
ar
X

iv
:0

70
8.

43
66

v2
  [

m
at

h.
R

T
] 

 1
9 

M
ar

 2
00

8

Contemporary Mathematics

G-stable pieces and partial flag varieties

Xuhua He

Abstract. We will use the combinatorics of the G-stable pieces to describe
the closure relation of the partition of partial flag varieties in [L3, section 4].

Introduction

In 1977, Lusztig introduced a finite partition of a (partial) flag variety Y .
In the case where Y is the full flag variety, this partition is the partition into
Deligne-Lusztig varieties (see [DL]). In this case, it follows easily from the Bruhat
decomposition that the closure of a Deligne-Lusztig variety is the union of some
other Deligne-Lusztig varieties and the closure relation is given by the Bruhat order
on the Weyl group.

In this paper, we will use some combinatorial technique in [H4] to study the
partition on a partial flag variety. We show that the partition is a stratification and
the closure relation is given by the partial order introduced in [H2, 5.4] and [H3,
3.8 & 3.9]. We also study some other properties of the locally closed subvarieties
that appear in the partition.

1. Some combinatorics

1.1. Let k be an algebraic closure of the finite field Fq and G be a connected
reductive algebraic group defined over Fq with Frobenius map F : G → G. We fix
an F -stable Borel subgroup B of G and an F -stable maximal torus T ⊂ B. Let I be
the set of simple roots determined by B and T . Then F induces an automorphism
on the Weyl group W which we deonte by δ. The autmorphism restricts to a
bijection on the set I of simple roots. By abusion notations, we also denote the
bijection by δ.

For any J ⊂ I, let PJ be the standard parabolic subgroup corresponding to J
and PJ be the set of parabolic subgroups that are G-conjugate to PJ . We simply
write P∅ as B. Let LJ be the Levi subgroup of PJ that contains T .

For any parabolic subgroup P , let UP be the unipotent radical of P . We simply
write U for UB.
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2 XUHUA HE

For J ⊂ I, we denote by WJ the standard parabolic subgroup of W generated
by J and by W J (resp. JW ) the set of minimal coset representatives in W/WJ

(resp. WJ\W ). For J, K ⊂ I, we simply write W J ∩ KW as KW J .
For P ∈ PJ and Q ∈ PK , we write pos(P, Q) = w if w ∈ JWK and there exists

g ∈ G such that P = gPJg−1, Q = gẇPKẇ−1g−1, where ẇ is a representative of w
in N(T ).

For g ∈ G and H ⊂ G, we write gH for gHg−1.

We first recall some combinatorial results.

1.2. For J ⊂ I, let T (J, δ) be the set of sequences (Jn, wn)n≥0 such that
(a) J0 = J ,
(b) Jn = Jn−1 ∩ Ad(wn−1)δ(Jn−1) for n ≥ 1,
(c) wn ∈ JnW δ(Jn) for n ≥ 0,
(d) wn ∈ WJn

wn−1Wδ(Jn−1) for n ≥ 1.
Then for any sequence (Jn, wn)n≥0 ∈ T (J, δ), we have that wn = wn+1 = · · ·

and Jn = Jn+1 = · · · for n ≫ 0. By [Be], the assignment (Jn, wn)n≥0 7→ w−1
m for

m ≫ 0 defines a bijection T (J, δ) → W J .
Now we prove some result that will be used in the proof of Lemma 2.5.

Lemma 1.1. Let (Jn, wn)n≥0 ∈ T (J, δ) be the element that corresponds to w.
Then

(1) w(LJ ∩ UPJ1
)w−1 ⊂ UPδ(J)

.

(2) w(LJi
∩ UPJi+1

)w−1 ⊂ Lδ(Ji−1) ∩ UPδ(Ji)
for i ≥ 1.

Proof. We only prove part (1). Part (2) can be proved in the same way.
Assume that part (1) is not true. Then there exists α ∈ Φ+

J − Φ+
J1

such that

wa ∈ Φ+
δ(J). Let i ∈ J − J1 with αi ≤ α. Since w ∈ W J , we have that wαi ∈ Φ+

δ(J).

By definition, w−1 = w1v for some v ∈ Wδ(J . Then αi ∈ w−1Φ+
δ(J) = w1vΦ+

δ(J) =

w1Φδ(J). Since w1 ∈ W δ(J), we must have αi = w1αj for some j ∈ δ(J). Hence
i ∈ J1, which is a contradiction. Part (1) is proved. �

1.3. Define a WJ -action on W by x · y = δ(x)yx−1. For w ∈ W J , set

I(J, δ; w) = max{K ⊂ J ; Ad(w)(K) = δ(K)}

and [w]J = WJ · (wWI(J,δ;w)). Then W = ⊔w∈W J [w]J . See [H4, Corollary 2.6].

Given w, w′ ∈ W and j ∈ J , we write w
sj

−→δ w′ if w′ = sδ(j)wsj and l(w′) ≤
l(w). If w = w0, w1, · · · , wn = w′ is a sequence of elements in W such that for all

k, we have wk−1
sj

−→δ wk for some j ∈ J , then we write w →J,δ w′.
We call w, w′ ∈ W elementarily strongly (J, δ)-conjugate if l(w) = l(w′) and

there exists x ∈ WJ such that w′ = δ(x)wx−1 and either l(δ(x)w) = l(x) + l(w) or
l(wx−1) = l(x) + l(w). We call w, w′ strongly (J, δ)-conjugate if there is a sequence
w = w0, w1, · · · , wn = w′ such that wi−1 is elementarily strongly (J, δ)-conjugate
to wi for all i. We will write w ∼J,δ w′ if w and w′ are strongly (J, δ)-conjugate. If
w ∼J,δ w′ and w →J,δ w′, then we say that w and w′ are in the same (J, δ)-cyclic
shift and write w ≈J,δ w′. Then it is easy to see that w ≈J,δ w′ if and only if
w →J,δ w′ and w′ →J,δ w.

By [H4, Proposition 3.4], we have the following properties:
(a) for any w ∈ W , there exists w1 ∈ W J and v ∈ WI(J,δ;w1) such that w →J,δ

w1v.
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(b) if w, w′ are in the same WJ -orbit O of W and w, w′ are of minimal length
in O, then w ∼J,δ w′. If moreover, O ∩ W J 6= ∅, then w ≈J,δ w′.

1.4. By [H4, Corollary 4.5], for any WJ -orbit O and v ∈ O, the following
conditions are equivalent:

(1) v is a minimal element in O with respect to the restriction to O of the
Bruhat order on W .

(2) v is an element of minimal length in O.
We denote by Omin the set of elements in O satisfy the above conditions. The

elements in (WJ · w)min for some w ∈ W J are called distinguished elements (with
respect to J and δ).

As in [H4, 4.7], we have a natural partial order ≤J,δ on W J defined as follows:
Let w, w′ ∈ W J . Then w ≤J,δ w′ if for some (or equivalently, any) v′ ∈

(WJ · w′)min, there exists v ∈ (WJ · w)min such that v ≤ v′.
In general, for w ∈ W J and w′ ∈ W , we write w ≤J,δ w′ if there exists

v ∈ (WJ · w)min such that v ≤ w′.

2. GF -stable pieces

2.1. For J ⊂ I, set ZJ = {(P, gUP ); P ∈ PJ , g ∈ G} with the G × G-action
defined by

(g1, g2) · (P, gUP ) = (g2P, g1gUP g−1
2 ).

Set hJ = (PJ , UPJ
). Then the isotropic subgroup RJ of hJ is {(lu1, lu2); l ∈

LJ , u1, u2 ∈ UPJ
}. It is easy to see that

ZJ
∼= (G × G)/RJ .

Set GF = {(g, F (g)); g ∈ G} ⊂ G × G. For w ∈ W J , set

ZJ,F ;w = GF (B, BwB) · hJ .

We call ZJ,F ;w a GF -stable piece of ZJ .

Lemma 2.1. Let w, w′ ∈ W .
(1) If w →J,δ w′, then

GF (B, BwB) · hJ ⊂ GF (B, Bw′B) · hJ ∪ ∪v<wGF (B, BvB) · hJ .

(2) If w ≈J,δ w′, then

GF (B, BwB) · hJ = GF (B, Bw′B) · hJ .

Proof. It suffices to prove the case where w
sj

−→δ w′ for some j ∈ J .
Notice that F (BsiB) = Bsδ(i)B for i ∈ I.
If wsj < w, then

(B, BwB) · hJ = (B, BwsjB)(B, BsjB) · hJ

= (BsjB, BwsjB) · hJ

⊂ GF (B, Bsδ(j)BwsjB, B) · hJ

⊂ GF (B, Bw′B) · hJ ∪ GF (B, BwsjB) · hJ .

If moreover, l(w′) = l(w), then Bsδ(j)BwsjB = Bw′B and GF (B, BwB) ·hJ =
GF (B, Bw′B) · hJ .
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If sδ(j)w < w, then

(B, BwB) · hJ = (B, Bsδ(j)B)(B, Bsδ(j)wB) · hJ

⊂ GF (BsjB, Bsδ(j)wB) · hJ

= GF (B, Bsδ(j)wBsjB) · hJ

⊂ GF (B, Bw′B) · hJ ∪ GF (B, Bsδ(j)wB) · hJ .

If moreover, l(w′) = l(w), then Bsδ(j)wBsjB = Bw′B and GF (B, BwB) ·hJ =
GF (B, Bw′B) · hJ .

If wsδ(j) > w and sjw > w, then l(w′) = l(w). By [L1, Proposition 1.10],
w′ = w. The statements automatically hold in this case. �

Lemma 2.2. We have that ZJ = ∪w∈W J ZJ,F ;w.

Remark. We will see in subsection 2.3 that ZJ is the disjoint union of ZJ,F ;w

for w ∈ W J .

Proof. Let z ∈ ZJ . Since G × G acts transitively on ZJ , z is contained in
the G-orbit of an element (1, g) · hJ for some g ∈ G. By the Bruhat decomposition
of G, we have that z ∈ GF (1, Bw1B) · hJ for some w1 ∈ W . We may assume
furthermore that w1 is of minimal length among all the Weyl group elements w′

1

with z ∈ GF (1, Bw′
1B) · hJ .

By part (1) of the previous lemma and 1.3 (a),

z ∈ GF (B, BwvB) · hJ ∪ ∪l(w′)<l(w1)GF (B, Bw′B) · hJ

for some w ∈ W J and v ∈ WI(J,δ;w). By our assumption on w1, we have that
z ∈ GF (B, BwvB) · hJ and l(wv) = l(w1). In particular, z is contained in the
GF -orbit of an element (1, g′l) · hJ for some l ∈ LK and g′ ∈ UPδ(K)

wUPK
, where

K = I(J, δ; w).
Set F ′ : LK → LK by F ′(l1) = w−1F (l1)w. By Lang’s theorem for F ′, we can

find l1 ∈ LK such that F ′(l1)ll
−1
1 = 1. Then

(l1, F (l1))(1, g′l) · hJ = (1, F (l1)g
′ll−1

1 ) · hJ

∈ (1, UPδ(K)
wF ′(l1)ll

−1
1 UPK

) · hJ ⊂ (1, BwB) · hJ

and z ∈ ZJ,F ;w. �

2.2. For any parabolic subgroups P and Q of G, we set PQ = (P ∩Q)UP . It
is known that PQ is a parabolic subgroup of G. The following properties are easy
to check.

(1) For any g ∈ G, (gP )(
gQ) = g(PQ).

(2) If P ∈ B, then PQ = P for any parabolic subgroup Q.

Lemma 2.3. Let J, K ⊂ I and w ∈ JW . Set J1 = J ∩ Ad(w1)K, where

w1 = min(wWK ). Then for g ∈ BwB, we have that P
(gPK)
J = PJ1 .

Proof. By 2.2 (1), it suffices to prove the case where g = ẇ. Now

(PJ )(
ẇPK) = (PJ)(

ẇ1PK) = (LJ ∩ ẇ1LK)(LJ ∩ ẇ1UPK
)(UPJ

∩ ẇ1PK)UPJ

= (LJ ∩ ẇ1LK)((LJ ∩ U) ∩ ẇ1LK)(LJ ∩ ẇ1UPK
)(UPJ

∩ ẇ1PK)UPJ
.
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Since w ∈ JW and w1 = min(wWK ), we have that w1 ∈ JWK . Therefore
LJ ∩ ẇ1LK = LJ1 and

((LJ ∩ U) ∩ ẇ1LK)(LJ ∩ ẇ1UPK
)

= ((LJ ∩ U) ∩ ẇ1LK)((LJ ∩ U) ∩ ẇ1UPK
)

= (LJ ∩ U) ∩ ẇ1PK = LJ ∩ U.

So (PJ )(
ẇPK) = LJ1(LJ ∩ U)UPJ

= LJ1U = PJ1 . �

Lemma 2.4. To each (P, gUP ) ∈ ZJ , we associate a sequence (Pn, Jn, wn)n≥0

as follows

P 0 = P, Pn = (Pn−1)F (gP n−1) for n ≥ 1,

Jn ⊂ I with Pn ∈ PJn
, wn = pos(Pn, F (gPn)) for n ≥ 0.

Let w ∈ W J . Let (P, gUP ) ∈ ZJ,F ;w and (Pn, Jn, wn)n≥0 be the sequence
associated to (P, gUP ). Then (Jn, wn)n≥0 ∈ T (J, δ) and w−1

m = w for m ≫ 0.

Proof. Using 2.2 (1), it is easy to see by induction on n that the sequence
associated to (F (h)P, hgUP F (h)−1) is (F (h)Pn, Jn, wn)n≥0. Then it suffices to prove
the case where (P, gUP ) = (PJ , kUPJ

) for some k ∈ Bδ−1(w)−1B.
Let (J ′

n, w′
n)n≥0 ∈ T (J, δ) be the element that corresponds to w. Then w′

n =
min(w−1Wδ(Jn)) for n ≥ 0. By the previous lemma, we can show by induction
on n that Pn = PJ′

n
for all n ≥ 0. Then Jn = J ′

n for n ≥ 0. Moreover, wn =

pos(Pn, F (kPn)) = pos(PJn
, F (k)Pδ(Jn)) = w′

n since k ∈ Bδ−1(w)−1B. �

(A similar result with a similar proof appears in [H1, Lemma 2.3].)

2.3. We can now define a map β : ZJ → W J by β(P, gUP ) = w−1
m for

m ≫ 0, where (Pn, Jn, wn)n≥0 is the sequence associated to (P, gUP ). Then ZJ =
⊔w∈W J β−1(w) is a partition of ZJ into locally closed subvarieties. Since ZJ,F ;w ⊂
β−1(w) and ZJ = ∪w∈W J ZJ,F ;w, we have that ZJ,F ;w = β−1(w) and

ZJ = ⊔w∈W J ZJ,F ;w.

Fix w ∈ W J and let (Jn, wn)n≥0 be the element in T (J, δ) that corresponds
to w. Clearly, the map (P, gUP ) 7→ Pm for m ≫ 0 is a morphism ϑ : ZJ,F ;w →
PI(J,δ;w).

Lemma 2.5. Let w ∈ W J . Set x = δ−1(w)−1 and K = δ−1I(J, δ; w). Then

(UPK
)F (x, 1) · hJ = (UPK

x, UPδ(K)
) · hJ .

Proof. Notice that

(UPK
x, UPδ(K)

) · hJ = (UPK
)F (x, UPδ(K)

) · hJ

= (UPK
)F (x, UPδ(K)

∩ LJ) · hJ

= (UPK
)F (x(UPδ(K)

∩ LJ), 1) · hJ .

So it suffices to show that for any v ∈ UPδ(K)
∩LJ , there exists u ∈ UPK

∩Lδ−1(J)

such that x−1uxF (u)−1 ∈ vUPJ
.
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Let (Jn, wn)n≥0 ∈ T (J, δ) be the element that corresponds to w. By Lemma
1.1,

x−1(Lδ−1(J) ∩ UP
δ−1(J1)

)x ⊂ UPJ
,

x−1(Lδ−1(Ji) ∩ UP
δ−1(Ji+1)

)x ⊂ LJi−1 ∩ UPJi
for i ≥ 1.

We have that δ(K) = Jm for some m ∈ N. Now v = vmvm−1 · · · v0 for some
vi ∈ LJi

∩ UPJi+1
. We define ui ∈ Lδ−1(Ji) ∩ UP

δ−1(Ji+1)
as follows:

Let um = 1. Assume that k < m and that ui ∈ Lδ−1(Ji) ∩ UP
δ−1(Ji+1)

are

already defined for k < i ≤ m and that

(x−1(umum−1 · · ·uk+2)
−1x)F (umum−1 · · ·uk+1)

−1 = vmvm−1 · · · vk+1.

Let uk be the element with

F (uk)−1 = (x−1(umum−1 · · ·uk+1)x)vmvm−1 · · · vkF (umum−1 · · ·uk+1)

= (x−1uk+1x)F (umum−1 · · ·uk+1)
−1vkF (umum−1 · · ·uk+1)

∈ LJK
∩ UPJk+1

.

Thus uk+1 ∈ Lδ−1(Jk) ∩ UP
δ−1(Jk+1)

and that

(x−1(umum−1 · · ·uk+1)x)F (umum−1 · · ·uk)−1 = vmvm−1 · · · vk.

This completes the inductive definition.
Now set u = umum−1 · · ·u0. Then

(x−1ux)F (u)−1

= (x−1(umum−1 · · ·u1)x)F (u)−1(F (u)(x−1u0x)F (u)−1)

∈ vUPδ(J)
.

The lemma is proved. �

By the proof of Lemma 2.2,

ZJ,F ;w = GF (UP
δ−1I(J,δ;w)

δ−1(w)−1UPδ(I(J,δ;w))
, 1) · hJ .

Then we have the following consequence.

Corollary 2.6. Let w ∈ W J . Then GF acts transitively on ZJ,F ;w.

Remark. Therefore there are only finitely many GF -orbits on ZJ and they
are indexed by W J . This is quite different from the set of G∆-orbits on ZJ .

Proposition 2.7. Let w ∈ W . Then

GF (B, Bw) · hJ = ⊔w′∈W J ,w′≤J,δwZJ,F ;w′.

Remark. Similar results appear in [H3, Proposition 4.6], [H2, Corollary 5.5]
and [H4, Proposition 5.8]. The following proof is similar to the proof of [H4,
Proposition 5.8].

Proof. We prove by induction on l(w).
Using the proper map p : GF ×BF

ZJ → ZJ defined by (g, z) 7→ (g, F (g)) · z,
one can prove that

GF (B, Bw) · hJ = GF (B, Bw) · hJ = ∪v≤wGF (B, Bv) · hJ .
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By 1.3 (a), w →J,δ w1v for some w1 ∈ W J and v ∈ WI(J,δ;w). By Lemma 2.1,

GF (B, Bw) · hJ = GF (B, Bw) · hJ ∪ ∪w′<wGF (B, Bw′) · hJ

= GF (B, Bw1v) · hJ ∪ ∪w′<wGF (B, Bw′) · hJ .

By the proof of Lemma 2.2, GF (B, Bw1v) · hJ ⊂ GF (B, Bw1) · hJ . Thus by
induction hypothesis,

GF (B, Bw) · hJ ⊂ ∪w′∈W J ,w′≤J,δwZJ,F ;w′.

On the other hand, if w′ ∈ W J with w′ ≤J,δ w, then there exists w′′ ≈J,δ w′

with w′′ ≤ w. Then by Lemma 2.1,

ZJ,F ;w′ = GF (B, Bw′′) · hJ ⊂ GF (B, Bw) · hJ .

Therefore GF (Bw, B) · hJ = ∪w′∈W J ,w′≤J,δwZJ,F ;w′. By 2.3, ZJ,F ;w1∩ZJ,F ;w2 =

∅ if w1, w2 ∈ W J and w1 6= w2. Thus GF (Bw, B) · hJ = ⊔w′∈W J ,w′≤J,δwZJ,F ;w′.
The proposition is proved. �

3. A stratification of partial flag varieties

3.1. It is easy to see that there is a canonical bijection between the GF -
orbits on ZJ and the RJ -orbits on (G × G)/GF which sends GF (1, w) · hJ to
RJ(1, w−1)GF /GF . Notice that the map (g1, g2) 7→ g2F (g1)

−1 gives an isomor-
phism of RJ -varieties (G × G)/GF

∼= G, where the RJ -action on G is defined by

(lu1, lu2) · g = lu2gF (lu1)
−1.

Using the results of GF -orbits on ZJ above, we have the following results.
(1) For w ∈ JW , RJ · w = RJ · (BwB). If moreover, w′ ∈ (WJ · w)min, then

RJ · (Bw′B) = RJ · (BwB).
(2) G = ⊔w∈JW RJ · w.
(3) For w ∈ W , RJ · w = ⊔w′∈JW,(w′)−1≤J,δw−1RJ · w′.

Notice that if J = ∅, part (2) above follows easily from Bruhat decomposition.
One may regard (2) as an extension of Bruhat’s Lemma. We will also discuss a
variation of (2) in section 4.

3.2. Now we review the partition on PJ introduced by Lusztig in [L3, section
4].

To each P ∈ PJ , we associate a sequence (Pn, Jn, wn)n≥0 as follows

P 0 = P, Pn = (Pn−1)F (P n−1) for n ≥ 1,

Jn ⊂ I with Pn ∈ PJn
, wn = pos(Pn, F (Pn)) for n ≥ 0.

By [L3, 4.2], (Jn, wn)n≥0 ∈ T (J). Thus we have a map i : PJ → JW . For
w ∈ JW , let

PJ,w = {P ∈ PJ ; wm = w for m ≫ 0}.

Then PJ = ⊔w∈JWPJ,w.
It is easy to see that PJ,w = {P ∈ PJ ; (P, UP ) ∈ ZJ,F ;w−1}.
Notice that Lie (G∆) + Lie (GF ) = Lie (G) ⊕ Lie (G). Then for any x ∈ ZJ ,

G∆ ·x and GF ·x intersects transversally at x. In particular, PJ,w is the transversal
intersection of G∆ · hJ and ZJ,F ;w−1 .

We simply write P∅,w as Bw. By 3.2 (3),

Bw = {B1 ∈ B; pos(B1, F (B1)) = w} = {gB; g−1F (g) ∈ BẇB}.
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Since the Lang isogeny g−1F (g) is an isomorphism GF \G → G, we have that

(a) Bw = ⊔v≤wBv.

Now we can prove our main theorem.

Theorem 3.1. Let p : B → PJ be the morphism which sends a Borel subgroup
B′ to the unique parabolic subgroup in PJ that contains B′. Then

(1) For w ∈ JW , p(Bw) = PJ,w. If moreover, v ∈ (WJ · w)min, then p(Bv) =
p(Bw) = PJ,w.

(2) For w ∈ W , PJ,w = p(Bw) = ⊔w′∈JW,(w′)−1≤J,δw−1PJ,w′.

Remark. The closure relation of PJ,w was conjectured by G. Lusztig in private
conversation.

Proof. (1) Let w ∈ JW and g ∈ G with gB ∈ Bw. Then g−1F (g) ∈ BwB.
Thus

(gPJ , UPJ
) = (g, g) · hJ = (g, F (g))(1, F (g)−1g) · hJ

∈ GF (B, Bw−1) · hJ = ZJ,F ;w−1

and p(Bw) ⊂ PJ,w.
By 3.1, for any g ∈ G, there exists l ∈ LJ such that (gl)−1F (gl) ∈ Bẇ′B for

some w′ ∈ JW . Hence

p(B) = ∪g∈G p(gB) = ∪w′∈JW ∪g−1F (g)∈Bẇ′B p(gB)(a)

= ∪w′∈JW p(Bw′) ⊂ ⊔w′∈JWPJ,w = PJ .

Since p is proper, we have that p(B) = PJ . Thus the inequality in (a) is actually
an equality and p(Bw′) = PJ,w′ for all w′ ∈ JW .

If moreover, v ∈ (WJ · w)min, then by 3.1, there exists l ∈ LJ such that
(gl)−1F (gl) = l−1g−1F (g)F (l) ∈ BẇB. Thus p(gB) = gPJ = glPJ ∈ p(Bw) and
p(Bv) ⊂ p(Bw). Similarly, we have that p(Bw) ⊂ p(Bv). Then p(Bv) = p(Bw).

Part (1) is proved.
(2) Since p is proper, we have that PJ,w = p(Bw). By 3.2 (a), Bw = ⊔v≤wBv

and p(Bw) = ∪v≤wp(Bv) = ∪g∈G,g−1F (g)∈Bv̇Bp(gB). By 3.1 (3),

p(Bw) = ∪w′∈JW,(w′)−1≤J,δw−1 ∪g−1F (g)∈Bẇ′B p(gB)

= ∪w′∈JW,(w′)−1≤J,δw−1p(B′
w)

= ∪w′∈JW,(w′)−1≤J,δw−1PJ,w′ .

Part (2) is proved. �

Let us discuss some other properties of PJ,w.

Proposition 3.2. Assume that G is quasi-simple and J 6= I. Then PJ,w is
irreducible if and only if suppδ(w) = I.

Proof. By [L3, 4.2 (d)], PJ,w is isomorphic to PK,w, where K = I(J, δ; w).
By [BR, Theorem 2], PK,w is irreducible if and only if wWK is not contained in
WJ′ for any δ-stable proper subset J ′ of I.

Let J ′ be the minimal δ-stable subset of I with wWK ⊂ WJ′ . It is easy to see
that if suppδ(w) = I, then J ′ = I. On the other hand, suppose that suppδ(w) 6= I
and J ′ = I. Then for any i ∈ K − suppδ(w), we have that wαi ∈ δ(K). Since
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wαi ∈ αi +
∑

j∈supp(w) Zαj , we must have that wαi = αi and i ∈ δ(K). In

particular, K − suppδ(w) is δ-stable, wαi = αi for all i ∈ K − suppδ(w) and
K−suppδ(w) = I−suppδ(w). Since G is quasi-simple, there exists i ∈ K−suppδ(w)
such that (αi, α

∨
j ) < 0 for some j ∈ supp(w). Now assume that w = sj1sj2 · · · sjm

is a reduced expression and m′ = max{n; (αi, α
∨
jn

) 6= 0}. Then sj1sj2 · · · sjm′
αi =

sj1sj2 · · · sjm
αi = αi. Thus

0 > (αi, α
∨
jm′

) = (sj1 · · · sjm′
αi, sj1 · · · sjm′

α∨
jm′

) = (αi, sj1 · · · sjm′
α∨

jm′
).

However, sj1 · · · sjm′
α∨

jm′
is a negative coroot. Thus

(αi, sj1 · · · sjm′
α∨

jm′
) ≥ 0,

which is a contradiction. Therefore if suppδ(w) 6= I, then J ′ 6= I. The proposition
is proved. �

3.3. By [L3, 4.2 (d)], PJ,w is isomorphic to PK,w, where K = I(J, δ; w).
Similar to [DL, 1.11], we have that

PK,w = {g ∈ G; g−1F (g) ∈ PKẇPK}/PK

= {g ∈ G; g−1F (g) ∈ ẇPK}/PK ∩ ẇPK

= {g ∈ G; g−1F (g) ∈ ẇUPK
}/L

Ad(ẇ)◦F

K (UPK
∩ ẇUPK

).

Let P ∈ PK,w such that there exists a F -stable Levi subgroup L of P . Then
similar to [DL, 1.17], we have that

PK,w = {g ∈ G; g−1F (g) ∈ PF (P )}/P

= {g ∈ G; g−1F (G) ∈ F (P )}/P ∩ F (P )

= {g ∈ G; g−1F (g) ∈ F (UP )}/LF (UP ∩ F (UP )).

4. An extension of Bruhat decomposition

After the paper was submitted, I learned from A. Vasiu about his conjecture
in [Va, 2.2.1]. We state it in the following slightly stronger version.

Corollary 4.1. Let P be a parabolic subgroup of G of type J with a Levi
subgroup L. Let R = {(lu, lu′); l ∈ L, u, u′ ∈ UP } and define the action of R on G
by (lu, lu′) · g = lugF (lu′)−1. Then

(1) There are only finitely many R-orbits on G, indexed by JW .
(2) If moreover, there exists a maximal torus T ′ ⊂ P such that F (T ′) = T ′,

then each R-orbit contains an element in NG(T ′).

Proof. We may assume that P = gPJ and L = gLJ . For any w ∈ JW , set
w∗ = gwF (g)−1. Then it is to see that R · w∗ = g(RJ · w)F (g)−1. Now part (1)
follows from 3.1 (2).

If moreover, T ′ = gT ⊂ P is F -stable, then we have that g−1F (g) ∈ NG(T ).
Thus w∗ = gwF (g)−1 = g(wF (g)−1g)g−1 and wF (g)−1g ∈ NG(T ). So w∗ ∈
NG(T ′) and part (2) is proved. �
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