
−1)− ℓ(x′)

= ℓ(t−λwJwS) + ℓ(wS)− ℓ(wJu
−1(x′)−1)

= ℓ(t−λwJwS) + ℓ(wSwJu
−1(x′)−1).

Similarly, ℓ(t−λx−1) = ℓ(t−λwJwS) + ℓ(wSwJx
−1).

From u−1t−λ(x′)−1 6 t−λx−1 we deduce that wSwJu
−1(x′)−1 6 wSwJx

−1. Hence
wJu

−1(x′)−1 > wJx
−1 and xwJ 6 x′uwJ . By 2.2 (5),

xu−1 = (xwJ) ⊳ (wJu
−1) 6 (x′uwJ) ⊳ (wJu

−1) 6 x′.

(2) ⇒ (1): We have that yt−λx−1 = y(t−λwJwS)(wSwJx
−1) and ℓ(yt−λx−1) = ℓ(y) +

ℓ(t−λwJwS) + ℓ(wSwJx
−1)

Since xu−1 6 x′, we have that

xwJ = (xu−1)(uwJ) 6 x′ ∗ (uwJ) = x′uwJ .

Thus wSwJx
−1 > wSwJu

−1(x′)−1. Also we have that y′u 6 y. Therefore

y′t−λ(x′)−1 = (y′u)(t−λwJwS)(wSwJu
−1(x′)−1) 6 y(t−λwJwS)(wSwJx

−1)

= yt−λx−1.
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(2) ⇒ (3): Since y′u 6 y, by 2.2 (4) y′ 6 y′u ∗ u−1 6 y ∗ u−1. In other words, there
exists v 6 u−1 such that y′ 6 yv. Notice that u ∈ WJ . Hence v ∈ WJ . Since x ∈ W J , we
also have that xv 6 xu−1 6 x′.

(3) ⇒ (2): Since y′ 6 yv, by 2.2 (5) y′ ⊳ v−1 6 yv ⊳ v−1 6 y. In other words, there
exists u 6 v−1 such that y′u 6 y. Notice that v ∈ WJ . Hence u ∈ WJ . Since x ∈ W J ,
we also have that xu−1 6 xv 6 x′. �

2.4. Define the partial order � on W J ×W as follows:
(x′, y′) � (x, y) if and only if there exists u ∈ WJ such that x′u 6 x and y′u > y.
Define QJ = {(x, y) ∈ W J ×W ; y 6 x}. Then (QJ ,�) is a subposet of (W J ×W,�).

We shall show in Appendix that QJ is the same poset as the one studied in [38, 12].
Following [24], we introduce the admissible set as

Adm(−wSλ) = {z ∈ Ŵ ; z 6 t−wλ for some w ∈ W}.

Here −wSλ is the unique dominant coweight in the W -orbit of −λ.
Now we have the following result.

Theorem 2.2.

(1) The map

W J ×W →Wt−λW, (x, y) 7→ yt−λx−1

gives an order-preserving, graded, bijection between the poset (W J ×W,�) and the poset

(Wt−λW,6op). Here 6op is the opposite Bruhat order on the Iwahori-Weyl group Ŵ .
(2) Its restriction to QJ gives an order-preserving, graded, bijection between the posets

(QJ ,�) and (Wt−λW ∩ Adm(−wSλ),6
op).

Proof. (1) is just a reformulation of the Proposition 2.1. Now we prove (2).
If (x, y) ∈ QJ , then y 6 x. Hence yt−λx−1 6 xt−λx−1 = t−xλ. So yt−λx−1 ∈

Adm(−wSλ). On the other hand, if yt−λx−1 ∈ Adm(−wSλ), then yt−λx−1 6 t−wλ =
wt−λw−1 for some w ∈ W J . Again by Proposition 2.1, there exists u ∈ WJ such that
y 6 wu 6 x. Therefore (x, y) ∈ QJ . �

Theorem 2.2(2) generalizes [20, Theorem 3.16].

3. Applications

3.1. It is a classical result of Björner and Wachs [3] that intervals in the Bruhat order of
a Coxeter group satisfy nice combinatorial properties known as thinness and shellability.
Verma [40] showed that the same intervals are Eulerian. Dyer [10] extended these results
by showing that these intervals and their duals were more generally EL-shellable. For the
definitions of these combinatorial properties, we refer the reader to [2]; they will not play
a role elsewhere in this paper.

Since Theorem 2.2 identifies each QJ with a convex subposet of (dual) affine Bruhat
order we immediately obtain

Corollary 3.1. The poset QJ is thin, Eulerian, and EL-shellable.

This result was first established by Williams [41], who proved the more general result
that the poset obtained from QJ by adjoining a maximal element is shellable.
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3.2. Recall that a nonzero dominant coweight λ is called minuscule if 〈λ, θ〉 = 1, where
θ ∈ R+ is the highest root. Now we discuss the length-generating function Fλ(q) of the
admissible set Adm(−wSλ) for a minuscule coweight λ. By definition,

Fλ(q) =
∑

w∈Adm(−wSλ)

qℓ(w).

This is the number of Fq-rational points of the union of all opposite affine Schubert cells
corresponding to the admissible set, where Fq is the finite field with q elements. It is
proved in [34] and [43] that this union is the special fiber of the local model of Shimura
variety.

Now by Theorem 2.2, Fλ(q) =
∑

(x,y)∈QJ
qℓ(yt

−λx) =
∑

(x,y)∈QJ
q〈λ,2ρ〉+ℓ(y)−ℓ(x), where ρ

is the half sum of the positive roots of G.
On the other hand, as we’ll see in the appendix, (QJ ,�) is combinatorially equivalent

to the poset of totally nonnegative cells in the cominuscule flag variety G/PJ (that is,
a partial flag variety G/PJ where J = {i ∈ S; 〈λ, αi〉 = 0} for a minuscule coweight λ).
The dimension of the cell corresponding to (x, y) ∈ QJ is ℓ(x)− ℓ(y). Let

AJ (q) =
∑

(x,y)∈QJ

qℓ(x)−ℓ(y)

be the rank generating function of totally nonnegative cells in G/PJ . Then we have that

(2) Fλ(q) = q〈λ,2ρ〉AJ (q
−1).

In particular, the cardinality of Adm(−wSλ) is Fλ(1) = AJ(1). When G is of classical
type, the numbers AJ (1) and in some cases also the generating function AJ(q) have been
calculated:

3.2.1. Type A. Let Ak,n(q) = AJ(q) where G/PJ is the Grassmannian Gr(k, n) of k-planes
in n-space, and similarly define Fk,n(q). Postnikov [35] calculated Ak,n(1) and Williams
[42] established the formula

Ak,n(q) = q−k2
k−1∑

i=0

(−1)i
(
n

i

)
(qki[k − i]i[k − i+ 1]n−i − q(k+1)i[k − i− 1]i[k − i]n−i)

which by (2) gives

Fk,n(q) =

k−1∑

i=0

(−1)i
(
n

i

)
(qi(n−k+1)[k − i]i[k − i+ 1]n−i − qn+ni−ki[k − i− 1]i[k − i]n−i).

Here [i] = 1 + q + · · ·+ qi−1 denotes the q-analog of i.
In particular,

Fk,n(1) =

k−1∑

i=0

(−1)i
(
n

i

)
((k − i)i(k − i+ 1)n−i − (k − i− 1)i(k − i)n−i).

The formulas for F1,n(1) and F2,n(1) was first established by Haines in [13, Proposition
8.2 (1) & (2)].
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3.2.2. Type B. Let FBn
(q) denote Fλ(q) for λ = ω∨

1 the unique minuscule coweight when
G is adjoint of type B. Similarly define ABn

(q).

Proposition 3.2. We have

∑

n≥0

FBn
(q)xn =

1 + (−q − 3q2)x+ (−q + 5q3 + 4q4)x2 + q4(−2− 5q − 3q2)x3 + q6[2]2x4

(1− q2x)(1− (q + q2)x)(1− [2]2x+ q3[2]x2)
.

Proof. Using the combinatorial description in [30, Section 9], we have the recursion

ABn+1
(q) = 1 + (1 + q)ABn

(q) + b̂n+1(q)

for n ≥ 1, where as in [30, Proposition 11.1], b̂n(q) =
∑

(wSwJ ,y)∈QJ
qℓ(wSwJ )−ℓ(y). This

gives

∑

n≥0

ABn
(q)xn =

b̂(x, q)− (1 + q)x+ x
1−x

1− (1 + q)x

where b̂(x, q) =
∑

n≥0 b̂n(q)x
n, and we have used the initial conditions AB0

(q) = 1 and

AB1
(q) = 2 + q. Substituting the generating function for b̂n(q) given in [30, Proposition

11.1], and using (2) gives the stated result. �

3.2.3. Type C. Let FCn
(q) denote Fλ(q) where λ = ω∨

n is the unique minuscule coweight
when G is adjoint of type C. Haines [13, Proposition 8.2 (3)] showed that FCn

(1) =∑n

i=0 2
n−in!/i!, which is the greatest integer less than 2nn!

√
e. This calculation was also

done by Lam and Williams [30, Proposition 11.3] where it is shown that FCn
(1) satisfies

the recurrence FC0
(1) = 1 and FCn+1

(1) = 2(n + 1)FCn
(1) + 1.

3.2.4. Type D. Let FDn
(q) denote Fλ(q) where λ = ω∨

1 is the minuscule coweight for
G simple of type D, such that G/PJ is an even dimensional quadric. Similarly define
ADn

(q).

Proposition 3.3. We have

∑

n≥0

FDn
(q)xn =

1

(1− q2x)(1− (q + q2)x)(1− [2]2x+ q3[2]x2)
×

1−(q+3q2)x−(q2−q3−4q4)x2−(2q+3q2−2q3−8q4−2q5+3q6)x3+(2q3+3q4−3q5−9q6−4q7+q8)x4−(q6−3q8−2q9)x5

Proof. Using the combinatorial description in [30, Section 9], we have the recursion

ADn+1
(q) = 1 + (1 + q)ADn

(q) + d̂n+1(q)

for n ≥ 2, where as in [30, Proposition 11.2], d̂n(q) =
∑

(wSwJ ,y)∈QJ
qℓ(wSwJ )−ℓ(y). Declaring

the initial conditions AD0
(q) = 1, AD1

(q) = 2+q, and AD2
(q) = 4+4q+q2 and proceeding

as in the proof of Proposition 3.2, we obtain the stated result. �

3.2.5. Type D. The other minuscule coweights for type D give the even orthogonal Grass-
mannians. The authors do not know of a calculation of Fλ(q) in this case. Part of the
enumeration is done in [30, Theorem 11.11].
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4. Geometric comparison

4.1. In this section, we explain some geometry behind the combinatorial comparison.
Here we consider three stratified spaces.

Let J ⊂ S and λ ∈ P+ be related by J = {i ∈ S; 〈λ, αi〉 = 0}. Let PJ be the
standard parabolic subgroup of type J and LJ the standard Levi subgroup. Let UPJ

be
the unipotent radical of PJ . Let PJ be the variety of parabolic subgroups conjugate to
PJ . Then it is known that PJ

∼= G/PJ .
The first stratified space we consider is the partial flag variety PJ

∼= G/PJ . By [31]

and [38], G/PJ = ⊔(x,y)∈QJ
Π̊x

y where Π̊x
y = π(X̊x

y ) are the open projected Richardson

varieties. For any (x, y) ∈ QJ , the closure of Π̊x
y is the union of Π̊x′

y′ , where (x′, y′) runs
over elements in QJ such that (x′, y′) � (x, y).

The second stratified space we consider is the variety ZJ introduced by Lusztig in [32].
By definition,

ZJ = (G×G)/RJ ,

where RJ = {(lu, lu′); l ∈ LJ , u, u
′ ∈ UPJ

}.
For (x, y) ∈ W J ×W , we define

[J, x, y]+,− = (B × B−)(x, y)RJ/RJ ⊂ ZJ .

By [18, 2.2 & 2.4], ZJ = ⊔(x,y)∈W J×W [J, x, y]+,− and the closure of [J, x, y]+,− in ZJ

is the union of [J, x′, y′]+,−, where (x′, y′) runs over elements in W J × W such that
(x′, y′) � (x, y).

The third stratified space is contained in the loop group G(K). Let O = C[[t]] and
O− = C[t−1]. Let I be the inverse image of B under the map p+ : G(O) → G by sending
t to 0 and I− be the inverse image of B− under the map p− : G(O−) → G by sending
t−1 to 0. Then we have that G(O−)t−λG(O) = ⊔w∈Wt−λW I

−wI. The closure of I−wI in
G(O−)t−λG(O) is the union of I−w′I, where w′ runs over elements in Wt−λW such that

w 6 w′ for the Bruhat order on Ŵ .
We define f : G(O−)t−λG(O) → ZJ as f(gt−λ(g′)−1) = (p+(g′), p−(g))RJ/RJ for

g ∈ G(O−) and g′ ∈ G(O). Note that there is more than one way to write an element
in G(O−)t−λG(O) as gt−λ(g′)−1 for g ∈ G(O−) and g′ ∈ G(O). Thus we need to check
that the map f is well-defined.

Lemma 4.1. The map f is well-defined.

Proof. Let I1 = ker(p+) and I−1 = ker(p−). Let g, g′ ∈ G. Suppose that g′t−λg−1 ⊂
I−1 t

−λI1, we’ll show that (g, g′) ∈ RJ .
We have that ∅ 6= tλI−1 g

′t−λ ∩ I1g ⊂ tλG(O−)t−λ ∩G(O). We shall study this intersec-
tion in more detail. We show that

(a) G(O−)t−λI = ∪w∈W I
−wt−λI.

Since I−w ⊂ G(O−) for all w ∈ W , ∪w∈W I
−wt−λI ⊂ G(O−)t−λI. On the other

hand, for any i ∈ S and w ∈ W , siI
−wt−λ ⊂ I−siwt

−λI ∪ I−wt−λI. Hence si ∪w∈W

I−wt−λI ⊂ ∪w∈W I
−wt−λI. Since G(O−) is generated by I− and si for i ∈ S, we have

thatG(O−)∪w∈W I
−wt−λI = ∪w∈W I

−wt−λI. In particular, G(O−)t−λI = ∪w∈W I
−wt−λI.

(a) is proved.
Similarly,
(b) For any w ∈ WJ , I

−t−λIwI ⊂ ∪v∈WJ
I−vt−λI.

Now for any v ∈ WJ and w ∈ JW , we have that ℓ(vt−λw) = ℓ(vt−λ) − ℓ(w). Hence
vt−λ(I ∩ wI−w−1) ⊂ I−vt−λ and I−vt−λIwI = I−vt−λ(I ∩ wI−w−1)wI = I−vt−λwI.
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Now suppose that g ∈ BwB for some w ∈ W . Then we may write w as w = xy for
x ∈ WJ and y ∈ JW . Then applying (a) and (b) we deduce that t−λI1g ⊂ ∪v∈W I

−vt−λyI
and I−g′t−λ ⊂ ∪v∈W I

−vt−λI. Since t−λI1g ∩ I−g′t−λ 6= ∅, by the disjointness of the
Birkhoff factorization (see [25, Theorem 5.23(g)]) we have y = 1 and g ∈ PJ .

Assume that g = ul with u ∈ UPJ
and l ∈ LJ . Then t−λg−1tλ ⊂ l−1I−1 and

tλI−1 g
′t−λg−1 ⊂ tλI−1 g

′l−1I−1 t
−λ = tλI−1 g

′l−1t−λ, where for the last equality we use the
fact that G normalizes I1. Hence tλI−1 g

′l−1t−λ ∩ I1 6= ∅. Now it follows from [25, 5.2.3
(11)] that I1 = (I1∩ tλI−t−λ)(I1∩ tλIt−λ). Since U normalizes I1, comparing Lie algebras
and using the fact that I1 is connected we obtain I1∩ tλIt−λ = (I1∩ tλI1t−λ)(I1∩ tλUt−λ)
and similarly I1 ∩ tλI−t−λ = (I1 ∩ tλI−1 t−λ)(I1 ∩ tλU−t−λ).

It is easy to see that tλU−t−λ ∩ I1 = {1} and tλUt−λ ∩ I1 = tλUPJ
t−λ. Thus I1 =

(I1 ∩ tλI−1 t−λ)(I1 ∩ tλI1t−λ)tλUPJ
t−λ. Hence g′l−1 ∈ UPJ

and (g, g′) ∈ RJ . The Lemma is
proved. �

4.2. The group G(O−)×G(O) acts transitively on G(O−)t−λG(O). It also acts transi-
tively on ZJ via the action (g, g′) · z = (p+(g′), p−(g))z. The map f : G(O−)t−λG(O) →
ZJ is G(O−) × G(O)-equivariant. Thus all the fibers are isomorphic. Now we give an
explicit description of the fiber over RJ/RJ .

By Lemma 4.1, it is

{I−1 UPJ
lt−λl−1UPJ

I1; l ∈ LJ} = I−1 UPJ
t−λUPJ

I1,

where I1 = ker(p+) and I−1 = ker(p−). Since t−λUPJ
tλ ⊂ I−1 and tλUPJ

t−λ ⊂ I1, we have
that

I−1 UPJ
t−λUPJ

I1 = I−1 t
−λ(tλUPJ

t−λ)UPJ
I1 ⊂ I−1 t

−λI1UPJ
I1

= I−1 t
−λUPJ

I1 = I−1 (t
−λUPJ

tλ)t−λI1

⊂ I−1 t
−λI1.

On the other hand, I−1 t
−λI1 ⊂ I−1 UPJ

t−λUPJ
I1. Therefore the fiber over RJ/RJ is

I−1 UPJ
t−λUPJ

I1 = I−1 t
−λI1 ∼= I−1 × I1/(I

−
1 ∩ t−λI1t

λ)

and is an infinite dimensional affine space.

4.3. Let ∆ : G → G × G be the diagonal embedding. Since ∆(PJ) ⊂ RJ , there is a
unique map ι : G/PJ → ZJ such that the following diagram commutes

G
∆

//

��

G×G

��

G/PJ
ι

// ZJ .

We have the following diagram which relates the three stratified spaces

G/PJ
ι

// ZJ G(O−)t−λG(O)
f

oo .

This diagram is compatible with the respective stratifications: for (x, y) ∈ W J ×W ,
f(I−yt−λx−1I) = (p+(I)x, p−(I−)y)RJ/RJ = [J, x, y]+,−, agreeing with Theorem 2.2(1).
The following proposition shows that the map ι preserves the stratifications on G/PJ and
ZJ , agreeing with Theorem 2.2(2).

Proposition 4.2. For (x, y) ∈ W J ×W , ι(G/PJ)∩ [J, x, y]+,− 6= ∅ if and only if (x, y) ∈
QJ . In this case, ι(G/PJ) and [J, x, y]+,− intersect transversally and the intersection is

ι(Π̊x
y).
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Proof. If g ∈ BxB ∩ B−yB, then (g, g)RJ/RJ ∈ [J, x, y]+,−. Thus ι(Π̊x
y) = ι(π(X̊x

y )) ⊂
ι(G/PJ) ∩ [J, x, y]+,−, where π : G/B → G/PJ is the projection map. Since ι(G/PJ) =

⊔(x,y)∈W J×W ι(G/PJ) ∩ [J, x, y]+,− and G/PJ = ⊔(x,y)∈QJ
Π̊x

y , we have that

ι(G/PJ) ∩ [J, x, y]+,− =

{
ι(Π̊x

y), if (x, y) ∈ QJ ;

∅, otherwise.

Since ι(G/PJ) is a ∆(G)-orbit on ZJ and [J, x, y]+,− is a B− × B-orbit on ZJ and
Lie(∆(G))+Lie(B−×B) = Lie(G×G), by [37, Corollary 1.5], the intersection is transver-
sal. �

5. K-theory comparison

5.1. In this subsection, let G/B be a Kac-Moody flag variety [25]. This is an ind-finite
ind-scheme with a stratification by finite-dimensional Schubert varieties. Let W denote
the Kac-Moody Weyl group with positive (resp. negative) roots R+ (resp. R−). We
consider K-cohomology with integer coefficients. Kostant and Kumar [23] constructed
the Schubert basis of the torus-equivariant K-cohomology KT (G/B), where T ⊂ G is the
maximal torus of the Kac-Moody group. Let {ψv | v ∈ W} denote the torus-equivariant
Schubert basis ψv ∈ KT (G/B) constructed by Kostant and Kumar [23]. We shall follow
the notations of [27], which differ slightly from [23]. For the precise interpretation of ψv

as the class of a structure sheaf of a Schubert variety in the (possibly infinite-dimensional)
G/B we refer the reader to [27].

For v, w ∈ W , we let ev,w = ψv(w) := ψv|w ∈ KT (pt) denote the equivariant localization
at the T -fixed point v ∈ G/B. A K-cohomology class ψ ∈ KT (G/B) is completely
determined by its equivariant localizations. We review certain facts concerning ev,w.

If W is a finite Weyl group, we denote by w 7→ w⋆ the conjugation action w 7→ wSwwS

by the longest element wS. The following result is [27, Proposition 2.10].

Theorem 5.1. Let v, w ∈ W and w = si1 · · · sip be a reduced expression. For 1 6 j 6 p,
set βj = si1 · · · sij−1

αij . Then

ev,w =
∑

(−1)p−m(1− eβj1 ) · · · (1− eβjm ),

where the summation runs over all those 1 6 j1 < · · · < jm 6 p such that v = sij1 ∗ · · · ∗
sijm .

Define E to be the (infinite) matrix E = (ev,w), and set C = (E−1)T . Define the matrix
C ′ by cu−1,v−1 = v−1wSc

′
wSv,wSu

. Let M be the Bruhat order matrix given by mv,w = 1
if v ≥ w, and mv,w = 0 otherwise. The following result is a variant of [23, Proposition
4.16].

Proposition 5.2. We have ET = DC ′M , where D is the scalar matrix with value∏
α∈R+(1− eα).

Proof. Define EKK = (MT )−1E and CKK = (E−1
KK)

T . Let E ′
KK be the “E”-matrix

of [23]; then by [27, Appendix A] we have (e′KK)v,w = (eKK)v−1,w−1. Note that mv,w =
mv−1,w−1 = mw0w,w0v. Proposition 4.16 of [23] gives ET

KK = DC ′
KKM

−1, where (c′KK)v,u =
v(cKK)u−1wS ,v−1wS

. Then

c′v,w = vcw−1wS ,v−1wS
=

∑

u−1wS

nw−1wS ,u−1wS
v(cKK)u−1wS ,v−1wS

=
∑

u

nu,v(c
′
KK)v,u,

where N =M−1. It follows that ET = (MTEKK)
T = ET

KKM = DC ′
KK = DC ′M . �
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Now we prove some properties of ev,w.

Lemma 5.3. Let W be any Kac-Moody Weyl group.

(1) We have

ex,x =
∏

α∈R+∩xR−

(1− eα).

(2) Suppose W is a finite Weyl group. Then

e(x⋆)−1,(y⋆)−1 = wSy
−1ex,y.

(3) Suppose x, u, v ∈ W and ℓ(uv) = ℓ(u) + ℓ(v). Then

ex,uv =
∑

eu′,u(uev′,v),

where the summation runs over u′, v′ ∈ W such that x = u′ ∗ v′.
Proof. (1) Let x = sj1 · · · sjp be a reduced expression. Then

ex,x = (1− eβj1 ) · · · (1− eβjp ) = Πα∈R+∩xR−(1− eα).

(2) Let y = si1 · · · sip be a reduced expression. Then (y⋆)−1 = s⋆ip · · · s⋆i1 is also a reduced
expression. Moreover, x = sij1 ∗ · · · ∗ sijm if and only if (x⋆)−1 = s⋆ijm ∗ · · · ∗ s⋆ij1 . For any
j, we have that wSy

−1(1− eβj ) = wSsip · · · sij+1
(1− e−αij ) = s⋆ip · · · s⋆ij+1

(wS(1− e−αij )) =

s⋆ip · · · s⋆ij+1
(1− e

αi⋆
j ). Now

e(x⋆)−1,(y⋆)−1 =
∑

(−1)p−m(wSy
−1(1− eβj1 )) · · · (wSy

−1(1− eβjm )) = wSy
−1ex,y.

Here the summation runs over all those 1 6 j1 < · · · < jm 6 p such that x = sij1 ∗· · ·∗sijm .
(3) Let u = si1 · · · sip and v = sip+1

· · · siq be reduced expressions. Let 1 6 j1 < · · · <
jm 6 p < jm+1 < · · · < jn 6 p be such that x = sij1 ∗ · · · ∗ sijn . Then

(1− eβj1 ) · · · (1− eβjn ) = ((1− eβj1 ) · · · (1− eβjm ))((1− eβjm+1 ) · · · (1− eβjn ))

= ((1− eβj1 ) · · · (1− eβjm ))u
(
(sip+1

· · · sijm+1−1
(1− e

αijm+1 )) · · · (sip+1
· · · sijn−1

(1− eαijn ))
)

Now part (3) follows from Theorem 5.1. �

Lemma 5.4. Let W be a finite Weyl group, and u ≤ u′ ∈ W . Then
∑

v,u′′∈W
u≤v≤u′′≤u′

eu−1,v−1(v−1wSewSu′′,wSv)(v
−1wSewS ,wS

)−1 = δu,u′.

Proof. By Proposition 5.2, we have that
∑

u′′∈W
v≤u′′≤u′

ewSu′′,wSve
−1
wS ,wS

= c′wSv,wSu′ .

By definition, cu′−1,v−1 = v−1wSc
′
wSv,wSu′. Thus

∑

v,u′′∈W
u≤v≤u′′≤u′

eu−1,v−1(v−1wSewSu′′,wSv)(v
−1wSewS ,wS

)−1 =
∑

v∈W
u≤v≤u′

eu−1,v−1cu′−1,v−1 = δu,u′.

�
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5.2. We shall apply the results of 5.1 in the case where G/B is the finite flag variety

G/B, and in the case where G/B is the affine flag variety F̃ l = G(K)/I. We return

to the conventions of Section 2: W denotes the finite Weyl group and Ŵ denotes the
Iwahori-Weyl group. Note that the results of 5.1 from [25] are stated for Wa (that is,
for the affine flag variety of the simply-connected G), but extend without change to the

Iwahori-Weyl group Ŵ . We shall also abuse notation in two ways. First, if x, y ∈ W , we
shall write ex,y without specifying whether we are considering equivariant localizations

of affine or finite Schubert basis, since the two agree. Secondly, if x, y ∈ Ŵ , then ψx(y)

normally takes values in KT̂ (pt) for the affine torus T̂ . In the following we still denote
by ex,y the image of this value in KT (pt) for the finite torus T . That is, each affine root

is considered as a root of the finite torus T via the natural inclusion T →֒ T̂ .
Let Gr = G(K)/G(O) denote the affine Grassmannian of G. Let

Grλ = G(O)t−λG(O)/G(O) ⊂ Gr

be the closure of the G(O)-orbit inside the affine Grassmannian containing the T -fixed
point labeled by t−λ. Then Grλ = ⊔µ6λG(O)t−µG(O)/G(O), where the union is over
dominant coweights in dominance order. The subscheme Grλ is not in general smooth,
but the dense open orbit G(O)t−λG(O)/G(O) is smooth, being a (finite-dimensional)
affine bundle over G/PJ , where J = {i ∈ S; 〈λ, αi〉 = 0} (see for example [33, Section 2]).

5.3. For general facts concerning equivariant K-theory, we refer the reader to [9]. We
now fix W,J, λ, and y ∈ W , x, w ∈ W J . The projected Richardson varieties Πx

y ⊂ G/P
are labeled by (x, y) ∈ QJ . We denote by [OΠx

y
] ∈ KT (G/B) the torus-equivariant

cohomology class, and by [OΠx
y
]|w ∈ KT (pt) the equivariant localization at a fixed point.

(Note that the K-cohomology and K-homology groups of G/P are isomorphic, and we
prefer to consider [OΠx

y
] a class in K-cohomology.) Write π : G/B → G/P for the natural

projection.

Proposition 5.5. We have

(3) [OΠx
y
]|w =

∑

v∈WJ

ey,wv−1(wv−1wSewSx−1,wSvw−1)(wv−1wJewJ ,wJ
)−1.

Proof. Recall that Xy ⊂ G/B (resp. Xx ⊂ G/B) denotes the Schubert (resp. opposite
Schubert) varieties. Let Xx

y = Xx ∩ Xy ⊂ G/B be the Richardson variety. Then in
KT (G/B) we have the equality

[OXw
][OXu ] = [OXu

w
]

which follows from [4, Lemma 1]. Thus,

[OXx
y
]|u = [OXy

]|u[OXx ]|u = ey,uwSewSx,wSu

since Xx is obtained from XwSx by the action of wS.
By [21, Theorem 4.5], we have that π∗OXx

y
= OΠx

y
and Riπ∗OXx

y
= 0 for i > 0. Applying

the equivariant pushforward π∗ : KT (G/B) → KT (G/P ) to [OXx
y
] gives

[OΠx
y
]|w = (π∗[OXx

y
])|w =

∑

u∈wWJ

[OXx
y
]|ue(νu)−1

where e(νu) denotes the K-theoretic equivariant Euler class of the tangent space νu at u ∈
G/B to the fiber π−1(w). This is a K-theoretic analogue of the Atiyah-Bott localization
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formula in equivariant cohomology; see for example [9, Chapter 5]. We calculate that

e(νu) =
∏

α∈R− : urα∈wWJ

u(1− eα) = uwJewJ ,wJ

by Lemma 5.3(1). Finally, we apply Lemma 5.3(2) to get

wSewSx,wSu = uwSewSx−1,wSu−1 .

�

Lemma 5.6. For any x, w ∈ W J and y ∈ W , we have

eyt−λx−1,wt−λw−1 =
∑

u∈WJ ,y
′∈W

y=y′∗u−1

ey′,w(wet−λwJwS ,t−λwJwS
)(wt−λwJwSewSwJu−1x−1,wSwJw−1).

Proof. We have ℓ(w(t−λwJwS)(wSwJw
−1)) = ℓ(w) + ℓ(t−λwJwS) + ℓ(wSwJw

−1). By
Lemma 5.3(3),

eyt−λx−1,wt−λw−1 =
∑

ev,w(wev′,t−λwJwS
)(wt−λwJwSev′′,wSwJw−1),

where the summation runs over v ≤ w, v′ ≤ t−λwJwS and v′′ ≤ wSwJw
−1 such that

v ∗ v′ ∗ v′′ = yt−λx. But t−λwJwS is minimal in Wt−λW , and since v, v′′ ∈ W , we must
have v′ = t−λwJwS. If v′′ = wSwJu

−1x−1, then v ∗ (t−λwJwS) ∗ v′′ lies in Wt−λu−1x−1.
It follows that we must have u−1 ∈ WJ , and (t−λwJwS) ∗ v′′ = u−1t−λx−1. The result
follows. �

5.4. The affine Grassmannian Gr is weak homotopy-equivalent to the based loop group

ΩK, where K ⊂ G is a maximal compact subgroup. The affine flag variety F̃ l is weak
homotopy-equivalent to the quotient LK/TR of the (unbased) loop group by the compact
torus. The torus-equivariant composition ΩK → LK → LK/TR induces a pullback map

r∗ : KT (F̃ l) → KT (Gr), and we refer the reader to [14, Section 5] and [27] for a discussion

of this. The T -fixed points of Gr are labeled by the cosets of Ŵ/W . Thus the pullback
map can be described ([27, Lemma 4.6]) in terms of equivariant localizations by the
formula

(4) r∗(ψ)(t−λW ) = ψ(t−λ)

for ψ ∈ KT (F̃ l) and a dominant coweight λ. For our purposes, we can take this formula
to be the definition of r∗; indeed, it is checked algebraically in [27] that (4) gives a
well-defined map on the equivariant K-theories.

Let p′ : G/P → G(O)t−λG(O)/G(O) denote the zero-section of the affine bundle
G(O)t−λG(O)/G(O) → G/P , and let p : G/P → Grλ be the composition of p′ with
the open inclusion G(O)t−λG(O)/G(O) ⊂ Grλ. The map p (and also p′) is a (torus-
equivariant) closed embedding, and thus a proper map.

We have a pushforward map p∗ : KT (G/P ) → KT (Grλ), defined as follows. Let
KT (G/P ) andKT (Grλ) denote the Grothendieck groups of T -equivariant coherent sheaves
on G/P and Grλ respectively, as defined in [9, Chapter 5]. We have already remarked
that KT (G/P ) ≃ KT (G/P ). We also have KT (Grλ) ≃ KT (Grλ) by [9, Proposition
5.5.6] applied to the Schubert stratification of Grλ (noting that the constructions of
Kostant and Kumar [23] are carried out in topological equivariant K-theory). The push-
forward map p∗ : KT (G/P ) → KT (Grλ) is defined on the level of coherent sheaves by
p∗[F] =

∑
i(−1)i[Rip∗F], whenever p is a proper map. In fact Rip∗ = 0 for i > 0
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since p is a closed embedding in our situation. We use the same notation p∗ to de-
note the map KT (G/P ) → KT (Grλ) obtained by composing with the isomorphisms
KT (G/P ) ≃ KT (G/P ) and K

T (Grλ) ≃ KT (Grλ).

Let q∗ : KT (F̃ l) → KT (Grλ) be the composition of r∗ with the restriction KT (Gr) →
KT (Grλ). The following theorem generalizes [20, Theorem 12.8] in two ways: from the
Grassmannian to all partial flag varieties G/P , and from cohomology to K-theory.

Theorem 5.7. We have p∗([OΠx
y
]) = q∗(ψyt−λx−1

).

Proof. We have yt−λx−1 6 tµ only if max(Wyt−λx−1W ) 6 max(WtµW ), only if µ′ > λ,

where µ′ is the dominant coweight in the W -orbit of µ. Thus q∗(ψyt−λx−1

) is non-zero
only on T - fixed points of the form wt−λw−1 ∈ G(O)t−λG(O)/G(O) ⊂ Grλ. Since
p(G/P ) ⊂ G(O)t−λG(O)/G(O), the class p∗([OΠx

y
]) is also supported on the same T -

fixed points. A class in KT (Grλ) is determined by its pullbacks to all the T -fixed points,
and so it suffices to compare the two sides at each of the T -fixed points wt−λw−1.

By Lemma 5.3(3), we have

(5) ey,wv−1 =
∑

u≤v,y′∈W
y=y′∗u−1

ey′,w(weu−1,v−1).

and

ewSx−1,wSvw−1 = ewSx−1,(vwJ )⋆wSwJw−1 =
∑

e(u′′wJ )⋆,(vwJ )⋆ ((vwJ)
⋆ewSwJu′−1x−1,wSwJw−1) ,

where the summation runs over all u′, u′′ ∈ W such that (u′′wJ)
⋆ ∗ (wSwJu

′−1x−1) =
wSx

−1. By definition, wSwJu
′−1x−1 ∈ WJ⋆wSx

−1 = wSWJx
−1 and u′ ∈ WJ . Then

wSwJu
′−1x−1 = (wJu

′−1)⋆wSx
−1, here (wJu

′−1)⋆ ∈ WJ⋆ and wSx
−1 is the maximal ele-

ment in WJ⋆wSx
−1. Hence (u′′wJ)

⋆ ∗ (wSwJu
′−1x−1) = wSx

−1 if and only if (u′′wJ)
⋆ >

((wJu
′−1)⋆)−1, i.e., u′′wJ > u′wJ . This is equivalent to say that u′′ 6 u′. Hence

(6) ewSx−1,wSvw−1 =
∑

v6u′′6u′ in WJ

e(u′′wJ)⋆,(vwJ )⋆ ((vwJ)
⋆ewSwJu′−1x−1,wSwJw−1)

Thus applying Lemma 5.3(2),

(7) v−1wSe(u′′wJ )⋆,(vwJ )⋆ = wJewJu′′−1,wJv−1 = v−1wJewJu′′,wJv

and
(8)

wv−1wSewSx−1,wSvw−1 =
∑

v6u′′6u′ in WJ

(wv−1wJewJu′′,wJv)(wwJwSewSwJu′−1x−1,wSwJw−1).

Substituting (5) and (8) into (3), we have that

[OΠx
y
]|w =

∑
ey′,w(weu−1,v−1)(wv−1wJewJu′′,wJv)(wv

−1wJewJ ,wJ
)−1(wwJwSewSwJu′−1x−1,wSwJw−1),

where the summation is over u 6 v 6 u′′ 6 u′ in WJ and y′ ∈ W such that y = y′ ∗ u−1.
Applying Lemma 5.4 to

∑

v,u′′∈WJ

u≤v≤u′′≤u′

(weu−1,v−1)(wv−1wJewJu′′,wJv)(wv
−1wJewJ ,wJ

)−1

gives

[OΠx
y
]|w =

∑

u∈WJ ,y
′∈W

y=y′∗u−1

ey′,w(wwJwSewSwJu−1x−1,wSwJw−1).
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To compute p∗([OΠx
y
])|wt−λw−1 we apply the formula [9, Theorem 5.11.7] for the localiza-

tion of a pushforward, in the form given in [11, Equation (7)]. Since Grλ is not smooth, to
apply these results, we must first restrict to the smooth open subset G(O)t−λG(O)/G(O).
Let j : G(O)t−λG(O)/G(O) →֒ Grλ denote the open inclusion. Then for any class
ψ ∈ KT (Grλ), we have ψ|wt−λw−1 = (j∗(ψ))|wt−λw−1 by composing pullbacks. It thus suf-
fices to calculate (j∗(p∗([OΠx

y
]))|wt−λw−1. Since p is a closed embedding, and j is an open

embedding, we have j∗(p∗([OΠx
y
])) = p′∗([OΠx

y
]). Now, p′ : G/P → G(O)t−λG(O)/G(O)

is a torus-equivariant closed embedding of smooth varieties, and we apply [11, Equation
(7)], as follows.

We have that p′∗([OΠx
y
])|wt−λw−1 = e(νw)[OΠx

y
]|w, where e(νw) is a product of (1 − eβ)

over the weights β of the normal space to G/P ⊂ G(O)t−λG(O)/G(O) at the point
wt−λw−1. The factor e(νw) is equal to the product of the weights of the T -invariant
curves joining wt−λw−1 to T -fixed points z inside Grλ which are outside of G/P . For
w = wSwJ , these are all T -fixed points of the form z = rαt

−λwJwS < t−λwJwS. The
product of the T -weights is thus e(ν1) = et−λwJwS ,t−λwJwS

. A similar calculation gives
e(νw) = wet−λwJwS ,t−λwJwS

.
Combining with Lemma 5.6, we get

p∗([OΠx
y
])|wt−λw−1 = e(νw)[OΠx

y
]|w = q∗(ψyt−λx−1

)|wt−λw−1.

�

5.5. As claimed in the introduction, the analogue of Theorem 5.7 holds in equivariant
cohomology, either by a similar but easier proof, or by looking at the “lowest degree
terms” of the equivariant localizations.

Theorem 5.8. We have p∗([Π
x
y ]) = q∗(ξyt

−λx−1

), where [Πx
y ] ∈ H∗

T (G/P ) denotes the

equivariant cohomology class of a projected Richardson variety, and ξyt
−λx−1 ∈ H∗

T (F̃ l)
are the torus-equivariant cohomlogy classes of Schubert varieties, constructed by Kostant
and Kumar [22].

5.6. For background material on the symmetric function notation used in this section,
we refer the reader to [5, 27]. The general strategy of this section is similar to [20, Section
7].

In this section we let G = PGL(n,C) and G/P be the Grassmannian Gr(k, n) of k-

planes in Cn. In [5], Buch defined stable Grothendieck polynomials Gλ(X) ∈ Λ̂ for each

partition λ, lying in the graded completion Λ̂ of the ring of symmetric functions. Buch
showed that the K-theory K(Gr(k, n)) of the Grassmannian could be presented as Γ/Ik,n,
where Γ =

∏
λZ · Gλ(X), and Ik,n is the ideal spanned (as a direct product) by all Gλ

where λ is not contained in a k × (n − k) rectangle. (Buch considered the direct sum
rather than product of the Z ·Gλ(X), but the quotient is the same.)

In [26], symmetric functions G̃w(X) called affine stable Grothendieck polynomials were

defined for each element w ∈ Ŵ of the affineWeyl group (in this case, the affine symmetric
group). Let Λ(n) be the quotient of the ring of symmetric functions by the ideal generated

by all monomial symmetric functions mλ, for λ1 ≥ n. Let Λ̂(n) be the graded completion

of Λ(n). Let r∗ : K(F̃ l) → K(Gr) denote the pullback map in K-theory, as in Subsection

5.4. In [27], it was shown that K(Gr) ≃ Λ̂(n) and that under this isomorphism one has

(9) r∗(ψw) = G̃w.

The following result was conjectured in [20, Conjecture 7.11].
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Theorem 5.9. Let ωk denote the k-th fundamental coweight. Under the isomorphism
κ : K(Gr(k, n)) ≃ Γ/Ik,n, we have

κ([OΠx
y
]) = G̃yt−ωkx−1

where the right hand side is considered as an element of the quotient Γ/Ik,n.

Proof. When λ is the fundamental coweight ωk we have G/P ≃ Grλ ⊂ Gr (see [20, Section
7]). Combining (the non-equivariant image of) Theorem 5.7 with (9), it thus remains to

check that the inclusion ι : G/P →֒ Gr induces the natural quotient map Λ̂(n) → Γ/Ik,n.

The ring Λ̂(n) contains distinguished symmetric functions G(m)(X) = G̃sm−1sm−2···s0(X)
for 1 ≤ m < n. The completion of the subring generated by the G(m)(X) is ex-

actly Λ̂(n). The ring homomorphism ι∗ : K(Gr) → K(Gr(k, n)) is compatible with
graded completions, and is thus determined by the images of G(m)(X). Now, in K∗(Gr),

G̃sm−1sm−2···s0(X) represents the pullback r∗(ψsm−1sm−2···s0). Form ≤ n−k, modulo length-

zero elements of Ŵ (one has G̃v(X) = G̃u(X) if v and u differ by a length-zero element),
sm−1sm−2 · · · s0 is the same as sk+m−1 · · · sk+1skt

−ωkwJwS. But under Buch’s isomorphism
K(Gr(k, n)) ≃ Γ/Ik,n, the opposite Schubert variety π(Xsk+m−1···sk+1sk) = ΠwJwS

sk+m−1···sk+1sk

is represented by the symmetric function G(m)(X) as well [5, Theorem 8.1]. Similarly,
if m > n − k one sees that ι∗ sends G(m)(X) to 0. Thus ι∗ induces the natural map

Λ̂(n) → Γ/Ik,n. �

5.7. In [28], Lam and Shimozono, following work of Peterson, showed that the quantum
cohomology ringsQH∗(G/P ) of partial flag varieties could, after localization, be identified
with a quotient of the homology H∗(Gr) of the affine Grassmannians. In particular, the 3-
point Gromov-Witten invariants of G/P could be recovered from the homology Schubert
structure constants of H∗(Gr).

Let G/P be a cominuscule flag variety. In this section, we discuss the implications of
Theorem 5.7 towards the comparison of the quantum K-theory QK(G/P ) of G/P and
K-homology K0(Gr) of the affine Grassmannian. We will work in the non-equivariant
setting; the T -equivariant statements are analogous. We now define four sets of integers.

(1) For u, v, w ∈ Ŵ/W , let dwuv ∈ Z denote the K-homology Schubert structure con-
stants of K0(Gr), defined in [27, (5.3)] (we will only consider the non-equivariant
structure constants). We remark that in [27] only the affine Grassmannian Gr
of a simply-connected simple algebraic group is considered, but the extension is
straightforward; see for example [29].

(2) For u ∈ Ŵ , and y ∈ Ŵ S a minimal length coset representative of Ŵ/W we can
consider the coefficient kuy of the K-cohomology Schubert class ψy

Gr in r∗(ψu

F̃ l
),

where r∗ : K(F̃ l) → K(Gr) denotes the pullback map in K-theory, as in Subsec-
tion 5.4.

(3) For a positroid variety Πu
v and y ∈ W J , consider the coefficient πy

(u,v) of the (class

of the) Schubert structure sheaf [OXy
] in [OΠu

v
] ∈ K(G/P ).

(4) For u, v, w ∈ W J , consider theK-theoretic Gromov-Witten invariant Id(u, v, w) =
Id(OXu

,OXv , (OXw
)∨); see for example [6, Section 5]. Here {[(OXw

)∨]} is the dual
basis to {[OXw

]} in K(G/P ). The K-theoretic Gromov-Witten invariant is de-
fined as the Euler characteristic of the product of the pullbacks of these structure
sheaves to the moduli space Md,3(G/P ) of three-point, genus zero, stable maps
into G/P with degree d.

We now compare the four sets of integers.
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(1) By [27, (5.1), (5.4) and Theorem 5.4],

dwuv =
∑

x∈Ŵ
x∗v=w

(−1)ℓ(w)−ℓ(v)−ℓ(x)kxu.

Thus the kxu determine the dwuv, and it is easy to see that (picking v and u appro-
priately) the dwuv also determine the kxu.

(2) By the cominuscule assumption we have G/P ≃ Grλ ⊂ Gr, where λ is the ap-
propriate minuscule coweight. Thus p∗ can be identified with the identity, and
Theorem 5.7 states that q∗(ψyt−λx−1

) = [OΠx
y
]. Now suppose that x = wSwJ

and y ∈ W J . Then Πx
y = π(Xy) is a usual Schubert variety in G/P , and since

yt−λwJwS ∈ Ŵ S, we have r∗(ψy

F̃ l
) = (ψy

Gr). It follows that the coefficient πy

(u,v) is

equal to kvt
−λu−1

y .
(3) In [6], Buch, Chaput, Mihalcea, and Perrin studied the geometry of the Gromov-

Witten varieties associated to cominuscule G/P . An unpublished1 consequence
of their work, communicated to us by L. Mihalcea, is that

(10) Id(u, v, w) is equal to the coefficient of a Schubert structure sheaf [OXw
] in [OΠx

y
]

where Πx
y is a projected Richardson variety which depends on d, u, v. For an ex-

plicit description of Πx
y in type A see [20, Section 8]. For the classical types the

explicit description can presumably be recovered from [7], and for other comi-
nuscule types see [8]. Thus the coefficients πy

(x,z) determine all the coefficients

Id(u, v, w).

Corollary 5.10. Let G/P be cominuscule. Assuming (10), the K-homology Schubert
structure constants determine the 3-point K-theoretic Gromov-Witten invariants of G/P .

Appendix

Here we prove that the poset (QJ ,�) is combinatorially equivalent to the poset in-
troduced by Rietsch in [38, Section 5] and by Goodearl and Yakimov in [12, Theorem
1.8].

Following [38], we set

Q′
J = {(a, b, c) ∈ W J

max ×WJ ×W J ; a 6 cb}
and define the partial order 6 on Q′

J as follows.
For (a, b, c), (a′, b′, c′) ∈ Q′

J , define

(a′, b′, c′) 6 (a, b, c)

if there exists u′1, u
′
2 ∈ WJ with u′1u

′
2 = b′, ℓ(u′1) + ℓ(u′2) = ℓ(b′) and

ab−1 6 a′(u′2)
−1 6 c′u′1 6 c.

Following [12], we set

ΩJ = {(a, b) ∈ W J
max ×W ; a 6 b}

and define the partial order 6 on ΩJ as follows.
For (a, b), (a′, b′) ∈ ΩJ , define

(a′, b′) 6 (a, b)

1Since this paper was written, a preprint with related results has appeared as Projected Gromov-
Witten varieties in cominuscule spaces, A. S. Buch, P.-E. Chaput, L. C. Mihalcea, and N. Perrin,
arXiv:1312.2468.
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if there exists z ∈ WJ such that a 6 a′z and b′z 6 b.

Proposition 5.11. The maps

f : Q′
J → ΩJ , (a, b, c) 7→ (a, cb)

g : ΩJ → QJ , (a, b) 7→ (min(bWJ ), ab
−1min(bWJ ))

h : QJ → Q′
J , (x, y) 7→ (max(yWJ), y

−1max(yWJ), x)

give order-preserving bijections between the posets (Q′
J ,6), (ΩJ ,6) and (QJ ,�).

Proof. For (a, b, c) ∈ Q′
J , f(a, b, c) = (a, cb), g ◦f(a, b, c) = (c, ab−1) and h◦g ◦f(a, b, c) =

(a, b, c). Similarly, g ◦ f ◦ h is an identity map on QJ and f ◦ h ◦ g is an identity map on
ΩJ . Thus f, g, h are all bijective.

Now it suffices to show that f, g, h preserve the partial orders.
Let (a, b, c), (a′, b′, c′) ∈ Q′

J with (a′, b′, c′) 6 (a, b, c). Then there exists u′1 ∈ WJ such
that ab−1 6 a′(b′)−1u′1 6 c′u′1 6 c. Thus a = ab−1∗b ≤ a′(b′)−1u′1∗b. In other words, there
exists v 6 b such that a 6 a′(b′)−1u′1v. Let z = (b′)−1u′1v. Then c′b′z = c′u′1v 6 cv 6 cb
since c ∈ W J . Hence (a′, c′b′) 6 (a, cb) in ΩJ .

Let (a, b), (a′, b′) ∈ ΩJ with (a′, b′) 6 (a, b). Then there exists z ∈ WJ with a 6 a′z
and b′z 6 b. We assume that g(a, b) = (x, y) and g(a′, b′) = (x′, y′). Then there exists
u, u′ ∈ WJ such that x = bu, y = au, x′ = b′u′ and y′ = a′u′. Since b′z 6 b, we have that
b′z ⊳ u 6 b ⊳ u 6 bu = x. Hence there exists v 6 u such that x′(u′)−1zv = b′zv 6 x.

Since a ∈ W J
max,

y = au 6 av = a ⊳ v 6 a′z ⊳ v 6 a′zv = y′(u′)−1zv.

Thus (x′, y′) � (x, y) in QJ .
Now let (x, y), (x′, y′) ∈ QJ with (x′, y′) � (x, y). Then there exists u ∈ WJ such that

x′u 6 x and y′u > y. So we have that y′ ∗ u > y′u > y. In other words, there exists
v 6 u with y′ ∗ u = y′v and ℓ(y′v) = ℓ(y′) + ℓ(v). Since x′ ∈ W J , we also have that
y′v 6 x′v 6 x′u 6 x.

We assume that h(x, y) = (a, b, x) and h(x′, y′) = (a′, b′, x′). Then y = ab−1 and
y′ = a′(b′)−1. We have that

ab−1 = y 6 y′v = a′(b′)−1v 6 x′v 6 x.

Since a′ ∈ W J
max, ℓ(a

′(b′)−1v) = ℓ(a′)−ℓ((b′)−1v) and ℓ(y′v) = ℓ(y′)+ℓ(v) = ℓ(a′)−ℓ(b′)+
ℓ(v). So ℓ((b′)−1v) + ℓ(v) = ℓ(b′). Thus (a′, b′, x′) 6 (a, b, x) in Q′

J . �
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